xstring

vl.1

User’s manual

Christian TELLECHEA
unbonpetit@gmail.com

August 15 2008

Abstract
This package which requires ¢ — TEX groups together macros manipulating strings, such as:
> tests:

— does a string contains at least n times an another?
— does a string starts (or ends) with another? etc.

— is a string an integer? A decimal?
> extractions of substrings:

— what is on the left (or the right) of the n*® occurrence of a substring;
— what is between the occurrences of 2 substrings;

— substring between 2 positions, etc.
> substitution of all, or the n first occurrences of a substring for an other substring;
> calculation of numbers:

— length of a string;
— position of the n'® occurrence of a substring;

— how many times a string contains a substring?

For programming purposes, other macros allow to use special characters (&, ~, \, {, }, _, #, $,
~ and %) with the macros manipulating strings.

mailto:unbonpetit@gmail.com

Contents

1 Presentation 2
1.1 Description oL e 2
1.2 Motivation e e e e e e e e e e e e 2
1.3 Operation o e 2

1.3.1 Expansion of argumentso 2
1.3.2 Textual arguments 2
1.3.3 Expansion of macros, optional argumento Lo 3

2 The macros 3
2.1 Presentation of macros 3
2.2 The tests 4

2.2.1 IfSubStr 4
2.2.2 IfSubStrBefore 4
2.2.3 IfSubStrBehind 4
2.2.4 TfBeginWith e 5
2.2.5 HEndWith 5
2.2.6 IfInteger 5
2.2.7 IfDecimal e 5
2.3 Extraction of substrings 6
2.3.1 StrBefore 6
2.3.2 StrBehind 6
2.3.3 StrBetween 6
2.3.4 StrSubstitute e 7
2.3.5 StrDel L 7
2.3.6 StrGobbleLeft 7
2.3.7 StrLeft 8
2.3.8 StrGobbleRight 8
2.3.9 StrRight e 8
2.3.10 StrChar 8
2.3.11 StrMid e 8
2.4 Number results 9
2.4.1 StrLen 9
2.4.2 StrCount 9
2.4.3 StrPosition 9

3 Using the macros for programming purposes 9
3.1 Verbatimize to a control sequence 9
3.2 Tokenization of a text to a control sequence e 10
3.3 Expansion of a control sequence before verbatimize L. 10

3.3.1 The scancs macro i e e e e e e e e e e e 10
3.3.2 Mind the catcodes ! 10
3.3.3 Several expansions e 11
3.3.4 Expansion of several control sequences L Lo 11
3.3.5 Examples oL e 11
3.4 Inside the definition of a macro 12
3.5 Starred macros L e 13
3.6 Examples e 13
3.6.1 Example 1. e 13
3.6.2 Example 2. 14
3.6.3 Example 3. e 14
3.6.4 Exampled. e 14
3.6.5 Exampleb. e 14

This manual is a translation of the french manual. I apologize for my poor english but I did my best, and I
hope that the following is comprehensible!

1 Presentation

1.1 Description

This extension! provides macros and tests operating on strings, as other programmation languages have. They
provides the usual strings operations, such as: test if a string contains another, begins or ends with another,
extractions of strings, calculation of the position of a substring, of the number of occurrences, etc.

Certainly, other packages exit (for example substr and stringstrings), but as well as differences on features,
they do not take into account occurrences so I found them too limited and difficult to use for programming.

1.2 Motivation

I decided to write this package of macros because I have never really found tools in IXTEX suiting my needs for
strings. So, over the last few months,I wrote a few macros that I occasionally or regularly used. Their numbers
have increased and become a little too dispersed in directories in my computer, so I have grouped them together
in this package.

Thus, writing a coherent set of macros forces more discipline and leads to necessary improvements, which took
most of the time I spent writing this package.

This package is my first one as I discoverd ITEX less than a year ago, so my main motivation was to make
progress in programming with TEX, and to tackle its specific methods.

1.3 Operation

In the following, "textip,11,12" means a string made of characters whose catcodes are 10, 11 or 12.

1.3.1 Expansion of arguments

All the arguments of the macros operating on strings? are supposed, after a number of times of expansion,
to expand to textigi1,12. By default, to avoid many \expandafter and to ease the use of macros, all the
arguments are fully expanded before being taken into account by the macro: for this, \fullexpandarg is called
by default.

For example, if \macro is a macro of this package requiring 2 arguments (text for the first and a number for
the second), the following structures are equivalent:

Structure with \fullexpandarg Usual structure with EXTEX or with \normalexpandarg
\def\aa{some text} \def\aa{some text}

\def\nn{2} \def\nn{2}

\macro{\aa}{\nn} \expandafter\expandafter\expandafter\macro

\expandafter\expandafter\expandafter
{\expandafter\aa\expandafter}\expandafter{\nn}

The structure on the left allow to forget the order of expansion and avoid writing many \expandafter. On
the other hand, the arguments must be purely expandable into textig,11,12 containing what is expected by the
macro (number or string).

However, at any time, you can find the usual order of expansion with the macro \normalexpandarg, and use
again \fullexpandarg if you want a full expansion of the arguments.
1.3.2 Textual arguments

The macros operating on strings require one or several arguments containing — or whose expansion contains —
textip,11,12 (see 1.3), using the usual syntax {textio 11,12}, and for optionnal arguments [textig11,12].

The following rules shoud be observed for the expansion of textual arguments:

IThis extension does not require IATEX and can be compiled with Plain e-TEX.
2Excepted the 2 last arguments of the tests.

http://www.ctan.org/tex-archive/macros/latex/contrib/substr/
http://www.ctan.org/tex-archive/macros/latex/contrib/stringstrings/

o they can contain letters (uppercase or lowercase, accented® or not), figures, spaces, and any other character
with a catcode of 10, 11 ou 12 (punctuation signs, calculation signs, parenthesis, square bracket, etc). On
the other hand, the € sign is not allowed.

e spaces are taken into account as normal characters, except if several spaces follows in which case the I TEX
rule prevails and they become a single space;

e 1o special character is allowed, i.e. the 10 following characters are strictly forbiden: &, ~, \, {, }, _, #, $,
~ and %.

To circumvent some of these rules and to go further in the use of the macros operating on strings, this package
provides special macros that enable special characters in textual arguments. See the detailed description of this
modus operandi in chapter 3, page 9.

1.3.3 Expansion of macros, optional argument

The macros of this package are not purely expandable, i.e. they cannot be put in the argument of an
\edef. Consequently, some structures are not allowed and lead to errors when compiling. If, for example,
\command{argument} is a macro of this package operating on strings and returning a string, the following
structures are not allowed:

\edef\Result{\command{argumentl}}
or this nested structure
\commandA{\ commandB{\ commandC{argument}}}

For this reason, all the macros returning a result (i.e. all excepted the tests) have an optionnal argument in
last position. The syntax is [(nom)], where (nom) is the name of the control sequence that will receive the
result of the macro: the assignment is made with an \edef which make the result of the macro |(nom) purely
expandable. Of course, if an optionnal argument is present, the macro does not display anything.

Thus, this structure not allowed, already seen above:
\edef\Resultat{\commande{arguments}}
is equivalent to:
\commande{argument} [\Resultat]

And this nested one:
\commandeA{\commandeB{\commandeC{arguments}}}
can be replaced by:
\commandeC{arguments} [\MaChaine]
\commandeB{\MaChaine} [\MaChaine]
\commandeA{\MaChaine}

2 The macros

2.1 Presentation of macros

In the following chapters, all the macros will be presented this plan:

o the syntax and the value of optional arguments
e a short description of the operation;

e the operation under special conditions. For each conditions considered, the operation described has priority
on that (those) below;

o finally, several examples are given. I tried to find them most easily comprehensible and most representative
of the situations met in normal use*. If a doubt is possible with spaces in the result, this one will be
delimited by "|", given that an empty string is represented by "||".

3For a reliable operation with accented letters, the \fontenc package with option [T1] and \inputenc with appropriated option
must be loaded
4For more examples, see the test file.

2.2 The tests
2.2.1 IfSubStr
\IfSubStr [{number)]{(string)}{(stringA)}{(true)}{(false)}

The value of the optional argument (number) is 1 by default.

Tests if (string) contains at least (number) times (stringA) and runs (true) if so, and (false) otherwise.

> If (number) < 0, runs (false);
> If (string) or (stringA) is empty, runs (false).

\IfSubStr{xstring}{tri}{true}{false} true
\IfSubStr{xstring}{a}{truet{false} false
\IfSubStr{a bc def }{c d}{true}{false} true
\IfSubStr{a bc def }{cd}{truel}{false} false
\IfSubStr[2]{1a2a3a}{a}{true}{false} true
\IfSubStr[3]{1a2a3a}{a}{truet{false} true
\IfSubStr[4]{1a2a3a}{a}{true}{false} false

2.2.2 IfSubStrBefore
\IfSubStrBefore [(numberl),(number2)1{(string)}H(stringA)I{ (stringB)}H (true) }{ (false)}

The values of the optional arguments (numberl) and (number2) are 1 by default.

In (string), tests if the (number?)™ occurrence of (stringA) is on the left of the (number2)™ occurrence of
(stringB). Runs (true) if so, and (false) otherwise.

> If one of the occurrences is not found, it runs (false);
> If one of the arguments (string), (stringA) or {stringB) is empty, runs (false);
> If one of the optional arguments is negative or zero, runs (false).

\IfSubStrBefore{xstring}{st}{in}{true}{false} true
\IfSubStrBefore{xstringt{ri}{s}t{true}{false} false
\IfSubStrBefore{LaTeX}{LaT}{TeX}{true}{false} false
\IfSubStrBefore{a bc def }{ b}{ef}{true}{false} true
\IfSubStrBefore{a bc def }{ab}{ef}{true}{false} false
\IfSubStrBefore[2,1]{b1b2b3}{b}{2}{true}{false} true
\IfSubStrBefore[3,1]1{b1b2b3}{b}{2}{truet{false} false
\IfSubStrBefore[2,2]{baobab}{at{b}{true}t{false} false
\IfSubStrBefore[2,3]{baobab}{at{b}{true}{false} true

2.2.3 IfSubStrBehind
\IfSubStrBehind [(numberl),(number2)]{({string)}{(stringA)}{(stringB)}{ (true)}{(false)}

The values of the optional arguments (numberl) and (number2) are 1 by default.

In (string), tests if the (number1)™™ occurrence of (stringA) is on the right of the (number2)® occurrence of
(stringB). Runs (true) if so, ands (false) otherwise.

> If one of the occurrences is not found, it runs (false);
> If one of the arguments (string), (stringA) or (stringB) is empty, runs (false);
> If one of the optional arguments is negative or zero, runs (false).

\IfSubStrBehind{xstring}t{rit{xs}{truer{false} true
\IfSubStrBehind{xstring}{s}{i}{true}{false} false
\IfSubStrBehind{LaTeX}{TeX}{LaT}{true}{false} false
\IfSubStrBehind{a bc def }{ d}{a}{true}{false} true
\IfSubStrBehind{a bc def }{cd}{a b}{true}{false} false
\IfSubStrBehind[2,1]1{b1b2b3}{b}{2}{truet{false} false
\IfSubStrBehind[3,1]{b1b2b3}{b}{2}{true}{false} true
\IfSubStrBehind[2,2]{baobab}{b}{a}{true}{false} false
\IfSubStrBehind[2,3]{baobab}{b}{a}{true}{false} false

2.2.4 IfBeginWith

\IfBeginWith{(string)H (stringA)}{ (true)}{(false)}
Tests if (string) begins with (stringA), and runs (¢rue) if so, and (false) otherwise.

> If (string) or (stringA) is empty, runs (false).

\IfBeginWith{xstring}{xst}{true}{false} true
\IfBeginWith{LaTeX}{a}{true}{false} false
\IfBeginWith{a bc def }{a b}{true}{false} true
\IfBeginWith{a bc def }{ab}{true}{false} false

2.2.5 IfEndWith
\IfEndWith{(string)}{(stringA)}{(Behind)}{(false)}

Tests if (string) ends with (stringA), and runs (true) if so, and (false) otherwise.

> If (string) or (stringA) is empty, runs (false).

\IfEndWith{xstring}{ring}{true}{false} true

\IfEndWith{LaTeX}{a}{true}{false} false
\IfEndWith{a bc def }{ef }{true}{false} true
\IfEndWith{a bc def }{ef}{true}{false} false

2.2.6 IfInteger
\IfInteger{(number)}{{true)}{(false)}

Tests if (nombre) is an integer, and runs (true) if so, and (false) otherwise.

If test is false because unexpected characters, the control sequence \@xs@afterinteger contains the illegal part
of (number).

\IfInteger{13}{true}{false} true
\IfInteger{-219}{true}{false} true
\IfInteger{+9}{true}{false} true
\IfInteger{3.14}{true}{false} false
\IfInteger{O}{true}{false} true
\IfInteger{49a}{true}{false} false
\IfInteger{+}{true}{false} false
\IfInteger{-}{true}{false} false
\IfInteger{0000}{truet{false} true

2.2.7 IfDecimal
\IfInteger{(number)}{(true)}{{false)}

Tests if (number) is a decimal, and runs (true) if so, and (false) otherwise.

Counters \integerpart and \decimalpart contain the integer part and decimal part of (number).
If test is false because unexpected characters, the control sequence \@xs@afterdecimal contains the illegal part
of (number), whereas if test is false because decimal part is empty after decimal separator, it contains "X*.

> Decimal separator can be a dot or a comma;
> If what is on the right of decimal separator (if it exists) is empty, the test is false;
> If what is on the left of decimal separator (if it exists) is empty, the integer part is assumed to be 0;

\IfDecimal{3.14}{vrai}{faux} vrai
\IfDecimal{3,14}{vrai}{faux} vrai
\IfDecimal{-0.5}{vrai}{faux} vrai
\IfDecimal{.7}{vrai}{faux} vrai
\IfDecimal{,9}{vrair{faux} vrai
\IfDecimal{1l..2}{vrai}{faux} faux
\IfDecimal{+6}{vrai}{faux} vrai
\IfDecimal{-15}{vrai}{faux} vrai
\IfDecimal{1l.}{vrai}{faux} faux
\IfDecimal{2, }{vrait{faux} faux
\IfDecimal{.}{vrai}{faux} faux

\IfDecimald{, }{vrait{faux} faux
\IfDecimal{+}{vrait{faux} faux
\IfDecimal{-}{vrai}{faux} faux

2.3 Extraction of substrings
2.3.1 StrBefore
\StrBefore [(number)]{(string) }H (stringA)} [{name)]

The value of the optional argument (number) is 1 by default.

In (string), returns what is leftwards the (number)*™ occurrence of (stringA).

> If (string) or (stringA) is empty, an empty string is returned;
> If (number) < 1 then the macro behaves as if (number) = 1;
> If the occurrence is not found, an empty string is returned.

\StrBefore{xstring}{tri} [xs
\StrBefore{LaTeX}{e} |LaT|
\StrBefore{LaTeX}{p} ||
\StrBefore{LaTeX}{L} |

\StrBefore{a bc def }{def} |a bc |
\StrBefore{a bc def }{cd} |
\StrBefore[1]{1b2b3}{b} |[1]
\StrBefore[2]{1b2b3}{b} [1b2]

2.3.2 StrBehind
\StrBehind [{number)]{(string)}{(stringA)} [{(name)]

The value of the optional argument (number) is 1 by default.

In (string), returns what is rightwards the (number)™" occurrence of (stringA).

> If (string) or (stringA) is empty, an empty string is returned;
> If (number) < 1 then the macro behaves as if (number) = 1;
> If the occurrence is not found, an empty string is returned.

\StrBehind{xstring}{tri} |ng]
\StrBehind{LaTeX}{e} |X]
\StrBehind{LaTeX}{p} |
\StrBehind{LaTeX}{X} ||

\StrBehind{a bc def }{bc} | def|

\StrBehind{a bc def }{cd} |
\StrBehind [1]{1b2b3}{b} |2b3|
\StrBehind [2] {1b2b3}{b} |3
\StrBehind [3]{1b2b3}{b} ||

2.3.3 StrBetween
\StrBetween [(numberl),(number2)]1{(string) }H (stringA)X{ (stringB)} [(name)]

The values of the optional arguments (numberl) and (number2) are 1 by default.

In (string), returns the substring between® the (number1)t" occurrence of (stringA) and (number2)™ occurrence

of (stringB).

> If the occurrences are not in this order — (stringA) followed by (stringB) — in (string), an empty string
is returned;

> If one of the 2 occurrences doesn’t exist in (string), an empty string is returned;

> If one of the optional arguments (numberl) ou (number2) is negative or zero, an empty string is returned.

\StrBetween{xstring}{xs}{ng} |[tri]
\StrBetween{xstring}{i}{n} |
\StrBetween{xstring}{a}{tring} |
\StrBetween{a bc def }{a}{d} |bc|
\StrBetween{a bc def }{a }{f} |bc de|

5In a strict sense, i.e. without the strings (stringA) and (stringB)

2.3.4 StrSubstitute

\StrBetween{albla2b2a3b3}{a}{b}
\StrBetween[2,3]{albla2b2a3b3}{a}{b}
\StrBetween[1,3]{albla2b2a3b3}{a}{b}
\StrBetween[3,1]{albla2b2a3b3}{at{b}

\StrBetween[3,2]{abracadabra}{a}{bra}

\StrSubstitute [{(number)]{({string)}{(stringA)}{ (stringB)} [(name)]

The value of the optional argument (number) is 1 by default.

1|
|2b2a3]|
[1bla2b2a3|

L
|daj

In (string), substitute the (number) first occurrences of (stringA) for (stringB), except if (number) = 0 in which

case all the occurrences are substituted.

>
>

If (string) is empty, an empty string is returned;
If (stringA) is empty or doesn’t exist in (string), the macro is ineffective;

> If (number) is greater than the number of occurrences of (stringA), then all the occurrences are substi-

tuted;

> If (number) < 0 the macro behaves as if (number) = 0;
> If (stringB) is empty, the occurrences of (stringA), if they exist, are deleted.

2.3.5 StrDel

\StrSubstitute{xstring}{i}{a}
\StrSubstitute{abracadabra}{a}{o}
\StrSubstitute{abracadabra}{br}{TeX}

\StrSubstitute{LaTeX}{m}{n}

\StrSubstitute{a bc def }{ }{M}
\StrSubstitute{a bc def }{ab}{AB}
\StrSubstitute[1]{ala2a3}{a}{B}
\StrSubstitute[2]{ala2a3}{a}{B}
\StrSubstitute[3]{ala2a3}{a}{B}
\StrSubstitute[4]{ala2a3}{a}{B}

\StrDel [{number)]{(string) }H (stringA)} [(name)]

The value of the optional argument (number) is 1 by default.

xstrang
obrocodobro
aTeXacadaTeXa
LaTeX
aMbcMdefM

a be def

Bla2a3

B1B2a3
B1B2B3
B1B2B3

Delete the (number) first occurrences of (stringA) in (string), except if (number) = 0 in which case all the

occurrences are deleted.

> If
> If
> If
> If

o~ o~~~

2.3.6 StrGobbleLeft

string) is empty, an empty string is returned;
stringA) is empty or doesn’t exist in (string), the macro is ineffective;

number) greater then the number of occurrences of (stringA), then all the occurrences are deleted;
number) < 0 the macro behaves as if (number) = 0;

\StrDel{abracadabra}{a}
\StrDel[1]{abracadabra}{a}
\StrDel[4]{abracadabra}{a}
\StrDel[9]{abracadabra}{a}

\StrDel{a bc def }{ }

\StrGobbleLeft{(string)}{(number)} [(name)]

In (string), delete the (number) fisrt characters on the left.

> If (string) is empty, an empty string is returned;
> If (number) < 0, no character is deleted;
> If (number) > (lengthString), all the characters are deleted.

\StrGobbleLeft{xstring}{2}
\StrGobbleLeft{xstring}{9}
\StrGobbleLeft{LaTeX}{4}
\StrGobbleLeft{LaTeX}{-2}

\StrGobbleLeft{a bc def }{4}

bredbr
bracadabra
bredbra
bredbr
abcedef

2.3.7 StrLeft
\StrLeft{(string)}{ (number)} [{name)]

In (string), returns the (number) fisrt characters on the left.

> If (string) is empty, an empty string is returned;
> If (number) < 0, no character is returned;
> If (number) > (lengthString), all the characters are returned.
\StrLeft{xstring}{2}
\StrLeft{xstring}{9}
\StrLeft{LaTeX}{4}
\StrLeft{LaTeX}{-2}
\StrLeft{a bc def }{5}

2.3.8 StrGobbleRight

\StrGobbleRight{(string)}{(number)} [(name)]
In (string), delete the (number) last characters on the right.
\StrGobbleRight{xstring}{2}
\StrGobbleRight{xstring}{9}
\StrGobbleRight{LaTeX}{4}
\StrGobbleRight{LaTeX}{-2}
\StrGobbleRight{a bc def }{4}

2.3.9 StrRight
\StrRight{(string)}{(number)} [{(name)]

In (string), returns the (number) last characters on the right.

\StrRight{xstring}{2}
\StrRight{xstring}{9}
\StrRight{LaTeX}{4}
\StrRight{LaTeX}{-2}
\StrRight{a bc def }{5}

2.3.10 StrChar
\StrChar{(string) }{ (number)} [{name)]

Returns the character at the position (number) in (string).

> If (string) is empty, no caracter is returned;

[xs|
|xstring|
|LaTe]

|
la be |

|xstri]

|L|
|LaTeX|
la be |

ng)|
|xstring|
|aTeX]|

L
| def |

> If (number) < 0 or if (number) > (lengthString), no character is returned.

\StrChar{xstring}{4}
\StrChar{xstring}{9}
\StrChar{xstring}{-5}
\StrChar{a bc def }{6}

2.3.11 StrMid
\StrMid{(string)H{{(numberA)} (numberB)} [(name)]

T

|
d

In (string), returns the substring between® the positions (numberA) and (numberB).

If (string) is empty, an empty string is returned;
numberA) > (numberB), an empty string is returned;
numberA) < 1 and (numberB) < 1 an empty string is returned;

numberA) < 1, the macro behaves as if (numberA) = 1;

If (numberB) > (lengthString), the macro behaves as if (numberB) = (lengthString).

6In the broad sense, i.e. that the strings characters of the "border" are returned.

>

> If () >

> If ()

> If (numberA) > (lengthString) et (numberB) > (lengthString), an empty string is returned;
> If ()

>)

\StrMid{xstring}{2}{5} stri
\StrMid{xstring}{-4}{2} xs
\StrMid{xstring}{5}{1} ||
\StrMid{xstring}{6}{15} ng
\StrMid{xstring}{3}{3} t
\StrMid{a bc def }{2}{7} | bc de|

2.4 Number results
2.4.1 StrLen

\StrLen{(string)} [(name)]

Return the length of (string).
\StrLen{xstring} 7
\StrLen{A} 1
\StrLen{a bc def } 9

2.4.2 StrCount
\StrCount{(string)}{(stringA)} [{name)]

Counts how many times (stringA) is contained in (string).

> If one at least of the arguments (string) or (stringA) is empty, the macro return 0.

\StrCount{abracadabra}{a}
\StrCount{abracadabra}{bra}
\StrCount{abracadabra}{tic}

\StrCount{aaaaaal}{aa}

W O N Ot

2.4.3 StrPosition
\StrPosition [{number)]{(string)}{(stringA)} [(name)]

The value of the optional argument (number) is 1 by default.

In (string), returns the position of the (number)®™ occurrence of (stringA).

> If (number) is greater than the number of occurrences of (stringA), then the macro returns 0;
> If (string) doesn’t contain (stringA), then the macro returns 0.

\StrPosition{xstring}{ring}
\StrPosition[4]{abracadabra}{a}
\StrPosition[2] {abracadabra}{bra}
\StrPosition[9]{abracadabra}{a}
\StrPosition{abracadabra}{z}
\StrPosition{a bc def }{d}
\StrPosition[3]{aaaaaa}{aa}

T O O O © 0 W~

3 Using the macros for programming purposes

3.1 Verbatimize to a control sequence

The macro \verbtocs allow to read the content of a "verb" argument containing special characters: &, ~, \, {,
}, _, #, 8, " et %. The catcodes of "normal" characters are left unchanged while special characters take a catcode
12. Then, these characters are assigned to a control sequence. The syntax is:

\verbtocs{(name)}|{characters)]
(name) is the name of the control sequence receiving, with an \edef, the (characters). Consequently, (name)
contains textig 11,12 (see 1.3).

By default, the character delimiting the verb content is "|". Obviously, this character cannot be both delimiting
and being contained into what it delimits. If you need to verbatimize characters containing "|", you can change
at any time the character delimiting the verb content with the macro:

\setverbdelim{(character)}

Any (character) with a catcode 11 or 12 can be used”. For example, after \setverbdelim{=}, a verb argument
look like this: ={characters)=.

About verb arguments, keep in mind that:
« all the characters before |(characters)| are ignored;

o inside the verb argument, all the spaces are taken into account, even if they are consecutive.

Example:

\verbtocs{\result} l|la & b{ c% d$ e \f|

\result a & b{c%d$e\f

3.2 Tokenization of a text to a control sequence

The reverse process of what has been seen above is to transform a textip 11,12 into control sequences. This is
done by the macro:
\tokenize{(name)}{(control sequence)}

(control sequence) is fully expanded if \fullexpandarg has been called (see page 2), and is not expanded if
\normalexpandarg has benn called. In both cases, the expansion must be textig 11,12. Then, this textig,i1,12
is converted into tokens and assigned with a \def to the control sequence (name).

Example:

\verbtocs{\text}|\textbf{a} $\frac{1}{2}$|

text: \text)
\tokenize{\result}{\text} text.lt'\texicbf{a} $\frac{1}{2}$
\par result: a 5

result: \result

Obviously, the control sequence \result can be called at the last line since the control sequences it contains
are defined.

3.3 Expansion of a control sequence before verbatimize
3.3.1 The scancs macro

It is possible to expand n times a control sequence before converting this expansion into text. This is done by
the macro:

\scancs [{number)]{{name)}{{control sequence)}

(number) = 1 by default and represents the number of times (control sequence) will be expanded before being
converted in characters with catcodes 12 (or 10 for spaces). These characters are then assigned to (name).

3.3.2 Mind the catcodes !

Let’s take a simple example where (control sequence) expands to text:

\def\test{a bl d}
\scancs{\result}{\test}| abld
\resultat

But mind the catcodes !
In this example, \scancs{\result}{\test} is not equivalent to \edef\result{\test}.

Indeed, with \scancs{\resultat}{\test}, \result contains textio 12 and expands to:

aj2 u1o bi2 112 w10 di2

With \edef\resultat{\test}, \resultat contains textig 1,12, i.e. characters whose catcodes are 11 (the
letters), 12 (the figure 1) and 10 (the spaces). It expands to:

ari u1o bi1 112 w10 dnn

"Several characters can be used, but the syntax of \verbtocs becomes less readable ! For this reason, a warning occurs when
the argument of \setverbdelim contains more than a single character.

10

3.3.3 Several expansions

If necessary, the number of expansions can be controled with the optional argument. In the following example,
when \scancs is called the first time, \c is expanded 3 times and gives "112 110 211 w10 312" Which is converted
into "112 110 Z12 L10 312"

On the other hand, if after n expansions, the result is a control sequence, this control sequence is trans-
formed into characters with catcodes 12. In the example above, when \scancs is called the second time,
\scancs [2] {\resultat}{\c} expands \c 2 times: this gives the control sequence which is converted into
"\12 a2".

This example show all the "depths" of expansion, from 3 to 0:

\def\a{1l z 3}
\def\b{\a}
\def\c{\b}
\scancs [3]{\result}{\c} 123
\result\par \a
\scancs[2]{\result}{\c} \b
\result\par \c
\scancs [1]{\result}{\c}
\result\par

\scancs [0]{\result}{\c}
\result

Obviously, it is necessary to ensure that the expansion to the desired depth is possible.

3.3.4 Expansion of several control sequences

In normal use, the third argument (control sequence) (or one of its expansions) must contain a single control
sequence that will be expanded. If this third argument or one of its expansion contains several control sequences,
compilation stops with an error message asking you to use the starred version. This starred version, more difficult
to use allows to expand (number) times all the control sequences contained in the third argument. Let’s see
this with this example:

\def\a{lLaTeX}
\def\b{is powerful}
\scancs*[1]{\result}{\a \b} LaTeXis powerful
\result\par LaTeXispowerful
\scancs*[2] {\result}{\a\space\b}
\result

First of all, a warning message has been sent to log: "if third argument or its expansion have braces or spaces,
they will be removed when scanned! Use starred \scancs* macro with care". Let’s see what it means. ..

In the first result, a space is missing between the words "LaTeX" and "is", though a space was present in the
code between the 2 control sequences \a and \b. Indeed, TEX ignores spaces that follow control sequences.
Consequently, {\a \b} is read as {\a\b}, whatever be the number of spaces in the code between \a and \b.
To obtain a space between "LaTeX" and "is", we could have used the control sequence \space whose expansion
is a space, and write for the third argument: {\a\space\b}. We could also have modified the defintion of \a
with a space after the word "LaTeX" like this: \def\a{LaTeX }.

However, it is necessary to be carfull when expanding control sequences more than one time: if a control sequence
is expanded n times and gives textig 11,12, the next expansion gobbles spaces. The second result shows that
the second expansion gobbled all the spaces and consequently, \result contains "LaTeXispowerful"!

t

Moreover, it’s also the meaning of the warning message, if the n'" expansion of a control sequence contains

braces, they will be gobbled, like spaces.

Finaly, when using \scancs a space is inserted after each control sequence. Indeed, \detokenize (an e-TEX
command) called by \scancs inserts a space after each control sequence. There is no way to avoid this.

3.3.5 Examples

In the following example, control sequences are expanded 2 times: \d gives \b, and \b gives
\textbf{a}\textit{b}. Notice that a space is inserted after each control sequence.

11

\def\a{\textbf{a}\textit{b}}
\def\b{\a}

\def\c{\b}

\def\d{\c}
\scancs* [2] {\result}{\d\b}
\result

\b \textbf {a}\textit {b}

This is an example that shows the deletion of braces during the next expansion:

\def\a{1{2}}

\def\b{\a}
\scancs*[1]{\result}{\b{A}}
\result\par
\scancs* [2] {\result}{\b{A}}
\result\par

\scancs* [3]{\result}{\b{A}}
\result\par

\a A
1{2}A
12A

Finaly, here is an example where we take advantage of the space inserted after each sequence control to find
the n* control sequence in the expansion of a control sequence.

In the example above, we find the fourth control sequence in \myCS whose expansion is:
\a xy{3 2}\b7\c123 {m}\d{8}\e
Obviously, we expect: \d

\verbtocs{\antislash}|\|
\newcommand\findcs [2]{%

\scancs [1]1{\theCS}{#2},
\tokenize{\theCS}{\theCS}’
\scancs[1]{\theCS}{\theCS}),

\StrBehind [#1]{\theCS}{\antislash} [\theCS]%
\StrBefore{\theCS}{ }[\theCS]Y%
\edef\theCS{\antislash\theCS}} \d
\verbtocs{\myCS}|\a xy{3 2}\b7\c123 {m}\d{8}\el| \d
% here, \myCS contains text
\findcs{4}{\myCS}

\theCS\par

\def\myCS{\a xy{3 2}\b7\c123 {m}\d{8}\e}
% here, \myCS contains control sequences
\findcs{4}{\myCS}

\theCS

3.4 Inside the definition of a macro

Some difficulties arise inside the definition of a macro, i.e. between braces following a \def\macro or a
\newcommand\macro.

It is forbidden to use the command \verb inside the definition of a macro. For the same reasons:
Do not use \verbtocs inside the definition of a macro.

But then, how to manipulate special characters and "verbatimize" inside the définition of macros ?

The \detokenize primitive of e-TEXcan be used but it has limitations:
e braces must be balanced;
e consecutive spaces make a single space;
o the % sign is not allowed;
e a space is inserted after each control sequence;

o # signs become #i.

12

It is better to use \scancs and define outside the definition of the macros control sequences containing special
characters with \verbtocs. It is also possible to use \tokenize to transform the final result (which is generaly
textip,11,12) into control sequences. See example using these macros at the end of this manual, page 13.

In the following teaching example®, the macro \bracearg adds braces to its argument. To make this possible,
2 control sequences \0b and \Cb containing "{" and "}" are defined outside the definition of \bracearg, and
expanded inside it:

\verbtocs{\0Ob}|{|
\verbtocs{\Cb}|}|
\newcommand\bracearg[1]{%

\def\text{#1}% {xstring}
\scancs*{\result}{\Ob\text\Cb}/| {\a }
\result}

\bracearg{xstring}\par

\bracearg{\a}

3.5 Starred macros

As \scancs returns textig 12 (see 1.3), some unexpected results occur with the macros seen at chapter 2 because
they care the catcodes of the characters of their arguments.

This is an example of such malfunctioning;:

\verbtocs{\mytext}|la b c|
\IfSubStr{\mytext}{b}{truet{falsel}
\par true
\edef\onecs{x y z} false
\scancs[1] \mycs\onecs
\IfSubStr{\mycsHHy}I{true}{false}

The first test is "true" since catcodes of non special characters are left unchanged by \verbtocs: indeed, \mytext
contains "aj; 410 b11 u1o €11' which does contain the second argument "by;".

With the second test, since \scancs returns textig, 12, it is false. \mycs contains "x12 110 Y12 wio 212" which
does not contains the second argument ""yi1".

To avoid this annoyance due unmatching catcodes, it is possible to make macros of chapter 2 compatible with
\scancs: they all have a starred version that converts textual arguments into textig 12, i.e. characters whose
catcodes are 10 ou 12:

\edef\onecs{x y z}
\scancs[1]\mycs\onecs true
\IfSubStr*{\mycs}{y} Htrue}t{false}

3.6 Examples

Here are some very simple examples involving the macros of this package in programming purposes.

3.6.1 Example 1

We want to substitute the 2 first \textit by \textbf in the control sequence \myCS winch contains
\textit{AF\textit{B}\textit{C}

We expect: ABC

\def\myCS{\textit{A}\textit{B}\textit{C}}
\scancs [1] {\text}{\myCS}
\StrSubstitute*[2]{\text}{textit}{textbf}[\text]l]| ABC
\tokenize{\myCS}{\text}
\myCS

8]t is possible to make much more simple using \detokenize. The macro becomes:
\newcommand\bracearg[1] {\detokenize{{#1}}}

13

3.6.2 Example 2

nan,

Let’s try to write a macro \tofrac that transforms an argument of this type "a/b" into "¢":

\verbtocs{\csfrac}|\fracl
\verbtocs{\0Ob}|{|%
\verbtocs{\Cb} |} 1%
\newcommand\tofrac [1]{%
\scancs [0]{\myfrac}{#1}%
\StrBefore{\myfrac}{/} [\num]?

\StrBehind{\myfrac}{/} [\den]¥ Lo o _mhie
\tokenize\myfrac{\csfrac\Ob\num\Cb\Ob\den\Cb}%
\myfrac}

\tofrac{15/9}

\tofrac{u_{n+1}/u_n}
\tofrac{a"m/a"n}
\tofrac{x+\sqrt{x}/\sqrt{x"2+x+1}}

3.6.3 Example 3

In a control sequence \text, let’s try to write in bold the first word that follows the word "new". In this example,
\text contains:

Try the new package xstring !

\def\text{Try the new package xstring !}

\def\word{new}

\StrBehind [1] {\text}{\word} [\name]

\IfBeginWith{\name}{ }7
{\StrGobbleLeft{\name}{1} [\name]}
3%

\StrBefore{\name}{ }[\namel Try the new package xstring !

\verbtocs{\before}|\textbf{l|

\verbtocs{\after}|}|

\StrSubstitute[1]%
{\text}{\name}{\before\name\after} [\text]

\tokenize{\text}{\text}

\text

3.6.4 Example 4

A control sequence \myCS défined with an \edef contains control sequences with their possible arguments. How
to reverse the order of the 2 first control sequences? In this example, \myCS contains:

\textbf{A}\textit{B}\texttt{C}

We expect a final result containing \textit{B}\textbf{A}\texttt{C} and displaying BAC

\def\myCS{\textbf{A}\textit{B}\texttt{C}}
\scancs [1]{\text}{\myCS}
\verbtocs{\antislash}|\|
\StrBefore[3]{\text}{\antislash} [\firsttwo]
\StrBehind{\text}{\firsttwol} [\others] result: BAC
\StrBefore[2]{\firsttwo}{\antislash}[\avant]
\StrBehind{\firsttwo}{\avant} [\apresl’
\tokenize{\myCS}{\apres\avant\others}/,
result: \myCS

3.6.5 Example 5

A control sequence \myCS defined with an \edef contains control sequences and "groups" between braces. Let’s
try to find the n*® group, i.e. what is between the n*® pair of balanced braces. In this example, \myCS contains:

\a{1\b{2}\c{33\d{4\e{6F\£{6{7}}}

14

\newcount\occurr
\newcount\nbgroup
\newcommand\findgroup [2] {%
\scancs [1]{\text}{#2}%
\occurr=0
\nbgroup=0
\def\findthegroup{’%
\StrBehind{\text}{\Obr} [\remain]?,
\advance\occurr by 1% next "{"
\StrBefore[\the\occurr] {\remain}{\Cbr} [\groupl’
\StrCount{\group}{\0br} [\nbAl%
\StrCount{\group}{\Cbr} [\nbBl%
\ifnum\nbA=\nbBj, balanced braces 7
\advance\nbgroup by 1
\ifnum\nbgroup<#1% not the good group 7
\StrBehind{\text}{\group}[\text]%
\occurr=0% initialise \text & \occur
\findthegroup’ do it again
\fi
\else’, unbalanced braces 7
% look for next "}"
\findthegroup
\fi}
\findthegroup
\group}

\verbtocs{\0br}|{l
\verbtocs{\Cbr}|}|
\def\myCS{\a{1\b{2} }\c{3}\d{4\e{5\£{6{7}}}}

group 1: \findgroup{1}{\myCS}\par
group 2: \findgroup{2}{\myCS}\par
group 3: \findgroup{3}{\myCS}

groupe 1: 1\b {2}
groupe 2: 3
groupe 3: 4\e {5}\f {6{7}}

Notice that 2 counters, 2 tests and a double recursion are necessary to find the group: one of each to find what
"}" delimits the end of the current group, and the others to know the number of the group being read.

That’s all, I hope you will find this package useful !

Please, send me an email if you find a bug or if you have any idea of improvement. . .

Christian Tellechea

15

