The xpatch package
Extending etoolbox patching commands*

Enrico Gregoriof

Released 2012/01/23

1 Introduction

The well known etoolbox package provides a bunch of functions for patching existing
commands; in particular \patchcmd, \pretocmd and \apptocmd that do a wonderful job,
but suffer from a limitation: if some package has defined

\newcommand{\xyz}[1] [x]{-#1!}

where \xyz has an optional argument, then \patchcmd and siblings cannot be used to
modify the workings of \xyz. The same happens when a command has been defined with
\DeclareRobustCommand.

The reason for this is TEXnichal or, better, I’ TEXnichal. When IATEX performs the
above definition, the expansion of \xyz will be

\@protected@testopt \xyz \\xyz {x}

where \@protected@testopt is a macro that essentially checks whether we are in a
“protected” context, so that expansion should not be performed all the way (in moving
arguments or write operations), or not; in the former case it issues a protected version
of \xyz, while in the latter case it expands the macro \\xyz that is a single command
(ves, with a backslash in its name) which contains the real definition; a way to access
this definition is to issue the command

\expandafter\show\csname\string\xyz\endcsname
which will print in the log file the message

> \\xyz=\long macro:
[#1]->-#11.

As usual, after -> we see the definition. In order to use \patchcmd to change the excla-
mation mark into a hyphen one must do

\expandafter\patchcmd\csname\string\xyz\endcsname{! }{-}+{}{}

(see the documentation of etoolbox for details about the arguments).
A similar situation happens if \xyz has been defined by

*This file describes version 0.2, last revised 2012/01/23.
tE-mail: Enrico DOT Gregorio AT univr DOT it



\DeclareRobustCommand{\xyz}{something}
A \show\xyz would show the cryptic

> \xyz=macro:
->\protect \xyz

and only a close look reveals the clever trick used by the IATEX team: the \protect is
not applied to \xyz, but to the macro \xyz, which has a space at the end of its name!
And this macro is the one that contains the real definition. Indeed,

\expandafter\show\csname xyz\space\endcsname
produces the message

> \xyz =\long macro:
->something.

In this case, in order to apply \patchcmd we must say
\expandafter\patchcmd\csname xyz\space\endcsname{s}{S}{}{}

If the macro with \DeclareRobustCommand is defined to have an optional argument, say
\DeclareRobustCommand{\xyz} [1] [x]{-#1!}

one has to combine the two tricks:
\expandafter\patchcmd\csname\string\xyz\space\endcsname{! {-}{}{}

It’s hard and error prone to remember all of these tricks, so this package comes to the

rescue.

Caveat

This package is still in a preliminary version, but relevant changes to the interface should
not be introduced in later versions. A “verbose” mode is under testing, which will provide
at request more information about the nature of the command to be patched.

2 Commands

The commands introduced by this package are
e \xpatchcmd
e \xpretocmd
e \xapptocmd

which have the same syntax as the similar commands provided by etoolbox and apply to
all kind of commands defined by

o the BTEX kernel macros \newcommand, \renewcommand, \providecommand, but also
\newenvironment and \renewenvironment;

e the ITEX kernel macro for defining robust commands \DeclareRobustCommand;



o the etoolbox macros \newrobustcmd, \renewrobustcmd, \providerobustcmd.

Notice that patching the definition of the environment foo requires patching \foo or
\endfoo.

These commands will act as the original ones if the macro to patch is not robust or
with optional arguments.

Moreover the package defines

o \xpatchbibmacro
e \xpretobibmacro
e \xapptobibmacro

that can be used to patch commands defined with biblatex’s \newbibmacro. Say that we
have

\newbibmacro{foo.bar}[2]{#1 and #2}
Then, to change and into und, we can now say

\xpatchbibmacro{foo.bar}{and}{und}{}{}

Patching these macros requires resorting to the very cryptic

\expandafter\patchcmd\csname abx@macro@\detokenize{foo.bar}\endcsname

{and}{und}{}{}
that would become an astonishing

\expandafter\patchcmd\csname\expandafter\string\csname
abx@macro@\detokenize{foo.bar}\endcsname\endcsname
{and}{und}{}{}

if the original definition had been with an optional argument, say
\newbibmacro{foo.bar}[2] [x]{#1 and #2}

For biblatex users there are also
o \xpatchbibdriver
e \xpretobibdriver
o \xapptobibdriver

for patching commands defined with \DeclareBibliographyDriver. One could use, for
patching the driver foo,

\makeatletter
\patchcmd{\blx@bbx@foo}{X}{Y}{success}{failure}
\preto{\blx@bbx@foo}{P}

\appto{\blx@bbx@foo}{A}

\makeatother

but having a lighter interface can be handy. Since our macros use \pretocmd and
\apptocmd for consistency, remember to always use the {success} and {failure} ar-
guments also with \xpretobibdriver and \xapptobibdriver.

Finally, the package defines the commands

e \xshowcmd



¢ \xshowbibmacro
e \xshowbibdriver

that are the analog of \show to see the “real” definition of a macro, be it defined with
optional arguments or as a robust command; the bib ones are for the corresponding
biblatex macros.

3 Using the original commands

The original \patchcmd has still its use: suppose you want to modify the default for the
optional argument passed to a macro: if the original definition is

\newcommand{\xyz}[1] [x]{-#1!}
then one can say

\patchemd {\xyz H{x}H{y} >

because of the way \xyz is defined, as shown before.

4 Syntax

\xpatchcmd{(command)}{{search)}{(replace) }H (success) H(failure)}
\xpretocmd{(command)}{(prepend)}{ {success)H (failure)}
\xapptocmd{{command)}{{append)}{{success) }H(failure)}

\xpatchbibmacro{(name)}
\xpretobibmacro{(name)}
\xapptobibmacro{(name)}

(search)H (replace) }H {success) H (failure)}
(prepend) H (success) H(failure)}
(append)H (success) H (failure)}

{(search)}{{replace) Y (success) H failure)}
{(prepend)}{(success)}{{failure)}
{{append) H {success) H { failure) ¥

{
{
{
\xpatchbibdriver{(name)}
\xpretobibdriver{(name)}
\xapptobibdriver{(name)}
\xshowcmd{{command)}
\xshowbibname{(name)}
\xshowbibdriver{(name)}

Here (command) is the command’s name (with the backslash), while (name) is the
string that appears as the argument to \newbibmacro or \DeclareBibliographyDriver
respectively; (search), (replace), (prepend) and (append) are the list of tokens that are to
be used for the specific tasks; (success) and (failure) are token lists to be executed if the
patching succeeds or fails respectively. I find it useful to use \ddt as (failure), so that
TEX will stop for the undefined control sequence when the patching fails.

It’s important to remember that patching commands that have @-commands in their
replacement text must always be performed between \makeatletter and \makeatother.



5 Limitations and warnings

Macros defined in devious ways might trick \xpatchcmd and siblings, although many
precautions have been taken in order this not to happen. Always check with care.
Remember that one must never use the old trick

\1let\ORIxyx\xyz
\renewcommand{\xyz}[1] [x] {+\ORIxy=z[#1]7}

if \xyz had been defined with an optional argument. For such things it’s better to use
\xpatchcmd and friends or employ the letltxmacro package by H. Oberdiek, that provides
\LetLtxMacro for purposes like this.

Although this package has been written with the experimental IATEX3 macros, the
commands can’t be used to patch commands defined with the xparse interface, in general.

If a command appears to have one optional argument at the user level, this doesn’t
mean it has been defined with \newcommand directly. One should always check the defi-
nitions with \show and \xshowcmd before trying a patch: of course one has to know what
a command does, in order to patch it. And, when first testing the patch, it’s best to set
\tracingpatches.

6 History

Version 0.1 First public release.

Version 0.2 Added \...bibdriver macros; fixed a bug for control symbols defined with
\newcommand and an optional argument.

7 The implementation of xpatch

1 \ProvidesExplPackage
> {\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

A check to make sure that expl3 is not too old
s \@ifpackagelater { expl3 } { 2011/10/09 }

« {1}

5 {

6 \PackageError { xpatch } { Support~package~l3kernel~too~old. }
7 {

8 Please~install~an~up~to~date~version~of~13kernel~

9 using~your~TeX~package~manager~or~from~CTAN.\\ \\

10 Loading~xpatch~will~abort!

11 }

12 \tex_endinput:D

IER

The xparse and etoolbox packages are required.
12 \RequirePackage{xparse,etoolbox}

7.1 Utilities, variables and constants

Generate a variant of \t1_if_in:NnT to get the expanded second argument.

15 \cs_generate_variant:Nn \tl_if_in:NnT { Nx }



A boolean for the testing of robust commands.
16 \bool_new:N \1_xpatch_protect_bool

The constant \c_backslash_str is defined in 13str that’s not loaded at the moment,
so we save a bit of memory not loading it.

17 \cs_if_exist:NF \c_backslash_str
18 { \tl_const:Nx \c_backslash_str { \cs_to_str:N \\ } }

A “bizarre” token list that’s quite improbable to find in the replacement text of a macro.

19 \tl_const:Nx \c_xpatch_bizarre_tl
0 { \tl_to_str:n { #x)-(x*x/*x]-[*x } }

7.2 The main functions

The main function takes as first argument one of \patchcmd, \pretocmd or \apptocmd;
the second argument is the command we want to patch.
Some technical remarks. Suppose we have the following definitions:

\DeclareRobustCommand{\xaa}[1]{xaa (DeclareRobustCommand-noopt)}
\DeclareRobustCommand{\xab}[1] [x]{xab (DeclareRobustCommand-opt)}
\newcommand{\xac}[1] []{xac (newcommand-opt)}
\newrobustcmd\xad[1] [1{xad (newrobustcmd-opt)}
\DeclareRobustCommand{\1}[1]{1 (DeclareRobustCommand-noopt)}
\DeclareRobustCommand{\2} [1] [1{2 (DeclareRobustCommand-opt)}
\newcommand{\3}[1] []{3 (newcommand-opt)}

\newrobustcmd\4[1] [1{4 (newrobustcmd-opt)}

Then the first level expansions are, respectively,

+\protect, \xaa  +

+\protect \xab +
+\@protected@testopt,\xac \\xac {}+
+\@testopt, \\xad {}+

+\x@protect \1\protect \1, +
+\x@protect \2\protect \2,, +
+\@protected@testopt \3\\3_ {}+
+\@testopt, \\4_{}+

where the + is used to delimit the expansions and show the spaces. Remember that \show
always adds a space after a control word, but not after a control symbol such as \1.
However, in lines 5 and 6, \1,, is not a control symbol any more. So we have to take care
of \protect, \x@protect, \@protected@testopt and \@testopt. But it’s not simply
sufficient to check for the presence of such a token at the start of the replacement text,
or we’ll be confused by macros such as \linebreak, whose replacement text starts with
\@testopt. So we’ll check also for the presence of the subsequent tokens, that depend
on the macro’s name. We add a perhaps useless “random” string at the beginning, as
we’d like to ensure that the matches are exactly at the start of the replacement text.

21 \cs_new:Npn \xpatch_main:NN #1 #2

22 {
We initialize the boolean to false.

23 \bool_set_false:N \1_xpatch_protect_bool
First of all we store the command-to-patch name.

2 \tl_set:Nx \l_xpatch_name_tl { \cs_to_str:N #2 }



We store the replacement text of the command-to-patch, but adding the bizarre token
list in front of it which consists of all category 12 characters, just to be sure that the
matches are at the beginning.'

25 \tl_set:Nx \1l_xpatch_repl_tl

2% { \c_xpatch_bizarre_tl \token_get_replacement_spec:N #2 }

We look whether the token list contains the bizarre list followed by \protect and the
same name (with two spaces) which happens if #2 is a control sequence defined by
\DeclareRobustCommand, so we add a space to the command name.

27 \tl_if_in:NxT \1_xpatch_repl_tl

28 {

29 \c_xpatch_bizarre_tl

30 \token_to_str:N \protect \c_space_tl

31 \c_backslash_str \1_xpatch_name_tl \c_space_tl \c_space_tl
32 3

33 {

34 \bool_set_true:N \1_xpatch_protect_bool

35 \tl_put_right:Nn \1_xpatch_name_tl { \c_space_tl }

36 }

We look whether the token list contains the bizarre list followed by \x@protect which
happens if #2 is a control symbol defined by \DeclareRobustCommand, so we add a space
to the command name.

37 \tl_if_in:NxT \1_xpatch_repl_tl

38 {

39 \c_xpatch_bizarre_tl

a0 \token_to_str:N \x@protect \c_space_tl

a1 \c_backslash_str \1_xpatch_name_tl \c_backslash_str
42 3

a3 {

44 \bool_set_true:N \1_xpatch_protect_bool

45 \tl_put_right:Nn \1_xpatch_name_tl { \c_space_tl }

46 }

In both the preceding cases we have to do another check, so we set a boolean to true.
We look whether the token list contains the bizarre list followed by \@protected@testopt
which happens if #2 is a control word with an optional argument (from \newcommand).

a7 \tl_if_in:NxT \1_xpatch_repl_tl

48 {

49 \c_xpatch_bizarre_tl

50 \token_to_str:N \@protected@testopt \c_space_tl

51 \c_backslash_str \1_xpatch_name_tl

52 \c_space_tl \c_backslash_str \c_backslash_str

53 }

54 {

55 \tl_put_left:Nn \1_xpatch_name_tl { \c_backslash_str }
56 }

57 % We look whether the token list contains the bizarre list followed by
ss % |\@protected@testopt| which happens if |#2| is a control symbol with an
s0 % optional argument (from |\newcommandl|).

60 % \begin{macrocode}
61 \tl_if_in:NxT \1_xpatch_repl_tl
62 {

IThis part will be reimplemented as soon as |3regex stabilizes.



63 \c_xpatch_bizarre_tl
64 \token_to_str:N \@protected@testopt \c_space_tl

65 \c_backslash_str \1_xpatch_name_tl

66 \c_backslash_str \c_backslash_str

67 }

68 {

69 \tl_put_left:Nn \1_xpatch_name_tl { \c_backslash_str }
70 }

We look whether the token list contains the bizarre list followed by \@testopt which
happens if #2 is a command with an optional argument (from \newrobustcmd).

71 \tl_if_in:NxT \1_xpatch_repl_tl

72 {

73 \c_xpatch_bizarre_tl

74 \token_to_str:N \@testopt \c_space_tl

75 \c_backslash_str \c_backslash_str \1_xpatch_name_tl
76 }

77 {

78 \tl_put_left:Nn \1_xpatch_name_tl { \c_backslash_str }
79 }

In both the preceding cases, we add a backslash in front of the command’s name.

If the command-to-patch was defined by \DeclareRobustCommand we have to do
another test, to check whether it has an optional argument and, in this case, we add a
backslash in front of the name. We replicate the test for \@protected@testopt.

80 \bool_if:NT \1_xpatch_protect_bool

81 {

82 \tl_set:Nx \1_xpatch_repl_tl

83 { \c_xpatch_bizarre_tl

84 \exp_after:wN \token_get_replacement_spec:N

85 \cs:w \1_xpatch_name_tl \cs_end: }

86 \tl_if_in:NxT \1_xpatch_repl_tl

87 {

88 \c_xpatch_bizarre_tl

89 \token_to_str:N \@protected@testopt \c_space_tl
90 \c_backslash_str \1_xpatch_name_tl

o1 \c_space_tl \c_backslash_str \c_backslash_str
9 3

93 {

94 \tl_put_left:Nn \1_xpatch_name_tl { \c_backslash_str }
95 }

96 3

Finally, we pass the real command-to-patch name to the patching macro.
97 \exp_after:wN #1 \cs:w \1l_xpatch_name_tl \cs_end:

That’s the last operation!
¢ }

7.3 User level commands

The user level commands.

99 \NewDocumentCommand{\xpatchcmd}{}{ \xpatch_main:NN \patchcmd }
10 \NewDocumentCommand{\xpretocmd}{}{ \xpatch_main:NN \pretocmd }
101 \NewDocumentCommand{\xapptocmd}{}{ \xpatch_main:NN \apptocmd }



102 \NewDocumentCommand{\xshowcmd} {}{ \xpatch_main:NN \show }

We generate a variant of \xpatch_main:NN to accept a macro’s name as its second
argument.

103 \cs_generate_variant:Nn \xpatch_main:NN { Nc }

Now we can define the patching macros for \newbibmacro defined commands. In case
one uses a wrong name, it will remain in the hash space, but it shouldn’t be a problem:
\tracingpatches must be used when testing, and it will warn about an undefined macro
or one equivalent to \relax.

104 \NewDocumentCommand{\xpatchbibmacro} { m }

105 { \xpatch_main:Nc \patchcmd { abx@macro@ \tl_to_str:n {#1} } }
106 \NewDocumentCommand{\xpretobibmacro} { m }

107 { \xpatch_main:Nc \pretocmd { abx@macro@ \tl_to_str:n {#1} } }
108 \NewDocumentCommand{\xapptobibmacro} { m }

1o { \xpatch_main:Nc \apptocmd { abx@macro@ \tl_to_str:n {#1} } }
110 \NewDocumentCommand{\xshowbibmacro} { m }

11 { \xpatch_main:Nc \show { abx@macro@ \tl_to_str:n {#1} } }

Finally, the patching macros for biblatex drivers that don’t need the overhead of
\xpatch_main:NN.

> \NewDocumentCommand{\xpatchbibdriver} { m }

13 { \exp_args:Nc \patchcmd {blx@bbx@#1} }

112 \NewDocumentCommand{\xpretobibdriver} { m }

s { \exp_args:Nc \pretocmd {blx@bbx@#1} }

116 \NewDocumentCommand{\xapptobibdriver} { m }

17 { \exp_args:Nc \apptocmd {blx@bbx@#1} }

115 \NewDocumentCommand{\xshowbibdriver} { m }

1o { \exp_args:Nc \show {blx@bbx@#1} }

1

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols 51, 52, 55, 65, 66, 69, 75, 78, 90, 91, 94
\@ifpackagelater ................. 3 N\c_space_tl .................. 30,
\@protected@testopt ...... 50, 58, 64, 89 31, 35, 40, 45, 50, 52, 64, 74, 89, 91
\@testopt ..................... 74 \C_Xpatch_bizarre_t]_ .............

A\ 9,18 ... 19,26, 29, 39, 49, 63, 73, 83, 88
NCSIW ot 85, 97
A \es_end: . ... 85, 97
\apptocmd . ... 101, 109, 117 \cs_generate_variant:Nn ....... 15, 103
B \cs_if_exist:NF ................. 17
\DEEGIN « oot 60 \cs_new:Npn ..................... 21
\DOOL_Af:NT o vvveeeeee go Ves_tostriN ...l 18, 24
\bool _new:N ..................... 16
\bool_set_false:N ............... 23 E
\bool_set_true:N ............. 34,44 \exp_after:wl ................ 84, 97
\exp_args:Nc ......... 113, 115, 117, 119
C \ExplFileDate .................... 2
\c_backslash_str ..... 17, 18, 31, 41, \ExplFileDescription .............. 2



\ExplFileName
\ExplFileVersion

\1_xpatch_name_t1l 24, 31, 35, 41,
45, 51, 55, 65, 69, 75, 78, 85, 90, 94, 97

\1_xpatch_protect_bool 16, 23, 34, 44, 80

\1l_xpatch_repl_tl ...............

25, 27, 37, 47, 61, 71, 82, 86

\newcommand . ....................

\NewDocumentCommand 99-102,
104, 106, 108, 110, 112, 114, 116, 118

P
\PackageError .................... 6
\patchecmd ............... 99, 105, 113
\pretocmd .............. 100, 107, 115
\protect ....................... 30
\ProvidesExplPackage .............. 1
R
\RequirePackage ................. 14
S
\SROW o e eveeee e 102, 111, 119

10

\tex_endinput:D ................. 12
\tl_const:Nx ................. 18, 19
\tl_if_in:NnT ................... 15

\tl_if_in:NxT
\tl_put_left:Nn

27, 37, 47, 61, 71, 86
55, 69, 78, 94

\tl_put_right:Nn ............. 35, 45
\tl_set:Nx ................ 24, 25, 82
\tl_to_str:n ...... 20, 105, 107, 109, 111
\token_get_replacement_spec:N 26, 84

\token_to_str:N . 30, 40, 50, 64, 74, 89

X
\x@protect ..................... 40
\xapptobibdriver ............... 116
\xapptobibmacro ................ 108
\xapptocmd . ................... 101
\xpatch_main:Nc ...... 105, 107, 109, 111
\xpatch_main:NN ........... 21, 99-103
\xpatchbibdriver ............... 112
\xpatchbibmacro ................ 104
\xpatchemd ..................... 99
\xpretobibdriver ............... 114
\xpretobibmacro ................ 106
\xpretocmd . ............ .. ..... 100
\xshowbibdriver ................ 118
\xshowbibmacro ................. 110
\xshowemd . .................... 102



	1 Introduction
	2 Commands
	3 Using the original commands
	4 Syntax
	5 Limitations and warnings
	6 History
	7 The implementation of xpatch
	7.1 Utilities, variables and constants
	7.2 The main functions
	7.3 User level commands

	Index
	Symbols
	A
	B
	C
	E
	L
	N
	P
	R
	S
	T
	X


