
The xsavebox Package, v0.1

Alexander Grahn

25th February 2016

Abstract
This package defines commands for saving content that can be repeatedly
placed into the document without replicating DVI/PDF code in the output
file, allowing for smaller size of the final PDF file and improved content
caching for faster display in certain PDF viewers. The user commands are
modelled after the standard LATEX commands \savebox, \sbox, \usebox
and the ‘lrbox’ environment. The package supports all common TEX
engines and back-ends, including ‘dvips’.

1 Introduction

Whenever the standard LATEX command \usebox{save-box} is issued to insert a
previously defined save-box more than once, the typeset content stored therein
is written as DVI or PDF code into the output file again. The redundant code
adds to the overall file size and may impair the page caching facilities built into
some PDF viewers.

The PDF file format defines a powerful mechanism for packing readily type-
set content once into self-contained entities, so-called ‘XObjects’, that can be
referenced at other places within the PDF document.

The ‘xsavebox’ package makes this PDF feature accessible on the LATEX level
as a set of user commands which look similar to and are used in a similar way
as the well-known save-box related LATEX commands.

All common TEX engines and back-ends are supported, which are:

• pdfLATEX, LuaLATEX,

• LATEX → dvips → ps2pdf/Distiller

• (X E)LATEX → (x)dvipdfmx

To enable ‘dvipdfmx’, pass it as a document class option.

It should be emphasized that ‘XObjects’ is a PDF feature. Content saved and
referenced using ‘XObjects’ is only visible in the final PDF output, but not in
intermediate formats of the work-flow if those are involved, namely DVI and

1



PostScript. Of course, PostScript converted back from PDF displays the content
correctly.

2 User commands

Content saving

\xsbox{<xsbox name>}{<content>}
\xsavebox{<xsbox name>}[<width>][<position>]{<content>}
\xsavebox*{<xsbox name>}[<width>][<position>]{<content>}

\begin{xlrbox}{<xsbox name>}
<content>

\end{xlrbox}

\begin{xlrbox*}{<xsbox name>}
<content>

\end{xlrbox*}

The main difference of these commands as compared to their standard LATEX
counterparts without the leading ‘x’ is the way of naming boxes. The label
<xsbox name> is an identifier that may be composed of arbitrary non-active
characters, including spaces and numbers. A command for declaring a box register
<xsbox name> does not exist.

The [<width>] and [<position>] options have the same meaning as with
\savebox and \makebox. As usual, the additional length commands

\width
\height
\depth
\totalheight

are defined for use in the [<width>] option and refer to the original dimensions
of <content>. The value of <position> may assume one of ‘l’, ‘r’, ‘c’ or ‘s’.
The default is ‘c’ for text centred in the box.

<content> is typeset in LR-mode. Longer text to be typeset in paragraph mode
must be put into a \parbox or ‘minipage’.

The starred (‘*’) versions of the commands allow for later colour injection into
the boxes at the place of their referencing. The colour which is active at the time
of building the box is not saved with the content. This feature only works with
pdfLATEX and LuaLATEX.

Note that

\xsbox{image for frequent use}{\includegraphics{example}}

is useful only in the LATEX → dvips → ps2pdf work-flow, as all other engines
and back-ends already take care of preventing multiple graphics file inclusion.

2



Verbatim content can only be saved using the ‘xlrbox[*]’ environment.

With LATEX in DVI mode and X ELATEX, box saving commands should not be
placed on a line of their own with empty lines above and below. For technical
reasons this will produce an empty paragraph. Always place them at the beginning
or at the end of a paragraph in the input file. Also, box saving commands cannot
be placed in the document preamble with LATEX (DVI) and X ELATEX.

Referencing saved content

Previously saved content can be inserted with

\xusebox{<xsbox name>}
or
\the<xsbox name>

The second, shorthand form can be used if <xsbox name> is composed exclusively
of letters (‘a‘–‘z’, ‘A‘–‘Z’). For example, a box named ‘MyFirstExample’ could
be referenced as

\theMyFirstExample

but a box named ‘My 1st Example ;-)’ would require

\xusebox{My 1st Example ;-)}

The referencing commands \xusebox{<xsbox name>} and \the<xsbox name>
can again be placed inside the <content> body of box saving commands. There
is no upper limit of nesting levels.

\xusebox{<xsbox name>} and \the<xsbox name> behave exacly like common
TEX boxes. Therefore, they can be scaled, rotated and resized using the corres-
ponding commands from the ‘graphicx’ package.

3 Example

An example with colour injection (pdfLATEX/LuaLATEX-only) follows:

Here is a

silly boxed para-
graph that no
one will ever use for anything.

The same sil
ly

bo
xe
d
pa

ra
-

gr
ap

h
th
at

no
on

e
w
ill

ev
er

us
e

was inserted again but with a different colour and rotated
by 90 degree.

3



\usepackage{xsavebox}
\usepackage{color}
\usepackage{graphicx}
...
\begin{xlrbox*}{SavedPar}% ‘*’ --> no colour at the time of saving

\begin{minipage}[b]{1in}
silly boxed paragraph that no one will ever use
\end{minipage}

\end{xlrbox*}
%colours injected into \theSavedPar
Here is a \fbox{\color{blue}\theSavedPar} for anything.

The same \fbox{\color{green}\rotatebox{90}{\theSavedPar}} was
inserted again but with a different colour and rotated by 90 degree.

4


	1 Introduction
	2 User commands
	3 Example

