
The xtemplate package∗

The LATEX3 Project†

2011/01/03

1 Introduction

There are three broad ‘layers’ between putting down ideas into a source file and ending
up with a typeset document. These layers of document writing are:

1. Authoring of the text, with mark-up

2. Document layout design

3. Implementation (with TEX programming) of the design

We write the text as an author, and we see the visual output of the design after the
document is generated; the TEX implementation in the middle is the glue between the
two.

LATEX’s greatest success has been to standardise a system of mark-up that balances the
trade-off between ease of reading and ease of writing to suit almost all forms of technical
writing. It’s other original strength was a good background in typographical design;
while the standard LATEX2ε classes look somewhat dated now in terms of their visual
design, their typography is generally sound. (Barring the occasional minor faults.)

However, LATEX2ε has always lacked a standard approach to customising the visual design
of a document. Changing the looks of the standard classes involved either:

• Creating a new version of the implementation code of the class and editing it.

• Loading one of the many packages to customise certain elements of the standard
classes.

∗This file has version number 2115, last revised 2011/01/03.
†Frank Mittelbach, Denys Duchier, Chris Rowley, Rainer Schöpf, Johannes Braams, Michael Downes,

David Carlisle, Alan Jeffrey, Morten Høgholm, Thomas Lotze, Javier Bezos, Will Robertson, Joseph
Wright

1



• Loading a completely different document class, such as KOMA-Script or memoir,
that allows easy customisation.

All three of these approaches have their drawbacks and learning curves.

The idea behind xtemplate is to cleanly separate the three layers introduced at the begin-
ning of this section, so that document authors who are not programmers can easily change
the design of their documents. xtemplate also makes it easier for LATEX programmers to
provide their own customisations on top of a pre-existing class.

2 What is a document?

Besides the textual content of the words themselves, the source file of a document contains
mark-up elements that add structure to the document. These elements include sectional
divisions, figure/table captions, lists of various sorts, theorems/proofs, and so on. The
list will be different for every document that can be written.

Each element can be represented logically without worrying about the formatting, with
mark-up such as \section, \caption, \begin{enumerate} and so on. The output of
each one of these document elements will be a typeset representation of the information
marked up, and the visual arrangement and design of these elements can vary widely in
producing a variety of desired outcomes.

For each type of document element, there may be design variations that contain the
same sort of information but present it in slightly different ways. For example, the
difference between a numbered and an unnumbered section, \section and \section*,
or the difference between an itemised list or an enumerated list.

There are three distinct layers in the definition of ‘a document’ at this level:

1. Semantic elements such as the ideas of sections and lists.

2. A set of design solutions for representing these elements visually.

3. Specific variations for these designs that represent the elements in the document.

In the parlance of the xtemplate package, we call these object types, templates, and
instances, and they are discussed below in sections 3.1, 3.2, and 3.4, respectively.

3 Objects, templates, and instances

By formally declaring our document to be composed of mark-up elements grouped into
objects, which are interpreted and typeset with a set of templates, each of which has one
or more instances with which to compose each and every semantic unit of the text, we
can cleanly separate the components of document construction. The xtemplate package
provides the tools to do this.

2



3.1 Object types

An ‘object type’ (or sometimes just ‘object’) is an abstract idea of a document element
that takes a fixed number of arguments corresponding to the information from the doc-
ument author that it is representing. A sectioning object, for example, might take three
inputs: ‘title’, ‘short title’, and ‘label’.
Any given document class will define which object types are to be used in the document,
and any template of a given object type can be used to generate an instance for the
object. (Of course, different templates will produce different typeset representations, but
the underlying content will be the same.)

\DeclareObjectType \DeclareObjectType {〈name〉} {〈Nargs〉}

This function defines an object type, where 〈name〉 is the name of the object type and
〈Nargs〉 is the number of arguments an instance of this type should take. For example,

\DeclareObjectType{sectioning}{3}

Note that object types are global entities: \DeclareObjectType will apply outside of
any TEX grouping in force when it is called.

3.2 Templates

A template is a generalised design solution for representing the information of a specified
object type. Templates that do the same thing — e.g., two completely different ways
of printing a chapter heading — are grouped together by their object type and given
separate names. There are two important parts to a template:

• The parameters it takes to vary the design it is producing.

• The implementation of the design.

As a document author or designer does not care about the implementation but rather only
the interface to the template, these two aspects of the template definition are split into two
independent declarations, \DeclareTemplateInterface and \DeclareTemplateCode.

\DeclareTemplateInterface

\DeclareTemplateInterface {〈object type〉} {〈template〉} {〈Nargs〉}
{

〈name of key 1〉 : 〈key type 1〉 ,
〈name of key 2〉 : 〈key type 2〉 = 〈optional default〉 ,
...

}
The 〈name of keys〉 can be any string of ascii characters (with the exception of :, =

3



and , as they are part of the syntax); we recommend only using lower case letters and
dashes, however. Note that spaces in key names are ignored, so that key names can be
spaced out for ease of reading without affecting the recognition of keys inside and outside
of code blocks.

The 〈key types〉 define what sort of input the key accepts, such as ‘boolean’, ‘integer’,
and so on. The complete list of possible 〈key types〉 is shown in Table 1.

Like objects, templates are global entities: both \DeclareTemplateInterface \DeclareTemplateCode
will apply outside of any TEX grouping in force when it is called.

\DeclareTemplateCode

\DeclareTemplateCode {〈object type〉} {〈template〉} {〈Nargs〉}
{

〈name of key 1〉 = 〈internal variable or code 1〉 ,
〈name of key 2〉 = 〈internal variable or code 2〉 ,
...

}{
〈implementation code〉
\AssignTemplateKeys
〈more implementation code〉

}
After the keys have been declared with \DeclareTemplateInterface, the implementa-
tion binds each 〈name of key〉 with an 〈internal variable〉 (for key types such as ‘integer’,
‘length’, ‘tokenlist’, etc.)1 or with a certain 〈code〉 fragment to execute, which will be
described below.

Assignments to variables which should be made globally are indicated by adding the word
global before the variable name:

〈name of key 1〉 = 〈internal variable 1〉 ,
〈name of key 2〉 = global 〈internal variable 2〉 ,

The key types choices and code do not take variable bindings; instead, fragments of code
are defined which are executed instead. The complete list of bindings taken by different
key types is shown in Table 2. The choices key type is explained fully in subsection 3.3
below.

\AssignTemplateKeys

The final argument of \DeclareTemplateCode contains the 〈implementation code〉 for
the template design, taking arguments #1, #2, etc. according to the number of arguments
allowed, 〈Nargs〉. \AssignTemplateKeys must be executed in order to assign variables
and perform code executions according to the keys set.

1It is possible, if you wish, to use the same variable for multiple keys; this allows ‘key synonyms’ to be
defined such as color and colour which can perform the same function in the template implementation.

4



Key Type Description of input
boolean true or false
choice {〈choices〉} A list of pre-defined choices
code Generalised key type; use #1 as the input to the key
commalist A comma-separated list of arbitrary items
function N A function definition with N arguments (N from 0 to 9)
instance {〈name〉} An instance of type 〈name〉
integer An integer expression (e.g., (1 + 5)/2)
length A dimension expression (e.g., 3pt + 2cm)
skip A dimension expression with glue (e.g., 3pt plus 2pt minus 1pt)
tokenlist A ‘token list’ input; any text or commands

Table 1: ‘Key types’ for defining template interfaces with \DeclareTemplateInterface.

Key Type Description of binding
boolean ? Boolean variable; e.g., \l_tmpa_bool
choice { 〈choice 1〉 = 〈code 1〉 , 〈choice 2〉 = 〈code 2〉 , . . . }
code 〈code〉 ; use #1 as the input to the key
commalist ? Comma-list variable; e.g., \l_tmpa_clist
function ? Function w/ N arguments; e.g., \use_i:nn
instance ? An instance variable; e.g., \g_foo_instance
integer ? Integer variable; e.g., \l_tmpa_int
length ? Dimension variable; e.g., \l_tmpa_dim
skip ? Skip variable; e.g., \l_tmpa_skip
tokenlist ? Token list variable; e.g., \l_tmpa_tl

Table 2: Bindings required for different key types when defining template implementa-
tions with \DeclareTemplateCode. Starred entries may be prefixed with the keyword
global to make a global assignment.

5



3.3 Multiple choices

The choice keytype implements multiple choice input. At the interface level, only the
list of valid choices is needed:

\DeclareTemplateInterface { foo } { bar } 0 {
key-name : choice { A,B,C }

}

where the choices are given as a comma-list (which must therefore be wrapped in braces).
A default value can also be given:

\DeclareTemplateInterface { foo } { bar } 0 {
key-name : choice { A,B,C } = A

}

At the implementation level, each choice is associated with code, using a nested key–value
list.

\DeclareTemplateCode { foo } { bar } 0 {
key-name = {
A = Code-A ,
B = Code-B ,
C = Code-C ,

}
} { ... }

The two choice lists should match, but in the implementation a special unknown choice
is also available. This can be used to ignore values and implement an ‘else’ branch:

\DeclareTemplateCode { foo } { bar } 0 {
key-name = {
A = Code-A ,
B = Code-B ,
C = Code-C ,
unknown = Else-code

}
} { ... }

The unknown entry must be the last one given, and should not be listed in the interface
part of of the template.
For keys which accept the values true and false both the boolean and choice key types
can be used. As template interfaces are intended to prompt clarity at the design level,
the boolean key type should be favoured, with the choice type reserved for keys which
take arbitrary values.

6



3.4 Instances

After a template is defined it still needs to be put to use. The parameters that it expects
need to be defined before it can be used in a document. Every time a template has
parameters given to it, an instance is created, and this is the code that ends up in the
document to perform the typesetting of whatever pieces of information are input into it.
For example, a template might say ‘here is a section with or without a number that might
be centred or left aligned and print its contents in a certain font of a certain size, with
a bit of a gap before and after it’ whereas an instance declares ‘this is a section with a
number, which is centred and set in 12pt italic with a 10pt skip before and a 12pt skip
after it’.
Therefore, an instance is just a frozen version of a template with specific settings as
chosen by the designer.

\DeclareInstance

\DeclareInstance {〈object type〉} {〈instance〉} {〈template〉} {〈parameters〉}
The name of the instance being declared is 〈instance〉, with 〈parameters〉 the keyval input
to set some or all of the 〈template〉 keys to specific values.
Here is a hypothetical example, where sectioning might be an object to be used for
document subdivisions, section-num an instance referring to a ‘numbered section’, and
basic a template for sectioning that performs just the basic layout, say:

\DeclareInstance{sectioning}{section-num}{basic} {
numbered = true ,

justification = center ,
font = \normalsize\itshape ,

before-skip = 10pt ,
after-skip = 12pt ,

}

3.5 Document interface

After the instances have been chosen, document commands must be declared to use those
instances in the document. \UseInstance calls instances directly, and this command
should be used internally in document-level mark-up.

\UseInstance

\UseInstance {〈object type〉} {〈instance〉} 〈arguments〉

It will take as many arguments as were defined for the object type.
Use xparse to declare the document commands in terms of instances. Another hypothet-
ical example:

7



\DeclareDocumentCommand\section{ som }{
\IfBooleanTF #1
{
\UseInstance{sectioning}{section-nonum}{#2}{#3}

}
{
\UseInstance{sectioning}{section-num}{#2}{#3}

}
}

\UseTemplate

\UseTemplate {〈object type〉} {〈template〉} {〈settings〉} 〈arguments〉
There are occasions where creating an instance of a template does not make sense, as it
will only be used once. In this case, templates can be used directly, with the key settings
given as an argument to the \UseTemplate function. This will also work when giving an
argument to a key which needs an instance. For example, if we have an key instance-key
which expects an instance of object2, then we can either declare an instance:

\DeclareInstance {object2} {template2} {temp-instance} {
<settings>

}
\DeclareInstance {object} {template} {instance} {
instance-key = temp-instance

}

or use the template directly:

\DeclareInstance {object} {template} {instance} {
instance-key = \UseTemplate {object2} {template2} {<settings>}

}

Which is the best approach will depend on the exact nature of the situation.

3.6 Summaries

For the document designer:

• The class will define which object types are used in a document.

• The class will define user commands that contain the required instances that the
document must use.

8



• Having knowledge of a variety of suitable templates, for each required instance
a template can be selected and instantiated based on the parameters defined by
\DeclareTemplateInterface.

For the class programmer:

• Define the different object types of document elements: what the semantics are and
what information is required.

• Create document commands to call instances that fulfil the needs of the object
types.

• Implement the required templates to produce typeset implementations of the doc-
ument elements and instantiate them with the appropriate names.

4 Instances in different contexts

We may wish the behaviour of an instance to change as it is used in varying contexts.
For example, in the frontmatter of a document, section numbering is different. Semantics
are the same, but the typesetting changes. But we want to use the same user commands,
and hence the same instance names.

Collections allow us to define multiple instances that we can switch between. Collections
are activated with \UseCollection.

At present, it is not clear whether collections fully address the issues they target. They
should therefore be regarded as highly experimental, and may be changed or withdrawn
in the future if it appears that they do not work well enough!

\DeclareCollectionInstance

\DeclareCollectionInstance {〈collection〉} {〈object type〉} {〈instance〉} {〈template〉}
{〈parameters〉}

\UseCollection \UseCollection {〈object type〉} {〈collection〉}

The instance declared will override another instance of the same name when the collection
is active. Note that a collection instance can only be declared if the original instance
already exists.

An example might be:

\UseCollection{sectioning}{frontmatter}

9



\section{Nomenclature}
...
\UseCollection{sectioning}{default}
\section{Introduction}

In both cases, the same instance (perhaps ‘section-num’) is being used inside the
\section. But \DeclareCollectionInstance will have been used for the ‘frontmatter’
and override the instance that is used in the default case.

5 Bits ’n’ pieces

5.1 Does an instance exist?

\IfInstanceExistTF

\IfInstanceExistTF {〈object type〉} {〈instance〉} {〈true code〉} {〈false code〉}
\IfInstanceExistT {〈object type〉} {〈instance〉} {〈true code〉}
\IfInstanceExistF {〈object type〉} {〈instance〉} {〈false code〉}
Test if 〈instance〉 has been declared. This is useful when the use of an instance depends
on some global variable, such as the current font selection. Designers or users can then
implement specific designs for exact situations rather than relying on blanket parameter
redefinitions. See xfrac for a good example of this.

5.2 Changing the defaults of a template’s keys

Template parameters may be assigned specific defaults for instances to use if the instance
declaration doesn’t explicit set those parameters. In some cases, the document designer
will wish to edit these defaults to allow them to ‘cascade’ to the instances. The alternative
would be to set each parameter identically for each instance declaration, a tedious and
error-prone process.

\EditTemplateDefaults

\EditTemplateDefaults {〈object type〉} {〈template〉} {〈new defaults〉}

This command only takes effect for instances that have not yet been declared. Use
\EditInstance if you wish to change an instance that already exists.

10



5.3 Small changes to an instance

When a designer creates an instance but the user wishes to slightly tweak it, it is con-
venient to not have to reset all of the (possibly many) parameters defining that instance
and only override the specific parameter that should be changed.

\EditInstance
\EditCollectionInstance

\EditInstance {〈object type〉} {〈instance〉} {〈new parameters〉}
\EditCollectionInstance {〈object type〉} {〈collection〉} {〈instance〉}

{〈template〉} {〈new parameters〉}
These functions change the key settings of an instance of an object type. If the instance
was derived from a template, this information is used to find the correct keys to use for
the editing process. It may be convenient to use \ShowInstanceValues to inspect the
values used to set the keys originally.

5.4 Parameters evaluated now

\EvaluateNow \EvaluteNow {〈expression〉}

The standard method when creating an instance from a template is to evaluate the
〈expression〉 when the instance is used. However, it may be desirable to calculate the
value when declared, which can be forced using \EvaluateNow. Currently, this func-
tionality is regarded as experimental: the team have not found an example where it is
actually needed, and so it may be dropped if no good examples are suggested!

5.5 Setting one key to the value of another

It is often useful to use the value of one key as the default for another.

\KeyValue \KeyValue {〈key name〉}

This command is used as the argument to an instance key; it will set that key to the value
of 〈key name〉 each time the instance is executed at run-time. Using \KeyValue means
that the designer does not need to know how a particular key has been implemented.

5.6 When template parameters should be frozen

A class designer may be inheriting templates declared by someone else, either third-party
code or the LATEX kernel itself. Sometimes these templates will be overly general for the

11



purposes of the document. The user should be able to customise parts of the template
instances, but otherwise be restricted to only those parameters allowed by the designer.

\DeclareRestrictedTemplate creates a derived version of a template for which certain
parameters are frozen as specified but the remaining parameters are available to be set
as usual in an instance declaration.

\DeclareRestrictedTemplate

\DeclareRestrictedTemplate {〈object type〉} {〈parent〉} {〈new template〉} {〈frozen
parameters〉}
Defines 〈new template〉 based on template 〈parent〉 (of certain 〈object type〉) with certain
keys set and frozen as defined in 〈keyvals〉.

6 Getting information about templates and instances

\ShowTemplateCode
\ShowTemplateDefaults
\ShowTemplateKeytypes
\ShowTemplateVariables

\ShowTemplateCode {〈object type〉} {〈template〉}
These functions pause the typesetting and display in the console the various pieces of
information for a template.

\ShowInstanceValues
\ShowCollectionInstanceValues

\ShowInstanceValues {〈object type〉} {〈instance〉}
\ShowCollectionInstanceValues {〈object type〉} {〈collection〉} {〈instance〉}
These functions pause the typesetting and display in the console information about an
instance or a collection instance.

Note that xtemplate uses various special key names internally. These all contain a space
when stored (which normal keys do not: spaces are removed). The same applies to
choices: these are stored internally as 〈key 〉 〈choice 〉. These will show up when using
the \Show... functions. The design means that there is no danger of a clash between
user keys and internal keys. Also, standard keys are stored with all letters detokenized,
whereas the special keys use letters with category code 11 (letter), again to avoid any
issues.

7 Examples

(Nothing here yet.)

12



8 Code documentation

8.1 Variables and constants

\c_xtemplate_code_root_tl
\c_xtemplate_defaults_root_tl
\c_xtemplate_instances_root_tl
\c_xtemplate_keytypes_root_tl
\c_xtemplate_restrict_root_tl
\c_xtemplate_values_root_tl
\c_xtemplate_vars_root_tl A number of pieces of code and lists of properties

have to be stored for templates and instances. The various csname roots are set up as
token lists to avoid use of the literal text in the code.

\c_xtemplate_key_order_tl The order keys are declared in must be stored (as prop-
erty lists have no ‘order’). The special property used is named here.

\c_xtemplate_keytypes_arg_clist Some keytypes (such as instance) need addi-
tional information, given as an argument. The list of keytypes that need this extra data
is set up here, for later use when splitting things.

\g_xtemplate_object_type_prop For tracking which object types have been de-
clared, and the number of arguments each requires.

\l_xtemplate_assignments_tl This token list variable is used in two places. First, it
is where the list of assignments for an instance is constructed during \DeclareInstance.
Second, it is where these are copied to to allow \AssignTemplateKeys to work correctly.

\l_xtemplate_collection_tl The name of the current instance collection active. If
no collection is in use, this will simply be empty.

\l_xtemplate_collections_prop Records the collection in force for each object
type.

\l_xtemplate_default_tl
\l_xtemplate_key_name_tl
\l_xtemplate_keytype_tl
\l_xtemplate_keytype_arg_tl
\l_xtemplate_value_tl
\l_xtemplate_var_tl When processing keys, various properties for the cur-

rent key need to be available. These are copied from the property list to appropriately
named token lists, and back again, as needed.

13



\l_xtemplate_error_bool Used to indicate an error when parsing a key list, so that
further processing can be abandoned.

\l_xtemplate_global_bool When actually assigning data to variables, a check is
made to see if this should be global. The flag here is used to indicate this.

\l_xtemplate_key_seq The order in which keys are defined is stored here for later
recovery and use. It is transferred into the property list for the template when the
template is saved.

\l_xtemplate_restrict_bool Flag used when editing templates, so that simple edit-
ing and restricting can share the same underlying editing method.

\l_xtemplate_restricted_clist
\l_xtemplate_keytypes_prop
\l_xtemplate_values_prop
\l_xtemplate_vars_prop To avoid needing to refer to the data about a tem-

plate or instance by csname in a large number of locations, the data is copied to these
scratch variables and back again for processing. This makes the code easier to follow.

\l_xtemplate_tmp_clist
\l_xtemplate_tmp_dim
\l_xtemplate_tmp_int
\l_xtemplate_tmp_skip
\l_xtemplate_tmp_tl Used when carrying out assignments, as the pre-processing

can take place here before passing data through to the storage area defined by the im-
plementation part of a template. The token list is also used for general scratch purposes
by xtemplate.

\l_xtemplate_restrict_bool Flag used when editing templates, so that simple edit-
ing and restricting can share the same underlying editing method.

8.2 Execute or error functions

These all either execute code (if the tests are true) or issue errors (if the test fails).

\xtemplate_execute_if_arg_agree:nnT
\xtemplate_execute_if_arg_agree:nnT {〈type〉} {〈num〉}

{〈true code〉}

14



Tests if the number of arguments required by 〈type〉 is equal to 〈num〉, then executes
either 〈true code〉 or generates an error as appropriate.

\xtemplate_execute_if_code_exist:nnT
\xtemplate_execute_if_code_exist:nnT {〈type〉} {〈template〉}

{〈true code〉}

Tests if 〈template〉 of 〈type〉 has been defined (i.e., the code has been created for an
implementation), then executes either 〈true code〉 or generates an error as appropriate.

\xtemplate_execute_if_keytype_exist:nT
\xtemplate_execute_if_keytype_exist:VT

\xtemplate_execute_if_keytype_exist:nT {〈keytype〉}
{〈true code〉}

Tests if 〈keytype〉 is a known keytype, then executes either 〈true code〉 or generates an
error as appropriate.

\xtemplate_execute_if_type_exist:nT \xtemplate_if_type_exist:nT {〈type〉} {〈true code〉}

Tests if template 〈type〉 has been created, then executes either 〈true code〉 or generates
an error as appropriate.

\xtemplate_execute_if_keys_exist:nnT
\xtemplate_if_keys_exist:nnT {〈type〉} {〈template〉}

{〈true code〉}

Tests if keys for 〈template〉 of 〈type〉 have been declared (but not necessarily given an
implementation), , then executes either 〈true code〉 or generates an error as appropriate.

8.3 Utility functions

\xtemplate_if_key_value:nT ?
\xtemplate_if_key_value:VT ? \xtemplate_if_key_value:nT {〈tokens〉} {〈true code〉}

Tests if the first token in 〈tokens〉 is \KeyValue.

\xtemplate_if_eval_now:nTF ?
\xtemplate_if_eval_now:nTF {〈tokens〉}

{〈true code〉} {〈false code〉}

Tests if the first token in 〈tokens〉 is a marker for evaluating now (\EvaluateNow).

\xtemplate_if_instance_exist:nnnTF ?

\xtemplate_if_instance_exist:nnnTF {〈type〉}
{〈collection〉} {〈instance〉} {〈true code〉}

{〈false code〉}

Tests if 〈instance〉 of 〈type〉 exists for the 〈collection〉 given.

15



\xtemplate_if_use_template:nTF ?
\xtemplate_if_use_template:nTF {〈assignment〉}

{〈true code〉} {〈false code〉}

Tests if assignment begins with \UseTemplate.

\xtemplate_store_defaults:n
\xtemplate_store_keytypes:n
\xtemplate_store_restrictions:n
\xtemplate_store_values:n
\xtemplate_store_vars:n \xtemplate_store_defaults:n {〈full name〉}

These functions copy information about the current template or instance from the scratch
variables to those for storing the information. The 〈full name〉 of the instance or template
is needed: this includes the 〈type〉 and 〈collection〉 (if applicable).

\xtemplate_recover_defaults:n
\xtemplate_recover_keytypes:n
\xtemplate_recover_restrictions:n
\xtemplate_recover_values:n
\xtemplate_recover_vars:n \xtemplate_recover_defaults:n {〈full name〉}

The reverse of the store functions, these functions copy data from the storage areas
to the scratch variables for use in the module. Again, the 〈full name〉 is needed, includ-
ing the 〈type〉.

8.4 Creating object types

\xtemplate_declare_object_type:nn \xtemplate_declare_object_type:nn {〈type〉} {〈num〉}

Declares 〈type〉 of object, to accept 〈num〉 arguments.

8.5 Declaring template keys

\xtemplate_declare_template_keys:nnnn
\xtemplate_declare_template_keys:nnnn {〈type〉}

{〈template〉} {〈num〉} {〈keyvals〉}

Declares 〈template〉 of 〈type〉, and accepting 〈num〉 arguments, with key types and default
values defined by 〈keyvals〉.

16



\xtemplate_parse_keys_elt:n
\xtemplate_parse_keys_elt:nn \xtemplate_parse_keys_elt:nn {〈key〉} {〈value〉}

Functions used to process each key–value pair when declaring keys from 〈keyvals〉.

\xtemplate_split_keytype:n \xtemplate_split_keytype:n {〈key〉}

Splits a 〈key〉 into a key name (stored as \l_xtemplate_key_tl) and a keytype (stored
as \l_xtemplate_keytype_tl).

\xtemplate_split_keytype_arg:n
\xtemplate_split_keytype_arg:V \xtemplate_split_keytype_arg:n {〈keytype〉}

Splits a 〈keytype〉 into the type itself and any optional qualifying text. The results are
stored in \l_xtemplate_keytype_tl and \l_xtemplate_keytype_arg_tl.

8.6 Storing defaults and values

\xtemplate_store_value_boolean:n
\xtemplate_store_value_choice:n
\xtemplate_store_value_choice:V
\xtemplate_store_value_code:n
\xtemplate_store_value_commalist:n
\xtemplate_store_value_function:n
\xtemplate_store_value_function:n
\xtemplate_store_value_instance:n
\xtemplate_store_value_tokenlist:n
\xtemplate_store_value_integer:n
\xtemplate_store_value_length:n
\xtemplate_store_value_skip:n \xtemplate_store_value_boolean:n {〈value〉}

Store values of the given keytype for later assignment to variables. For the numeric
and Boolean data types, the value is evaluated at this stage unless \DelayEvaluation
or \KeyValue are used in the 〈value〉.

\xtemplate_store_value_choice_name:n \xtemplate_store_value_choice_name:n {〈value〉}

Stores the name of a choice for a multiple choice key, which will be turned into an
implementation when code is available.

17



8.7 Implementing templates

\xtemplate_declare_template_code:nnnnn
\xtemplate_declare_template_code:nnnnn {〈type〉}

{〈template〉} {〈num〉} {〈keyvals〉} {〈code〉}

Declares implementation of 〈template〉 of 〈type〉, and accepting 〈num〉 arguments, with
keys implemented as listed in 〈keyvals〉 and with 〈code〉 to be executed when the
〈template〉 is used.

\xtemplate_store_key_implementation:nnn
\xtemplate_store_key_implementation:nnn {〈type〉}

{〈template〉} {〈keyvals〉}

Stores the implementation for keys as specified in 〈keyvals〉 for a 〈template〉 of 〈type〉.

\xtemplate_parse_vars_elt:n
\xtemplate_parse_vars_elt:nn \xtemplate_parse_vars_elt:nn {〈key〉} {〈variable〉}

Used by the key–value parser to assign a 〈variable〉 for each 〈key〉 listed.

\xtemplate_store_key_implementation:nnn
\xtemplate_store_key_implementation:nnn {〈type〉}

{〈template〉} {〈keyvals〉}

Stores the implementation for keys as specified in 〈keyvals〉 for a 〈template〉 of 〈type〉.

\xtemplate_implement_choices:n \xtemplate_implement_choices:n key–value list

Master function for turning 〈key-value lsit〉 into a set of choices.

\xtemplate_implement_choice_elt:n
\xtemplate_implement_choice_elt:nn \xtemplate_implement_choice_elt:nn {〈choice〉} {〈code〉}

Used by the key–value parser to convert a key–value list of choices and code into working
multiple choice values.

8.8 Modifying templates

\xtemplate_declare_restricted:nnnn
\xtemplate_declare_restricted:nnnn {〈type〉} {〈parent〉}

{〈restricted〉} {〈keyvals〉}

Creates 〈restricted〉 template of 〈type〉 based on 〈parent〉 by fixing values as listed in
〈keyvals〉.

18



\xtemplate_edit_defaults:nnn
\xtemplate_edit_defaults:nnn {〈type〉} {〈template〉}

{〈keyvals〉}

Modifies the default values for 〈template〉 of 〈type〉 as instructed in 〈keyvals〉.

\xtemplate_parse_values:nn \xtemplate_parse_values:nn {〈name〉} {〈keyvals〉}

Parses 〈keyvals〉 for full 〈name〉, finding the value for each key and storing it for later
assignment.

\xtemplate_parse_values_elt:n
\xtemplate_parse_values_elt:nn \xtemplate_parse_values_elt:nn {〈key〉} {〈variable〉}

Used by the key–value parser to find 〈value〉 to assing to implementation of 〈key〉.

\xtemplate_set_template_eq:nn \xtemplate_set_template_eq:nn {〈copy〉} {〈parent〉}

Copies all of 〈parent〉 template to the 〈copy〉, where both are full names (i.e., a tem-
plate plus type).

8.9 Creating instances

\xtemplate_declare_instance:nnnnn
\xtemplate_declare_instance:nnnnn {〈type〉} {〈template〉}

{〈collection〉} {〈instance〉} {〈keyvals〉}

Declares an 〈instance〉 (within 〈collection〉) of 〈template〉 of 〈type〉, using 〈keyvals〉 to
define the instance.

\xtemplate_edit_instance:nnnn
\xtemplate_declare_instance:nnnn {〈type〉} {〈collection〉}

{〈instance〉} {〈keyvals〉}

Modifies an 〈instance〉 (within 〈collection〉) of 〈type〉, using 〈keyvals〉 to modify the in-
stance.

\xtemplate_convert_to_assignments: \xtemplate_convert_to_assignments:

Converts the contents of the various scratch property lists into a list of variable as-
signments in \l_xtemplate_assignments_tl.

\xtemplate_find_global: \xtemplate_find_global:

Checks in \l_xtemplate_var_tl for the special text global, which is removed from
the variable is found. The flag \l_xtemplate_global_bool is then set as appropriate.

19



8.10 Converting values to assignments

\xtemplate_assign_boolean:
\xtemplate_assign_choice:
\xtemplate_assign_code:
\xtemplate_assign_code:n
\xtemplate_assign_commalist:
\xtemplate_assign_function:
\xtemplate_assign_instance:
\xtemplate_assign_integer:
\xtemplate_assign_length:
\xtemplate_assign_skip:
\xtemplate_assign_tokenlist: \xtemplate_assign_boolean:

Convert the given 〈keytype〉 of 〈key〉 into an assignment to a 〈variable〉.

\xtemplate_assign_variable:N \xtemplate_assign_variable:N 〈function〉

Convert the current contents of \l_xtemplate_value_tl into an assignment using
〈function〉 to the variable named in \l_xtemplate_var_tl.

\xtemplate_key_to_value: \xtemplate_key_to_value:

Converts an attribute named using \KeyValue into the value of the underlying imple-
mentation variable.

8.11 Using instances

\xtemplate_use_instance:nn \xtemplate_use_instance:nn {〈type〉} {〈instance〉}

Executes code stored for 〈instance〉 of 〈type〉, taking account of any active collection.

\xtemplate_use_template:nnn
\xtemplate_use_template:nnn {〈type〉} {〈template〉}

{〈settings〉}

Executes code stored for 〈template〉 of 〈type〉 using 〈settings〉.

\xtemplate_use_collection:nn \xtemplate_use_collection:nn {〈type〉} {〈collection〉}

Activates 〈collection〉 for instances of {〈type〉}.

20



\xtemplate_get_collection:n \xtemplate_get_collection:n {〈type〉}

Sets \l_xtemplate_collection_tl to the name of the collection in force for templates
of 〈type〉.

\xtemplate_assignments_pop: \xtemplate_assignments_pop:

Pops \l_xtemplate_assignment_tl, and therefore executes the assignements stored
there.

\xtemplate_assignments_push:n \xtemplate_assignments_push:n {〈assignments〉}

Pushes 〈assignments〉 to \l_xtemplate_assignment_tl for later execution.

8.12 Showing details

\xtemplate_show_code:nn \xtemplate_show_code:nn {〈type〉} {〈template〉}

Shows code associated with 〈template〉 of 〈type〉.

\xtemplate_show_code:nn \xtemplate_show_code:nn {〈type〉} {〈template〉}

Shows code associated with 〈template〉 of 〈type〉.

\xtemplate_show_defaults:nn \xtemplate_show_default:nn {〈type〉} {〈template〉}

Shows default values associated with 〈template〉 of 〈type〉.

\xtemplate_show_keytypes:nn \xtemplate_show_keytypes:nn {〈type〉} {〈template〉}

Shows key types associated with 〈template〉 of 〈type〉.

\xtemplate_show_values:nnn
\xtemplate_show_code:nnn {〈type〉} {〈collection〉}

{〈instance〉}

Shows values associated with 〈instance〉 of 〈type〉 within 〈collection〉.

\xtemplate_show_vars:nn \xtemplate_show_vars:nn {〈type〉} {〈template〉}

Shows variables associated with 〈template〉 of 〈type〉.

21


	1 Introduction
	2 What is a document?
	3 Objects, templates, and instances
	3.1 Object types
	3.2 Templates
	3.3 Multiple choices
	3.4 Instances
	3.5 Document interface
	3.6 Summaries

	4 Instances in different contexts
	5 Bits 'n' pieces
	5.1 Does an instance exist?
	5.2 Changing the defaults of a template's keys
	5.3 Small changes to an instance
	5.4 Parameters evaluated now
	5.5 Setting one key to the value of another
	5.6 When template parameters should be frozen

	6 Getting information about templates and instances
	7 Examples
	8 Code documentation
	8.1 Variables and constants
	8.2 Execute or error functions
	8.3 Utility functions
	8.4 Creating object types
	8.5 Declaring template keys
	8.6 Storing defaults and values
	8.7 Implementing templates
	8.8 Modifying templates
	8.9 Creating instances
	8.10 Converting values to assignments
	8.11 Using instances
	8.12 Showing details


