%xymadd.tex %Copyright (C) 1998, Shinsaku Fujita, All rights reserved. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %This file is a part of xymtx200.tex that is the manual of the macro %package `XyMTeX' (Version 2.00) for drawing chemical structural formulas. %This file is not permitted to be translated into Japanese and any other %languages. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Added Commands} \section{Six-six Fused Carbocycles} \subsection{Vertical-Bottom Forms of Decaline Derivatives} The macro \verb/\decalinevb/ is used to draw decaline derivatives of vertical-bottom type (added to \textsf{carom.sty}), where the numbering of atoms is given from the bottom to the left-upper part. The word ``vertical'' means that each benzene ring is a vertical type. The word ``bottom'' means that the benzene ring with young locant numbers is located at the bottom. The format of this command is as follows: \begin{verbatim} \decalinevb[BONDLIST]{SUBSLIST} \end{verbatim} % % *************************** % * decaline derivatives * % * (vertical bottom type) * % *************************** % The following numbering is adopted in this macro. % % 7 % * % 6 * * 8 % | | % | | 0G (4a) % 5 * * * % 0F(4a) * * 1 % | | % | | % 4 * * 2 % * % 3 % ^ % | % the original point % Locant numbers for designating substitution positions and characters for showing bonds to be doubled are represented by the following diagram: {\origpttrue \begin{center} \begin{picture}(1000,1200)(0,0) \put(0,0){\decalinevb{% 1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(l);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(l);% 5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);% 7Sb==7Sb(l);7Sa==7Sa(r);8Sb==8Sb(r);8Sa==8Sb(r);% 0F==0F;0G==0G}} {\footnotesize \put(171,0){\bdloocant{j}{a}{b}{c}{d}{k}} \put(0,303){\bdloocant{h}{i}{}{e}{f}{g}}} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (550,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{center} } The handedness for each oriented or double-sided position is shown with a character set in parentheses. The option argument BONDLIST is based on the assignment of characters (a--k) to respective bonds as shown in the above diagram. A bond modifier in the argument SUBSLIST for $n=1\mbox{--}8$ can be one of bond modifiers shown in Table \ref{tt:200a}. The substitution at the bridgehead positions is designated as shown in Table 4.3 of \XyMTeX book. \medskip \noindent Example: \begin{verbatim} \decalinevb{1D==O;0FB==H;0GA==H} \qquad \decalinevb{1B==CH$_{2}$OSiR$_{3}$;3D==O;4A==CH$_{3}$OCO;% 0FB==CH$_{3}$;0GA==H} \end{verbatim} These commands produce: \begin{center} \decalinevb{1D==O;0FB==H;0GA==H} \qquad \decalinevb{1B==CH$_{2}$OSiR$_{3}$;3D==O;4A==CH$_{3}$OCO;% 0FB==CH$_{3}$;0GA==H} \end{center} The related commands, \verb/\naphdrvb/ and \verb/\tetralinevb/, have been defined on the basis of the command \verb/\decalinevb/. \subsection{Vertical-Top Forms of Decaline Derivatives} The macro \verb/\decalinevt/ (added to \textsf{carom.sty}) is used for drawing decaline derivatives of vertical-bottom type (numbering from the top to the left-down part). The word ``vertical'' means that each benzene ring is a vertical type. The word ``top'' means that the benzene ring with young locant numbers is located at the top. % ************************ % * decaline derivatives * % * (vertical-top type) * % ************************ % The following numbering is adopted in this macro. % % 2 % * % 1 * * 3 % | | % | | % 0G (8a) * * 4 % 8 * * 0F(4a) % | | % | | % 7 * * 5 % * % 6 % ^ % | % the original point % The format of this command is as follows: \begin{verbatim} \decalinevt[BONDLIST]{SUBSLIST} \end{verbatim} Locant numbers for designating substitution positions and characters for showing bonds to be doubled are represented by the following diagram: {\origpttrue \begin{center} \begin{picture}(1000,1200)(0,0) \put(0,0){\decalinevt{% 1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(r);4Sa==4Sa(r);% 5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(l);6Sa==6Sa(r);% 7Sb==7Sb(l);7Sa==7Sa(l);8Sb==8Sb(l);8Sa==8Sb(l);% 0F==0F;0G==0G}} {\footnotesize \put(171,303){\bdloocant{b}{c}{d}{k}{j}{a}} \put(0,0){\bdloocant{}{e}{f}{g}{h}{i}}} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (400,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{center} } The handedness for each oriented or double-sided position is shown with a character set in parentheses. The option argument BONDLIST is based on the assignment of characters (a--k) to respective bonds as shown in the above diagram. A bond modifier in the argument SUBSLIST for $n=1\mbox{--}8$ can be one of bond modifiers shown in Table \ref{tt:200a}. The substitution at the bridgehead positions is designated as shown in Table 4.3 of \XyMTeX book. \medskip \noindent Example: \begin{verbatim} \decalinevt{1D==O;0FB==H;0GA==H} \qquad \decalinevt{1B==R$_{3}$SiOCH$_{2}$;3D==O;4A==COOHCH$_{3}$;% 0FB==CH$_{3}$;0GA==H} \end{verbatim} These commands produce: \begin{center} \decalinevt{1D==O;0FB==H;0GA==H} \qquad \decalinevt{1B==R$_{3}$SiOCH$_{2}$;3D==O;4A==COOHCH$_{3}$;% 0FB==CH$_{3}$;0GA==H} \end{center} The related commands, \verb/\naphdrvt/ and \verb/\tetralinevt/, have been defined on the basis of the command \verb/\decalinevt/. \section{Six-six Fused Heterocycles} \subsection{Vertical-Bottom Forms} The macro \verb/\decaheterovb/ is generally used to draw six-six-fused heterocycles of vertical-bottom type (\textsf{hetarom.sty}). \begin{verbatim} \decaheterovb[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % *************************** % * decahetro derivatives * % * (vertical bottom type) * % *************************** % The following numbering is adopted in this macro. % % 7 % * % 6 * * 8 % | | % | | 0G (4a) % 5 * * * % 0F(4a) * * 1 % | | % | | % 4 * * 2 % * % 3 % ^ % | % the original point Locant numbers for designating substitution positions as well as characters for setting double bonds are shown in the following diagram: { \begin{xymspec} \begin{picture}(1000,1200)(0,0) \put(0,0){\decaheterovb[]{1==1;2==2;3==3;4==4;5==5;% 6==6;7==7;8==8;9==9;{{10}}==10}{% 1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(l);3Sa==3Sa(r);4Sb==4Sb(l);4Sa==4Sa(l);% 5Sb==5Sb(l);5Sa==5Sa(l);6Sb==6Sb(l);6Sa==6Sa(l);% 7Sb==7Sb(l);7Sa==7Sa(r);8Sb==8Sb(r);8Sa==8Sa(r);% 9==9;{{10}}==10}} {\footnotesize \put(171,0){\bdloocant{j}{a}{b}{c}{d}{k}} \put(0,303){\bdloocant{h}{i}{}{e}{f}{g}}} %\put(0,0){\bdloocant{i}{k}{e}{f}{g}{h}} %\put(342,0){\bdloocant{a}{b}{c}{d}{}{j}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (550,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} } The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST is used to specify a bond pattern. The argument ATOMLIST has a similar format concerning the positions of $n$ = 1 to 8. A hetero-atom on the 4a-position is designated to be 4a==N or 9==N; and a hetero-atom on the 8a-position is given as to be 8a==N or \{\{10\}\}==N. The argument SUBSLIST for this macro takes a general format, in which the modifiers listed in Table \ref{tt:200a} are used. Note that 9 and 10 should be used for designating 4a and 8a positions. \medskip \noindent Example: \begin{verbatim} \decaheterovb[]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$} \decaheterovb[]{5==O}{9==HO;{{10}}==OH} \decaheterovb[ch]{1==O}{9A==HOCH$_{2}$;{{10}A}==H;% 4==CH$_{3}$;7==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \decaheterovb[]{7==O}{6D==O;9A==H;{{10}A}==CH=CH$_{2}$} \decaheterovb[]{5==O}{9==HO;{{10}}==OH} \decaheterovb[ch]{1==O}{9A==HOCH$_{2}$;{{10}A}==H;% 4==CH$_{3}$;7==CH$_{3}$} \end{center} Macros for drawing related fused heterocycles are also defined. The formats of these commands are as follows: \begin{verbatim} \quinolinevb[BONDLIST]{SUBSLIST} \isoquinolinevb[BONDLIST]{SUBSLIST} \quinoxalinevb[BONDLIST]{SUBSLIST} \quinazolinevb[BONDLIST]{SUBSLIST} \cinnolinevb[BONDLIST]{SUBSLIST} \pteridinevb[BONDLIST]{SUBSLIST} \end{verbatim} \subsection{Vertical-Top Forms} The macro \verb/\decaheterovt/ is generally used to draw six-six-fused heterocycles of vertical-top type (\textsf{hetarom.sty}). \begin{verbatim} \decaheterovt[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % **************************** % * decaheterovt derivatives * % * (vertical-top type) * % **************************** % The following numbering is adopted in this macro. % % 2 % * % 1 * * 3 % | | % | | % 0G (8a) * * 4 % 8 * * 0F(4a) % | | % | | % 7 * * 5 % * % 6 % ^ % | % the original point % \end{verbatim} Locant numbers for designating substitution positions as well as characters for setting double bonds are shown in the following diagram: { \begin{xymspec} \begin{picture}(1000,1200)(0,0) \put(0,0){\decaheterovt[]{1==1;2==2;3==3;4==4;5==5;% 6==6;7==7;8==8;9==9;{{10}}==10}{% 1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(l);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r);4Sb==4Sb(r);4Sa==4Sa(r);% 5Sb==5Sb(r);5Sa==5Sa(r);6Sb==6Sb(l);6Sa==6Sa(r);% 7Sb==7Sb(l);7Sa==7Sa(l);8Sb==8Sb(l);8Sa==8Sa(l);% 9==9;{{10}}==10}} {\footnotesize \put(171,303){\bdloocant{b}{c}{d}{k}{j}{a}} \put(0,0){\bdloocant{}{e}{f}{g}{h}{i}}} %\put(171,0){\bdloocant{j}{a}{b}{c}{d}{k}} %\put(0,303){\bdloocant{h}{i}{}{e}{f}{g}}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (400,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} } The handedness for each oriented or double-sided position is shown with a character set in parentheses. The optional argument BONDLIST is used to specify a bond pattern. The argument ATOMLIST has a similar format concerning the positions of $n$ = 1 to 8. A hetero-atom on the 4a-position is designated to be 4a==N or 9==N; and a hetero-atom on the 8a-position is given as to be 8a==N or \{\{10\}\}==N. The argument SUBSLIST for this macro takes a general format, in which the modifiers listed in Table \ref{tt:200a} are used. Note that 9 and 10 should be used for designating 4a and 8a positions. \medskip \noindent Example: \begin{verbatim} \decaheterovt[]{7==O}{6D==O;9A==H;{{10}A}==CH$_{2}$=CH} \decaheterovt[]{5==O}{9==OH;{{10}}==HO} \decaheterovt[ch]{1==O}{9A==CH$_{2}$OH;{{10}A}==H;% 4==CH$_{3}$;7==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \vspace*{1cm} \decaheterovt[]{7==O}{6D==O;9A==H;{{10}A}==CH$_{2}$=CH} \decaheterovt[]{5==O}{9==OH;{{10}}==HO} \decaheterovt[ch]{1==O}{9A==CH$_{2}$OH;{{10}A}==H;% 4==CH$_{3}$;7==CH$_{3}$} \end{center} Macros for drawing related fused heterocycles are also defined. The formats of these commands are as follows: \begin{verbatim} \quinolinevt[BONDLIST]{SUBSLIST} \isoquinolinevt[BONDLIST]{SUBSLIST} \quinoxalinevt[BONDLIST]{SUBSLIST} \quinazolinevt[BONDLIST]{SUBSLIST} \cinnolinevt[BONDLIST]{SUBSLIST} \pteridinevt[BONDLIST]{SUBSLIST} \end{verbatim} \section{Three-Membered Carbocycles} The macro \verb/\cyclopropanev/ (the same command as \verb/\cyclopropane/) for drawing three-membered carbocycles has the following format (\textsf{lowcycle.sty}) \begin{verbatim} \cyclopropanev[BONDLIST]{SUBSLIST} \end{verbatim} % **************************** % * cyclopropane derivatives * % * (vertical type) * % **************************** % The following numbering is adopted in this macro. % % b % 3--------2 % c ` / a % `1/ <===== the original point % % % The locant numbering (1--3) and the bond description (a--c) are common as shown in the following diagram: \begin{xymspec} \begin{picture}(1000,600)(0,0) \put(0,0){\cyclopropanev[]{% 1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(l);3Sa==3Sa(l)}} \put(0,0){\circle{80}} \put(400,240){\circle{80}} \put(500,250){a} \put(300,250){c} \put(380,460){b} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book. \medskip \noindent Example: \begin{verbatim} \cyclopropanev{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \cyclopropanev{2Sa==COOH;2Sb==COOH}\qquad\qquad \cyclopropanev{3Sa==H$_{3}$C;3Sb==H$_{3}$C} \end{verbatim} produce the following structures: \begin{center} \cyclopropanev{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \cyclopropanev{2Sa==COOH;2Sb==COOH}\qquad\qquad \cyclopropanev{3Sa==H$_{3}$C;3Sb==H$_{3}$C} \end{center} The macro \verb/\cyclopropanevi/ (the same command as \verb/\cyclopropanei/) for drawing three-membered carbocycles of inverse type has the following format (\textsf{lowcycle.sty}) \begin{verbatim} \cyclopropanevi[BONDLIST]{SUBSLIST} \end{verbatim} % **************************** % * cyclopropane derivatives * % * (inverse vertical type) * % **************************** % The following numbering is adopted in this macro. % % /1` <===== the original point % c / ` a % 3--------2 % b % % \cyclopropanei[BONDLIST]{SUBSLIST} % \cyclopropanevi[BONDLIST]{SUBSLIST} The following diagram shows The locant numbering (1--3) and the bond description (a--c): \begin{xymspec} \begin{picture}(1000,600)(0,0) \put(0,0){\cyclopropanevi[]{% 1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(l);3Sa==3Sa(l)}} \put(0,0){\circle{80}} \put(400,340){\circle{80}} \put(500,250){a} \put(250,250){c} \put(380,50){b} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,340) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} For the arguments, BONDLIST and SUBSLIST, see the counterparts of \verb/\cyclopropane/ described in \XyMTeX book. \medskip \noindent Example: \begin{verbatim} \cyclopropanevi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \cyclopropanevi{2Sa==COOH;2Sb==COOH}\qquad\qquad \cyclopropanevi{3Sa==H$_{3}$C;3Sb==H$_{3}$C} \end{verbatim} produce the following structures: \begin{center} \cyclopropanevi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \cyclopropanevi{2Sa==COOH;2Sb==COOH}\qquad\qquad \cyclopropanevi{3Sa==H$_{3}$C;3Sb==H$_{3}$C} \end{center} The macro \verb/\cyclopropaneh/ for drawing three-membered carbocycles of horizontal type has the following format (\textsf{lowcycle.sty}) \begin{verbatim} \cyclopropaneh[BONDLIST]{SUBSLIST} \end{verbatim} % **************************** % * cyclopropane derivatives * % * (horizontal type) * % **************************** % % aaa fff % 3 % | ` c % b | 1 bbb ccc % | / a % 2/ % ddd eee % The locant numbering (1--3) and the bond description (a--c) are common as shown in the following diagram: \begin{xymspec} \begin{picture}(600,1000)(0,0) \put(0,0){\cyclopropaneh[]{% 1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(l);2Sa==2Sa(r);% 3Sb==3Sb(l);3Sa==3Sa(r)}} \put(0,0){\circle{80}} \put(200,240){\circle{80}} \put(300,150){a} \put(100,320){b} \put(300,450){c} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (200,240) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book. \medskip \noindent Example: \begin{verbatim} \cyclopropaneh{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad \cyclopropaneh{2Sa==COOH;2Sb==HOCO}\qquad\qquad \cyclopropaneh{3Sa==CH$_{3}$;3Sb==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \cyclopropaneh{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad \cyclopropaneh{2Sa==COOH;2Sb==HOCO}\qquad\qquad \cyclopropaneh{3Sa==CH$_{3}$;3Sb==CH$_{3}$} \end{center} The macro \verb/\cyclopropanehi/ for drawing three-membered carbocycles of inverse horizontal type has the following format (\textsf{lowcycle.sty}) \begin{verbatim} \cyclopropanehi[BONDLIST]{SUBSLIST} \end{verbatim} % **************************** % * cyclopropane derivatives * % * (inverse horizontal type)* % **************************** % % aaa bbb % c 3 % / | % eee 1 | b % fff a` | % 2 <---original point % ccc ddd The locant numbering (1--3) and the bond description (a--c) are common as shown in the following diagram: \begin{xymspec} \begin{picture}(600,1000)(0,0) \put(0,0){\cyclopropanehi[]{% 1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r)}} \put(0,0){\circle{80}} \put(400,240){\circle{80}} \put(300,150){a} \put(450,320){b} \put(300,450){c} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (400,240) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book. \medskip \noindent Example: \begin{verbatim} \cyclopropanehi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \cyclopropanehi{2Sa==COOH;2Sb==COOH}\qquad\qquad \cyclopropanehi{3Sa==CH$_{3}$;3Sb==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \cyclopropanehi{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \cyclopropanehi{2Sa==COOH;2Sb==COOH}\qquad\qquad \cyclopropanehi{3Sa==CH$_{3}$;3Sb==CH$_{3}$} \end{center} \section{Three-Membered Heterocycles} The macro \verb/\threeheterov/ (the same command as \verb/\threehetero/) for drawing three-membered heterocycles has the following format (\textsf{hetarom.sty}) \begin{verbatim} \threeheterov[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % **************************** % * threeheterov derivatives * % * (vertical type) * % **************************** % The following numbering is adopted in this macro. % % b % 3--------2 % c ` / a % `1/ <===== the original point % % % The locant numbering (1--3) and the bond description (a--c) are common as shown in the following diagram: \begin{xymspec} \begin{picture}(1000,600)(0,0) \put(0,0){\threeheterov[]{1==1;2==2;3==3}{% 1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(l);3Sa==3Sa(l)}} \put(0,0){\circle{80}} \put(400,240){\circle{80}} \put(500,250){a} \put(300,250){c} \put(380,460){b} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,\the\shifti) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book. \medskip \noindent Example: \begin{verbatim} \threeheterov{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \threeheterov{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad \threeheterov{2==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C} \end{verbatim} produce the following structures: \begin{center} \threeheterov{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \threeheterov{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad \threeheterov{2==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C} \end{center} The macro \verb/\threeheterovi/ (the same command as \verb/\threeheteroi/) for drawing three-membered heterocycles of inverse type has the following format (\textsf{hetarom.sty}) \begin{verbatim} \threeheterovi[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % **************************** % * threehetero derivatives * % * (inverse vertical type) * % **************************** % The following numbering is adopted in this macro. % % /1` <===== the original point % c / ` a % 3--------2 % b % % \threeheteroi[BONDLIST]{ATOMLIST}{SUBSLIST} % \threeheterovi[BONDLIST]{ATOMLIST}{SUBSLIST} The following diagram shows The locant numbering (1--3) and the bond description (a--c): \begin{xymspec} \begin{picture}(1000,600)(0,0) \put(0,0){\threeheterovi[]{1==1;2==2;3==3}{% 1Sb==1Sb(l);1Sa==1Sa(r);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(l);3Sa==3Sa(l)}} \put(0,0){\circle{80}} \put(400,340){\circle{80}} \put(500,250){a} \put(250,250){c} \put(380,50){b} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (\the\shiftii,340) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} For the arguments, BONDLIST and SUBSLIST, see the counterparts of \verb/\threehetero/ described in \XyMTeX book. \medskip \noindent Example: \begin{verbatim} \threeheterovi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \threeheterovi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad \threeheterovi{1==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C} \end{verbatim} produce the following structures: \begin{center} \threeheterovi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \threeheterovi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad \threeheterovi{1==O}{3Sa==H$_{3}$C;3Sb==H$_{3}$C} \end{center} The macro \verb/\threeheteroh/ for drawing three-membered heterocycles of horizontal type has the following format (\textsf{hetaromh.sty}) \begin{verbatim} \threeheteroh[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % **************************** % * threehetero derivatives * % * (horizontal type) * % **************************** % % aaa fff % 3 % | ` c % b | 1 bbb ccc % | / a % 2/ % ddd eee % The locant numbering (1--3) and the bond description (a--c) are common as shown in the following diagram: \begin{xymspec} \begin{picture}(600,1000)(0,0) \put(0,0){\threeheteroh[]{1==1;2==2;3==3}{% 1Sb==1Sb(r);1Sa==1Sa(r);2Sb==2Sb(l);2Sa==2Sa(r);% 3Sb==3Sb(l);3Sa==3Sa(r)}} \put(0,0){\circle{80}} \put(200,240){\circle{80}} \put(300,150){a} \put(100,320){b} \put(300,450){c} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (200,240) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book. \medskip \noindent Example: \begin{verbatim} \threeheteroh{1==O}{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad \threeheteroh{1==O}{2Sa==COOH;2Sb==HOCO}\qquad\qquad \threeheteroh{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \threeheteroh{1==O}{2Sa==COOCH$_{3}$;2Sb==CH$_{3}$OCO}\qquad \threeheteroh{1==O}{2Sa==COOH;2Sb==HOCO}\qquad\qquad \threeheteroh{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$} \end{center} The macro \verb/\threeheterohi/ for drawing three-membered heterocycles of inverse horizontal type has the following format (\textsf{hetatomh.sty}) \begin{verbatim} \threeheterohi[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % **************************** % * threehetero derivatives * % * (inverse horizontal type)* % **************************** % % aaa bbb % c 3 % / | % eee 1 | b % fff a` | % 2 <---original point % ccc ddd The locant numbering (1--3) and the bond description (a--c) are common as shown in the following diagram: \begin{xymspec} \begin{picture}(600,1000)(0,0) \put(0,0){\threeheterohi[]{1==1;2==2;3==3}{% 1Sb==1Sb(l);1Sa==1Sa(l);2Sb==2Sb(r);2Sa==2Sa(r);% 3Sb==3Sb(r);3Sa==3Sa(r)}} \put(0,0){\circle{80}} \put(400,240){\circle{80}} \put(300,150){a} \put(450,320){b} \put(300,450){c} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (400,240) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} For the arguments, BONDLIST and SUBSLIST, see \XyMTeX book. \medskip \noindent Example: \begin{verbatim} \threeheterohi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \threeheterohi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad \threeheterohi{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$} \end{verbatim} produce the following structures: \begin{center} \threeheterohi{1==O}{2Sa==COOCH$_{3}$;2Sb==COOCH$_{3}$}\qquad \threeheterohi{1==O}{2Sa==COOH;2Sb==COOH}\qquad\qquad \threeheterohi{1==O}{3Sa==CH$_{3}$;3Sb==CH$_{3}$} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Aliphatic Moieties} \subsection{Trigonal Units} In addition to the macros \verb/\rtrigonal/ and \verb/\ltrigonal/ (see \XyMTeX book), macros for broader bond angles, \verb/\Rtrigonal/ and \verb/\Ltrigonal/, are added to the \textsf{aliphat} package (\textsf{aliphat.sty}). The formats of these commands are as follows: \begin{verbatim} \Rtrigonal[AUXLIST]{SUBSLIST} \Ltrigonal[AUXLIST]{SUBSLIST} \end{verbatim} % ************************* % * trigonal unit (right) * % ************************* % % 3 % / % / % 1 --- 0 120 0 <== the original point % ` % ` % 2 % ************************ % * trigonal unit (left) * % ************************ % % 2 % ` % ` % 120 0 --- 1 0 <== the original point % / % / % 3 The bond angles of 2--0--3 are 120$^{\circ}$ in the trigonal units printed with these commands. The arguments AUXLIST and SUBSLIST are the same as those of \verb/\tetrahedral/. \medskip \noindent Example: \begin{verbatim} \Rtrigonal{0==C;1D==O;2==Cl;3==F}\qquad \Ltrigonal{0==C;1D==O;2==Cl;3==F} \end{verbatim} produce the following structures: \begin{center} \Rtrigonal{0==C;1D==O;2==Cl;3==F}\qquad \Ltrigonal{0==C;1D==O;2==Cl;3==F} \end{center} \subsection{Ethylenes} The macro \verb/\Ethyleneh/ or \verb/\Ethylene/ is a braoder-angled counterpart of the macro \verb/\ethyleneh/ or \verb/\ethylene/ (see \XyMTeX book), which is used to draw ethylene derivatives with angles 120$^{\circ}$ (\textsf{aliphat.sty}). The format of this command is as follows: \begin{verbatim} \Ethyleneh[BONDLIST]{ATOMLIST}{SUBSLIST} \Ethylene[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} % ***************** % * ethylene unit * % ***************** % % The following numbering is adopted in this macro. % % 1 4 % ` / % ` / % 120 (1)===(2) 120 (1) <== the original point % / ` % / ` % 2 3 % % The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \begin{picture}(800,880)(0,0) \put(0,0){\Ethyleneh{1==1;2==2}{1==1;2==2;3==3;4==4;0==0}} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (300,300) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} The argument BONSLIST is used for giving the C--C bond. The argument ATOMLIST is used for giving central atoms. The argument SUBSLIST is the same as that of \verb/\tetrahedral/. \medskip \noindent Example: \begin{verbatim} \Ethyleneh{1==C;2==C}{1==F;2==Cl;3==H;4==Br}\qquad \Ethyleneh{1==C;2==C}{1==CH$_{3}$;2==H;3==CH$_{2}$OH;4==H}\par \Ethyleneh{1==C;2==N}{1==Ph;2==Ph;3==OH}\qquad \Ethyleneh[t{2+}]{1==C;2==N}{1==CH$_{3}$;2==CH$_{3}$;3==H} \end{verbatim} produce the following structures: \begin{center} \Ethyleneh{1==C;2==C}{1==F;2==Cl;3==H;4==Br}\qquad \Ethyleneh{1==C;2==C}{1==CH$_{3}$;2==H;3==CH$_{2}$OH;4==H}\par \Ethyleneh{1==C;2==N}{1==Ph;2==Ph;3==OH}\qquad \Ethyleneh[t{2+}]{1==C;2==N}{1==CH$_{3}$;2==CH$_{3}$;3==H} \end{center} A butadiene derivative, \begin{center} \Ethyleneh{1==C;2==C}{1==F;2==Cl;4==Br;% 3==\Ethyleneh{1==C;2==C}{1==(yl);2==H;3==H;4==H}} \vspace*{1cm} \end{center} can be drawn by the code, \begin{verbatim} \Ethyleneh{1==C;2==C}{1==F;2==Cl;4==Br;% 3==\Ethyleneh{1==C;2==C}{1==(yl);2==H;3==H;4==H}} \end{verbatim} \chapter{Zigzag Polymethylene Skeletons} \section{Dimethylenes} The macro \verb/\dimethylene/ has two arguments ATOMLIST and SUBSLIST as well as an optional argument BONDLIST (\textsf{methylen.sty}): % % \begin{verbatim} % % bbb % 2 % a / (or uppercase letters) % / % 1 % aaa % \end{verbatim} % \begin{verbatim} \dimethylene[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} The BONDLIST argument contains one character a or A, each of which indicates the presence of an inner (endo-chain) double bond on the corresponding position. A lowercase letter is used to typeset a double bond at a lower-side of an outer skeletal bond, while an uppercase letter typesets a double bond at a upper-side of an outer skeletal bond (Note that the option `A' represents an aromatic circle in commands \verb/\sixheterov/ etc. ). The ATOMLIST and SUBSLIST arguments follow the conventions of the \XyMTeX{} system. The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \begin{picture}(500,500)(0,0) \put(0,0){\dimethylene{1==1;2==2}{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb}} \put(100,250){a} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} Lowercase vs. uppercase letters (`a' vs. `A') in the BONDLIST of the \verb/\dimethylene/ command designate the position of an bond added to the bond `a', as shown in the code, \begin{verbatim} \dimethylene[a]{}{1W==\bzdrv{3==(yl)};1==Cl;2W==H;2==F} \hskip2cm \bzdrv{3==\dimethylene[A]{}{1W==(yl);1==Cl;2W==H;2==F}} \end{verbatim} which typesets the following formulas: \begin{center} \dimethylene[a]{}{1W==\bzdrv{3==(yl)};1==Cl;2W==H;2==F} \hskip2cm \bzdrv{3==\dimethylene[A]{}{1W==(yl);1==Cl;2W==H;2==F}} \end{center} In addition to the standard bond modifiers listed in Table \ref{tt:200a}, the terminal positions of the \verb/\dimethylene/ command can take a bond modifier `W'. For example, the code, \begin{verbatim} \dimethylene{1==S;2==S}{1W==H;2W==H} \hskip4cm \dimethylene{1==S;2==S}{1W==\bzdrv{3==(yl)};2W==H} \hskip1cm \bzdrv{3==\dimethylene{1==S;2==S}{1W==(yl);2W==H}} \end{verbatim} generates the following formulas: \begin{center} \dimethylene{1==S;2==S}{1W==H;2W==H} \hskip4cm \dimethylene{1==S;2==S}{1W==\bzdrv{3==(yl)};2W==H} \hskip1cm \bzdrv{3==\dimethylene{1==S;2==S}{1W==(yl);2W==H}} \end{center} where the ATOMLIST is used to set two sulfur atoms in the dimethylene chain. The macro \verb/\dimethylenei/ is the inverse counterpart of \verb/\dimethylene/, where arguments ATOMLIST, SUBSLIST, and BONDLIST take such common formats as found in the definition of the latter (\textsf{methylen.sty}): \begin{verbatim} \dimethylenei[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \begin{picture}(500,500)(0,0) \put(0,0){\dimethylenei{1==1;2==2}{1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb}} \put(150,280){a} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} Note that the coodinate of position no.~1 is (50, 283), where 180 + 103 = 283. The following example shows a specification of the SUBSLIST. \begin{verbatim} \dimethylenei{}{1W==R$^{\prime}$;2W==R$^{\prime}$;1D==O;2==OH} \hskip3cm \dimethylenei{}{1W==R$^{\prime}$;% 2Sa==R$^{\prime}$;2Sb==R$^{\prime\prime}$;1D==O;2W==OH} \end{verbatim} \begin{center} \dimethylenei{}{1W==R$^{\prime}$;2W==R$^{\prime}$;1D==O;2==OH} \hskip3cm \dimethylenei{}{1W==R$^{\prime}$;% 2Sa==R$^{\prime}$;2Sb==R$^{\prime\prime}$;1D==O;2W==OH} \end{center} \section{Trimethylenes} The macros \verb/\trimethylene/ and \verb/\trimethylenei/ and have two arguments ATOMLIST and SUBSLIST as well as an optional argument BONDLIST (\textsf{methylen.sty}). % % \begin{verbatim} % % bbb % 2 % a / ` b (or uppercase letters) % / ` % 1 3 % aaa ccc % \end{verbatim} % % \begin{verbatim} \trimethylene[BONDLIST]{ATOMLIST}{SUBSLIST} \trimethylenei[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \begin{picture}(600,500)(0,0) \put(0,0){\trimethylene{1==1;2==2;3==3}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa}} \put(100,250){a} \put(300,250){b} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \hskip2cm \begin{picture}(600,500)(0,0) \put(0,0){\trimethylenei{1==1;2==2;3==3}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa}} \put(150,250){a} \put(250,250){b} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (50,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \end{xymspec} \vskip1cm \noindent Examples: \begin{verbatim} \trimethylene[b]{}{1W==R$^{1}$;1==OH;2==R$^{2}$} \hskip2cm \trimethylene[a]{}{1W==R$^{1}$;2==R$^{2}$;3W==CHO} \hskip2cm \trimethylene[B]{}{2==\null;3W==COOEt;3==Br} \end{verbatim} \begin{center} \trimethylene[b]{}{1W==R$^{1}$;1==OH;2==R$^{2}$} \hskip2cm \trimethylene[a]{}{1W==R$^{1}$;2==R$^{2}$;3W==CHO} \hskip2cm \trimethylene[B]{}{2==\null;3W==COOEt;3==Br} \end{center} \vskip1cm \begin{verbatim} \trimethylenei{}{1W==\bzdrv{2==(yl);1==COOH;5==HO;6==HO};% 3W==CHO;3SA==H;3SB==Me} \end{verbatim} \begin{center} \trimethylenei{}{1W==\bzdrv{2==(yl);1==COOH;5==HO;6==HO};% 3W==CHO;3SA==H;3SB==Me} \vspace*{1cm} \end{center} \section{Tetramethylenes} The macros \verb/\tetramethylene/ and \verb/\tetramethylenei/ have two arguments ATOMLIST and SUBSLIST as well as an optional argument BONDLIST (\textsf{methylen.sty}). \begin{verbatim} \tetramethylene[BONDLIST]{ATOMLIST}{SUBSLIST} \tetramethylenei[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \vspace*{.5cm} \begin{picture}(600,500)(0,0) \put(0,0){\tetramethylene{1==1;2==2;3==3;4==4}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;% 4Sb==\raise10pt\hbox{4Sb}}} \put(250,250){a} \put(450,250){b} \put(600,250){c} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \hskip3cm \begin{picture}(600,500)(0,0) \put(0,0){\tetramethylenei{1==1;2==2;3==3;4==4}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;% 4Sb==\lower10pt\hbox{4Sb}}} \put(280,250){a} \put(400,250){b} \put(650,250){c} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \vspace*{.5cm} \end{xymspec} \vskip1cm \noindent Examples: \begin{verbatim} \tetramethylenei{}{1W==Cl;1D==O;2B==Br;4W==Cl} \end{verbatim} \begin{center} \tetramethylenei{}{1W==Cl;1D==O;2B==Br;4W==Cl} \vspace*{.5cm} \end{center} \begin{verbatim} \tetramethylene{}{1W==TBDMS-O;2D==\null;3B==OH;% 4W==\cyclohexanev[e]{6==(yl);3B==\null}} \end{verbatim} \begin{center} \tetramethylene{}{1W==TBDMS-O;2D==\null;3B==OH;% 4W==\cyclohexanev[e]{6==(yl);3B==\null}} \vspace*{1cm} \end{center} \begin{verbatim} \tetramethylene[b]{}{1W==\bzdrv{5==\null;3==(yl)};4W==OH} \end{verbatim} \begin{center} \vspace*{.5cm} \tetramethylene[b]{}{1W==\bzdrv{5==\null;3==(yl)};4W==OH} \vspace*{1cm} \end{center} \section{Pentamethylenes} The macros \verb/\pentamethylene/ and \verb/\pentamethylenei/ have two arguments ATOMLIST and SUBSLIST as well as an optional argument BONDLIST (\textsf{methylen.sty}). \begin{verbatim} \pentamethylene[BONDLIST]{ATOMLIST}{SUBSLIST} \pentamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \vspace*{.5cm} \begin{picture}(600,500)(0,0) \put(0,0){\pentamethylene{1==1;2==2;3==3;4==4;5==5}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;% 4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};% 5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb}% }} \put(250,250){a} \put(450,250){b} \put(600,250){c} \put(800,250){d} \end{picture} \qquad\qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \hskip2cm \begin{picture}(600,500)(0,0) \put(0,0){\pentamethylenei{1==1;2==2;3==3;4==4;5==5}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;% 4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};% 5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb}% }} \put(280,250){a} \put(400,250){b} \put(650,250){c} \put(750,250){d} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \vspace*{.5cm} \end{xymspec} \vskip1cm \noindent Examples:\nobreak \begin{verbatim} \pentamethylene{}{1W==AcO;2B==\null;4B==\null;5W==OH} \end{verbatim} \begin{center} \pentamethylene{}{1W==AcO;2B==\null;4B==\null;5W==OH} \end{center} \begin{verbatim} \pentamethylenei{}{1W==\fiveheterovi{2==N;5==O}{1D==O;2==(yl);3B==Bn};% 1D==O;2A==OMe;3A==OH;5W==OTBDMS} \end{verbatim} \begin{center} \vspace*{.5cm} \pentamethylenei{}{1W==\fiveheterovi{2==N;5==O}{1D==O;2==(yl);3B==Bn};% 1D==O;2A==OMe;3A==OH;5W==OTBDMS} \vspace*{.5cm} \end{center} \begin{verbatim} \pentamethylenei{1==S}{1W==\bzdrv{2==(yl);5==O$_{2}$N};% 1D==O;3==Cl;5==COO$^{-}$;5W==NH$_{3}^{+}$} \end{verbatim} \begin{center} \vspace*{.5cm} \pentamethylenei{1==S}{1W==\bzdrv{2==(yl);5==O$_{2}$N};% 1D==O;3==Cl;5==COO$^{-}$;5W==NH$_{3}^{+}$} \vspace*{.5cm} \end{center} \section{Hexamethylenes} The macros \verb/\hexamethylene/ and \verb/\hexamethylenei/ have two arguments ATOMLIST and SUBSLIST as well as an optional argument BONDLIST (\textsf{methylen.sty}). \begin{verbatim} \hexamethylene[BONDLIST]{ATOMLIST}{SUBSLIST} \hexamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \vspace*{.5cm} \begin{picture}(800,500)(0,0) \put(0,0){\hexamethylene{1==1;2==2;3==3;4==4;5==5;6==6}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;% 4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};% 5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};% 6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb}% }} \put(250,250){a} \put(450,250){b} \put(600,250){c} \put(800,250){d} \put(950,250){e} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \hskip1cm \begin{picture}(850,500)(0,0) \put(0,0){\hexamethylenei{1==1;2==2;3==3;4==4;5==5;6==6}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;% 4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};% 5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};% 6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb}% }} \put(280,250){a} \put(400,250){b} \put(650,250){c} \put(750,250){d} \put(1000,250){e} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \vspace*{.5cm} \end{xymspec} \vskip1cm \noindent Examples:\nobreak \begin{verbatim} \hexamethylene{}{2==\null;4D==O;6D==O;6W==OEt} \end{verbatim} \begin{center} \hexamethylene{}{2==\null;4D==O;6D==O;6W==OEt} \end{center} \begin{verbatim} \hexamethylene[a]{}{4B==OH;5B==NHBoc;6W==OTBDPS} \end{verbatim} \begin{center} \hexamethylene[a]{}{4B==OH;5B==NHBoc;6W==OTBDPS} \end{center} \begin{verbatim} \hexamethylene{}{1W==PhSO$_{2}$;1B==OMe;2A==OH;5D==\null;6W==SiMe$_{3}$} \end{verbatim} \begin{center} \hexamethylene{}{1W==PhSO$_{2}$;1B==OMe;2A==OH;5D==\null;6W==SiMe$_{3}$} \end{center} \begin{verbatim} \hexamethylenei[a]{}{1W==Ph;3B==\null;4A==OTBS;6D==O;6W==H} \end{verbatim} \begin{center} \hexamethylenei[a]{}{1W==Ph;3B==\null;4A==OTBS;6D==O;6W==H} \end{center} \section{Heptamethylenes} The macros \verb/\heptamethylene/ and \verb/\heptamethylenei/ have two arguments ATOMLIST and SUBSLIST as well as an optional argument BONDLIST (\textsf{methylen.sty}). \begin{verbatim} \heptamethylene[BONDLIST]{ATOMLIST}{SUBSLIST} \heptamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \vspace*{.5cm} \begin{picture}(1000,500)(0,0) \put(0,0){\heptamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;% 4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};% 5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};% 6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};% 7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb}% }} \put(250,250){a} \put(450,250){b} \put(600,250){c} \put(800,250){d} \put(950,250){e} \put(1150,250){f} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \hskip1cm \begin{picture}(1050,500)(0,0) \put(0,0){\heptamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;% 4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};% 5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};% 6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};% 7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb}% }} \put(280,250){a} \put(400,250){b} \put(650,250){c} \put(750,250){d} \put(1000,250){e} \put(1100,250){f} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \vspace*{.5cm} \end{xymspec} \vskip1cm \noindent Examples:\nobreak \begin{verbatim} \heptamethylene[a]{}{1W==\cyclopentanevi[b]{3==(yl);5Sa==\null;5Sb==\null};% 5D==O;6D==N$_{2}$} \end{verbatim} \begin{center} \vspace*{1cm} \heptamethylene[a]{}{1W==\cyclopentanevi[b]{3==(yl);5Sa==\null;5Sb==\null};% 5D==O;6D==N$_{2}$} \vspace*{1cm} \end{center} \begin{verbatim} \heptamethylenei{}{1W==\bzdrv{1==COOH;2==(yl);5==HO;6==HO};% 3B==Me;4B==OH;5A==Me;6D==O;7A==Et;% 7W==\fiveheterov{1==O}{5==(yl);5SB==H;4GB==Me;2GA==Et;% 2Su==\sixheterovi{1==O}{6==(yl);6FA==H;3SB==OH;3SA==Et;2A==Me}}} \end{verbatim} \begin{center} \vspace*{1cm} \heptamethylenei{}{1W==\bzdrv{1==COOH;2==(yl);5==HO;6==HO};% 3B==Me;4B==OH;5A==Me;6D==O;7A==Et;% 7W==\fiveheterov{1==O}{5==(yl);5SB==H;4GB==Me;2GA==Et;% 2Su==\sixheterovi{1==O}{6==(yl);6FA==H;3SB==OH;3SA==Et;2A==Me}}} \vspace*{1cm} \end{center} \section{Octamethylenes} The macros \verb/\octamethylene/ and \verb/\octamethylenei/ have two arguments ATOMLIST and SUBSLIST as well as an optional argument BONDLIST (\textsf{methylen.sty}). \begin{verbatim} \octamethylene[BONDLIST]{ATOMLIST}{SUBSLIST} \octamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \vspace*{.5cm} \begin{picture}(1300,700)(0,0) \put(0,0){\octamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;% 4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};% 5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};% 6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};% 7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb};% 8Sa==8Sa;8Sb==\raise10pt\hbox{8Sb}% }} \put(250,250){a} \put(450,250){b} \put(600,250){c} \put(800,250){d} \put(950,250){e} \put(1150,250){f} \put(1250,250){g} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \par \begin{picture}(1300,700)(0,0) \put(0,0){\octamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;% 4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};% 5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};% 6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};% 7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb};% 8Sa==8Sa;8Sb==\lower10pt\hbox{8Sb}% }} \put(280,250){a} \put(400,250){b} \put(650,250){c} \put(750,250){d} \put(1000,250){e} \put(1100,250){f} \put(1300,250){g} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \vspace*{.5cm} \end{xymspec} \vskip1cm \noindent Examples:\nobreak \begin{verbatim} \octamethylene[eg]{}{1W==HOHN;1D==O;4B==OBn} \end{verbatim} \begin{center} \octamethylene[eg]{}{1W==HOHN;1D==O;4B==OBn} \end{center} \begin{verbatim} \octamethylenei[af]{}{1W==Ph;3B==\null;4A==OH;8D==O;% 8W==\ryl(4==NH){% 5==\tetramethylene{3==O}{1==(yl);2D==O;4W==CCl$_{3}$;% 1SA==\ryl{8==\bzdrv{1==(yl);3==Cl;4==OMe}}}}} \end{verbatim} \begin{center} \vspace*{1cm} \octamethylenei[af]{}{1W==Ph;3B==\null;4A==OH;8D==O;% 8W==\ryl(4==NH){% 5==\tetramethylene{3==O}{1==(yl);2D==O;4W==CCl$_{3}$;% 1SA==\ryl{8==\bzdrv{1==(yl);3==Cl;4==OMe}}}}} \vspace*{2cm} \end{center} \section{Nonamethylenes} The macros \verb/\nonamethylene/ and \verb/\nonamethylenei/ have two arguments ATOMLIST and SUBSLIST as well as an optional argument BONDLIST (\textsf{methylen.sty}). \begin{verbatim} \nonamethylene[BONDLIST]{ATOMLIST}{SUBSLIST} \nonamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \vspace*{.5cm} \begin{picture}(1500,700)(0,0) \put(0,0){\nonamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8;9==9}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;% 4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};% 5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};% 6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};% 7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb};% 8Sa==8Sa;8Sb==\raise10pt\hbox{8Sb};% 9Sa==9Sa;9Sb==\lower10pt\hbox{9Sb}% }} \put(250,250){a} \put(450,250){b} \put(600,250){c} \put(800,250){d} \put(950,250){e} \put(1150,250){f} \put(1250,250){g} \put(1450,250){h} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \par \begin{picture}(1500,700)(0,0) \put(0,0){\nonamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7;8==8;9==9}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;% 4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};% 5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};% 6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};% 7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb};% 8Sa==8Sa;8Sb==\lower10pt\hbox{8Sb};% 9Sa==9Sa;9Sb==\raise10pt\hbox{9Sb}% }} \put(280,250){a} \put(400,250){b} \put(650,250){c} \put(750,250){d} \put(1000,250){e} \put(1100,250){f} \put(1300,250){g} \put(1450,250){h} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \vspace*{.5cm} \end{xymspec} \vskip1cm \noindent Examples:\nobreak \begin{verbatim} \nonamethylene[a]{}{6D==O;9W==COOEt;9==COOEt} \end{verbatim} \begin{center} \nonamethylene[a]{}{6D==O;9W==COOEt;9==COOEt} \end{center} \begin{verbatim} \nonamethylenei[a]{}{1W==Ph;4SB==\null;4SA==H;8==\null} \end{verbatim} \begin{center} \nonamethylenei[a]{}{1W==Ph;4SB==\null;4SA==H;8==\null} \end{center} \section{Decamethylenes} The macros \verb/\decamethylene/ and \verb/\decamethylenei/ have two arguments ATOMLIST and SUBSLIST as well as an optional argument BONDLIST (\textsf{methylen.sty}). \begin{verbatim} \decamethylene[BONDLIST]{ATOMLIST}{SUBSLIST} \decamethylenei[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \vspace*{.5cm} \begin{picture}(1700,700)(0,0) \put(0,0){\decamethylene{1==1;2==2;3==3;4==4;5==5;6==6;7==7;% 8==8;9==9;{{10}}==10}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;% 4Sa==4Sa;4Sb==\raise10pt\hbox{4Sb};% 5Sa==5Sa;5Sb==\lower10pt\hbox{5Sb};% 6Sa==6Sa;6Sb==\raise10pt\hbox{6Sb};% 7Sa==7Sa;7Sb==\lower10pt\hbox{7Sb};% 8Sa==8Sa;8Sb==\raise10pt\hbox{8Sb};% 9Sa==9Sa;9Sb==\lower10pt\hbox{9Sb};% {10}Sa==10Sa;{10}Sb==\raise10pt\hbox{10Sb}% }} \put(250,250){a} \put(450,250){b} \put(600,250){c} \put(800,250){d} \put(950,250){e} \put(1150,250){f} \put(1250,250){g} \put(1450,250){h} \put(1650,250){i} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \par \begin{picture}(1700,700)(0,0) \put(0,0){\decamethylenei{1==1;2==2;3==3;4==4;5==5;6==6;7==7;% 8==8;9==9;{{10}}==10}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;% 4Sa==4Sa;4Sb==\lower10pt\hbox{4Sb};% 5Sa==5Sa;5Sb==\raise10pt\hbox{5Sb};% 6Sa==6Sa;6Sb==\lower10pt\hbox{6Sb};% 7Sa==7Sa;7Sb==\raise10pt\hbox{7Sb};% 8Sa==8Sa;8Sb==\lower10pt\hbox{8Sb};% 9Sa==9Sa;9Sb==\raise10pt\hbox{9Sb};% {10}Sa==10Sa;{10}Sb==\lower10pt\hbox{10Sb}% }} \put(280,250){a} \put(400,250){b} \put(650,250){c} \put(750,250){d} \put(1000,250){e} \put(1100,250){f} \put(1300,250){g} \put(1450,250){h} \put(1650,250){i} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \vspace*{.5cm} \end{xymspec} \vskip1cm \noindent Examples:\nobreak \begin{verbatim} \decamethylene[acf]{}{9==OH} \end{verbatim} \begin{center} \decamethylene[acf]{}{9==OH} \end{center} \begin{verbatim} \decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;% 9B==\null;{10}D==O;% {10}W==\ryl(4==O){5==\dimethylene{}{1==(yl);2D==O;2W==OMe}}} \end{verbatim} \begin{center} \decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;% 9B==\null;{10}D==O;% {10}W==\ryl(4==O){5==\dimethylene{}{1==(yl);2D==O;2W==OMe}}} \end{center} \begin{verbatim} \decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;% 9B==\null;{10}D==O;% {10}W==\trimethylenei{1==O}{1==(yl);3D==O;3W==OMe}} \end{verbatim} \begin{center} \decamethylenei[b]{}{1==\lmoiety{TBMSO};3==\null;4A==MeO;6A==OTBDMS;% 9B==\null;{10}D==O;% {10}W==\trimethylenei{1==O}{1==(yl);3D==O;3W==OMe}} \end{center} \section{Longer Polymethylene Chains} A polymethylene chain longer than ten carbons should be written by combining two or more units selected from the above-mentioned di- to deca-methylenes. To do this task, we regard one unit as a substituent of another unit. In this method, the code for the former unit is written in the SUBSLIST of the code for the latter. For example, the code, \begin{verbatim} \decamethylene{}{9D==\null;% {10}W==\pentamethylene{}{1==(yl);3==\null;4==OBz}} \end{verbatim} generates the following formula: \begin{center} \decamethylene{}{9D==\null;% {10}W==\pentamethylene{}{1==(yl);3==\null;4==OBz}} \end{center} Alternatively, we regard one unit as a replacement part of another unit, where the code for the former unit is written in the BONDLIST of the code for the latter (see spiro compounds). The same formula with slightly different appearance can be typeset by the code, \begin{verbatim} \decamethylene{{10}s==\hexamethylenei{}{1==(yl);4==\null;5==OBz}% }{9D==\null} \end{verbatim} which gives \begin{center} \decamethylene{{10}s==\hexamethylenei{}{1==(yl);4==\null;5==OBz}% }{9D==\null} \end{center} \section{Cisoid Tetramethylenes} The macros \verb/\tetramethylenecup/ and \verb/\tetramethylenecap/ have two arguments ATOMLIST and SUBSLIST as well as an optional argument BONDLIST (\textsf{methylen.sty}). \begin{verbatim} \tetramethylenecup[BONDLIST]{ATOMLIST}{SUBSLIST} \tetramethylenecap[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} The following diagram shows the numbering for designating substitution positions: \begin{xymspec} \vspace*{.5cm} \begin{picture}(600,500)(0,0) \put(0,0){\tetramethylenecup{1==1;2==2;3==3;4==4}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\lower10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;4Sb==4Sb}} \put(300,250){a} \put(450,200){b} \put(600,250){c} \end{picture} \qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \hskip3cm \begin{picture}(600,500)(0,0) \put(0,0){\tetramethylenecap{1==1;2==2;3==3;4==4}% {1Sa==1Sa;1Sb==1Sb;2Sa==2Sa;2Sb==2Sb;% 3Sb==\raise10pt\hbox{3Sb};3Sa==3Sa;4Sa==4Sa;4Sb==4Sb}} \put(200,250){a} \put(500,150){b} \put(650,250){c} \end{picture} \qquad\qquad\fbox{\parbox{2cm}{$\circ$: (200,180) \\ $\bullet$: (\the\noshift,\the\noshift)}} \vspace*{.5cm} \end{xymspec} \vskip1cm \noindent Examples:\nobreak \begin{verbatim} \tetramethylenecap[b]{1s==\dimethylenei{}{1W==HO;2==(yl)};% 4s==\trimethylene{}{3W==CN;1==(yl)}}{} \end{verbatim} \begin{center} \tetramethylenecap[b]{1s==\dimethylenei{}{1W==HO;2==(yl)};% 4s==\trimethylene{}{3W==CN;1==(yl)}}{} \end{center} \begin{verbatim} \cyclopentanevi{1D==O;4A==HO;% 2A==\tetramethylenecup[b]{% 4s==\trimethylenei{}{1==(yl);3W==COOMe}}{1==(yl)};% 3B==\trimethylene[a]{}{1==(yl);3A==OH;3W==C$_{5}$H$_{11}$}} \end{verbatim} \begin{center} \cyclopentanevi{1D==O;4A==HO;% 2A==\tetramethylenecup[b]{% 4s==\trimethylenei{}{1==(yl);3W==COOMe}}{1==(yl)};% 3B==\trimethylene[a]{}{1==(yl);3A==OH;3W==C$_{5}$H$_{11}$}} \end{center} \section{Ring Fusion to Polymethylenes} The BONDLIST of each ``methylene'' command can accept bond fusion. \vskip1cm \noindent Examples:\nobreak \begin{verbatim} \nonamethylene[{h\threefusehi({cA}){3==O}{}{a}}]{}{1W==Me;1A==OH} \end{verbatim} \begin{center} \vspace*{1cm} \nonamethylene[{h\threefusehi({cA}){3==O}{}{a}}]{}{1W==Me;1A==OH} \vspace*{1cm} \end{center} \begin{verbatim} \tetramethylenecup[{b\threefusev({aB}{cB}){1==O}{}{B}}]% {}{1D==O;1W==H$_{2}$N;4D==O;4W==nC$_{8}$H$_{17}$} \end{verbatim} \begin{center} \vspace*{1cm} \tetramethylenecup[{b\threefusev({aB}{cB}){1==O}{}{B}}]% {}{1D==O;1W==H$_{2}$N;4D==O;4W==nC$_{8}$H$_{17}$} \vspace*{1cm} \end{center} \begin{verbatim} \pentamethylenei[{c\threefusehi({bA}{cA}){3==O}{}{a}}]{}{1W==Ph;5W==OH} \end{verbatim} \begin{center} \vspace*{1cm} \pentamethylenei[{c\threefusehi({bA}{cA}){3==O}{}{a}}]{}{1W==Ph;5W==OH} \vspace*{1cm} \end{center} \section{Ring Replacement to Polymethylenes} The ATOMLIST of each ``methylene'' command can accept atom or ring replacement. \vskip1cm \noindent Examples:\nobreak \begin{verbatim} \trimethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{1W==PhSO$_{2}$;3W==R} \end{verbatim} \begin{center} \vspace*{1cm} \trimethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{1W==PhSO$_{2}$;3W==R} \vspace*{1cm} \end{center} \begin{verbatim} \tetramethylenecup[b]{% 1s==\nonamethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{9==(yl)};% 4s==\ryl{5A==\sixheterovi{1==N}{1==Bn;% 2B==\ryl{8==OBn};3A==OBn;6==(yl)}}}{} \end{verbatim} \begin{center} \vspace*{1cm} \tetramethylenecup[b]{% 1s==\nonamethylenei{3s==\fiveheterov{2==O;5==O}{1==(yl)}}{9==(yl)};% 4s==\ryl{5A==\sixheterovi{1==N}{1==Bn;% 2B==\ryl{8==OBn};3A==OBn;6==(yl)}}}{} \vspace*{1cm} \end{center} \begin{verbatim} \tetramethylene{% 2s==\sixheterovi{2==O;6==O}{4Sa==\null;4Sb==\null;1==(yl)};% 4s==\ryl{5B==\cyclohexanev[d]{6==(yl);1A==\null;% 5==\Utrigonal{0==C;1D==O;2==(yl);3==H}}}}{} \end{verbatim} \begin{center} \vspace*{1cm} \tetramethylene{% 2s==\sixheterovi{2==O;6==O}{4Sa==\null;4Sb==\null;1==(yl)};% 4s==\ryl{5B==\cyclohexanev[d]{6==(yl);1A==\null;% 5==\Utrigonal{0==C;1D==O;2==(yl);3==H}}}}{} \vspace*{1cm} \end{center} \section{Branched Chains} Branched chains can be drawn by using a ``methylene'' command with the ``yl''-function. \vskip1cm \noindent Examples:\nobreak \begin{verbatim} \decamethylene[bf]{}{% 2==\dimethylene{}{1==(yl)};6==\dimethylene{}{1==(yl)};% {10}W==OH;{{10}}==\null} \end{verbatim} \begin{center} \vspace*{1cm} \decamethylene[bf]{}{% 2==\dimethylene{}{1==(yl)};6==\dimethylene{}{1==(yl)};% {10}W==OH;{{10}}==\null} \vspace*{1cm} \end{center} \begin{verbatim} \tetramethylene{}{1W==BuO;1D==O;4W==OTBDPS;% 2==\dimethylene{}{1==(yl);2D==O;2W==H}} \end{verbatim} \begin{center} \vspace*{1cm} \tetramethylene{}{1W==BuO;1D==O;4W==OTBDPS;% 2==\dimethylene{}{1==(yl);2D==O;2W==H}} \vspace*{1cm} \end{center} \begin{verbatim} \octamethylene[bd]{}{1W==MEMO;% 6==\tetramethylenei[a]{}{4==(yl);1W==EtOCO}} \end{verbatim} \begin{center} \vspace*{1cm} \octamethylene[bd]{}{1W==MEMO;% 6==\tetramethylenei[a]{}{4==(yl);1W==EtOCO}} \vspace*{1cm} \end{center} \chapter{Enhanced Functions of Commands for General Use} \section{Expanded Format} Commands for general use, e.g. \verb/\sixheterov/, have originally taken a comman format: \begin{verbatim} \genCOM[BONDLIST]{ATOMLIST}{SUBSLIST} \end{verbatim} where \verb/\genCOM/ represents a command name such as \verb/\sixheterov/. In \XyMTeX{} version 2.00, we add a top optional argument SKBONDLIST to treat stereochemical information as well as an end optional argument OMIT to treat a bond-deleted skeleton. Thus, the expanded format of each command for general use is represented by \begin{verbatim} \genCOM(SKBONDLIST)[BONDLIST]{ATOMLIST}{SUBSLIST}[OMIT] \end{verbatim} The argument SKBONDLIST contains pairs of two alphabets in braces, where each pair consists of a bond specifier (a lowercase letter) and an uppercase letter (A or B). The letter A represents an $\alpha$ (downward) bond, while B represents a $\beta$ (upward) bond. For example, an SKBONDLIST, \verb/({aA}{cB})/, represents that bond `a' is an $\alpha$ bond in a dotted form and that bond `c' is a $\beta$ bond in a boldfaced form. The argument OMIT is a list of bond specifiers, each of which designates a bond to be deleted. As a matter of course, SKBONDLIST and OMIT take no common bond specifiers. \section{Boldfaced and Dotted Bonds} The following example shows that the \verb/\sixheterov/ command takes an optional SKBONDLIST, \verb/({eB})/, which typesets a boldfaced bond at `e' in the resulting tetrahydropyran ring. \begin{verbatim} \sixheterov({eB}){6==O}{1D==O;2A==\null;4A==\null;% 5==\tetramethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;4==(yl)}} \end{verbatim} \begin{center} \sixheterov({eB}){6==O}{1D==O;2A==\null;4A==\null;% 5==\tetramethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;4==(yl)}} \end{center} This is an example of the substitution technique in which the side-chain is based on \verb/\tetramethylenei/ written in the SUBSLIST of the outer \verb/\sixheterov/ command. The same structural formula can alternatively drawn by means of the replacement technique, in which the BONDLIST of the \verb/\sixheterov/ command is used for specifying the side-chain. Thus, the code, \begin{verbatim} \sixheterov({eB}){6==O;% 5s==\pentamethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;5==(yl)}% }{1D==O;2A==\null;4A==\null} \end{verbatim} generates the following formula: \begin{center} \sixheterov({eB}){6==O;% 5s==\pentamethylenei{}{1W==HO;1D==O;2B==\null;3B==OH;4B==\null;5==(yl)}% }{1D==O;2A==\null;4A==\null} \end{center} We have further examples in which the \verb/\sixheterov/ command takes an optional SKBONDLIST. The following two examples show the comparison between the substitution and the replacement technique, giving formulas of chemically equivalence with slightly different bond lengthes. \begin{verbatim} \sixheterov({bA}{eB}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;% 6==\hexamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;6==(yl)}; 2==\hexamethylenei[bd]{}{1==(yl);1B==Me;5==COOMe}} \end{verbatim} \begin{center} \sixheterov({bA}{eB}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;% 6==\hexamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;6==(yl)}; 2==\hexamethylenei[bd]{}{1==(yl);1B==Me;5==COOMe}} \end{center} \begin{verbatim} \sixheterov({bA}{eB}){3==O;5==O;% 6s==\heptamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;7==(yl)}; 2s==\heptamethylene[ce]{}{1==(yl);2B==Me;6==COOMe}% }{1A==Me;4Sa==\null;4Sb==\null} \end{verbatim} \begin{center} \sixheterov({bA}{eB}){3==O;5==O;% 6s==\heptamethylene{}{1W==MeS;1==Cl;3B==OMe;4B==Me;5A==OAc;6A==Me;7==(yl)}; 2s==\heptamethylene[ce]{}{1==(yl);2B==Me;6==COOMe}% }{1A==Me;4Sa==\null;4Sb==\null} \end{center} The following structure shows the use of SKBONDLIST in drawing a spiro ring. \begin{verbatim} \sixheterov[be]{% 1s==\fiveheterov({aA}{eB}){4==N}% {4==PhCH$_{2}$OCO;3SB==H;3SA==COOCH$_{2}$Ph;5D==O;1==(yl)}% }{4D==O} \end{verbatim} \begin{center} \vspace*{1cm} \sixheterov[be]{% 1s==\fiveheterov({aA}{eB}){4==N}% {4==PhCH$_{2}$OCO;3SB==H;3SA==COOCH$_{2}$Ph;5D==O;1==(yl)}% }{4D==O} \end{center} \section{Bond Deletion} The OMIT argument of each command for general use is used to draw a large ring. The following example is a simple case in which one bond is deleted: \begin{verbatim} \decaheterov{9==O}{4==O;8D==O;5==CH$_{3}$}[k] \end{verbatim} \begin{center} \decaheterov{9==O}{4==O;8D==O;5==CH$_{3}$}[k] \end{center} The absence and presence of the OMIT argument give different formulas as follows. \begin{verbatim} \decaheterov[{k\threefuseh{}{}{b}}]{}{} \decaheterov[{k\threefuseh{}{}{b}}]{}{}[k] \end{verbatim} \begin{center} \decaheterov[{k\threefuseh{}{}{b}}]{}{} \decaheterov[{k\threefuseh{}{}{b}}]{}{}[k] \end{center} A complicated case contains a ring fusion as follows. First, the code \begin{verbatim} \decaheterov[cegi]{2==\null}{6==MeO;8==OMe;1D==O}[b] \end{verbatim} generates the follwing formula: \begin{center} \decaheterov[cegi]{2==\null}{6==MeO;8==OMe;1D==O}[b] \end{center} where \verb/[b]/ indicates the deletion of bond `b'. A similar mechanism is also available in a fusing unit, \verb/\sixunitv/. The code, \begin{verbatim} \sixfusev{6==O}{}{E}[b] \end{verbatim} generates a formula: \begin{center} \sixfusev{6==O}{}{E}[b] \vspace*{2cm} \end{center} where bond `e' is deleted by means of the FUSE argument (E) and bond `b' is deleted by means of the OMIT argument (b). Finally, we have the structural formula of zearalenone: \begin{verbatim} \decaheterov[cegi% {b\sixfusev[% {b\sixfusev{}{3D==O}{E}}% ]{6==O}{}{E}[b]}% ]{2==\null% }{6==MeO;8==OMe;1D==O}[b] \end{verbatim} \begin{center} \decaheterov[cegi% {b\sixfusev[% {b\sixfusev{}{3D==O}{E}}% ]{6==O}{}{E}[b]}% ]{2==\null% }{6==MeO;8==OMe;1D==O}[b] \end{center} Intermediates for steroid synthesis via intermolecular cycloadditions of $o$-quinodimethane derivatives (Kametani, et al. {\em J. Org. Chem.}, 1980, {\bf 45}, 2204; Grieco, et al. {\em J. Org. Chem.}, 1980, {\bf 45}, 2247) can be drawn by the bond deletion of \verb/\decaheterov/ and \verb/\nonaheterov/. \begin{verbatim} \decaheterov({jA}{dB}){% 2s==\fourhetero[{b\sixfusev[ace]{}{2==OMe}{e}}]% {}{1==(yl)}% }{6B==HO;9A==H;{10}B==\null;1D==\null}[a] \end{verbatim} \begin{center} \vspace*{1cm} \decaheterov({jA}{dB}){% 2s==\fourhetero[{b\sixfusev[ace]{}{2==OMe}{e}}]% {}{1==(yl)}% }{6B==HO;9A==H;{10}B==\null;1D==\null}[a] \end{center} \begin{verbatim} \nonaheterov({dA}{hB}){% 6s==\fourhetero[% {d\sixfusev[bdf]{}{5==MeO}{b}}]% {}{3==(yl)}% }{3B==OH;8B==\null;7D==\null;9A==H}[g] \end{verbatim} \begin{center} \nonaheterov({dA}{hB}){% 6s==\fourhetero[% {d\sixfusev[bdf]{}{5==MeO}{b}}]% {}{3==(yl)}% }{3B==OH;8B==\null;7D==\null;9A==H}[g] \vspace*{1cm} \end{center} A remarkable merit of using a skeleton with deleted bonds appears in drawing a starting compound with an acyclic part along with the resulting product via cyclization, since their codes are akin to each other. \begin{verbatim} \decaheterov[{4+}% {c\fivefusevi[e]{5==\null}{4D==O}{E}}% ]{4==N}{1D==\null;9B==H;{10}B==H}[ab] \hskip2cm \decaheterov[% {c\fivefusevi{5==\null}{4D==O}{E}}% ]{4==N}{1B==OCHO;9B==H;{10}B==H;3FA==H} \end{verbatim} \begin{center} \decaheterov[{4+}% {c\fivefusevi[e]{5==\null}{4D==O}{E}}% ]{4==N}{1D==\null;9B==H;{10}B==H}[ab] \hskip2cm \decaheterov[% {c\fivefusevi{5==\null}{4D==O}{E}}% ]{4==N}{1B==OCHO;9B==H;{10}B==H;3FA==H} \vspace*{1cm} \end{center} The latter compound was obtained by the cyclization of the former (D. J. Hart, et al., {\em J. Am. Chem. Soc.}, 1980, {\bf 102}, 397). Some polymethylene chains are drawn in a folded form. The bond-deletion technique can be applied to drawing such folded formulas. \begin{verbatim} \sixheterov{% 3s==\fiveheterovi{1==O;4==O}{5==(yl)};% 6s==\dimethylenei{}{1D==\null;2==(yl)};% 5s==\trimethylenei{}{1W==EtO;1D==O;3==(yl)}% }{}[e] \end{verbatim} \begin{center} \sixheterov{% 3s==\fiveheterovi{1==O;4==O}{5==(yl)};% 6s==\dimethylenei{}{1D==\null;2==(yl)};% 5s==\trimethylenei{}{1W==EtO;1D==O;3==(yl)}% }{}[e] \end{center} The following formula, which is an intermediate for synthesizing steroid skeletons, can also been drawn by this technique. \begin{verbatim} \decaheterov[k% {f\fivefusevi{2==\null;5==O}{}{A}}% {a\sixfusev[d% {b\fivefusevi[d% {a\sixfusev{% 3s==\trimethylenei[a]{}{1==(yl);2==\null}% }{6==\null}{D}[c]}% ]{}{}{D}}% ]{}{3G==\null}{D}[c]}% ]{5==O}{{10}Sb==\null;2G==\null}[ej] \end{verbatim} \begin{center} \vspace*{2cm} \decaheterov[k% {f\fivefusevi{2==\null;5==O}{}{A}}% {a\sixfusev[d% {b\fivefusevi[d% {a\sixfusev{% 3s==\trimethylenei[a]{}{1==(yl);2==\null}% }{6==\null}{D}[c]}% ]{}{}{D}}% ]{}{3G==\null}{D}[c]}% ]{5==O}{{10}Sb==\null;2G==\null}[ej] \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Enhanced Functions of Commands for Ring Fusion} \section{Expanded Format} Commands for ring fusion, e.g. \verb/\sixfusev/, have originally taken a comman format (version 1.02 not released): \begin{verbatim} \fuseCOM[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE} \end{verbatim} where \verb/\fuseCOM/ represents a command name such as \verb/\sixfusev/. In \XyMTeX{} version 2.00, we add a top optional argument SKBONDLIST to treat stereochemical information as well as an end optional argument OMIT to treat a bond-deleted skeleton. Thus, the expanded format of each command for general use is represented by \begin{verbatim} \fuseCOM(SKBONDLIST)[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}[OMIT] \end{verbatim} The argument SKBONDLIST contains pairs of two alphabets in braces, where (1) each pair consists of a bond specifier (a lowercase letter) and an uppercase letter (A or B); and (2) the letter A represents an $\alpha$ (downward) bond, while B represents a $\beta$ (upward) bond. The argument OMIT is a list of bond specifiers, each of which designates a bond to be deleted. As a matter of course, SKBONDLIST takes no common bond specifiers with FUSE and OMIT. \section{Boldfaced and Dotted Bonds} The first example shows that the command \verb/\fivefusev/ with a SKBONDLIST generates a formula with dotted bonds at fused positions. \begin{verbatim} \nonaheterov[% {e\fivefusev({bA}{eA}){5==O}{3B==\null;4D==O}{A}}% ]{1==N}{1==COOMe;8A==H;9B==H;% 6B==\trimethylene[a]{}{3==(yl)};% 7A==\dimethylene{}{2==(yl);1==OH}} \end{verbatim} \begin{center} \vspace*{1cm} \nonaheterov[% {e\fivefusev({bA}{eA}){5==O}{3B==\null;4D==O}{A}}% ]{1==N}{1==COOMe;8A==H;9B==H;% 6B==\trimethylene[a]{}{3==(yl)};% 7A==\dimethylene{}{2==(yl);1==OH}} \vspace*{1cm} \end{center} The next example shows the use of the SKBONDLISTS of \verb/\threefuseh/ and \verb/\fivefusevi/ to indicate stereochemical information. \begin{verbatim} \sixheterov[% {b\threefuseh({aA}{cA}){1==O}{}{B}}% {d\fivefusevi({bB}{eB}){3==N;5==O}{3==BOM;4D==O}{A}}% ]{1==O}{6A==PMPO-CH$_{2}$} \end{verbatim} \begin{center} \sixheterov[% {b\threefuseh({aA}{cA}){1==O}{}{B}}% {d\fivefusevi({bB}{eB}){3==N;5==O}{3==BOM;4D==O}{A}}% ]{1==O}{6A==PMPO-CH$_{2}$} \end{center} \section{Bond Deletion} \subsection{Larger Rings from Two or More Three-Membered Rings} To draw a fused four-membered ring, we can use two \verb/\threefuseh(i)/ commands in a nested fashion. Four example, the code \begin{verbatim} \threefusehi[{b\threefuseh{1==O}{}{b}}]{}{}{c}[b]% \end{verbatim} generates a four-membered unit: \begin{center} \threefusehi[{b\threefuseh{1==O}{}{b}}]{}{}{c}[b]% \vspace*{1cm} \end{center} The resulting unit is used to draw a four-membered fused ring, as shown below: \begin{verbatim} \sixheterov[% {c\threefusehi[{b\threefuseh{1==O}{}{b}}% ]{}{}{c}[b]}% ]{}{} \end{verbatim} \begin{center} \sixheterov[% {c\threefusehi[{b\threefuseh{1==O}{}{b}}% ]{}{}{c}[b]}% ]{}{} \end{center} In a similar way, a five-membered fusing usit can be drawn by combining three \verb/\threefuseh(i)/ commands, as shown in the following example: \begin{verbatim} \decaheterov[% {d\threefuseh[% {a\threefusehi[% {a\threefuseh{1==\null;3==\null}{2D==O}{c}}% ]{2==O;1==\null}{}{c}[a]}% ]{2==O}{}{C}[a]}% ]{}{} \end{verbatim} \begin{center} \decaheterov[% {d\threefuseh[% {a\threefusehi[% {a\threefuseh{1==\null;3==\null}{2D==O}{c}}% ]{2==O;1==\null}{}{c}[a]}% ]{2==O}{}{C}[a]}% ]{}{} \vspace*{1cm} \end{center} \subsection{Further Rings} A six-membered ring fused by a four-membered unit gives an eight-membered ring as follows: \begin{verbatim} \sixheterov[{b\fourfuse{}{}{d}}]{}{}[b] \end{verbatim} \begin{center} \sixheterov[{b\fourfuse{}{}{d}}]{}{}[b] \end{center} The bond `b' of the four-membered unit in the resulting ring is deleted and used as an acceptor ring of a six-membered fusing unit. Then, we have a twelve-membered ring: \begin{verbatim} \sixheterov[{b\fourfuse[{b\sixfusev{}{}{e}}]{}{}{d}[b]}]{}{}[b] \end{verbatim} \begin{center} \sixheterov[{b\fourfuse[{b\sixfusev{}{}{e}}]{}{}{d}[b]}]{}{}[b] \end{center} After applying the bond-deletion technique to the twelve-membered ring, this is used as an acceptor of a five-membered fusing unit. Then we have a fifteen-membered ring: \begin{verbatim} \sixheterov[{b\fourfuse[{b\sixfusev[% {b\fivefusev{}{}{d}}% ]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b] \end{verbatim} \begin{center} \sixheterov[{b\fourfuse[{b\sixfusev[% {b\fivefusev{}{}{d}}% ]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b] \end{center} A further fusion of a six-membered unit gives a ninteen-membered ring: \begin{verbatim} \sixheterov[{b\fourfuse[{b\sixfusev[% {b\fivefusev[% {a\sixfusev{}{}{f}}% ]{}{}{d}[a]}% ]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b] \end{verbatim} \begin{center} \sixheterov[{b\fourfuse[{b\sixfusev[% {b\fivefusev[% {a\sixfusev{}{}{f}}% ]{}{}{d}[a]}% ]{}{}{e}[b]}]{}{}{d}[b]}]{}{}[b] \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Reaction Schemes} \section{Compound Numbers} \begingroup %%%%%%%%%%%%%%% \makeatletter \def\DeclareMathVersion#1{} \def\SetSymbolFont#1#2#3#4#5#6{} \@@input chemist.sty \makeatother %%%%%%%%%%%%%%% The XyMcompd environment has two functions: \begin{enumerate} \itemsep=0pt \parskip=0pt \item for giving a compound number and specifying a reference key and \item for specifyin the size of a domain to draw a structural formula. \end{enumerate} For example, the code: \begin{verbatim} \begin{XyMcompd}(400,750)(220,200){cPhCL}{} \bzdrv{1==Cl} \end{XyMcompd} \end{verbatim} produces the following formula, \begin{center} \begin{XyMcompd}(400,750)(220,200){cPhCL}{} \bzdrv{1==Cl} \end{XyMcompd} \end{center} The compound number (\cref{cPhCL}) can be referred to by designating \verb/\cref{cPhCL}/. The code \verb/(400,750)/ specifies the size of the drawing domain and the code \verb/(220,200)/ represents x- and y-shift values. When the XyMcompd environment is surrounded by a frame generated by the \verb/\fbox/ command, we obtain the following diagram: \begin{center} \fbox{% \begin{XyMcompd}(400,750)(220,200){c1PhCL}{} \bzdrv{1==Cl} \end{XyMcompd}} \end{center} The original \verb/\bzdrv/ command has a domain to accomodate substituents as follows: \begin{center} \fbox{\bzdrv{1==Cl}} \end{center} If such adjustment and cross-reference are unnecessary, we write the code: \begin{verbatim} \begin{XyMcompd}(,)(,){}{} \sixheterov{1==S;4==S}{} \end{XyMcompd} \end{verbatim} Thereby, we obtain the formula of the original specification: \begin{center} \begin{XyMcompd}(,)(,){}{} \sixheterov{1==S;4==S}{} \end{XyMcompd} \end{center} which is the same formula generated by the code: \begin{verbatim} \sixheterov{1==S;4==S}{} \end{verbatim} The last argument of the XyMcompd environment is to specify the subnumber of a compound number. For example, the code: \begin{verbatim} \begin{XyMcompd}(400,750)(220,200){PhF}{a} \bzdrv{1==F} \end{XyMcompd} \end{verbatim} produces the following formula, \begin{center} \begin{XyMcompd}(400,750)(220,200){PhF}{a} \bzdrv{1==F} \end{XyMcompd} \end{center} Derivatives of a compound numbered in the XyMderiv environment are designated by subnumbering using a \verb/\derivlist/ command in the XyMderiv environment. For example, the code: \begin{verbatim} \begin{XyMderiv} \begin{XyMcompd}(400,750)(220,200){PhX}{} \bzdrv{1==X} \end{XyMcompd} \derivlist{X = Cl;X = NO$_{2}$;X = F} \end{XyMderiv} \end{verbatim} produces the following formula: \begin{center} \begin{XyMderiv} \begin{XyMcompd}(400,750)(220,200){PhX}{} \bzdrv{1==X} \end{XyMcompd} \derivlist{X = Cl;X = NO$_{2}$;X = F} \end{XyMderiv} \end{center} \section{Reaction Arrows} In addition of the reaction arrows described in Ref.\ \cite{fujita2}, we have added further reaction arrows shown in Fig.\ \ref{FFA1KKKR}. They are defined in the package {\sf chemist.sty}. Each arrow command is the following format: \begin{verbatim} \ARROWNAME[xshift]{yshift}{length}{itemover}{itemunder} \end{verbatim} where \verb/\ARROWNAME/ represents a command name; \verb/xshift/ is an optional argument to show a horizontal adjustment value; \verb/yshift/ is an argument to show a vertical adjustment value; \verb/length/ is an argument to desiginate the length of the arrow; and the arguments \verb/itemover/ and \verb/itemunder/ represent items placed over and under the arrow. The name (\verb/\ARROWNAME/) of each reaction arrow take the format of \verb/\react/$\ldots$\verb/arrow/ in which $\ldots$ is selected from the following list: r = right arrow, l = left arrow, lr = leftright arrow, d = down arrow, u = up arrow, du = down up arrow, eq = equilibium arrow, veq = vertical equiliblium arrow, deq = down equiliblium arrow, leq = up equilibium arrow, dlr = down leftright arrow, ulr = up leftright arrow, sw = southwest arrow, se = southeast arrow, nw = northwest arrow, and ne = northeast arrow. \begin{figure} \begin{center} \begin{center}\begin{tabular}{ccccccccc} (r) & \hskip0\unitlength \reactrarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(l) & \hskip0\unitlength \reactlarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(d) & \hskip0\unitlength \reactdarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(u) & \hskip0\unitlength \reactuarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\(sw) & \hskip0\unitlength \reactswarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(se)& \hskip0\unitlength \reactsearrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(nw) & \hskip0\unitlength \reactnwarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(ne) & \hskip0\unitlength \reactnearrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\(du)& \hskip0\unitlength \reactduarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(lr) & \hskip0\unitlength \reactlrarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(ulr)& \hskip0\unitlength \reactulrarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(dlr)& \hskip0\unitlength \reactdlrarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\(eq) & \hskip0\unitlength \reacteqarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(ueq) & \hskip0\unitlength \reactueqarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(deq)& \hskip0\unitlength \reactdeqarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&(veq) & \hskip0\unitlength \reactveqarrow{0\unitlength}{400\unitlength} {\strut{}HCl\\}{\strut{}H\mbox{$_{2}$}O\\}&\\\end{tabular}\end{center}\end{center} \def\tblref{FFA1KKKR} \caption{Reaction arrows of various types} \label{\expandafter\tblref} \end{figure} \section{Display Formulas and Tabular Schemes} Display formulas containing structural formulas and reaction arrows are drawn by using the equation environment of \LaTeX{} or the chemeqn environment of the {\sf chemist} package. For example, the code, \begin{verbatim} \begin{equation}\label{EQ1} \begin{XyMcompd}(400,750)(220,200){BPHOH}{} \bzdrv{1==OH} \end{XyMcompd} \reactrarrow[10\unitlength]{60\unitlength}{500\unitlength} {CH\mbox{$_{3}$}OH\\}{HCl\\} \begin{XyMcompd}(400,750)(220,200){PHOME}{} \bzdrv{1==OCH\mbox{$_{3}$}} \end{XyMcompd} \end{equation} \end{verbatim} produces the following display formula: \begin{equation}\label{EQ1} \begin{XyMcompd}(400,750)(220,200){AAPHOH}{} \bzdrv{1==OH} \end{XyMcompd} \reactrarrow[10\unitlength]{60\unitlength}{500\unitlength} {CH\mbox{$_{3}$}OH\\}{HCl\\} \begin{XyMcompd}(400,750)(220,200){PHOME}{} \bzdrv{1==OCH\mbox{$_{3}$}} \end{XyMcompd} \end{equation} Tabular schemes containing structural formulas and reaction arrows are drawn by using the XyMtab environment of the {\sf chemist} package. For example, the code, \begin{verbatim} \begin{XyMtab}{cccccc} \begin{XyMcompd}(400,750)(220,200){AAPHCL}{} \bzdrv{{1}==Cl;} \end{XyMcompd} & \reactrarrow[10\unitlength]{60\unitlength}{600\unitlength} {\strut{}H\mbox{$_{2}$}O\\}{\strut{}High press.\\}& % \begin{XyMcompd}(400,750)(220,200){AAPHOH}{} \bzdrv{{1}==OH;} \end{XyMcompd} & \reactrarrow[10\unitlength]{60\unitlength}{500\unitlength} {\strut{}CH\mbox{$_{3}$}I\\}{\strut{}NaOH\\}& % \begin{XyMcompd}(400,750)(220,200){AAPHOME}{} \bzdrv{{1}==OCH\mbox{$_{3}$};} \end{XyMcompd} % &\\&&& \reactswarrow[0\unitlength]{300\unitlength}{400\unitlength} {\strut{}HNO\mbox{$_{3}$}\\}{\strut{}}& % \begin{XyMcompd}(400,850)(220,0){APHNO2}{} \bzdrv{{1}==OH;{4}==NO\mbox{$_{2}$};} \end{XyMcompd} &\\ \end{XyMtab} \end{verbatim} generates a tabular scheme as follows: \begin{XyMtab}{cccccc} \begin{XyMcompd}(400,750)(220,200){AAPHCL}{} \bzdrv{{1}==Cl;} \end{XyMcompd} & \reactrarrow[10\unitlength]{60\unitlength}{600\unitlength} {\strut{}H\mbox{$_{2}$}O\\}{\strut{}High press.\\}& % \begin{XyMcompd}(400,750)(220,200){AAPHOH}{} \bzdrv{{1}==OH;} \end{XyMcompd} & \reactrarrow[10\unitlength]{60\unitlength}{500\unitlength} {\strut{}CH\mbox{$_{3}$}I\\}{\strut{}NaOH\\}& % \begin{XyMcompd}(400,750)(220,200){AAPHOME}{} \bzdrv{{1}==OCH\mbox{$_{3}$};} \end{XyMcompd} % &\\&&& \reactswarrow[0\unitlength]{300\unitlength}{400\unitlength} {\strut{}HNO\mbox{$_{3}$}\\}{\strut{}}& % \begin{XyMcompd}(400,850)(220,0){APHNO2}{} \bzdrv{{1}==OH;{4}==NO\mbox{$_{2}$};} \end{XyMcompd} &\\ \end{XyMtab} \endgroup \begin{thebibliography}{99} \bibitem{fujita2a} NIFTY-Serve achives, FPRINT library No. 7, Item Nos. 201, 202, 204. \bibitem{fujita2b} CTAN, tex-archive/macros/latex209/contrib/xymtex/. \bibitem{fujita1} Fujita S., ``Typesetting structural formulas with the text formatter \TeX{}/\LaTeX{}'', {\em Comput. Chem.}, {\bf 18}, 109 (1994). \bibitem{fujita1a} Fujita S., ``\XyMTeX{} for Drawing Chemical Structural Formulas'', {\em TUGboat}, {\bf 16} (1), 80 (1995). \bibitem{lamport2} Lamport L., {\em \LaTeX{}. A document Preparation System}, 2nd ed. for \LaTeXe{}, Addison-Wesley, Reading (1994). See also Lamport L., {\em \LaTeX{}. A document Preparation System}, Addison-Wesley, Reading (1986). \bibitem{goossens} Goossens, M., Mittelbach, F., \& Samarin, A., {\em The \LaTeX{} Companion}, Addison-Wesley, Reading (1994). \bibitem{fujita2c} NIFTY-Serve achives, FPRINT library No. 7, Item Nos. 385, 386. \bibitem{fujita2d} http://www.chem.kit.ac.jp/fujita/fujitas/fujita.html \bibitem{XyMTeXbook} Fujita, S., {\em \XyMTeX{}---Typesetting Chemical Structural Formulas}, Addison-Wesley, Tokyo (1997). The book title is abbreviated as ``\XyMTeX book'' in the present manual. \bibitem{knuth} For the \TeX{} system, see Knuth D. E., {\em The \TeX{}book}, Addison-Wesley, Reading (1984). \bibitem{haas} For the Chem\TeX{} macros, see Haas R. T. \& O'Kane K. C., {\em Comput. Chem.}, {\bf 11}, 251 (1987). \bibitem{ramek} For drawing chemical formulas by \TeX{}, see Ramek, M., in Clark, M. (ed), \TeX: Applications, Uses, Methods, Ellis Horwood, London (1990), p. 277. \bibitem{fujita2} For chemical application of the \LaTeX{} system, see Fujita S., {\em Kagakusha-Seikagakusha no tame no \LaTeX{} (\LaTeX{} for Chemists and Biochemists)}, Tokyo Kagaku Dozin, Tokyo (1993). \bibitem{podar} For epic macros, see Podar S., ``Enhancements to the picture environment of \LaTeX{}'', Manual for Version 1.2 dated July 14, 1986. \bibitem{graphic} For graphic applications of \TeX{}, \LaTeX{} and relevant systems, see Goossens, M., Rahtz, S., \& Mittelbach, F., {\em \LaTeX{} Graphics Companion}, Addison Wesley Longman, Reading (1997). \end{thebibliography} \endinput \begin{verbatim} \end{verbatim} \begin{center} \end{center}