yquant.sty package documentation

Typesetting quantum circuits in a human-readable language
Benjamin Desef

March 27, 2021

This manual introduces , a BIpX-only package that outputs
quantum circuits. They are entered using a human-readable language
that, even from the source code, allows for a fluent understanding of
the logic that underlies the circuit. internally builds on

and can be easily combined with arbitrary BIEX code. More than fifty
pages of examples complement the formal manual.

Contents

1 Introduction

1.1
1.2
1.3
1.4

Howtoreadthemanual
Installation
Purpose of yquant, alternatives
License e e e e e e e e

2 Basic elements of yquant

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

General Usage e e e e
Starred vs. unstarred environment
Formalsyntax
Registers i e e e e e e e e e
ATguments Lo e e e e e e e e e e e e
Controls e
Importing circuit fromfiles L.
Definingown gates

Configuration

Circuit layout e
Register creation i e
Registeroutputs i e e e
Generalstyling
Styles foroperatorso

Doing the impossible

Mixing yquant and TikZcode
Accessing gates in TikZ v i i i it
Shapes and the drawing pipeline
Overwriting the height and depth calculation

Reference: Gates and operations

addstyleo
align o e e
barrier Lo o e

5.9 dmeter o i i e e e e 36

510h . . o e e 36
ST hspace o o v vt e e 36
5.124nit . .o L e e e e e 36
513 inspecto e e e 37
S514measure Lo e e 37
515 nobit e e e e e e 38
516 not oL e e 38
SA7 output oL 39
S5.18 phase e e e 39
SA9 qubito 39
520 qubits e e e 40
521 setstyleo 40
522 settype e e 41
523 setwire 41
524 slash e e e e e e e e e 41
5.25 subcircuit oL L e 41
520 8Wap . . .o . e e e e 43
527 % . o e e e 43
528 XX . . e e e e e e e e e e 43
5. 20 Y e e 43
530z . . e 44
531 zz . .. e e 44
Examples 45
6.1 gasmdocumentationet . 45
6.2 qcircuit documentation. 56
6.3 quantikz documentation., 71
Foreign language support 97
7.1 qasm ... e e 97
Wishlist 103
Changelog 104

1 Introduction

This document outlines the scope and usage of the package. It contains
both a reference and a huge number of examples. is a package that makes
typesetting quantum circuits easy; the package is available on CTAN. This beta
version 0.4 should be stable and interfaces are not very likely to change in an
incompatible way in the future. Sometimes, backwards-incompatible changes are
required or advisable, in which case a compatibility setting will allow to revert

back to the old behavior (rather, to maximize compatibility, this is an opt-in setting:

unless you choose the new behavior, you will get the old one). Please do report all
issues and desirable additions on GitHub.

1.1 How to read the manual

The probably fastest way to start using is by just scanning through the
examples in section 6. A more formal description of the grammar and its
fundamental concepts can be found in section 2. If your desire is to change the
appearance of elements, use the configuration reference in section 3. The
full list of all available gates is provided in section 5. Finally, you may find that

almost does what you want, but there is some final tweak that you cannot
achieve.... Then, have a look at section 4 (or section 1.3).

1.2 Installation

The recommended way of installation is through CTAN. A direct installation from
the Git repository to obtain the latest additions and features is be possible by just
cloning it to a path visible to your TgX compiler. For example, you may put the
source files in the same directory as your document (if you just want to give a
try), or you may extract them to tex/latex/yquant in your local texmf (followed
by an update of the file name database). While the repository may contain new
additions, they are not thoroughly tested until they end up on CTAN; features that
are not documented in this manual are entirely unreliable.

The CTAN repository reflects the most current version tag on Git; the Releases
section on GitHub additionally provides a single-file version of the main package,
which can for example conveniently be included in arXiv submissions. Note that
the arXiv currently provides 0.3.2 out-of-the-box.

New in 0.4

New in 0.4

https://github.com/projekter/yquant/issues
https://github.com/projekter/yquant/releases

1.3 Purpose of yquant, alternatives

yquant is the acronym for “yet another quantum circuit package.” This highlights
the fact that nothing that this package provides cannot be achieved by other
means. In particular, there are at least the following methods to typeset quantum
circuits in TgX.

* Use some external program to draw them and include the output via
\includegraphics.

* Use either TgX’s own drawing capabilities (the picture environment) or
other drawing packages such as TikZ or pstricks.

* Use a package specifically designed to draw quantum circuits (if you feel
some other package should be mentioned here, please file an issue):

— gasn is probably the first of them (in terms of age). It was developed
to typeset the circuits found in Nielsen and Chuang’s famous Quan-
tum Computation and Quantum Information book. gasm consists of
a Python 2 script (qasm2circ) that reads a quantum circuit written
in a very intuitive language: declare names for your qubits, perform
gates on them in each line. gasm2circ converts those circuits into TgX
files that internally make use of the xy package to display the output.
Consequently, the user is restricted to the set of features that qasm
directly offers (which is small). Changes to the output, while possible,
will be overwritten if qasm2circ is run again. gasm output often looks
sub-optimal do to the fact that, e.g., rectangles are made up of four
lines that do not properly connect and give a crumbly general feeling.

Note that since version 0.3, yquant understands gasm syntax, see
section 7.1.

Maintenance status: last update of gasm in 2005. Also, xy was last
updated in 2013, and the script is not compatible out-of-the-box with
Python 3, though an automatic conversion should work.

— qcircuit is probably the most-widely used package. It provides com-
mands that make it much easier to create quantum circuits using the xy
package. Its syntax therefore is grid-oriented; inferring what a circuit
does or locating a gate in the code can be tough. This is particularly
true for multi-qubit gates. Additionally, the \xymatrix syntax is also
somewhat cryptic. gcircuit provides some flexibility within the limits
of xvy as to configuring the output.

Maintenance status: last update in 2018; and remember this is xy
based, with last update in 2013.

quantikz is a relatively recent package that, following the same grid-
based approach as qcircuit, instead builds on TikZ as a backend. As
a consequence, it provides the full flexibility of customization that TikZ
offers, where hardly anything cannot be done. It also reduces burdens
of the xy syntax. However, the disadvantages of the grid-based syntax
still remain.

Maintenance status: last update in 2020; the underlying TikZ is actively
maintained again by now.

gpic follows the approach of gasm: It makes use of an external Python
program that reads the quantum circuits in an own language and
converts them into TikZ commands. The language qpic follows is much
more powerful than gasm’s. The disadvantage that modifications in the
output code will not remain after running the Python script again is
mitigated by the possibility to define own TgX macros. Being an external
program, gpic’s intrinsic set of features (including, e.g., vertically
set circuits) are huge. However, the language gpic uses cannot be
understood without a detailed study of the manual, it appears to have
been designed with the aim to minimize the length of command names.
A disadvantage of external programs is that the amount of space gates
need is not accessible by the script; hence, manual intervention may
be required.

Maintenance status: last update in 2020; the underlying Tik” is actively
maintained, and the script is compatible with Python 3.

1.4 License

This work may be distributed and/or modified under the conditions of the BIEX
Project Public License, either version 1.3c of this license or (at your option) any
later version. The latest version of this license is in

http://www.latex-project.org/lppl.txt

and version 1.3c or later is part of all distributions of LaTeX version 2005/12/01

http://www.latex-project.org/lppl.txt

A

2 Basic elements of yquant

yquant, as some of the aforementioned packages, builds on TikZ. Its basic syntax
is similar to pgfplots: Start a tikzpicture environment (perhaps passing some
options); inside, start a yquant environment.

Inside the yquant environment, TgX will now understand the yquant language—
so yquant falls into the same category as gqasm and gpic, providing a human-
readable language for the specification of the circuit that is not fixed to the actual
layout.

However, yquant is a TgX-only package (actually, BIgX 2., but not EIEX3) that
requires no external script to run—so it also falls into the same category as
qgcircuit and quantikz.

Since it runs entirely within TgX, you can at any time interject yquant code
with arbitrary TgX or TikZ code (though if it is “too arbitrary,” you may need to
restart the yquant interpreter).

2.1 General usage

/% preamble: \usepackage[compat=<version>]{yquant}
\begin{tikzpicture}/ tikz options possible

7 tikz commands go here

\begin{yquant}/ yquant options possible. Watch the newlines!

7% yquant and tikz commands go here

\end{yquant}

/% tikz commands go here
\end{tikzpicture}

Note that yquant depends on etoolbox, TikZ, trimspaces, and xkeyval. Ad-
ditionally, it requires a moderately recent version of EIgX 2., using either LuaBIgX;
or (untested) pdfBIEX or XqBIiX.

Optional arguments

The optional arguments for the yquant environment have to appear on the
same line as the environment itself. If you want to put the arguments into a
new line, it is crucial to mask the line break by putting a comment symbol
after the environment: \begin{yquant}/. Without this comment, yquant will
detect your line break (this is one of the few places in TgX where line breaks
and spaces are different) and assume that the expression in square brackets
instead provides arguments for the following operation!

Finally note that in (non-fragile) beamer frames, this discrimination between

Changed in 0.4

Changed in 0.4

spaces and new lines does not work; the optional arguments will always be
counted for the environment, not for the gate. In this case, you can either
declare the frame as fragile or (recommended) introduce a blank line between
the environment and the options for the first gate.

Compatibility mode

Sometimes, continued development shows that certain choices of interfaces,
configuration, or behavior are less ideal than originally thought. In other cases,
bugs are detected and fixed. Both may lead to a change in the look of circuits
developed with a previous version of yquant or even—though this should
rarely, if ever, happen, and should be filed as a bug—prevent compilation in
the new version.

For this reason, yquant offers a compatibility key that is highly recommended to
be specified as a package option. This allows certain features that are expected
to break old layout or functionality to revert to their previous behavior. Every
feature affected by the compat key is documented in this manual. Once a
compatibility version is selected in a document, it cannot be changed any more.
Compatibility versions will include the major and minor, but not the patch level
version number. Bugs that clearly violated behavior described in this manual
will be fixed without a possibility to revert back. Changes that are not supposed
to result in a (more than marginally) different result will not be included in
the compatibility layer. If you find this to be wrong in a particular case, please
file a bug report.

When starting a new document, it is recommended to leave out the compatibil-
ity key at first compilation. yquant will then issue a warning from which you
can infer the recommended setting, corresponding to the current version. You
should then pass the appropriate version to the \usepackage command. For
example, this manual corresponds to \usepackage [compat=0.4] {yquant}.
Allowed values for compat are newest (discouraged), which equals 0.4, and
0.3 (default).

2.2 Starred vs. unstarred environment

You may choose to use either the yquant or the yquant* environment. The former
one requires you to define all your registers before you use them (though you may
decide to define a register after some operations on different registers, but before
its first usage).

The starred form additionally supports the use of undeclared registers: it basi-

New in 0.4

cally declares a registers upon its first usage. This will always be a qubit register;
but if you use the corresponding attribute and the first usage is an init command,
you may overwrite this.

Subcircuits always use the unstarred form.

Additionally, if you refer to the index ¢ of a vector register of length L < i, this
register will automatically be enlarged to ¢ := L. It is also possible to convert a
scalar register into a vector register in this manner. To enlarge a register in the
unstarred environment, you must precede the number of registers to be added
in the second declaration by a plus sign. Note that in this manner, you may even
create discontiguous vectors.

This might be a good point to proceed to the examples section 6.

2.3 Formal syntax

Every yquant command has the same structure (described here in EBNF syntax):

Command = { Arguments }, , [Value], [RegisterList], Controls,
< Il;ll;

Arguments = "[", , D

Value = n{n, , ll}ll;

Controls = ["|", [RegisterSinglelList]], ["~", [RegisterSinglelList]];
RegisterList = (RegisterSingle | RegisterMulti), [",", RegisterList];
RegisterSingleList = RegisterSingle, [",", RegisterSinglelist];

RegisterSingle = RegisterSingleNoRange | RegisterRange;

RegisterSingleNoRange = , ["[", IndexMultiList, "1" 1;

RegisterMulti = " (", (RegisterMultiNoRange | ["#"], RegisterRange), ")";
RegisterMultiNoRange = ["*"], , ["[", IndexSingleMainList, "]1" J;
RegisterRange = [RegisterUnique], "-", [RegisterUnique 1];

RegisterUnique = o [L%, o TIT T3

IndexMultilist = IndexMulti, [",", IndexMultiList];

IndexSingleList = IndexSingle, [",", IndexSingleList];
IndexSingleMainList = ["*"], IndexSingle, [",", IndexSingleMainList];
IndexMulti = IndexSingle | (" (", IndexSingle, ")");

IndexSingle = I €L Jo =05 [19

Note that yquant is quite tolerant with respect to whitespaces. Virtually every
comma in the EBNF notation may consist of an arbitrary (including zero) number
of whitespaces. Not all combinations that can be constructed by this grammar
are actually allowed semantically; but it would make the grammar too verbose to
spell this out in detail. Deviations are noted in this manual.

New in 0.2
New in 0.1.1

Enhanced in 0.1.2,
0.1.1

Valid values for (case-insensitive) are documented in a section 5.
We use to describe any valid content passed to the \pgfkeys macro
(rather, \yquantset is invoked with some subtleties); and by we denote
any valid register name. Register names must not contain any of the control literals
used before (semicolon, comma, parentheses, square brackets, dash, pipe, tilde,
beginning star); and you should avoid using special TgX characters. Note that for
performance reasons, yquant does not check whether a register name is valid or
not, but expect to either see unintended output or not-so-helpful error messages
if you choose an invalid name. is a decimal integer larger or equal to
zero (in the context of register creation, strictly larger; in this context, it may also
contain a leading "+").

2.4 Registers

Every quantum circuit is structured by means of registers. A register has a type
that specifies how its wire is drawn, and that may even change during its lifetime.
At the moment, yquant supports four types:

1. qubit is the most common type, used for a quantum register. It corresponds
to a single line.

2. cbit is a classical register, which can be either declared from the beginning
or arises by using measurements. It corresponds to a double line.

3. qubits is a “quantum bundle,” i.e., a bunch of quantum registers that are
always addressed in a group as a single register. Operations between bundles
of the same length should be interpreted as transversal. It corresponds to a
triple line. An alternative (and more common) representation is to use the
qubit type and a slash gate at its very beginning.

4. nobit is the most obscure type, corresponding to a non-existing wire. Mostly,
this register type arises by using the discard command. However, it can
also be directly declared, which on rare occasions might be necessary (its
type can then be changed by means of an init or setwire pseudo-gate). If
you want to declare a register only at a certain horizontal position in the
circuit, consider using the after argument instead.

Registers must be declared before they can be used (though in the yquant*
environment, this declaration may be implicit, creating a qubit register).

Registers can have a vector character, i.e., not only a name, but also an index
(or, in the declaration, a length). The index (zero-based) or length is specified

10

in square brackets following the name, which closely mimics the OpenQASM
language.

Vector registers may be non-contiguous: Whenever you create a bunch of reg-
isters, it is put at the bottom of the circuit. If you later on again create registers
of the same name—either implicitly in the yquant* environment, or explicitly
by preceding the length of the vectors entries to be added by a plus, as in qubit
a[+3] ;—they will be put to what is now the bottom of the circuit, even if some
other registers are interspersed.

Registers are referenced—i.e., used in operations—by their name and index.
If the latter is omitted, all indices of the register are targeted. Multiple registers
can be referenced by joining their names in a comma-separated list, or by means
of a range specifier: give the name of the first (topmost), a dash, and the last
(bottom-most) register. Both are inclusive. In a range specifier, omitting the start
name means that the range begins at the first known register; omitting the end
name means that the range ends at the last known (at the moment of its use)
register. Omitting both indicates a range over all known registers.

It is also possible to use comma-separated lists and ranges within the indices
themselves, so that, e.g., a[0, 2, 5-1, b[-2] will target the zeroth and second
index of a; the remaining indices of a starting from five; and the first three indices
of b. However, if you use an outer range (i.e., a range between indices of registers
with different names), the initial and final register of the range must be unique,
i.e., either you omit the index (targeting the first or last register with the given
name) or specify a single one.

Ranges and discontiguous registers

Assume a configuration in which the vector register a begins with one qubit,
then the single register b follows, and after that a is continued with another
qubit.

The range a-b will target a[0] and b[0], but not a[1]. As a is used as the
initial register in the range without an explicit index specification, yquant
automatically translates this into a[0], while b, being used as the final register,
is automatically translated into the last register of name b (which here happens
to be b[0]). Ranges between different register names (outer ranges) are visual
ranges, i.e., they refer to the top-to-bottom order that is visible. Consequently,
the register a[1] is left out since it is visually below the others.

Likewise, the range b-a will target b[0] and a[1].

Ranges within indices are logical ranges. Hence, a, a[-], a[0-], a[-1], and
a[0-1] are all equivalent: they all refer to the registers a[0] and a[1], but
never to b, regardless of any visual position.

11

New in 0.1.1

New in 0.1.1

All that was said so far refers to the operation being carried out on each of
the registers individually, i.e., producing several copies of the operation. This is
different from using the operation multiple times on the individual single registers
only with regard to the horizontal positioning: if specified as a register list with one
operation, all copies of the operation will be aligned at the same horizontal middle
axis (for gates with the same width on each register, this is the same as issuing an
align command before performing the operations individually).

It is forbidden (in the sense of “not useful and giving unexpected output,”
but does not check for this) to list the same register multiple times
(explicitly or via ranges) in one operation.

Instead of copies of single-register operations, one might want to carry out a
multi-register operation. In this case, the desired list of registers (comma separated,
range, or both) must be surrounded by parentheses. It is possible to mix single-
and multi-register operations arbitrarily. In an index list, you may also choose to
surround only certain indices with parenthesis, provided the whole register is not
already a multi-register.

Note that some gates, such as the swap gate, always require (semantically,
not grammatically) multi-register operations. The number of constituents is
not stipulated; while a swap gate with more than two targets is no longer
well-defined, other registers such as zz may still be useful. will prevent
you from using a gate in a multi-qubit setting when it may only be used for
single registers.

Typically, multi-register operations should only be carried out on adjacent
registers—but sometimes, one might want to carry out a multi-qubit operation
on a visually discontiguous set of registers (which, due to a particular quantum
computer topology, might even be physically feasible). supports these
discontiguous operations explicitly. It will draw a main part of the gate at the first
contiguous slice of registers in the target list—you may select another register
for this part by preceding the name or index with a star (which, contrary to
the simplified grammar, may only occur once in a target specification). All other
contiguous slices of target registers will be drawn in a subordinate style for this
gate. Finally, all slices will be connected by a single vertical line with the style
/yquant/every multi line. Subcircuits will always span the full region from
the first to the last register specified in a multi-qubit gate. This is due to the fact that
they may contain arbitrary ancilla registers which may be positioned somewhere
in between the parts that actually constitute the subcircuit—surrounding this with
a scattered set of connected boxes would look quite unpleasant.

12

Changed in 0.1.2

New in 0.1.2

New in 0.2

Discontiguous targets and control lines Improved in 0.1.2

A control line extends from the very first to the very last affected register in
an operation. A sub-gate line that is used for discontiguous registers will only
span the range of a multi-register. This distinction becomes crucial if you want
to carry out a controlled operation on more than one multi-register, where at
least one is discontiguous. Without the controls, the separate multi-registers
could be identified, since no connecting vertical line extends between them
(unless, which you should strictly avoid, they are intertwined). However, with
the controls, the control line will make it hard (for some gates, impossible) to
visually distinguish the connected parts. yquant will kindly provide a warning
in this case. You may choose to suppress this warning using the boolean key
/yquant/operator/multi warning.

There is no established style for discontiguous gates. Note that at the moment,
main and subordinate style coincide for all gates except for the measure
gate with a value. In order to still make it possible to visually distinguish
discontiguous multi-register gates operating on slices of a single register from
just a bunch of single-register gates that are executed in a parallel manner if
controls are present, yquant’s default vertical line style for the former case is a
wavy line instead of a straight one. Still, the meaning of this should probably be
explained. Please feel free to submit issues or pull requests with propositions
of how default styles or alternative subordinate gate shapes may additionally
help to mitigate the problem.

2.5 Arguments

Every command may take one or multiple arguments. Those are specified in square
brackets that precede the command itself. The content of those square brackets
is essentially fed to a \pgfkeys-like macro. The default path is set appropriately
such that the arguments of the command can be accessed without path specifiers.
If the key is not a valid argument for the command or a global argument and it is
not given by an absolute path, it is searched for in the /yquant namespace. If it
cannot be found there, it is passed to /yquant/operator style.

Note that commands may have required arguments. If a required argument is
missing, an error will be issued.

The value attribute can alternatively be given inside curly brackets after the
command name and before the register specification. This has the advantage that
special characters such as a closing square bracket need not be escaped. If both

13

alternatives are present, the value inside curly brackets takes precedence and a
warning is issued.

2.6 Controls

Lots of gates may have controls, i.e., they are only to be executed if some other
gate is set or unset. The former case is called a positive control, the latter one a
negative control. Those are indicated by filled and empty circles on the control
registers and a vertical line that joins the registers that belong together.

The gate specification is followed by the list of target registers. By then writing a
pipe (“1”), the list of positive controls is introduced; this mimics the mathematical
syntax “conditioned on” for probabilities or “given” for sets. If there are no positive
controls, the list may be empty or, together with the pipe, omitted. Preceded by
a tilde (“~”), the list of negative controls then follows; this mimics the syntax of
many programming languages that denote logical negation by a tilde. If there are
no negative controls, the list may be empty or, together with the tilde, omitted.

2.7 Importing circuits from files

yquant provides a simple way to import circuits that are stored in external files.
The macro \yquantimport can be used in three different contexts:

* Outside of a TikZ picture environment.
Here, \yquantimport [<options>]{<filename>} will be equivalent to

\begin{tikzpicture}
\begin{yquant} [<options>]
/4 the content of <filename> goes here
\end{yquant}
\end{tikzpicture}

The starred form, \yquantimport* [<options>]{<filename>}, instead in-
serts the starred yquant environment. Note that the options are always
yquant options; if you want to pass TikZ options, you will have to create the
picture environment by yourself or change the option path to the correct
one (/tikz/.cd).

* Inside a TikZ picture environment, but outside of a yquant environment.
This is the same as before, just that no extra picture environment will be
added.

14

New in 0.2

* Inside both a TikZ picture environment and a yquant environment.

The file will be inserted directly into the environment. yquant’s parser
is automatically restarted after this. The content will always be put in a
TeX group; if additional options are provided, yquant also inserts a TikZ
scope and executes \yquantset{<options>} directly after the scope. If
\yquantimport is used, the content will be read as if the containing envi-
ronment was an unstarred one; if \yquantimportx* is used, the content will
be read as if the containing environment was a starred one.

Note that yquant internally uses plain TgX’s \import command (i.e., \@@import
in BIEX). However, when the import package is loaded, it uses
\subimport{\yquantimportpath}{<filename>}, where \yquantimportpath
defaults to ./—so by changing this, files from other folders may be imported
which by themselves again include other files, and the relative path resolution
will work.

Note that you may in particular import the content of a subcircuit.

2.8 Defining own gates

All gate declarations are always global.

If you want to define a gate that corresponds to a single box gate with a certain New in 0.2.1
pre-defined content, you may use the macro
\yquantdefinebox{<name>} [<style>] {<content>}, which is far more efficient
than the much more general \yquantdefinegate introduced below. It only allows
for single-register usage; use \yquantdefinemultibox with the same arguments New in 0.4
if you want to allow the gate to be used in a multi-register gate fashion. The
macros work in the following way:

* They create a new gate with name <name> that can be accessed as all
the other build-in gates. Note that <name> is case-insensitive and may not
contain spaces. Special characters are allowed if TgX can cope with them
(i.e., no comment signs, no unbalanced braces, no backslashes...).

* They create a style /yquant/operators/every <name> and assign the
optional <style> to it. If no style is provided, the default style will inherit
from /yquant/operators/every box.

* They define <content> to be the value that is written into the box. This
<content> is expanded in a protected manner at the time of gate declaration.
You may need to prefix fragile macros by \protect.

15

Sometimes, you may wish to define gates that are more than just a single box—
perhaps a succession of multiple gates or even multi-register gates with individual
operations on the input registers. yquant provides a simple macro that allows this.
The macro \yquantdefinegate{<name>} [<style>]{<content>} works in the
following way:

* It creates a new gate with name <name> that can be accessed as all the other
built-in gates. Note that <name> is case-insensitive and may not contain
spaces. Special characters are allowed if TgX can cope with them (i.e., no
comment signs, no unbalanced braces, no backslashes...).

* It creates a style /yquant/operators/every <name> and assigns the op-
tional <style> to it. If no style is provided, the default style will inherit
from /yquant/operators/every custom gate. This will make the gate
“seamless,” i.e., avoid highlighting the fact that this is a custom gate.

* It defines a macro that contains <content> (expanded in a protected man-
ner) and that will be inserted as a subcircuit whenever this gate is invoked.
This in particular means that if you use \yquantimport within the gate, the
file will only be loaded once at the time of declaration.

When the gate is later drawn, the styles are invoked in the following order—
remember custom gates are implemented by means of subcircuits—:

1. /yquant/every operator

2. /yquant/operators/every <name>

3. /yquant/operators/every subcircuit box
4. /yquant/this operator

5. /yquant/operators/this subcircuit box

Gates defined in this way can only make use of the default gates or other custom
gates. They do not accept custom arguments, and it is not possible to declare own,
custom shapes in this way (though other predefined shapes may be used). If they
are used in a multi-qubit manner, they will never be split into contiguous slices
(but their content will be, so if you use the default style that turns off the box,
the only way to notice this is that intermediate unaffected registers will not be
allowed to have gates visually within the rectangle that would bound the custom
gate).

16

New in 0.2

A

Redefining existing gates

The above macros will issue an error if the gate already exists. You can use
\yquantredefinebox, \yquantredefinemultibox (use the appropriate com-
mand for the new definition), or \yquantredefinegate to overwrite existing
gate definitions. Note that this will overwrite any gate, even the built-in ones.
Generally, it is discouraged to make use of this possibility. For custom gates,
if you redefine a gate as a box which was previously a general subcircuit-
based gate, the macro that contains the subcircuit will still be held in memory.
Overwriting built-in gates will not clear the attributes associated to this gate
(though required attributes will no longer be required afterwards). Again, this
is not a problem but prevents yquant from issuing potentially helpful error
message if such a—now meaningless—attribute is used.

Finally, once a built-in gate is overwritten, it cannot be restored. In particular,
the register creation pseudo-gates qubit, cbit, qubits, and nobit perform
some magic that cannot be mimicked with custom gates.

More advanced declaration of custom gates requires the use of backend macros.
Refer to yquant-lang.tex for this. Note that the backend interface changed in
version 0.4. For the declaration of custom shapes, see yquant-shapes.tex for
examples.

17

3 Configuration

yquant uses pgfkeys to control its options, which are located in the path /yquant.
The following list contains all options and styles that are recognized, apart from
gate arguments. Those are listed together with their operations.

3.1 Circuit layout

/yquant/register/minimum height default: 1.5mm Changed in 0.4
yquant automatically determines the height (extent from wire to top boundary)
of a register as the height of the largest operation. This might be too small for two
reasons:

* if the register is used only with small gates (e.g., only as a control, or as a
swap), and it does not have a label (or one containing only x-height letters).

¢ if you manually turned off height calculation or multi-extent calculation for
a large gate. yquant will then not consider the vertical extent of this gate,
which might consequently lead to undesirable overlaps.

This key provides an easy alleviation of the problem by requiring a minimal
height for every register. As the value of this key is relevant at the time of register
declaration, it can also be changed for each register individually.

Note that this key is affected by the compat setting. Before version 0.4, there was
no /yquant/register/minimum depth key. In this compatibility setting, passing
the value x to this key will set both height and depth to 7. The default for z is
then 3mm.

/yquant/register/minimum depth default: 1.5mm New in 0.4
see /yquant/register/minimum height
This key allows to specify a minimum depth (extent from wire to bottom boundary)
for a register.
Note that this key is affected by the compat setting. Before version 0.4, this key
will not be available.

/yquant/register/separation default: 1mm
This key controls the amount of vertical space that is inserted between two succes-
sive registers. Half of this value is also the length that multi-init or multi-output
braces extend beyond the mid position of the register.

18

/yquant/operator/minimum width default: 3mm
yquant automatically determines the width of an operator according to its content.
However, single-letter boxes are among the most common operators, and giving
them slightly different widths would result in a very uneven spacing, as yquant
does not use a grid layout but stacks the operators horizontally one after each
other. Hence, this key provides a minimum width that will be set for every operator.
This does not imply that the visual appearance (i.e., the x radius key) is enlarged,
but that operators of a smaller actual width will be centered in a virtual box of
the minimum width.

/yquant/operator/separation default: 1mm
This key controls the amount of horizontal space that is inserted between two
successive operators and at the beginning and end of a circuit.

/yquant/operator/multi warning default: true Newin0.1.2
If this key is true, a warning is displayed whenever more than a single multi-
register gate, where at least one is discontiguous, is employed together with
controls. Even if a visual distinction between control and multi-qubit line may be
possible (depending on the style in use), they will overlap and produce unaesthetic
output. You may disable this warning globally, on a per-circuit, or even on a per-
gate basis.

3.2 Register creation

/yquant/register/default name default: \regidx
The printed name that is used by default if a new register is created explicitly
(qubit, cbit, qubits; not used for nobit or for implicit declarations) and no
value is specified. The following macros are available:

* \reg contains your name to identify this register.

* \idx contains the index (zero-based) of the current register within a vector
register.

* \regidx expands to \reg if the register is of length one, and to \reg[\idx]
else.

* \len contains the length of the current register vector.

19

/yquant/every label default: shape=yquant-init, anchor=center,
align=right, outer xsep=2pt, /yquant/operator/if multi={draw,
decoration={gapped brace, mirror, raise=2pt}, decorate}
This style is installed for every single register name label (i.e., upon creation
and when used with the init gate). The default style allows to use line breaks
in the labels. The node shape, yquant-init, will generate a path at its right
side, which is replaced by the gapped brace decoration if the gate is used in a
multi-register fashion. The decoration is similar to TikZ’s brace decoration, but
additionally allows specify the regions in which a line should be drawn by using
the /tikz/decoration/from to key, which expects a comma-separated list of
dimension ranges, and which is automatically populated by yquant.
Note that if the compat key is below 0.3, the multi options are instead read from
/yquant/every multi label.

/yquant/every initial label default: anchor=east
This style is installed for every single register name label at the left border of the
circuit. It is therefore used if a label is specified upon declaration and also for
the init gate if it happens to be the first gate on an unlabelled register (use a
zero-width hspace gate before if you want to suppress this).

/yquant/every qubit label default:
This style is installed for every single register name label of a register of type
qubit.

/yquant/every cbit label default:
This style is installed for every single register name label of a register of type
cbit.

/yquant/every qubits label default:
This style is installed for every single register name label of a register of type
qubits.

/yquant/every multi label default: draw, decoration={gapped brace,

mirror, raise=2pt}, decorate
This style is installed for every register name label that is attached to a multi-qubit
register by means of the init gate.
Note that this key is only available if the compat setting is smaller than 0.4. In
newer versions, this is incorporated in /yquant/every label.

20

Changed in 0.4

Changed in 0.4

Removed in 0.4
Changed in 0.1.2

/yquant/every input label default:
This style is installed for every register name label in a subcircuit when the
register is an input (or input and output) register.

Note that this key is only available if the compat setting is smaller than 0.4; and in
this case, it behaves inconsistently, as it is only applied for labels directly specified
during creation, but not for initial init gates.

3.3 Register outputs

/yquant/every output default: shape=yquant-output, anchor=west,
align=left, outer xsep=2pt, /yquant/operator/if multi={draw,
decoration={gapped brace, raise=2pt}, decorate}
This style is installed for every output label at the end of the circuit. The default
style allows to use line breaks in the labels.

The node shape, yquant-output, will generate a path at its left side, which is
replaced by the gapped brace decoration in the case of multi-register usage. See

/yquant/every label for a more detailed explanation.

/yquant/every qubit output default:
This style is installed for every output label of a register of type qubit.

/yquant/every cbit output default:
This style is installed for every output label of a register of type cbit.

/yquant/every qubits output default:
This style is installed for every output label of a register of type qubits.

/yquant/every multi output default: draw, decoration={gapped brace,
raise=2pt}, decorate
This style is installed for every output label that is attached to a multi-qubit
register.
Note that this key is only available if the compat setting is smaller than 0.4. In
newer versions, this is incorporated into /yquant/every output.

21

Removed in 0.4
New in 0.2

Changed in 0.4

Removed in 0.4
Changed in 0.1.2

3.4 Generalstyling

/yquant/every circuit default: every node/.prefix style={transform shape}
Style that is installed for every yquant and yquant* environment, as if it had
been given as an option. The style’s default path is, as with all other styles, /tikz.
The style is re-applied for every subcircuit. The default style will make all nodes
(which in particular means, all gates) respect outer canvas transformations.

If your TikZ version is before 3.1.6a, this style will additionally contain every
label/.prefix style={transform shape=falsel}, which undoes the effect for
labels (see TikZ bug #843). An update is recommended.

/yquant/every wire default: draw
This style is installed whenever a wire is drawn.

/yquant/every qubit wire default:
This style is installed whenever a wire for a register of type qubit is drawn.

/yquant/every cbit wire default:
This style is installed whenever a wire for a register of type cbit is drawn.

/yquant/every qubits wire default:
This style is installed whenever a wire for a register of type qubits is drawn.

/yquant/every control line default: draw
This style is used to draw the vertical control line that connects controlled opera-
tions and their controls.

/yquant/every control default: shape=yquant-circle, anchor=center,
radius=.5mm
This style is used to draw the node for a control, both positive and negative.

/yquant/every positive control default: fill=black
This style is installed for every positive control (i.e., one that conditions on the
register being in state |1) or 1).

/yquant/every negative control default: draw

This style is installed for every negative control (i.e., one that conditions on the
register being in state |0) or 0).

22

Changed in 0.4,
0.1.2

https://github.com/pgf-tikz/pgf/issues/843

/yquant/every operator default: anchor=center
This style is installed for every gate (and also pseudo-gates such as the slash
operator) that acts on one or multiple registers.

/yquant/every multi line default: draw, decoration={snake,

amplitude=.25mm, segment length=5ptl}, decorate

This style is used to draw the vertical line that connects discontiguous slices of
sub-gates.

/yquant/this operator default:
This style is appended to the current style installed for an operator; it should be
used only locally to overwrite any global configuration effect.

/yquant/this control default:
This style is appended to the current style installed for a control; it should be used
only locally to overwrite any global configuration effect.

/yquant/operator style default: /yquant/this operator/.append style={#1}
This is a shorthand that can be used to modify the appearance of the current
operator.

/yquant/control style default: /yquant/every control line/.append

style={#1}, /yquant/this control/.append style={#1}

This is a shorthand that can be used to modify the appearance of the current
control and its associated line.

/yquant/style default: /yquant/operator style={#1}, /yquant/control
style={#1}
This is a shorthand that modifies the appearance of both the current operator and

any controls or control lines.

/yquant/operator/multi as single default: /yquant/every multi
line/.style=/yquant/every control line
This style is automatically set for certain gates such as the swap or the zz gate.
For those gates, neighboring registers will be treated as discontiguous; and this
style will enforce their connecting line to have the style used by control lines.
The default /yquant/every multi line is a wavy line; this allows to distinguish
discontiguous multi-qubit gates from multiple single-qubit gates when using con-
trols. Still, some gates have such an established appearance that—despite being
logically misleading—we rather use the same style as for a control line.

23

New in 0.1.2

New in 0.1.2

/yquant/operator/if multi default: New in 0.4
This style can be invoked by other styles with an arguments that contains styles
to be executed only if the current gate is used in a multi-register fashion. See
/yquant/every label for an example.

/yquant/circuit/seamless default: false New in 0.4
The value of this setting determines whether circuits drawn in a yquant en-
vironment in the current group will be drawn in a “seamless” state (hence,
this style must be set before the yquant environment is started). The key
/yquant/operator/separation will control the amount of padding with which a
wire starts or ends before the first or after the last gate. By turning on the seamless
state, this padding is suppressed. Using outputs or giving an initial value at the
register declaration brings the corresponding padding back. Usually, this setting
is intended only for subcircuits. Direct access is discouraged, as it will persist in
subcircuits. Only access it via /yquant/operators/subcircuit/seamless.

/yquant/every post measurement control default: indirect Newin 0.4
This style determines the default arrangement of measurements that are followed
by positive controls.

The default option indirect will draw the measurement at the position where it
is specified. Any later use of a control will be at the position of the controlled gate.
The option direct will defer the measurement. If later on, a controlled operation is
used where the positive controls contain all of the targets of this measurement and
no other gate was executed meanwhile on any of the targets of this measurement,
then the measurement gate will replace the corresponding positive control knobs
(and might inherit TikZ options of the embedding gate); otherwise, it will behave
as if the indirect option had been specified.

Some care must be taken when gates are named that are affected by this option.
If the embedding gate is named, the positive controls that will be replaced by
measurements are no longer available with the “p” suffix (but other positive
controls will still be numbered as if all were). Attach the name to the measurement
in order to access it as if it were an ordinary gate; however, note that the name
only becomes available after the later embedding gate was called.

Note that this setting affects all measurements that have a compatible shape; cur-
rently, this is only measure. While there is no technical difficulty in implementing
the same behavior for dmeter, its particular shape does not really suggest this use.
However, if you desire to do so, please file a feature request.

24

3.5 Styles for operators

/yquant/operators/every barrier default: shape=yquant-line, dashed, draw,
shorten <= -1mm, shorten >= -1mm
This style is installed for every barrier pseudo-gate, i.e., the one that is used to
explicitly denote a separation between “before” and “after” within the circuit.
Note that the shorten keys are only present in the default style if you specify at
least the compatibility version 0. 4.

/yquant/operators/every box default: shape=yquant-rectangle, draw,
align=center, inner xsep=1lmm, x radius=2mm, y radius=2.47mm
This style is installed for every box operator.

/yquant/operators/every custom gate default:

/yquant/operators/subcircuit/seamless

This style is by default installed for every user-defined gate. User-defined

gates are implemented via subcircuits; this style suppresses the box that sur-

rounds the subcircuit and by default suppresses all register names. This al-

lows a seamless integration of the gate/subcircuit into the main circuit, with-

out putting particular emphasis to the fact that what was defined as the cus-

tom gate indeed belongs together. Note that with the compat key set before

0.4, this style instead defaults to /yquant/operators/subcircuit/frameless,
/yquant/register/default name=.

/yquant/operators/every dmeter default: shape=yquant-dmeter, x
radius=2mm, y radius=2mm, fill=white, draw

This style is installed for every dmeter gate. The yquant-dmeter shape consists

of a rectangle whose right side is replaced by a circle, resembling the letter “D.”

/yquant/operators/every h default: /yquant/operators/every box
This style is installed for every h (Hadamard) operator.

/yquant/operators/every inspect default: shape=yquant-output, align=left,
outer xsep=.3333em, y radius=2.47mm, /yquant/operator/if
multi={draw, decoration={gapped brace, raise=2pt}, decorate}
This style is installed for every inspect gate. It does not have any shape on its
own, apart from multi-register uses, in which it will contain a brace on its left.

25

Changed in 0.4

Changed in 0.4
New in 0.2

/yquant/operators/every measure default: shape=yquant-measure, x
radius=4mm, y radius=2.5mm, draw
This style is installed for every measure gate. The yquant-measure shape is a
rectangle that contains a “meter” symbol. It allows for a text to be put inside (e.g.,

a basis), which then shifts the meter symbol accordingly.

/yquant/operators/every measure meter default: draw,
-{Latex[length=2.5pt]}
This style is applied to the path that resembles the “meter” symbol that is drawn by
the yquant-measure shape. Due to the default style, the TikZ library arrows .meta
is automatically loaded with yquant.

/yquant/operators/every not default: shape=yquant-oplus, radius=1.3mm,
draw
This style is installed for every not or cnot gate (which are synonyms, and
actually do the same as the Pauli o, gate). The yquant-oplus shape resembles

the addition-modulo-two symbol ®.

/yquant/operators/every pauli default: /yquant/operators/every box
This style is installed for every Pauli operator, i.e., %, y, and z.

/yquant/operators/every phase default: shape=yquant-circle, radius=.5mm,
fill
This style is installed for every phase gate |0)(0] + e'® [1)(1].

/yquant/operators/every slash default: shape=yquant-slash, x radius=.5mm,

y radius=.7mm, draw

This style is installed for every slash pseudo-gate, i.e., the one that is used to
indicate that a single register line actually denotes multiple registers.

/yquant/operators/every subcircuit default:
This style is installed for every subcircuit. Note that all styles given here will
also apply to every element in the subcircuit; in a way, this is an addition to
/yquant/every circuit (which is also again put into effect at the beginning of
a subcircuit).

26

New in 0.2

/yquant/operators/every subcircuit box default: /yquant/operators/every
box

This style is installed for every subcircuit. Note that in contrast to all other styles
such as /yquant/operators/every subcircuit or /yquant/this operator,
this style is only applied to the “container” node of the subcircuit, but not to the
elements in the subcircuit themselves. Also note that the box style by default
contains an inner xsep that will be added as an inside padding. This makes
sense if your wires have labels so that these labels don’t move too closely to the
border of the box. However, if you do not labelled wires but still want to have a
box around the subcircuit, you should consider removing the separation—as it will
be added to the initial wire padding given by /yquant/operator/separation.

/yquant/subcircuit box style default: /yquant/operators/every subcircuit
box/.append style={#1}
This is a shorthand to append styles to the subcircuit box only.

/yquant/operators/this subcircuit box default:
This style is appended to the current style installed for the subcircuit, but will
not apply to its contents. Additionally, this style will be reset to an empty style
at the beginning of each subcircuit, so that it really only applies to exactly the
subcircuit box it is explicitly specified on, not to nested subcircuit boxes.

/yquant/this subcircuit box style default: /yquant/operators/this
subcircuit box/.append style={#1}
This is a shorthand to append styles to the current subcircuit box only.

/yquant/operators/subcircuit/frameless default: /yquant/operators/this
subcircuit box/.append style={draw=none, inner sep=Opt}

This is a shorthand style that removes the frame and additional inner sepa-
ration for the current subcircuit. Note that still, the wire padding given by
/yquant/operator/separation is present within the—now invisible—outer box

that contains the subcircuit (use /yquant/operators/subcircuit/seamless to
suppress it). Hence, the most prominent application of this key is if the wires
before and after the subcircuit are nobits, which provides a clean way to build up
circuit equations with perfectly aligned wires (examples can be found in section 6).

27

New in 0.2

New in 0.2

New in 0.2

New in 0.2

New in 0.4

/yquant/operators/subcircuit/seamless default:

/yquant/operators/subcircuit/frameless, /yquant/register/default

name=, /yquant/circuit/seamless

This option carries out multiple actions that are responsible to let the current
subcircuit appear in a “seamless” state:

e It calls /yquant/operators/subcircuit/frameless
* It sets /yquant/circuit/seamless to true.

* It ensures that /yquant/circuit/seamless is reset within the subcircuit,
so that it does not propagate to nested subcircuits.

/yquant/operators/every swap default: shape=yquant-swap, radius=.75mm,

draw

This style is installed for every swap gate that interchanges two qubits. The
yquant-swap shape consists of a single cross.

/yquant/operators/every wave default: shape=yquant-circle, radius=.5mm,
£ill

This style is installed for every correlate gate.

/yquant/operators/every x default: /yquant/operators/every pauli
This style is installed for every Pauli operator o, i.e., x.

/yquant/operators/every xx default: shape=yquant-rectangle, radius=.75mm,

draw
This style is installed for every xx gate in symmetrized notation (|4++)(++| +
b =)= = =) =D
/yquant/operators/every y default: /yquant/operators/every pauli
This style is installed for every Pauli operator o, i.e., y.
/yquant/operators/every z default: /yquant/operators/every pauli
This style is installed for every Pauli operator o, i.e., z.
/yquant/operators/every zz default: shape=yquant-circle, radius=.5mm,
fill

This style is installed for every zz gate (aka CPHASE) in symmetrized notation
(|00) (00| 4 |01) (01| 4 |10)(10] — |11)(11)).

28

New in 0.4

New in 0.1.2

4 Doing the impossible

yquant will almost certainly never be able to do everything an author has in mind.
Sometimes, there is the need to draw something non-standard, and this cannot be
implemented in the yquant language. However, since yquant is a layer on top of
TikZ, it should be very hard to find something (meaningful) that cannot be done
by combining the power of both packages.

4.1 Mixing yquant and TikZ code

Before or after any gate, you may interrupt the yquant instructions to perform
arbitrary TikZ path operations. After every such operation, yquant will automati-
cally restart its parser so that you can fluently jump between yquant and TikZ
code. You can even interject arbitrary TgX code (or, say, low-level pgf commands);
however, then, yquant is not able to restart its parser. For this reason, after the
last command in a block of TgX commands, you must issue \yquant, which then
re-enables the yquant language.

4.2 Accessing gatesin TikZ

The feature to perform arbitrary Tik”Z operations is powerful in itself, but would
be of limited use were there no way to access the elements in the quantum circuit.
yquant provides a global attribute name that can be assigned to every gate. All
quantum operations are in fact TikZ nodes, and the name you give to them then
becomes a TikZ name, which you can easily reference to get the coordinates of a
particular operator. Note that the name you specify is only available if a single
register is targeted. The name is suffixed by -\idx, where \idx refers to the (zero-
based) index of the operation ordered from top to bottom (i.e., if an operator acts
on two qubits and should be named op, the topmost operator will be available as
op-0 and the second as op-1). Multiple slices in a discontiguous multi-register are
additionally suffixed by -s<slice 4indez>. All controls are also named, suffixed
by -p\idx or -n\idx for positive and negative controls (i.e., the topmost positive
control of the previous operator will be available as op-p0). Counters for target
registers, positive, and negative controls are all independent. Finally, you can
even access names within a subcircuit, provided you give a name to the subcircuit.
All nodes in the subcircuit will then have the name <subcircuit name>-<name
specified in the subcircuits>. For nested subcircuits, you will get multiple
prefixes.

29

4.3 Shapes and the drawing pipeline

All yquant shapes have the anchors available you would typically expect from a
TikZ shape of the given outline. The center anchor will be aligned to the wire. In
addition to the normal paths implemented by TikZ shapes, those fit for yquant
must additionally implement clipping paths, a yquant addition to TikZ shapes.
Such a path has to provide the “clipping outline,” i.e., anything that should not
contain register or control lines. There may be a difference between horizontal
and vertical clipping outlines. To understand clipping paths, yquant’s drawing
pipeline needs to be explained.

e In a first run—this is what happens directly at the position where you
type the gate command—yquant will “virtually” draw the gates in order
to determine their dimensions and calculate register heights. The actual
drawing commands are written to a macro (this is the cause that some
macros must be preceded by \protect if used in a gate value—in fact, if
multiple registers are targeted in one gate, the style and values required for
this gate are only stored once, so that for example \idx is a \protected
macro until the very end).

* Deferred gates (measurements that may replace future control knobs) are
stored temporarily and queried when the next gate is executed or at the end
of the circuit. The corresponding commands—either re-inserting if they must
appear at their original position or substituting the controls—are inserted
appropriately.

* When \end{yquant} is encountered, the vertical positions are determined
and the actual drawing commands are executed.

* Unless the operation changes the wire type or style, do the following (first
two items for every register at which an operator node has to be created).

- Create the operator node at the appropriate position.

— Call \pgfshapeclippath on the newly created node. This will first
determine whether the node was stroked; if not, \pgflinewidth is set
to zero. Then, it will call the horizontal clipping path, which is supposed
to create some soft path commands. Those soft path commands are

collected in a macro on a per-register basis and the soft path is cleared.

The same happens for the vertical clipping path, which is collected in
a macro on a per-operation basis.

30

Changed in 0.1.2

New in 0.4

- If control lines or multi lines are to be drawn, the vertical clipping path
commands are now executed and installed as an inverted® clipping.

— Control lines and multi lines are drawn (in this order) from one to the
next center anchor. Due to the clipping commands, this will create
a perfect connection with the shape of the gate, but even transparent
gates are possible without the lines being visible.

* If the operation changes the wire type or style, or if there is no operation
left on this register, the following is done.

- Load the clipping paths accumulated for all the gates acting on this
register and install the inverted clipping.

— Draw the wire as one continuous line from where the last wire ended
(or the beginning of the circuit) to the center of the last gate, or to the
common end position for all wires of the circuit.

— Remove the clipping paths stored so far on this register, apart from the
clipping on the last gate (which will be needed again if this was not
the end of the circuit).

4.4 Overwriting the height and depth calculation

automatically takes care of calculating the height and depth of all registers,
so that their final vertical positions are chosen without overlap. This is almost
always advisable, but it has some weaknesses:

* If you specify a multi-register gate, say, extending for three registers and
this requires a certain height and depth, where should this be accounted
for? is able to handle these situations by first determining all heights New in 0.4
and depths that can safely be attributed to individual registers. After that, it
checks for all multi-register gates: Is the space from the top of the first to
the bottom of the last register enough to hold the multi-qubit gate? If not,
it evenly distributes the additional required space to all registers that are
visually within the range of this multi-register.

This will fail to produce good results (hopefully) only in two cases:

nverting the clipping means that instead of drawing only within the clipping path (which
corresponds to the gates), we only draw outside. However, as there is no direct support for this,
we invert by exploiting the even-odd rule. If you specify a register multiple times, whether
as target, control, or mixed, funny effects can be expected, as the clipping region is inverted
multiple times. Note that using a register more than once is always an error, but does
not check for it due to the high overhead.

31

- If you place labels on the gate, those are outside of the gate—and

typically, either below or above. Hence, the additional extent stemming
from them should not be equally distributed among all registers, but
either to the height of the first or the depth of the last one. Currently,
yquant is unable to detect this (and, considering the fact that you can
place labels at any angle, this is not an easy problem to solve except
for special cases).

If you make use of a discontiguous init gate with a large vertical
extent, yquant will correctly allocate space as if the gate’s content
were placed in the vertical center. However, if there is no way to put
the arch of the brace at the middle, as the register at this position is
excluded from the gate, the content will be shifted—but only after
calculating the extent. Hence, the automatically calculated vertical
positions will be unsuitable.

* Sometimes, there is more space available than yquant thinks because you

already discarded some wire. yquant does not keep track of whether the
wires below or above a gate are actually visible at this position—which is
not even be known at the time the gate command is issued, as horizontal
positions are determined only in the drawing stage. Hence, you may choose
to draw “within” the other, invisible wire.

In these certain special cases, you may want to turn off the automatic calculation
for one particular gate. Note that you may then, depending on the situation, obtain
results with overlapping gates. You can use the keys /yquant/register/minimum
height and /yquant/register/minimum depth when declaring the relevant
register to manually specify a larger desired value, but you have to experiment
with regard to what this value is.

The global attribute overlay (conveniently overshadowing TikZ’s overlay key,
which should not be used for gates) can take the values

* true (default if no value given, combines multi, height, and depth),

multi (shortm),

height (short ht, h),

depth (short dp, d),

single (short s, combines height and depth), and

false (useless, default if attribute not given).

32

New in 0.4

It disables the calculation of the selected vertical extent for this particular gate. (In
fact, multi, height, depth, and single are subkeys that accept boolean values.)

33

5 Reference: Gates and operations

This section lists all operations currently understands. It also details all
arguments that can be given to customize the operation, apart from name and
overlay, which are always available. Note that the [value=<value>] attribute
can (and should) alternatively be given as a braced expression that follows the
name of the register.

5.1 addstyle

Syntax: setstyle <target>;
This is an invisible pseudo-gate that immediately changes the style with
which the register lines of all target registers are drawn. It adds to the styles that
are already installed. Use setstyle to replace styles. It may not span multiple
registers and does not allow for controls.

Possible attributes:

* [value=<styles>] (required)
Denotes the new styles; this should be a string that could be passed to
\tikzset.

5.2 align

Syntax: align <target>;
This is an invisible pseudo-gate that enforces all affected registers to share a
common horizontal position for their next gate, which is determined by the largest
position of all gates involved. It may not span multiple registers and does not
allow for controls. The gate now always aligns the wires, i.e., if they are discarded
directly after this gate, they will still discarded all at the same position.

Possible attributes: none

5.3 barrier

Syntax: barrier <target>;
This is a pseudo-gate that denotes some physical barrier that ensures execution
with a specific timing; it is basically a visible version of the align gate, denoted

by a vertical line. It may span multiple registers, but does not allow for controls.

The style /yquant/operators/every barrier is installed.
Possible attributes: none

34

New in 0.4

New in 0.1.2

Changed in 0.4

5.4 box

Syntax: box <target> | <pcontrol> ~ <ncontrol>;
This is a generic register of a rectangular shape that can be filled with arbi-
trary content. It may span multiple registers and allows for controls. The style
/yquant/operators/every box is installed.

Possible attributes:

e [value=<value>]
Denotes the content of the box.

5.5 cbit

Syntax: cbit <name>[<len>];
Declares a register of type cbit.
see qubtt

5.6 correlate

Syntax: correlate <target>;
This is a pseudo-gate that indicates a correlation (usually a Bell-state) present
between the multi-registers involved. This gate should span multiple registers and
does not allow for controls.

Possible attributes: none

5.7 cnot

Syntax: cnot <target> | <pcontrol> ~ <ncontrol>;
This is a synonym for the not gate. Note that despite its name, controls are not
mandatory and also here, the style /yquant/operators/every not is installed.

5.8 discard

Syntax: discard <target>;
This is an invisible pseudo-gate that changes the type of all target registers to
nobit, i.e., no line will be drawn for them. This has effect already for the outgoing
line of the last gate on the target registers. The gate may not span multiple registers
and does not allow for controls. To change a register type on-the-fly into something
different from nobit, use the settype pseudo-gate.

Possible attributes: none

35

New in 0.1.2

Changed in 0.1.2

5.9 dmeter

Syntax: dmeter <target>;
This is a measurement gate, denoted by a “D” shape. It changes the type of all
targets involved. It may span multiple registers, but does not allow for controls.
The style /yquant/operators/every dmeter is installed.

Possible attributes:

* [value=<value>]
Allows to specify a text that will be included inside the gate, possible en-
larging its width. For outside texts, use TikZ labels instead.

* [type=<qubit|cbit|qubits>]
Allows to specify the type into which the affected targets are converted.
Default is cbit.

5.10 h

Syntax: h <target> | <pcontrol> ~ <ncontrol>;
This is a Hadamard gate, (|0)(0] + |0)(1] 4+ |1){(0] — [1)(1]) / V2, denoted by a
rectangle that contains the letter H. It may not span multiple registers, but allows
for controls.
The style /yquant/operators/every h is installed.

Possible attributes: none

5.11 hspace

Syntax: hspace <target>;
This is an invisible pseudo-gate that inserts a certain amount of white space into all

target registers. It may not span multiple registers and does not allow for controls.

The gate now always has an effect, e.g., if the wire is discarded after this gate, it
will still be extended by the given amount first.
Possible attributes:

* [value=<dim>] (required)
Gives the amount of white space that is to be inserted. Must be a valid
(nonnegative) TgX dimension.
5.12 init

Syntax: init <target>;
This is a pseudo-gate that (re)initializes a registers to a given state. It may span

36

Changed in 0.4

Changed in 0.4

multiple registers, but does not allow for controls. The style /yquant/every
label is installed. Note that this pseudo-gate, unlike all others, behaves differently
if it is the first operation acting on a register: in this case, it does not increment
the horizontal position, but uses the space available to the left; and the style
/yquant/every initial label is installed additionally. Internally, creating a
new register with some printed name is translated into the creation of an unnamed
register, followed by application of this gate with the desired text.
Possible attributes:

* [type=<qubit|cbit|qubits>]
Allows to specify the type into which the affected target registers are con-
verted. Default is the type of the first target register that is different from
nobit, or qubit if they all are nobit. The style /yquant/every <type>
label is installed additionally.

e [value=<value>] (required)
Denotes the label that is printed to the left of the wire.

Inside the value, \idx expands to the current index within the register list.

5.13 inspect

Syntax: inspect <target>;
This is a pseudo-gate that allows to print the current state of one or multiple
registers within a circuit. It may span multiple registers, but does not allow for
controls. The style /yquant/every inspect is installed. Essentially, it is the same
as an output gate that will be drawn immediately at the current position and not
deferred until the end.

Possible attributes:

* [value=<value>] (required)
Denotes the text that is to be printed. Inside the value, \idx expands to the
current index within the register list.

5.14 measure

Syntax: measure <target>;

This is a measurement gate, denoted by a rectangle with a meter symbol. It
changes the type of all targets involved. It may span multiple registers, but does
not allow for controls. The style /yquant/operators/every measure is installed.
It may be deferred to be used instead of a control knob for a later gate using

37

New in 0.4

Changed in 0.4

the /yquant/every post measurement control style or the suitable attributes;
see the documentation for this style.
Possible attributes:

* [type=<qubit|cbit|qubits>]
Allows to specify the type into which the affected targets are converted.
Default is cbit.

e [value=<value>]
Allows to specify a text that will be included at the bottom of the rectangle
(which will shift the meter symbol upwards accordingly). For outside texts,
use TikZ labels instead.

* [direct control]
Temporarily sets /yquant/every post measurement control=direct for
this particular gate.

* [indirect controll
Temporarily sets /yquant/every post measurement control=indirect
for this particular gate.

5.15 nobit

Syntax: nobit <name>[<len>];
Declares a register of type nobit. The <name> must be a self-chosen name for
the register which was not previously used as a register name in this circuit (but
names can be re-used in subcircuits). Names are case-insensitive. The register can
be made into a vector register by specifying <len> (default 1).

Possible attributes:

* [out] or [ancilla] (required in subcircuits)
see qubit

5.16 not

Syntax: not <target> | <pcontrol> ~ <ncontrol>;

This is a NOT gate, |0)(1]|+]|1)(0|, denoted by the @& symbol. It may not span multiple

registers, but allows for controls. Due to its common usage, the synonymous gate

cnot is provided. The style /yquant/operators/every not is installed.
Possible attributes: none

38

New in 0.2

5.17 output

Syntax: output <target>;
This is a pseudo-gate that allows to write some text at the very end of the register
line. It may only be specified once per register. It may span multiple registers, but
does not allow for controls. The style /yquant/every output is installed, and
also the style /yquant/every <type> output, where <type> is the type of the
affected register (at the time of printout).

Possible attributes:

* [value=<value>] (required)
Denotes the text that is to be printed. Inside the value, \idx expands to the
current index within the register list.

5.18 phase

Syntax: phase <name> | <pcontrol> ~ <ncontrol>;
This is a phase gate, |0)(0| + !¢ |1)(1|, denoted by a filled circle. It may not span
multiple registers, but allows for controls. The style /yquant/operators/every
phase is installed.

Possible attributes:

e [value=<value>] (required)
Denotes the angle ¢ that is to be printed together with the gate. Position
and appearance can be influenced by setting the position of TikZ labels, as
this is internally used. Note that at the moment, it is not possible to change
any label options on a gate-type basis, only locally or fully globally (TikZ
feature request #811).

5.19 qubit

Syntax: qubit <name>[<len>];
Declares a register of type qubit. The <name> must be a self-chosen name for
the register which was not previously used as a register name in this circuit (but
names can be re-used in subcircuits). Names are case-insensitive. The register can
be made into a vector register by specifying <len> (default 1).

Possible attributes:

* [after=<regname>]
If given, the register will start not at the left of the circuit but instead at the
position at which the last gate in the register <regname> ended.

This attribute may not be given in combination with [in] or [inout].

39

Changed in 0.4

https://github.com/pgf-tikz/pgf/issues/811

¢ [in], [out], [inout], or [ancillal New in 0.2
Default: [ancilla] for top-level circuits (do not change there); [inout]
for subcircuits.

Determines how a subcircuit interacts with its parent circuit.

Registers declared with the [ancilla] attribute are available only to the
subcircuit; they cannot be connected to an outside wire.

Registers declared with the [in] or [inout] attribute will expect an outer
wire of the same type to be present and will then be identical with this outer
wire. Any changes applied to the wire within the subcircuit automatically
also happen on the associated outer wire. If the attribute is [in], the wire
will automatically be discarded at the end of the subcircuit (and hence also
in the outer circuit, where it may be re-initialized). This is different from
applying the discard gate in that the wire will still extend until the end of
the subcircuit and may thus receive proper outputs.

Registers declared with the [out] attribute will expect a discarded outer
wire to be present, which will be initialized to a qubit at the beginning of
the subcircuit, and from then on be identical with the outer wire.

* [value=<value>]
Denotes the label that is printed to the left of the wire. If the value is omitted,
the default is used (/yquant/register/default name, preinitialized to
\regidx).

Inside the value, \reg expands to <name>, \len expands to <len>, \idx
expands to the current index within the vector register (0 < \idx < <len>),
and \regidx expands to \reg if <len> is one, or to \reg[\idx] else.

5.20 qubits

Syntax: qubits <name>[<len>];
Declares a register of type qubits.
see qubit

5.21 setstyle New in 0.1.2

Syntax: setstyle <target>;

This is an invisible pseudo-gate that immediately changes the TikZ style with
which the register lines of all target registers are drawn. It replaces all previous
styles. Use addstyle to accumulate styles. It may not span multiple registers and
does not allow for controls.

40

Possible attributes:

* [value=<styles>] (required)
Denotes the new styles; this should be a string that could be passed to
\tikzset.

5.22 settype

Syntax: settype <target>;
This is an invisible pseudo-gate that immediately changes the type of the targets
registers, taking effect with the output line extending from the last drawn gate. It
may not span multiple registers and does not allow for controls.

Possible attributes:

* [value=<qubit|cbit|qubits>] (required)
Denotes the new type that is assigned to all registers. To change the type to
nobit, use the discard pseudo-gate instead.

5.23 setwire

Use settype instead.
This gate is only available if a compatibility version before 0.4 is chosen.

5.24 slash

Syntax: slash <target>;

This is a pseudo-gate used to denote that a single line actually represents multiple

registers. It is drawn as a short slash through the line of the register. Note that

this gate, in contrast to all others, is positioned on the line extending from the last

gate or the initialization line of the registers and does not advance the register’s

horizontal position. The style /yquant/operators/every slash is installed.
Possible attributes: none

5.25 subcircuit

Syntax: subcircuit <target>;
This is a subcircuit gate which inserts independent quantum circuits at the current
position within the circuit. It may span multiple registers, but is never split into con-
tiguous slices. It allows for controls and may change the type of any target involved,
depending on the particular subcircuit. The style /yquant/operators/every
subcircuit is installed.

Possible attributes:

41

New in 0.1.2

Removed in 0.4
Deprecated in 0.1.2

New in 0.2

¢ frameless New in 0.4
This /yquant/operators/subcircuit/frameless style is activated with
this shorthand.

* seamless New in 0.4
The /yquant/operators/subcircuit/seamless style is activated with
this shorthand (implies frameless).

* value=<subcircuit> (required)
Denotes the content of the subcircuit. It is specified in the usual syntax of
yquant. Note that, regardless of the outer environment, a subcircuit always
implicitly uses the unstarred form, i.e., you must declare every register
explicitly before its first usage. This is to make sure that the interface of the
circuit, i.e., which registers are taken as input and/or output parameters
and in which order, is not accidentally mistaken.

The mapping between input and output registers is trivial for single-qubit
uses. For multi-qubit uses, it works in the following way—in short, it matches
in visual order. You declare input and output registers by using the appro-
priate attributes on the qubit, cbit, qubits (or even nobit) gates. The
list of all non-ancillas, from the topmost to the bottom-most, forms the
list of parameter registers of the subcircuit. This is exactly the number of
registers that must be supplied within one multi-qubit target. Also within
the multi-qubit target, we sort all registers from the topmost to the bottom-
most (in the order as they visually appear, not the order in which they are
entered). Those two lists of equal length are then mapped 1 : 1 to each
other. Intermixing with ancillas is possible at every position and will lead
to a vertical shift of the wires, until all registers, inner and outer, can be
displayed flawlessly.

As subcircuits follow the same rules as ordinary circuits, it is possible to
mix them with arbitrary TgX code, and also to access named gates within
the subcircuit—but note that named gates in the outer circuit cannot be
accessed (at least unless you play with the name prefix key in TikZ). In
order to access inner nodes from the outer circuit, the subcircuit itself must
be named; the inner nodes are then prefixed by the name of the subcircuit
and a dash.

It is possible to nest subcircuits arbitrarily.

42

5.26 swap

Syntax: swap <targets> | <pcontrol> ~ <ncontrol>;

This is the two-qubit swap gate |00)(00| + |01)(10| + |[10)(01| + |11)(11]| that
exchanges two qubits. It is denoted by crosses at the affected registers which
are connected by a control line. It may span multiple registers (in fact, it should
always span exactly two registers, though yquant does not enforce this), and it
allows for controls. However, refrain from combining multiple two-qubit targets
together with controls. The control line will extend from the first to the last of
all registers involved in the operation, so that it is impossible to discern visu-
ally which registers should actually be swapped. Using multiple swaps without
controls in one operation is fine, as well as a single controlled swap. The style
/yquant/operators/every swap is installed.

Possible attributes: none

5.27 x

Syntax: x <target> | <pcontrol> ~ <ncontrol>;
This is a Pauli o, gate |0)(1| 4 |1)(0], denoted by a rectangle that contains the
letter X. It may not span multiple registers, but allows for controls.
The style /yquant/operators/every x is installed.
Possible attributes: none

5.28 xx

Syntax: xx <targets>;
This is a symmetric flip gate, denoted by joined open squares. It should span
multiple registers and it allows for controls. The same warnings as for the swap
gate apply. The style /yquant/operators/every xx is installed.

Possible attributes: none

529 y

Syntax: y <target> | <pcontrol> ~ <ncontrol>;
This is a Pauli o, gate —i[0) (1] +1[1)(0], denoted by a rectangle that contains the
letter Y. It may not span multiple registers, but allows for controls.
The style /yquant/operators/every vy is installed.
Possible attributes: none

43

5.30 z

Syntax: z <target> | <pcontrol> ~ <ncontrol>;
This is a Pauli o, gate |0)(0| — |1)(1|, denoted by a rectangle that contains the
letter Z. It may not span multiple registers, but allows for controls.
The style /yquant/operators/every z is installed.
Possible attributes: none

5.31 zz

Syntax: zz <targets>;
This is a symmetric phase gate, denoted by joined filled circles. It should span
multiple registers, but does not allow for controls. The same warnings as for the
swap gate apply. The style /yquant/operators/every zz is installed.

Possible attributes: none

44

o

6 Examples

This section will contain lots of examples. On the left-hand side, the output is
given, while the code to construct the example is on the right. All examples
that are provided originate from the examples supplied with gasm, qcircuit,
and quantikz. We will essentially follow their manuals example-by-example,
which gives a nice comparison in how to achieve the given feature using these
packages and yquant instead. All examples of course require inclusion of the
yquant package with newest compatibility in the preamble, and some also require
braket.

6.1 gasm documentation

The qasm documentation most often names the registers in the way |register.
This can be achieved by writing

qubit {$\ket{<name>_{\idx}}$} <name>[<len>];

but if you want to realize this naming scheme for all circuits in your document, it
is more convenient to say

\yquantset{register/default name=$\ket{\reg {\idx}}$}

in the preamble, as is done here.
Note that yquant also directly supports the gasm syntax, see section 7.1.

test1 (create an EPR pair)

\begin{tikzpicture}
\begin{yquant}
qubit q[2];

|90) _

& h q[0];
|q1> cnot q[1] | q[0];

\end{yquant}
\end{tikzpicture}

45

1ndex>'

New in 0.3

PN test2 (simple teleportation circuit) Updated in 0.1.1

ﬁ.
\begin{tikzpicture}
\begin{yquant}
qubit q[3];
h ql1];
lgo) ——— A cnot ql2] | ql1l;
1 cnot q[1] | q[0];
|91) @ D L] h q[0];
lg5) an ZHX measure q[0-1];
z q[2] | ql1];
x ql2] | ql[0];
\end{yquant}
\end{tikzpicture}
P test3 (swap circuit)
t,
\begin{tikzpicture}
\begin{yquant}
qubit q[2];
D
|q0> A Y A cnot q[1] | ql0];
1) &——0 cnot q[0] | q[1];
cnot q[1] | q[0];
\end{yquant}
\end{tikzpicture}

46

P test4 (quantum fourier transform on three qubits) Updated in 0.1.1
&
\begin{tikzpicturel}

\begin{yquant}
qubit j[31;

. h j[o];
o) box {856} jL0] | j[11;
l7,) — box {T} jl0l | j[2];
) h j[1]1;
|J2) box {$58} j[11 | j[21;
h j[2];
swap (j[0, 21);
\end{yquant}
\end{tikzpicture}

1~

(]

test5 (demonstrate arbitrary qubit matrix ops)

% \usepackage{amsmath}
\begin{tikzpicture}
\begin{yquant}
qubit j[2];

l70) [COSG —-Shl@] L box {$\begin{bmatrix}

sinf cosf e~{i \alpha} & 0 \\

0 & e~{-i \alpha}

el 0 \end{bmatrix}$} j[1] | j[0];

[i] box {$\begin{bmatrix}

\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix}$} j[0];
\end{yquant}
\end{tikzpicture}

|71) 1

47

\begin{tikzpicture}

\begin{yquant}
qubit j[4];

]
VJU_\ cnot j[2] | jlo, 11;
- x 3001

box {U} j[11 | j[o, 2-31;
h j[2];
measure j[3];

\end{yquant}
\end{tikzpicture}

<
N
- — <
f4n)
WV

test7 (measurement of operator with correction)

\begin{tikzpicture}
\begin{yquant}
qubit q[2];

|QO> _| h q[0];

box {U} ql1] | ql[0];
lg1) |£, Vi h q[0];
measure q[0];
box {V} ql1] | ql[0];
\end{yquant}
\end{tikzpicture}

48

Updated in 0.1.1

Updated in 0.1.1

test8 (stage in simplification of quantum teleportation) Updated in 0.4

\begin{tikzpicture}
\begin{yquant}
qubit {$\ket{q 0} = \ket\psi$}
= ql1l;
qubit {$\ket{q {\idx}} = \ket0$}
< ql+2];
@) = 1) 0z
h q[1];
l40) = 10) {H}-&——® cnot ql1] | ql0];
l91) = 10) >— cnot q[2] | ql1];
cnot q[1] | q[0];
h q[0];
cnot ql[2] | ql1];
z ql0] | ql2];
\end{yquant}
\end{tikzpicture}

Note that we left out two Hadamards at the end.
Another way to provide various initial values in a single command is by per-
forming case discrimination on \idx, for example in the following manner:

qubit {$\ket{q_{\idx}} = \Ifcase\idx\relax \ket\psi \Else \ketO \Fi$}
< ql3];

In principle, all TX conditionals that check against \idx need to be prefixed by
\protect. If the compat key is at least 0.4, yquant will make the commands
\Ifnum, \Ifcase, \Or, \Else, \Fi, \Unless and \The available for use within
gates; they correspond in a certain way to auto-\protected versions of the
corresponding TgX primitives. Most likely, you will never need them inside
values if not in the exact combination with \idx.

49

test9 (two-qubit gate circuit implementation of Toffoli)

\begin{tikzpicture}
\begin{yquant}
qubit q[3];

|g0) box {$\sqrt X$} q[2] | ql1l;
|q1> 1 a cnot q[1] | ql0];
box {$\sqrt X \dagger$} ql2] |

|42) 1VX VX VX[o ql1l;

cnot q[1] | q[0];

box {$\sqrt X$} ql2] | q[0];

\end{yquant}

\end{tikzpicture}

D
N

N

B test10 (multi-qubit gates also demonstrates use of classical bits) Alternative in 0.1.2

e

\begin{tikzpicture}
\begin{yquant}
qubit {$\ket{q_0}$} q;
cbit {$c_18%} c;
qubit {$\ket{q_2}$} ql[+1];

h q[0];
box {U} (ql0], c);
box {S} ql[1];
box {U} (c, ql1l);
\end{yquant}
\end{tikzpicture}

Instead of a discontiguous vector register, we could also have used three scalar
registers. The labels chosen for gasm do not fit well to the indices yquant
assigns. We might also have used a three-register vector and used the settype
pseudo-gate to immediately change the second register into a classical one,
which would give indices matching the labels—but still, the registers would
have a common name, which would make this a very unnatural approach.

50

Updated in 0.1.1

Y test1l (user-defined multi-qubit ops) Updated in 0.1.1

&
\begin{tikzpicture}
\begin{yquant}
qubit q[3];
o) [:
f(z) U h q[0];
lqy) — fww) | box {$U_{£(x)}$} (ql0, 11);
lg) ———— - h q[1];
box {$U_{f(x, y)}$} (@);
\end{yquant}
\end{tikzpicture}
Here we used the fact that a vector register can also be addressed as a whole.
Instead of (q), we could have also written, e.g., (q[0]-q[2]) or (q[0-2]),
or enumerated all sub-registers in a comma-separated list.

test12 (multi-qubit controlled multi-qubit operations) Updated in 0.1.1

\begin{tikzpicture}
\begin{yquant}
qubit q[3];

|Q()> n ql0];
|q1) box {$US} (ql1-21) | ql0];
|g2) h q[0];
box {V} (ql[0-11) | ql2];
\end{yquant}
\end{tikzpicture}

51

\begin{tikzpicture}
\begin{yquant}
qubit {$\ket{j_{\idx}} = \ketO$} j[3];
qubit s[2];

h j;
box {$U"4$} (s) | jlol;
box {$U~2$} (s) | j[11;
box {U} (s) | jl[21;
h j[0];
box {5} j[11 | j[0I;
h j[11;
box {T} j[21 | j[0];
box {5} j[21 | j[11;
h j[2];
measure j;

\end{yquant}

\end{tikzpicture}

test14 (three-qubit FT QEC circuit with syndrome measurement)

|50) = 10) {H]+— Hf k|0 {H+— H
|s1) =10) S b—b A |0) S b—D A |=

52

Process
Syndrome

\begin{tikzpicture}
\begin{yquant}
qubit q[3];
qubit {$\ket{s_{\idx}} = \ket0$} s[2];
cbit {$c_{\idx} = 0$} c[2];

h s[0];

cnot s[1] | s[0];
cnot s[0] | q[0];
cnot s[1] | ql1];
cnot s[1] | s[0];
h s[0];

measure s;

cnot c[0] | s[0];
cnot c[1] | s[1];
discard s; /7 to suppress wires extending until re-initialization

init {$\ket0$} s;
h s[0];

cnot s[1] | s[0];
cnot s[0] | ql1];
cnot s[1] | q[2];
cnot s[1] | s[0];
h s[0];

measure s;

box {Process\\Syndrome} (s, c);
box {$\symcal R$} (q) | s, c;
\end{yquant}
\end{tikzpicture}

53

Bl test15 (“D-type” measurement)

\begin{tikzpicture}
\begin{yquant}
qubit {$\ket{q 0}
qubit {$\ket{q_1}

\ket\psi$} q;
\ket+$} ql[+1];

|90) = I1)

zz (q);
dmeter {$H Z_\theta$} q[0];
\end{yquant}
\end{tikzpicture}

test16 (example from Nielsen paper on cluster states)

\begin{tikzpicture}
\begin{yquant}
qubit {$\ket{q_{\idx}} = \ket\psi$}
< ql2];
qubit {$\ket{q_2}
qubit {$\ket{q_3}

\ket\phi$} q[+1];
\ket0$} ql+1]1;

zz (q[1], ql[2]);

align q;

cnot q[3] | qf2];

slash q[0];

dmeter q[3];

align q;

[solid]

barrier q[2];

discard q[2];

\end{yquant}

\end{tikzpicture}

=)

N
[l

seE

) ———
lg3) = |0) —{ D>—

We needed to include an align pseudo-gate to put the slash at the desired
position. Usually, this would be sufficient to put the cnot and the slash gate
directly under each other, as it is in the gasm example. However, the slash
gate is special in that it does not need horizontal space and is put with only
half of the usual operator separation into the circuit (for this reason, it can be
put at the beginning of a wire without creating weird shifts with respect to the
“unslashed” registers—it is put in the initial line that every wire even without
an operation has). Hence, you should normally only use the slash gate as the
very first gate in a circuit. To get the vertical stopper mark, we abuse a barrier
on just a single wire and turn it from dashed to solid before discarding.

54

Updated in 0.1.1

Updated in 0.4,
0.1.2,0.1.1

Y test17 (example from Nielsen paper on cluster states) Updated in 0.1.1

\begin{tikzpicture}
\begin{yquant}
qubit {$\ket{q_0} = \ket\psi$} q;
o) = |b) +—— qubit {$\ket{q {\idx}} = \ket+$} q[+2];
lgo) = |+) @ qubit {$\ket{q_3} = \ket\phi$} q[+1];
lg) = |+) H ¥ zz q[(0-1), (2-3)1;
- D zz (q[1-21);
lg5) = I¢) dmeter {H} ql[1-2];
\end{yquant}
\end{tikzpicture}
This example shows how the multi-qubit delimiter (the parenthesis) can even
be used within indices.
Y test18 (multiple-control bullet op) Updated in 0.1.2
&
\begin{tikzpicture}
\begin{yquant}
|(]) = |,¢}> e qubit {$\ket{q _{\idx}} =
0 & \ket{\Ifcase\idx\relax \psi \Or + \Or +
lay) = [+) o \Or \phi \Fi}$} ql4];
lg2) = [+) _ zz (q);
lg3) = [¢) ——— dmeter {H} ql1, 2];
\end{yquant}
\end{tikzpicture}

This gate is probably a generalization of zz, 1 — 2 |1---1)(1--- 1|, and indeed
since version 0.1.2, we can use zz for this purpose. This time, we used the case
distinction method in the initialization, as already alluded to before.

55

6.2 gcircuit documentation

For a better orientation, we use the same section headings as the gcircuit
manual. The manual uses unnamed registers a lot; often, we will use the yquant*
environment to make things more concise. As the gcircuit manual uses a bit
larger separation between the operators than yquant’s default, we globally say
\yquantset{operator/separation=1em}.

6.2.1 I. Introduction

i e S— - -
VAR

T N\

—— — @
vk —{vi—

\begin{tikzpicture}
\begin{yquant} [operators/subcircuit/frameless]
nobit q[3];

subcircuit {

[out]

qubit {} q[3];

box {U} ql[2] | ql0, 1];
} (@;

discard -;

[draw=none]

box {$=$} (-);

subcircuit {
[out]
qubit {} q[3];
box {V} ql2] | ql1l;
cnot ql1] | q[0];
box {$V-\dagger$} ql[2] | ql1l;
cnot q[1] | q[0];
box {V} ql2] | q[0];
} (@;
discard -;
\end{yquant}
\end{tikzpicture}

The best way to realize circuit equalities is with the help of frameless sub-
circuits. The [frameless] attribute can either be specified on each subcircuit
individually or, as done here, globally via the corresponding style. In this way,

56

Updated in 0.4,
0.1.1

we can specify all subcircuits individually. All wires that are identical in the
circuits must be outer wires; but in fact, we do not want them to be visible
outside of the subcircuits. Consequently, we initialize them in the outer circuit
as nobits, declare them with the [out] attribute, and discard them right after
the subcircuit. It is important not to discard them within the subcircuit, as the
wires would then not extend to the same horizontal final position. The equality
sign is realized very easily by means of a box gate that spans all registers and
from which we remove the border.

) fl
|0) <

0) 4[[¥)

\begin{tikzpicture}
\begin{yquant}
qubit {$\ket\psi$} a;
qubit {$\ket0$} b[2];

h b[1];

cnot b[0] | b[1];
cnot b[0] | a;

h a;

align a, b;
measure a;
[direct controll
measure b[0];

x b[1] | b[0];
z b[1] | a;

discard a;
discard b[0];
output {$\ket\psi$} b[1];
\end{yquant}
\end{tikzpicture}

Here, we see how to use a measurement as a direct output for the next controlled
operation.

57

Updated in 0.4

Syndrome Measurement Recovery

———————t—————————— T 1
; 1 R
| |
| | L
| |
1 |0) —— M, =
| |
10 DD M, =
:’ > o— b)
! DD \
:’0) S—b— M,)

7 \usetikzlibrary{quotes}t

\begin{tikzpicture}

\begin{yquant}

qubit {} msg[3];
nobit syndrome[3];

[this subcircuit box style={dashed, "Syndrome Measurement"l}]
subcircuit {

qubit {} msgl3];

[out]

qubit {$\ket0$} syndrome[3];

cnot syndrome[0] | msg[0];
cnot syndrome[0] | msgli];
cnot syndrome[1] | msgl[1];
cnot syndrome[1] | msg[2];
cnot syndrome[2] | msg[O];
cnot syndrome[2] | msgl[2];

dmeter {$M_{\symbol{\numexpr a+\idx}}$} syndrome;
} (msgl-2], syndrome[-2]1);

["Recovery"]
box {$\mathcal R$} (msg) | syndrome;
discard syndrome;
\end{yquant}
\end{tikzpicture}

The example demonstrates how to put a description next to a gate. In general,
those descriptions should be realized using the Tik”Z feature 1abel. Using the
TikZ library quotes, the label is most easily specified. Since the label is not
part of the valid arguments and also cannot be found in the /yquant path, it
is automatically passed to /yquant/operator style.

To enclose a part of the circuit by a rectangle, we use a subcircuit. We define

58

Updated in 0.4

the incoming qubits in the outer circuit, they will have the default attribute
[inout]; the syndrome registers, which are created only in the subcircuit enter
as nobits and consequently have the [out] attribute. It is important to note
that both the dashed style as well as the 1abel (here with quoted syntax) are
specified only inside /yquant/this subcircuit box style. This ensures
that they are not also attached to every single gate in the subcircuit.
Then we see how to apply an operation to multiple registers in parallel while
using the \idx macro to still give them a different text. Since \idx gives a nu-
merical index (zero-based), we exploit the ASCII code (actually, this document
is compiled in Unicode mode...) to turn this into a letter.
Note that it could have become necessary to pass the overlay attribute to
the recovery gate, as it is a multi-register gate with a label, meaning that
cannot reliably distribute its total vertical extent over its constituent
registers. However, as the R together with the label in total were not higher
than the three-qubit gate would have been anyway, this was not necessary here.
In generally, don’t use overlay unless necessary; maybe a future version will
even be able to handle the more difficult cases better.

Finally, we will give a similar circuit by using the interface instead of subcir-
cuits, this time also showing how we can change the shape of the measurement
gate to one as in the manual:
Syndrome Measurement Recovery
I u]
|

| R

|

| T [

| |

' |0) —b—b M,k

| |

' |0 Pa N M, 4

! | > o b :

| DD L

 [0) oo M, f

59

7% \usetikzlibrary{fit, quotesl}t
\begin{tikzpicture}
\begin{yquant}
qubit {} msgl3];
[name=inits]
qubit {$\ket0$} syndrome[3];

[name=scnot0]
cnot syndrome[0] | msg[0];
cnot syndrome[0] | msg[1];
cnot syndrome[1] | msg[1];
cnot syndrome[1] | msg[2];
cnot syndrome[2] | msg[0];
cnot syndrome[2] | msg[2];
[name=smeas, shape=yquant-rectangle, rounded corners=.45em]
dmeter {$M_{\symbol{\numexpr a+\idx}}$} syndrome;
["Recovery"]
box {$\symcal R$} (msg) | syndrome;
discard syndrome;

\end{yquant}

\node [draw, dashed, fit=(inits-2) (scnotO-p0) (smeas-2), "Syndrome

< Measurement"] {};

\end{tikzpicture}

We name several elements that visually form the enclosing rectangle; then, we
use the TikZ library fit to put a node around them all. Any gate can be given
a custom shape; here, we use a yquant-rectangle, which is the analogue to
TikZ’s rectangle and thus supports the standard rounded corners style.

6.2.2 IV. Simple Quantum Circuits

\begin{tikzpicture}
\begin{yquant*3}
\end{yquant*}

\end{tikzpicture}

60

A. Wires and gates

\begin{tikzpicture}
\begin{yquant*}
h a;
_] ali a, b;
i
— X x b
h a;
\end{yquant*}
\end{tikzpicture}
\begin{tikzpicture}
\begin{yquant*}

7 box {U} a;

box {$U"\dagger$} b;
* setstyle {->} -;
\end{yquant*}
\end{tikzpicture}

yquant allows to change wire styles by means of the setstyle and addstyle
pseudo-gates. Here, we use the gate on all wires in order to set an arrow style.
Note that arrowheads are actually very special in two respects:

* yquant draws continuous wires for as long as possible. In this example,

the wire path extends from the very left to the end of the circuit; youant
does not draw a wire to the gate and then a separate one from the gate
to the next or the end. The only way to force yquant to draw multiple
wires is to change the wire style or type mid-circuit. For example, by
saying addstyle {} -;, all wire paths will be separated at the current
position, which in theory allows to draw arrowsheads on intermediate
wires.

* In practice, this will not work due to the clipping commands that yquant
installs. Every wire extends from the center of the left to the center of
the right gate, and the gate’s shape acts as a clipping path. Consequently,
though the arrowhead is drawn, it is actually drawn at the center of
the gate instead of the west anchor and then clipped away (unless the
gate is small, in which case you might still see some fragments of the
arrowhead).

61

Changed in 0.1.2
Updated in 0.1.2

Thus, it is currently not possible to use arrowheads on intermediate wires. If
you really need to do this (say, for only a single gate), you may experiment
with the TikZ shorten keys, which allow you to manually reduce the length of
the wire, but the amount of reduction must be hand-computed for every gate.
If you need this more often, consider filing a feature request.

B. CNOT and other controlled single qubits gates

\begin{tikzpicture}
\begin{yquant*}
cnot a[1] | a[0];
ﬂ cnot al0] | a[1];
\end{yquantx*}
\end{tikzpicture}

Updated in 0.1.1
\begin{tikzpicture}

\begin{yquant*}
U} cnot q[2] | q[0];

cnot q[0] | q[1-3];
box {U} ql0] | ql2];
—_————— \end{yquant*}
\end{tikzpicture}

a

fanY
>

C. Vertical wires

Updated in 0.4,
\begin{tikzpicture} 0.1.1
\begin{yquant*}
box {$U_{\The\numexpr\idx+1}$} q[0, 21 | ql1];

7 \enc}{yql}ant*}

\end{tikzpicture}
There is no direct support for this construction, but as with the initialization of
a vector registers, yquant allows to access the macro \idx within an operator
value. This macro follows the same rules as the name suffix, i.e., it assigns
indices (zero-based) to the target registers in top-to-bottom order, regardless
of which order was specified in the target list. Since we instead want a one-

based subscript, we need to add one. Note that if you want to output \idx
directly or within an unexpandable expression, you don’t need to take any

,Ul

62

action. However, here, \the is expandable; and since yquant needs to process
all its output twice (first in order to determine the vertical spacing, second
to actually typeset), you must manually take care that the command is not
expanded prematurely by saying \protect\the instead, for which yquant,
with a compat setting of at least 0.4, provides the shorthand \The. Had we
used the plain TgX \the instead, the subscript would have been “1” for both
operators.

D. Labeling input and output states

\begin{tikzpicture}
\begin{yquant*}
1 0 qubit {$\ket1$} ql2];
‘ > 446}47‘ > cnot q[0] | q[1];
1) ——[1) output {$\ket\idx$} q;
\end{yquant*}
\end{tikzpicture}

% \usetikzlibrary{calct
\begin{tikzpicture}
\begin{yquant*3}
{
_ \yquantset{every multi label/.style={every
|0k> {47 < mnode/.style={anchor=east, midwayl}}}
init {$\ket{0"k}$} (al-11);

) {Z }
A - init {$\ket\psi$} (b[-11);
|¢Q B [name=cinit]

qubit {\Ifcase\idx\relaxA\0rB\Fi} c[2];
\node [anchor=east] at
o ($(cinit-0.west)!.5!(cinit-1.west)$) {$\ket\psi$};
\end{yquant*}
\end{tikzpicture}

Here, three different styles for the initialization of multi-qubit labels are used.
The second one (using a curly brace) corresponds to the default. It is overwritten
for the first qubit, and to make this modification local, this is done in a group.
The third qubit pair uses an overall label and additionally individual labels on
the lines. The recommended way to do this starting from version 0.4 is to add
the “special” label by means of a TikZ command.

63

Updated in 0.4,
0.1.1

6.2.3 V. More Complicated Circuits: Multiple Qubit gates and Beyond

A. Multiple qubit gates

Updated in 0.1.1
\begin{tikzpicture}
- - \begin{yquant*}
U+ box {$U"\dagger$} (al-21);
— - \end{yquantx*}
\end{tikzpicture}

Updated in 0.4,
\yquantdefinebox{dots} [inner sep=Opt]{\dots} 0.1.1
\begin{tikzpicture}
\begin{yquant}

qubit {} a;

cbit {} b;

[register/minimum height=0pt, register/minimum

< depth=0pt]
U nobit ellipsis;
- qubit {} c;

dots ellipsis;
box {U} (a, b, ellipsis, c);
dots ellipsis;
\end{yquant}
\end{tikzpicture}

This demonstrates how a register of type nobit might even be useful if the
register is never used and no subcircuits are involved. Note how we overwrite
the default minimum height and depth setting for this register only. Additionally,
we for the first time define our own gate, which we call dots. As we define our
own style, it does not inherit from /yquant/operators/every box; hence,
we only need to overwrite the inner sep coming from TikZ’s defaults.

64

\begin{tikzpicturel}
\begin{yquant*}
box {$\symcal F$} (al-11);
box {$\symcal G$} (al0, 2]);
\end{yquant*}
\end{tikzpicture}

This demonstrates yquant’s capabilities of discontiguous multi-qubit gates.
yquant automatically splits multi-qubit gates into slices of directly adjacent
wires (which, for the G case, are the single wires a[0] and as second slice

al2]).

B. Measurements and classical bits

\begin{tikzpicture}
7 \begin{yquant*}

measure a,
* dmeter {χ} b;

A measure {$\ket{\xi_\pm}$} c;
| |§:ﬁ:> B \end{yquant*}
\end{tikzpicture}

The “tab” and “measure” type are not supported yet. Extracting a meter symbol
on its own will not be supported. If you are interested in the code, have a look
at yquant-shapes.tex and search for the yquant-measure shape.

\begin{tikzpicture}
\begin{yquant*}
[shape=yquant-rectangle, rounded corners=.45em,

- < direct control]

— Codebit measure {Codebit} a;

. box {χ} b | a;

- X A Y
. discard a;
measure b;

\end{yquant*}
\end{tikzpicture}

Rectangles with rounded corners are not a specific style, but since the yquant-
rectangle shape internally uses \pgfpathrectangle, the ordinary TikZ op-
tion can be used (also, an inset specification can control how much the corner
is rounded).

65

Updated in 0.1.2,
0.1.1

Updated in 0.4,
0.1.2

\begin{tikzpicture}
\begin{yquant}
qubit {$\ket\psi$} q;

—Z
W) e
measure {$\ket{\xi_\pm}$} q;
\end{yquant}
\end{tikzpicture}
\begin{tikzpicture}
\begin{yquant*}
— dmeter {Belll} (a[0, 11);
— discard a;
\end{yquant*}
\end{tikzpicture}
- 2 E \begin{tikzpicture}
| |£$> L \begin{yquant*}
g measure {$\ket{\xi_\mp}$} (al-1, 31);
\end{yquant*}
n |€¥> \end{tikzpicture}

Multi-qubit gates (including measurements) on non-adjacent registers are
properly supported. As explained in section 2.4, there is one main and multiple
subordinate gate in such a discontiguous multi-qubit operation (though at
the moment, the measure gates with text is the only gate that makes this
distinction). In our case, the main part contains the measurement symbol and
the text, while the subordinate gates only contain the text. By default, yquant
uses the first slice as main part, but you may influence this by preceding what
you want to be “main” by a star:

7 |€:F> = \begin{tikzpicture}
= \begin{yquant*}
*g; measure {$\ket{\xi_\mp}$} (al[-1, *3]);
A \end{yquant*}
N |§;> |~ \end{tikzpicture}

66

Updated in 0.1.1

Updated in 0.1.2,
0.1.1

C. Non-gate inserts, forcing space, and swap

\begin{tikzpicturel}
\begin{yquant*}
[name=sw]

. N swap (a[0-11);
Defective Circuit [dr§w=none]

r box {X} al[1l;
X— slash b;

+ box {$H {\otimes n}$} b; .
\node [anchor=199] at (sw-0.north) {Defective
< Circuit};

\end{yquant*}
\end{tikzpicture}

Here, the intermediate text was inserted by using a box without drawing.
Another way would be to use an init command, although this is semantically
wrong (probably).

\begin{tikzpicture}
\begin{yquant*}
qubit {} a;
[name=ypos]
qubit {} b[3];

cnot a | b[0];

[name=left]

cnot a | b[1];

hspace {7mm} -;

[name=right]

cnot a | b[2];
\end{yquant*}
\path (left |- ypos-0) -- (right |- ypos-1)
< mnode[midway] {\dots};

\end{tikzpicture}

D
Van)
\N%
Van)
\N%

Note how the register range - was used to denote all registers. We positioned
the dots by first naming the relevant registers, so that the vertical position is at
the coordinates ypos-0 and ypos-1; and then, we also named the cnot gates,
so that we are able to discern the horizontal position.

67

Updated in 0.1.1

D. Barriers
Updated in 0.1.1

\begin{tikzpicture}
‘ \begin{yquant*}
7 o x al0, 11;
7 :7 barrier (a);
‘ \end{yquantx*}
\end{tikzpicture}
Now the manual lists three circuits with barriers at different positions.
They cannot be drawn with ; however, since neither of them is a valid

circuit (no indication whether the control is positive or negative), this is of no
concern.

E. How to control anything

Updated in 0.1.1
\begin{tikzpicture}
\begin{yquant*}
zz (al0, 21);
cnot a[1] ~ al[0];
zz (al[2, 31);
h a[3] | af0] ~ a[1];
measure al[2, 3];
box {U} (al0, 11) | al3] ~ al[2];
discard a[2, 3];
\end{yquant*}
\end{tikzpicture}

Note that it is not possible to draw a control to measurement (the measurement
operations are explicitly defined not to accept controls): Either the measure-
ment is performed or not (which transforms the register type), but a measure-
ment conditioned on a quantum state is not possible. In principle, one could
think of a measurement conditioned on a classical register (in which case the
register type cannot change, as maybe the state stays quantum; the measure-
ment operation then is similar to a complete dephasing). If there is need for
this, please file a feature request. But note the relatively common (though
unsupported by at the moment) use of control lines that directly go
from the measurement operator to the controlled operation; in this case, the
opposite direction would be meant by using the same notation.

68

6.2.4 VI. Bells and Whistles: Tweaking Your Diagram to Perfection

For options how to configure the circuits, refer to section 3.
A. Spacing

\begin{tikzpicture}
\begin{yquant*}

:m: swap (al[0, 11);
box {$T"\dagger$} al[2] | alll;
swap (al0, 11);

\end{yquant*3}
\end{tikzpicture}

B. Labeling

\begin{tikzpicture}
\begin{yquant}[every initial
< label/.style={anchor=south east, yshift=1mm},
< every post measurement control=direct,
< operators/every box/.append style={draw=none}]
qubit {\rlap{\hskip2mm a}} a;

a - qubit {\rlap{\hskip2mm b}} b;

nobit out;

hspace {5mm} -;

B A measure b;
box {B} out | b;
measure a;
box {A} out | a;
discard -;
\end{yquant}
\end{tikzpicture}

We support measurements with vertical outputs, but only if they replace the
positive control of some action. Here, we fake this behavior by introducing an
invisible register at the bottom, which will contain the outputs. In order to
disable the line around the boxes, we used the /yquant/operators/every
box style, which here was most convenient, as the only boxes in use are those
without an outline. However, if we instead want to say [draw=none] as an

attribute to the boxes, this will also remove the outline of the measurements.

The reason for this is that giving this as an attribute will in fact populate

69

Updated in 0.1.1

Updated in 0.4

/yquant/operator style; and internally, the measurement will be nested
within the same scope that draws the box—so the options given to the box
will be inherited by the measurement. As an operator style overwrites default
styles, this will also apply to the measurements. Hence, to circumvent this, we

would have to additionally say [draw] as an attribute to the measurements,

although this is already included in their native style.
Repositioning the initial labels needs some care and manual fine-tuning.

C. Grouping

a
%
a
A\
N|

7% \usetikzlibrary{fit}
\begin{tikzpicture}
\begin{yquant#*} [register/separation=3mm]
cnot a[2] | al0];
cnot a[2] | alil]l;
[name=left]
h al0, 1];
z a[2];
cnot al1] | a[0];
[name=righttop]
h al0];
[name=rightbot]
h al1] | af2];

hspace {2mm} -;
\end{yquant*}
\node [draw, dashed, fit=(left-0) (left-1) (righttop) (rightbot-0)] {};
\end{tikzpicture}

Note that \begin{yquant*} must not be followed by a line break (unless
masked by /) if options follow. Also note that here, we cannot make use of a
subcircuit due to the very last control, which would then control an inner gate
of said subcircuit—but they are not exposed.

70

Updated in 0.4,
0.1.1

6.3 quantikz documentation

Again, our section headings will be the same as in the quantikz manual. And
since quantikz also has even more space between the gates, we globally say
\yquantset{operator/separation=4mm}.

6.3.1 Il. Asingle wire

Q[‘5 (7l "')/ Arbitrary
‘O> @ @ pure state

\begin{tikzpicture}[label position=north east, every label/.style={inner
< sep=1pt}]
\begin{yquant}
qubit {$\ket0$} a;

phase {α} a;
h a;
phase {β} a;
h a;
phase {γ} a;

[every output/.append style={align=center}]
output {Arbitrary\\pure statel} a;
\end{yquant}
\end{tikzpicture}

The captions of phase commands are internally implemented using Tik”Z

labels. At the moment, it is not possible to change any label options on
a gate-type basis, only locally or fully globally (Tik”Z feature request #811).

71

https://github.com/pgf-tikz/pgf/issues/811

A. Measurements

7% \usetikzlibrary{quotest
\begin{tikzpicture}
\begin{yquant*}
["0"]
measure a;
0 discard a;

init {} a;
dmeter {1} a;
discard a;
\end{yquant*}
\end{tikzpicture}

Other measurement shapes are not supported at the moment.

B. Wires and arrows

0/1

|0) =
X A 1
initial state b

7% \usetikzlibrary{quotest
\begin{tikzpicture}
\begin{yquant} [operator/separation=1cm, every label/.append
< style={align=center}]
qubit {\ketO\\initial state} a;

[draw=none]

box {X} a;

["0/1", type=qubit]

measure a,

addstyle {->} a;
output {$\ket1$} a;
\yquantset{operator/separation=5mm}
\end{yquant}
\end{tikzpicture}

This example demonstrates how to instruct the measure gate to use a different
output type than the standard cbit.

In general, any macros that are used within a TikZ path or a yquant operation
must not be fragile, or must be preceded with \protect. In this example, \\ is a

72

Updated in 0.1.2

robust command (at least in newer kernels), so protection is not required. Since
it may occur quite frequently that yquant is used within a center environment
or in \centering mode (in which \\ is still fragile), yquant takes care of
this (it actually robustifies \@centercr, which is the meaning of \\ in these
surroundings).

In order to change the style of an individual wire, we use addstyle. To make
the final line shorter, we change the operator separation by issuing \yquantset
at the end.

\begin{tikzpicture}
\begin{yquant}
qubit {$\ket0$} q;
[name=h]

|0) *.j h g;
discard q;

trash \path[/yquant/every wire, /yquant/every qubit
o wire, -Stealth] (h) -| ++(icm, -.5cm)
<+ node[below] {trash};
\end{yquant}
\end{tikzpicture}

Here, we use an ordinary \path command to reproduce the “trash” line. This
time, we chose to use the appropriate styles as yquant itself would do it instead
of just saying \draw without the options, which would also have worked.

7% \usetikzlibrary{quotest
\begin{tikzpicture}
\begin{yquant*}
qubit {$\ketO"{\otimes n}$} a;
3 ["north east:3" {font=\protect\footnotesize,
|O> o < inner sep=0Optl}] :
slash a;
h a;
\end{yquant*}
\end{tikzpicture}

Again, you see an example of how some commands need to be \protected
when used in yquant options, and that you can indeed exploit all features of
the quotes library.

73

New in 0.4

Updated in 0.4

\begin{tikzpicture}
\begin{yquant}

® . qubits {$\ketO " {\otimes n}$} a;
‘0> " IEE h a;

\end{yquant}
\end{tikzpicture}

6.3.2 lll. Multiple Qubits
0) {H}——{U]
’0> Ag{ii} a | #

\begin{tikzpicture}
\begin{yquant}
qubit {\ketO} a;
qubit {\ketO} b;

'y

h a, b;

cnot b | a;

box {U} a ~ b;
zz (a, b);

[after=a]
qubit {} c;

swap (a, c);
box {U} c | a ~ b;
\end{yquant}
\end{tikzpicture}

This example demonstrates the use of the after argument that instructs the
register creation to begin the register only after the current position of another
register that already exists. Note that this argument will always make the
wire begin at the right end of the last gate of the referenced register; however,
if—as is the case here—this gate is shorter than /yquant/operator/minimum
width, this might not coincide with the visual right end.

74

q Updated in 0.4,
P - 0.1.2,0.1.1

\begin{tikzpicture}
\begin{yquant*}
[name=c]
cnot al0, 2] | al[1l;
[name=m, direct control]
measure al[1];
discard al[2];
box {U} al0] | alll;
\path[/yquant/every wire, /yquant/every qubit wire] (c-1) --
< (m.center |- c-1);
discard al1];
\end{yquant*}
\end{tikzpicture}

Here, we manually extended the wire on the last register. We could instead
have performed an align gate before the discarding process, then, the wire
line would have been extended by yquant; but since align aligns at the right
end as opposed to the center of the gate, the wire line would have been a bit
longer. Still, this TikZ wire is inferior to a wire drawn by yquant, as it does
not use clippings: the connection with the cnot gate may not be accurate; in
particular, if the wire is of a different color or if you need to draw classical or
bundle wires, the connection will become unpleasant.

Updated in 0.1.1
\begin{tikzpicturel}
\begin{yquant*}

cnot al1, 2] | a[0];
V measure al[1], a[2];
7@7 box {U} al0] | alil;

box {V} al0] | al[2];

Ny
N discard a[1]-;
\end{yquantx*}
\end{tikzpicture}

yquant doesn’t offer anything comparable to the new \ctrlbundle command;
and as the bundle lines are spaced much more tightly in yquant, this would not
really make sense.

75

6.3.3 IV. Operating on many Qubits

Updated in 0.1.1
\begin{tikzpicture}
\begin{yquant*}
init {$\ket0"{\otimes3}$} (al[-2]1);

@3 4T7 box {U} (al1-21) | al0];
|0> — measure al[0];
U } 111) ;
discard a[0];
output {$\ket{11}$} (al1-21);
\end{yquant*}
\end{tikzpicture}

Multi-qubits inputs are possible using the init command. The text assigned
to a register declaration is always for an individual register.

Updated in 0.4
\begin{tikzpicture}
\begin{yquant*} [register/minimum
< height=6mm, register/minimum
[;%{] < depth=6mm]
hspace {7.5mm} a;
h a;
hspace {7.5mm} a;
[x radius=1cm]
U box {U} (b, c);
cnot b | a;
— — measure a;
discard a;
\end{yquant*}
\end{tikzpicture}

El

yquant does not use a grid layout: operators are stacked next to each other.
Therefore, there is no automatic centering of a column, though it could be emu-
lated using hand-crafted hspace commands, as was done here (the Hadamard
gate uses the /yquant/operator/minimum width, which is 5mm, while the
large box has a width of 2cm, so that we need two 7. 5mm spacings at the end,
as the hspace pseudo-gate only inserts exactly the space you give, but not
additional [twice] /yquant/operator/separation, as would be the case for
a hypothetical zero-width gate). In fact, we don’t even need the second hspace,
since the two-qubit cnot will automatically enforce correct alignment.

76

\begin{tikzpicture}
\begin{yquant} [register/separation=3mm, every nobit output/.style={}]
qubit {} al4];
[every inspect/.append style={outer xsep=Opt}, operator/minimum
< width=0pt, font=\footnotesize, name=sub]
subcircuit {
\yquantset{operator/separation=0pt}
qubit {} x[2];
qubit {} y;
discard -;

inspect {x} (x);
[inner xsep=0pt]
inspect {$y\vphantom £$} y;

[shape=yquant-init, decoration={mirror}]
inspect {\hskipdmm x} (x);
[shape=yquant-init, inner xsep=0Opt]
inspect {$y \oplus f(x)$} y;

} (al1-31) | a[o0];

\node at (sub) {U};

settype {qubit} a;

\end{yquant}
\end{tikzpicture}

We use quite some tricks to achieve such a layout. We use a subcircuit as a
container and inspect gates to indicate the inputs and output states accurately.
As those are ordinary gates, we reset /yquant/operator/minimum width, so
that the “y” indication is not too long. Additionally, they are usually meant to
be used within a circuit, i.e., they have an additional margin denoted by the
outer xsep, which we also remove. Then, within the subcircuit, we reset the
/yquant/operator/separation, which would insert additional whitespace
at the beginning. It is important to do this within the subcircuit and not as an
attribute; else, we would also remove the outer lines going into the subcircuit.
Initial or final inspect gates without a brace do not really need the separation
between brace tip and text (inner xsep), so we also remove it. The output
gates should have their braces and separations at the other side, which cor-

77

Updated in 0.4

responds to changing their shape from yquant-output to yquant-init and
mirroring the decoration (as in /yquant/every label). To get the desired
right-alignment, we hand-tailor an \hskip that enlarges the upper output
label—automatic alignments would not work here: putting the two inspects
together with a case distinction on \idx would center them; using outputs
would left-align them.

Finally, we have to deal with the caption of the gate, which should be absolutely
centered with respect to the subcircuit and not have any influence on the
spacing—so we just insert it retrospectively as an ordinary Tik”Z node.

Also note the use of discard and settype since we needed wires before and
after the subcircuit, which must match the inner wires in type, but we actually
do not want to have inner wires.

\begin{tikzpicture}
\begin{yquant*}

box {$\sqrt Z$} a;
] \fZﬁ box {X} b;
SWAP box {$\sqrt{\mathrm{SWAP}}$} (a, b);
. measure a;
\end{yquant*}

\end{tikzpicture}

This time, we did not artificially discard the lines.

\begin{tikzpicture}
\begin{yquant}
qubit {c_{\idx}} c[4];
box {M\\A\\J} (c[-21);
box {M\\A\\J} (c[1-1);
\end{yquant}
\end{tikzpicture}

Notice here that the vertical spacing is uneven. yquant realizes that the mini-
mal vertical spacing will not be enough to account for the multi-qubit boxes.
However, when it tries to adjust positions accordingly so that the last gate fits,
this will of course not change anything for the first wire, which is not contained
in the gate. After having increased the spacing, yquant realizes that this already
was enough to accomodate for the first gate, so no further action is taken. In
order to get a more even spacing, just increase /yquant/register/minimum
height and /yquant/register/minimum depth.

78

Updated in 0.4,
0.1.1

A. Different connections

\begin{tikzpicture}
\begin{yquant} [register/default name=]

qubit a;

— cbit b

— nobit c;

3

U cbit d;

= qubit e;

— box {U} (-);

settype {qubit} c;
\end{yquant}

\end{tikzpicture}

This example demonstrates the declaration of a non-existing register and the
settype pseudo-gate that acts as a zero-width, no-content init gate.

6.3.4 V.Slicing

step

o
>y

[anY
>

\begin{tikzpicture}
\begin{yquant}

qubit {} a[3];

h a[0];

[red, thick, label=step]
barrier (a);

cnot al[1] | a[0];
measure al[0];

discard a[0];

cnot al[2] | alil];

h al1];

\end{yquant}
\end{tikzpicture}

There is nothing like a slice all keyword, as yquant’s underlying layout is
not grid-based. Changing the style of slice captions simply means providing
label options. This time, we used the label key instead of the shorter syntax
provided by the quotes library, which is of course also possible.

N YV S

\06 X &
> > >
i i A |

Sy

o,
%

Kl

oy
%

% \usetikzlibrary{quotes}
\begin{tikzpicturel} [every label/.style={rotate=40, anchor=south west}]
\begin{yquant} [operators/every barrier/.append style={blue, thickl}]
qubit {} a[3];
h a[0];
["slice 1"]
barrier (-);
cnot af1] | a[0];
["slice 2"]
barrier (-);
measure al[0];
discard al[0];
cnot af2] | al1];
["slice 3"]
barrier (-);
h alil;
\end{yquant}
\end{tikzpicture}

1 2 3 Updated in 0.4

0) —{H}— |

)

(=]

cos £ |0) —isin £ |1)

80

7% \usetikzlibrary{quotes}
\begin{tikzpicturel}[label distance=4mm]
\begin{yquant} [operators/every barrier/.append style={red, thick,
< shorten <= -4mm, shorten >= -4mm}]
qubit {$\ket0$} a;
h a;
("]
barrier a;
phase {[label distance=0Opt]φ} a;
["2"]
barrier a;
h a;
["3"]
barrier a;
output {$\cos\frac\varphi2 \ketO - i\sin\frac\varphi2 \ketl$} a;
\end{yquant}
\end{tikzpicture}

Usually, the shorten keys do not have any effect on operations, since
the latter are all made up of nodes. However, the yquant-1ine shape explicitly
takes care of correctly handling them. It is the only one that does so. Since
barriers usually end quite closely to the wires—and the default dashed style
may make this worse—the shortening may often prove useful. Note that if the
barriers are enlarged by means of negative shortenings, this will not affect
the bounding box and you must take care of appropriately shifting labels. The
internal register height calculations might be inconsistent for multi-register
barriers with shortening: While takes care of enlarging the registers
so that there is enough space for placing the barrier with its original (single-
register) height, it actual height of the registers is only known at the second
stage in calculation; but applying shortenings after this stage would require
another iteration of height calculation. Hence, multi-register barriers that are
enlarged by a lot will probably look bad unless you add manual spacing to
the appropriate registers. Also note that we used much larger magnitudes in
order to achieve a similar appearance as in . To avoid that the large
distance also affects the phase gate badly, we locally reset the distance; for
this, there are two ways. The easiest one is to make use of the fact that the
value of the phase gate is passed directly as 1abel argument, so that we can
locally reset the distance. The other possibility would be to write

81

\yquantset{/tikz/label distance=0pt}
phase {φ} a;
}

since due to the aforementioned lack of support for a style that sets the options
in TikZ, we must manually use a (grouped) \yquantset instruction for this.
Note that whenever you change a TikZ style in a yquant environment, use the
\yquantset macro, not \tikzset or \pgfkeys. Not only will the latter two not
automatically restart the parser (so that you would have to issue \yquant after
their use), but yquant has to process all its content twice in order to properly
determine the register height. Only \yquantset will be properly captured and
re-issued at the correct position when the content is actually typeset. Had
we written \tikzset{label distance=0pt} \yquant, no effect at all would
have been visible, since this command would only have taken effect in the first
(invisible) round when yquant determines heights.

yquant does not provide a mechanism for vertical labels, but you may of course
just insert line breaks at appropriate positions (and set the align property of the
labels).

82

6.3.5 VI. Spacing

A. Local adjustment

Updated in 0.4
\begin{tikzpicture}
\begin{yquant}[register/default name=]
[register/minimum depth=2cm]

xXHa- abte b,

qubit c;

h a;
X b-;
. . zs;)?ce {2cm} -;
e
b-;
\enZ{yquant}
\end{tikzpicture}

The vertical distance between registers is calculated by yquant automatically
based on the height and depth that yquant find for this particular register—i.e.,
how much space is required above and below the wire line for all the gates.
In order to enlarge these values, reset /yquant/register/minimum height
or /yquant/register/minimum depth to a different value. It is not possible
to artificially reduce the calculated heights and depths, as this would result
in overlapping gates. However, sometimes it might be required to exclude a
certain gate from the calculation; then, use the overlay attribute.

- x H x —X]

\begin{tikzpicture}
\begin{yquant*}
[x radius=1cm]
X a;
box {\hbox to 1cm{\hfilX\hfil}} a;
hspace {lcm} a;
X a;
discard a;
\end{yquant*}
\end{tikzpicture}

Here, we demonstrate two possibilities to enlarge a box: The first is by specify-

83

ing its size in terms of the x radiusory radius keys beforehand. Those values
serve as minimum sizes and would be extended if the text extended beyond the
box. The second option is to just enlarge the text artificially by explicitly putting
it into a fixed-width box. Note that in the first case, the radius is specified,
i.e., the half-width, while in the second case, it is the total width (both times
modulo the inner separation). Also note that the /yquant/operator/minimum
width style is unsuitable for the given task: it would not change the visual
width, only what yquant assumes its width to be.

B. Global Adjustment

[H———H]
\begin{tikzpicture}
\begin{yquant*} [operator/separation=1cm]
h a;
phase {β} a;
h a;
\end{yquant*}
\end{tikzpicture}
Updated in 0.4,
\begin{tikzpicture} 0.1.1
\begin{yquant*} [register/minimum height=0pt,
< register/minimum depth=0pt]

x al0, 2];

zz (al0, 11);
x al0];

B b;

\end{yquant*}
\end{tikzpicture}

By default, yquant will use the height and depth that is required by the individ-
ual gates, but at least /yquant/register/minimum height or, respectively,
/yquant/register/minimum depth (which default to 1.5mm). Only manually
reducing the default height will produce the cramped spacing displayed here.

84

C. Alignment

Updated in 0.4
\begin{tikzpicturel}
\begin{yquant*}
x al0];
cnot a[1] | a[0];
\end{yquantx*}

’7 4‘ ;igd{t ikzpicture}

e 4€ \begin{tikzpicture}
\begin{yquant*}

cnot a[1] | a[0];
X a;
\end{yquant*}
\end{tikzpicture}

Not specifying anything for the vertical alignment will lead to the common
TikZ problem: the baseline will be at the bottom, which is particularly bad
in this case due to the missing X gate. The keys for minimal register sizes
do not help here, since they only affect yquant’s internal handling, but not
the bounding box calculated by Tik”Z. The recommended way to draw circuit
equations is always with frameless subcircuits; only this will guarantee
perfect wire alignment in all cases.

85

\begin{tikzpicture}
\begin{yquant}
nobit q[2];

[frameless]
subcircuit {

[out]

qubit {} q[2];

x ql0];

cnot q[1] | q[0];
} @;

- L . discard -;

D o . [draw=none]
box {$=$%$} (q);

[frameless]
subcircuit {
[out]
qubit {} q[2];
cnot q[1] | q[0];
X q;
} @
discard -;
\end{yquant}
\end{tikzpicture}

. .) New in 0.4

= ey o (])

|y) 46;}

86

\begin{tikzpicture}
\begin{yquant}
qubit {$\ket x$} q;
qubit {$\ket y$} ql+1];

[seamless]
subcircuit {

[in]

qubit {} ql2];

h ql0];

cnot q[1] | q[0];

output {\quad\mapsto} (-);
} (@;

[draw=none, inner sep=0pt]

box {$\ket{\psi_{x, y}}$} (q@);

[seamless]
subcircuit {
[out]
qubit {} ql2];

init {\mapsto\quad} (q);
cnot q[1] | q[0];
h ql0];

} (@;

output {$\ket x$} q[0];
output {$\ket y$} ql1l;
\end{yquant}
\end{tikzpicture}

Here, we do not have a circuit equation (i.e., logical statements involving
multiple rather independent circuits), but a circuit progression. We start with
some “outer” states (note we could again have used the \symbol trick to make
the declaration a bit shorter), let them enter into the first subcircuit and define
an output of this. In the opposite way, we proceed after giving the state. Where
to put the actual labels (e.g., the box could also have contained ~ [¢,)
and the output and init gates could have been empty) is up to the user.
Note that we used seamless instead of frameless, which gives a tighter
spacing that is more suitable if initializers or outputs are present.

87

1. Perfecting Vertical Alignment

444%y44j1T447 . Updated in 0.4
‘0> D %}447 - ‘O>:::&;::jfi::

\begin{tikzpicture}
\begin{yquant}
nobit q[2];

[frameless]
subcircuit {
[out]
qubit {} q;
[out]
qubit {$\ket0$} ql+11;

cnot q[0] | q[1];

cnot q[1] | q[0];

cnot q[0] | ql1];
} (@;

discard -;

[draw=none]

box {$=$} (@ ;

[frameless]
subcircuit {
[out]
qubit {} q;
[out]
qubit {\ketO} q[+1];

cnot q[1] | q[0];
cnot q[0] | ql[1];
} (@);
discard -;
\end{yquant}
\end{tikzpicture}

Using subcircuits here looks like an overkill, but it is the best way both for
logical consistency and also to achieve perfect horizontal alignment.

88

D. Scaling

H . H

\begin{tikzpicture}[scale=1.5]
\begin{yquant*}
h a;
phase {β} a;
h a;
\end{yquant*}
\end{tikzpicture}

Here, we first scaled the circuit itself. The default style for /yquant/every
circuit sets the transform shape key for every node (which means any
gate), so that those are also scaled. If your TikZ version is at least 3.1.6a,
this is all that needs to be done. In earlier versions, there was a bug that
required yquant to reset the transform shape key for labels, which would
then require you to scale those manually.

6.3.6 VII. Typesetting
A. Global Styling

7 By Wy

7% \usetikzlibrary{quotest
\begin{tikzpicture}
\begin{yquant*} [operators/every h/.append style={fill=red!20}]
h a;
phase {βl} a;
h a;
["$\ket\pm$" above right]
measure a;
\end{yquant*}
\end{tikzpicture}

Instead of setting /yquant/operators/every h, we could also have changed
/yquant/operators/every box. Had we used /yquant/every operator,
then the measurement would also have changed. Again, due to a TikZ limitation,

89

it is not possible to change the position of labels on a per-style basis, only by
using label options or a global setting.

}%z(_%Q/ 2)

fany
A\
fany
A\

R.(0/2)H A

\begin{tikzpicturel} [thick]
\begin{yquant*} [every operator/.prefix style={fill=whitel}]
cnot a[1] | a[0];
box {$R_z(-\theta\fracslash2)$} a[1];
cnot a[1] | al0];
box {$R_z(\theta\fracslash2)$} a[1];
measure al[1];
\end{yquant*}
\end{tikzpicture}

As the “thin” style is the default, we present the opposite. By default, all
operators are transparent; we changed this by giving all of them a white
background color (but as a style prefix, so that, e.g., black fillings overwrite
this). Contrary to quantikz, this also fills the cnots. If you only want to fill
certain operators, you have to selectively target them using their styles.

] S Updated in 0.1.2,
J 13 0.1.1
12

J.
—— s 2

\begin{tikzpicture}
\begin{yquant} [operators/every box/.append style={fill=whitel}]
qubit {} j[3];
box {J_{12}} (-j[11);
box {J_{13}} (j[0, 21);
box {J_{23}} (j[11-);
\end{yquant}
\end{tikzpicture}

yquant properly splits discontiguous multi-qubit operations.

90

B. Per-Gate Styling

% \usetikzlibrary{quotes}
\begin{tikzpicture}
\begin{yquant*}
[fill=red!20, font=\color{cyan}]
h a;
3 |:|:> [green]
. | phase {[green]β} a;
["$\ket\pm$", bluel

measure a;

discard a;
\end{yquant*}
\end{tikzpicture}
B
‘O> g noise
10) & '\
0) —F e [~]=
|0) S—— + =

%4 \usetikzlibrary{shapes.symbols, fit}
\begin{tikzpicture}
\begin{yquant}
qubit {} data;
qubit {$\ket0$} anci[2];

h data;
cnot ancl | data;
[after=data]
qubit {$\ket0$} anc2[2];
[name=box, draw=none]
box {} (data, ancl);
cnot anc2[0] | data;
cnot anc2 | anci1[0];
cnot anc2[1] | anci[1];
measure anc2[0];
[blue] measure anc2[1];
\end{yquant}
\node [starburst, cyan, fill=yellow, draw=red, line width=2pt,
inner xsep=-4pt, inner ysep=-5pt, fit=(box)] {noisel};
\end{tikzpicture}

91

Updated in 0.4

Updated in 0.4

shapes cannot simply be used with . Any shape must be
aware of the keys x radius and y radius that control its width and height.

Additionally, shapes must implement clipping paths. Those objects,
which are a addition to allow to properly clip wires and
vertical lines to the shape of the gate. draws its elements sequentially;

hence, a wire that comes into an operator will be hidden by anything the

operator draws on top of it; but outgoing wires will in turn draw on the

operator (modulo clipping). To avoid the issues, we construct an invisible box

operator and name it; outside of the yquant environment, we fit the special
shape on top of it.

C. Boxing/Highlighting Parts of a Circuit

Updated in 0.2
reversed c-NOT

—H]

o
N\

[=]=]

7

o
N\

[=][=]

7% \usetikzlibrary{quotes, fit}
\begin{tikzpicture}
\begin{yquant*3}
h a;
cnot b | a;
[name=left]
h -5
cnot b | a;
[name=right]
h -;
cnot bla;
h b;
\end{yquant*}
\node [fit=(1left-0) (left-1) (right-0) (right-1),
draw, inner sep=6pt, "reversed c-\textsc{mot}"] {};
\end{tikzpicture}

As usual, subcircuits provide a similar experience, but respect the separation:

reversed c-NOT
—{H]

o
U

o
U

=][=]

4y

=][=]

Sy,

92

7% \usetikzlibrary{quotes}
\begin{tikzpicture}
\begin{yquant*}
h a;
cnot b | a;
[this subcircuit box style={inner ysep=6pt, "reversed
< c-\textsc{not}"}]
subcircuit {
qubit {} x;
qubit {} y;
h -;
cnot y | x;
h -5
Y ()
cnot b | a;
h b;
\end{yquant*}
\end{tikzpicture}

Here, we used the key /yquant/this subcircuit box style to influence
only the style of the subcircuit box itself instead of providing global options
that apply to every object in the subcircuit (you wouldn’t want the label be
assigned to every single gate).

93

A Updated in 0.4

—{H]

7% \usetikzlibrary{quotest
\begin{tikzpicture}
\begin{yquant*}
h a;
[this subcircuit box style={draw, dashed, rounded corners,
< fill=blue!20, inner ysep=10pt, "\textsc{swap}" below},
< register/default name=]
subcircuit {
qubit a;
qubit b;
cnot b | a;
cnot a | b;
cnot b | a;
} (a-b);
h b;
\end{yquant*}
\end{tikzpicture}

Since version 0.2, fully enclosing a bunch of operations (with no controls
extending to some inner component) is possible by means of subcircuits.
Before, this had to be done using named operations and layers. Note that here
we used the style /yquant/this subcircuit box style to assign a styling
that only applies to the box containing the subcircuit, but not to the inner
gates—which would have happened had we just given the arguments to the
subcircuit directly.

yquant does not support the fancy nearest-neighbor swap gate that quantikz
has. It would however not be very difficult to implement this particular shape and
make it available. Maybe even a multi-swap gate using the knots library would
be possible.

94

6.3.7 VIII. Otherwise undocumented features

%4 \usetikzlibrary{quantikz, fit}
\begin{tikzpicture}
\begin{yquant} [register/default name=]

qubit a;
[name=wave, register/minimum height=5mm, register/minimum depth=5mm]
nobit wave;
qubit b;
qubit c;

h a, b;

box {U} c | a;
[draw=none]

box {\dots} a, b-;
box {$U"k$} c | b;

h a, b;
\end{yquant}
\node [wave, fit=(wave) (current bounding box.east |- wave), inner
< ysep=.5pt, inner xsep=0pt] {};
\end{tikzpicture}

Here, we included quantikz, which provides the wave shape, then introduced
a register that will contain this wave (and enlarged it sufficiently). After the
circuit is drawn, we fit the wave along. Since the name assigned to a register
without any text actually is of a coordinate shape, we need to enlarge the
height of the wave by providing a slightly increased inner ysep. Additionally,
quantikz sets a negative inner xsep, which is probably required for its grid
layout; but yquant positions exactly, so we also need to reset this.

yquant does not provide a shape corresponding to the “creating an ebit” gate.

95

Updated in 0.4

6.3.8 X.Troubleshooting

04)

10)

.
U

\begin{tikzpicture}
\begin{yquant}
qubit {$\ket0$} al2];
box {$\begin{pmatrix}
\alpha & \beta \\
\beta & -\alpha
\end{pmatrix}$} al[0];
cnot a[1] | a[0];
box {$U_{\The\numexpr\idx+1}$} a;
\end{yquant}
\end{tikzpicture}

96

Updated in 0.4

7 Foreign language support

yquant is built in various modules, so that it is not hard to use the quantum circuit
rendering backend, but expose a different language frontend. yquant not only
understands its own language, but also others.

7.1 gasm

By saying \useyquantlanguage{qasm} in the preamble after loading yquant
itself, the parser for qasm (not OpenQASM) is loaded. It provides the environment
qasm as well as the macro \qasmimport, which works similarly to \yquantimport
(but does not accept additional options).

7.1.1 Language specification

The gasm language is not formally defined, but an overview is provided at the
archived website of qasm2circ. The yquant implementation is designed to be
compatible with the original parser, with the following exceptions:

* In gasm, lines could begin in an arbitrary manner; the first whitespace
followed by the first valid command were then the instruction. Contrary
to this, yquant’s parser always expects a line to start with a valid gate
(preceded by arbitrary whitespaces), a comment, or to be empty.

* In gasm, user-defined gates will be drawn in a box unless they contain the
text \dmeter, and they will be recognized as measurement gates if they
contain \meter or \dmeter. Contrary to this, yquant’s parser expect the

gates to start with one of the macros \meter, \dmeter, or \dmeterwide.

Using these macros within the content of a gate does not make sense from
the point of view that in yquant, gates are nodes with shapes, so either the
full gate has a particular shape or it does not, but not only parts of it.

* The space gate is supposed to produce a horizontal whitespace without a
gate. In yquant’s implementation, you have to discard the wire if you want
to reproduce this behavior; space and nop are equivalent.

The default gasm style defines several macros that can be used in gates. yquant
makes \m (matrix; requires amsmath) and \txt (switch to text mode) available
within the gasm environment.

Do not expect yquant’s output to match the one of qasm exactly. yquant is
not grid based, so that commands such as nop don’t even make sense. They are
implemented for compatibility reasons and will produce a fixed horizontal space

97

New in 0.3

https://web.archive.org/web/20050410022847/https://www.media.mit.edu/quanta/qasm2circ/#spec
https://web.archive.org/web/20050410022847/https://www.media.mit.edu/quanta/qasm2circ/#spec

of the operator minimum width plus one separation, which might or might not be
accurate.

Note that whatever you write between \begin{qasm} and \end{qasm} is es-
sentially treated as verbatim; only where the specification says so (in the definition
of a new gate and in the optional third command to the register definition), it is
interpreted as TgX markup. Consequently, in beamer, any frame containing these
environments must be given the fragile option.

7.1.2 Configuration

Loading the gasm language interpreter will define several new configuration keys.
For all the gates, it will use the keys defined in section 3, and it additionally
provides the following:

/yquant/operators/every s default: /yquant/operators/every box
This style is installed for every s operator.

/yquant/operators/every t default: /yquant/operators/every box
This style is installed for every t operator.

/yquant/operators/every utwo default: /yquant/operators/every box
This style is installed for every Utwo operator.

/qasm/zero default: \qasm@ket0
The content of this macro is used as the initialization content whenever the zero
gate is invoked.

/qasm/register/default qubit name default: \qasm@ket{#1}
This macro is invoked with a single parameter (the name of a qubit register) and
gives back what is printed as the name of the register (will be in math mode
automatically).

/qasm/register/default qubit name value default: \qasm@ket{#1} =
\qasm@ket{#2}
This macro is invoked with two parameters (the name of a qubit register and its
initial value) and gives back what is printed as the name of the register (will be in

math mode automatically).

98

7.1.3 Examples

The unaltered .qasmn files provided from the qasm2circ page were stored in the
subfolder gqasm relative to this manual’s TiX file. The following command is then
used to print all of them:

% preamble:

% \usepackage{yquant, import}

% \useyquantlanguage{qasm}

\def\yquantimportpath{qasm/}

\foreach \circuitno in {1, ..., 18} {

\paragraph{Circuit \#\circuitno}
\begin{center}
\gasmimport{test\circuitno.qasm}

\end{center}

Circuit #1

I

|90)

|Q1> —D

Circuit #2
|90) —%,74
) {H—o— ~
|42) —& | XHzt
Circuit #3
|QO> P
¢) & D
Circuit #4

o) T}
151) —

|J2)

=

99

https://www.media.mit.edu/quanta/qasm2circ/

Circuit #5

) cosf —sinf
o) ()w

sind cosd
. el 0
|-]1> 7 (0 e—ia)

Circuit #6
7o) @
i) 0]
|jo) —© H%
U3> H
Circuit #7
o) {HHTE
la1) @ @
Circuit #8
190) =) H 2V EH]
1) = [0) { HF—1—
|g5) = |0) O &
Circuit #9
|QO>
@) ———1—©

100

Circuit #10

Circuit #11

Circuit #12

Circuit #13

o
'y

o
'y

v

a
"
a

I
=
~

a
N,

o
A\
o

Circuit #15

Circuit #16

Circuit #17

Circuit #18

1) = [+)
T —
q1) = (0
) — 1) —
lg5) = 10) ———--
"Jo> = W’>
1) = [+) 0
l5) = |+) H ¥
lg5) = |9)
o) = ¢)) ————
1) = [+) ——{H)
lgn) = |+) ——{H >
g5) = |¢) ————

102

8 Wishlist

This section contains some thoughts on future improvements and features.

* Support for more other languages.
Since version 0.3, yquant understands gasm. It would be nice if yquant could
also understand OpenQASM correctly. The way OpenQASM treats operations is a
bit different from yquant and also qasm. Some machinery would be required
to automatically carry out transversal gates; apart from that everything
should be available in yquant.

* Vertical layout.
Sometimes, long quantum circuits on a portrait page can be better rep-
resented in a vertical layout. Also if lots of explanations are to be added,
this becomes problematic in the horizontal version. In principle, yquant’s
approach could allow for a simple key switch that changes horizontal to ver-
tical. Currently, this is largely unsupported by all quantum circuit packages
except for gpic.

103

9 Changelog

2020-03-15: Version 0.1

Initial release

2020-03-22: Version 0.1.1

Complete rewrite of the register name parser. now understands comma-
separated lists and ranges in indices, and also is far more tolerant with respect to
whitespaces.

now also supports non-contiguous vector registers and allows to add new
registers into an already existing vector that is not the last register, and also in
the unstarred mode.

2020-04-11: Version 0.1.2

Introduce setstyle and addstyle pseudo-gates that allow to style individual
wires; rename setwire to settype (the old name is still available and shows a
deprecation warning).
Complete rewrite of the way draws wires; projection anchors are removed
in favor of clipping paths. This allows perfect connections between gates and wires,
even if the (rather rectangular) wire lines meets with nonplanar shapes, while
still preserving the possibility of transparent wires.

now also properly draws non-contiguous multi-qubit operations.
New gate: correlate. Various bug fixes.

2020-06-02: Version 0.2

Introduce subcircuit; required rewriting how internally positions verti-
cally. Provide simple macros to load circuits (or parts) from a file and to declare
own custom gates.

2020-06-07: Version 0.2.1

Introduce a macro to declare a lightweight custom gate, which is only a single
box with custom content.

2020-06-13: Version 0.3

Introduce support for the language.

104

2020-07-11: Version 0.3.1

Add legacy support for very old TikZ versions such as the one used on the arXiv.

2020-08-24: Version 0.3.2

Fix #5: Can’t draw circuits with more than 9 qubits.

2020-10-27: Version 0.3.3

Fix #6: shorten doesn’t work for 2-qubit barriers. This fixes a bug in how the
shorten keyword worked on barriers, which may require re-assessing your
chosen values.

2021-02-21: Version 0.4a

Lots of internal fixes, most notably vertical alignment with subcircuits.
Introduce capability to perform vertical alignment with multi-register gates.
Dramatic changes under the hood regarding horizontal positioning, which is now
only determined in the drawing stage; this paves the way for delayed gates, which
are planned for 0.4. Also changes in the gate declaration interface.

Introduce compatibility layer, so that layout-breaking changes will not become
effective unless explicitly requested.

Separate register height into a height and depth key.

Introduce overlay key to disable height caluclation selectively.

Change register style declaration, so that this is now always equivalent to creating
an unnamed register followed by an init gate with the given text. Note: This
may be a breaking change that cannot be compatibility-protected—if you used
TiX conditionals involving \idx for creation labels of registers, you will now need
to either \protect them all or just capitalize their first letter (which corresponds
to auto-protected versions for compat at least 0.4).

Now use nodes for init and output gates.

Change behavior of hspace and align: Now also extend if the wire is discarded
afterwards.

Introduce the commands \Ifnum, \Ifcase, \Or, \Else, \Fi, \Unless and \The
available for use within gates that behave like auto-\protected versions of their
plain TgX equivalents.

105

https://github.com/projekter/yquant/issues/5
https://github.com/projekter/yquant/issues/6

2021-03-27: Version 0.4

New gate: inspect. Various bug fixes.
Introduce the direct control feature: measure gates can now substitute positive
controls of future gates.

106

	Introduction
	How to read the manual
	Installation
	Purpose of yquant, alternatives
	License

	Basic elements of yquant
	General usage
	Starred vs. unstarred environment
	Formal syntax
	Registers
	Arguments
	Controls
	Importing circuit from files
	Defining own gates

	Configuration
	Circuit layout
	Register creation
	Register outputs
	General styling
	Styles for operators

	Doing the impossible
	Mixing yquant and TikZ code
	Accessing gates in TikZ
	Shapes and the drawing pipeline
	Overwriting the height and depth calculation

	Reference: Gates and operations
	addstyle
	align
	barrier
	box
	cbit
	correlate
	cnot
	discard
	dmeter
	h
	hspace
	init
	inspect
	measure
	nobit
	not
	output
	phase
	qubit
	qubits
	setstyle
	settype
	setwire
	slash
	subcircuit
	swap
	x
	xx
	y
	z
	zz

	Examples
	qasm documentation
	qcircuit documentation
	I. Introduction
	IV. Simple Quantum Circuits
	A. Wires and gates
	B. CNOT and other controlled single qubits gates
	C. Vertical wires
	D. Labeling input and output states

	V. More Complicated Circuits: Multiple Qubit gates and Beyond
	A. Multiple qubit gates
	B. Measurements and classical bits
	C. Non-gate inserts, forcing space, and swap
	D. Barriers
	E. How to control anything

	VI. Bells and Whistles: Tweaking Your Diagram to Perfection
	A. Spacing
	B. Labeling
	C. Grouping

	quantikz documentation
	II. A single wire
	A. Measurements
	B. Wires and arrows

	III. Multiple Qubits
	IV. Operating on many Qubits
	A. Different connections

	V. Slicing
	VI. Spacing
	A. Local adjustment
	B. Global Adjustment
	C. Alignment
	D. Scaling

	VII. Typesetting
	A. Global Styling
	B. Per-Gate Styling
	C. Boxing/Highlighting Parts of a Circuit

	VIII. Otherwise undocumented features
	X. Troubleshooting

	Foreign language support
	qasm
	Language specification
	Configuration
	Examples
	Circuit #1
	Circuit #2
	Circuit #3
	Circuit #4
	Circuit #5
	Circuit #6
	Circuit #7
	Circuit #8
	Circuit #9
	Circuit #10
	Circuit #11
	Circuit #12
	Circuit #13
	Circuit #14
	Circuit #15
	Circuit #16
	Circuit #17
	Circuit #18

	Wishlist
	Changelog

