The xparse package*
Generic document command parser

The I¥TEX3 Project!

2011/01/23

1 Creating document commands

The xparse package provides a high-level interface for producing document-level com-
mands. In that way, it is intended as a replacement for the I4TEX 2¢ \newcommand
macro. However, xparse works so that the interface to a function (optional arguments,
stars and mandatory arguments, for example) is separate from the internal implementa-
tion. xparse provides a normalised input for the internal form of a function, independent
of the document-level argument arrangement.

At present, the functions in xparse which are regarded as ‘stable’ are:

e \DeclareDocumentCommand

e \NewDocumentCommand

¢ \RenewDocumentCommand

e \ProvideDocumentCommand

e \DeclareDocumentEnvironment
e \NewDocumentEnvironment

e \RenewDocumentEnvironment

e \ProvideDocumentEnvironment

o \IfNoValue(TF) (the need for \IfValue(TF) is currently an item of active discus-
sion)

*This file has version number 2136, last revised 2011/01/23.

TFrank Mittelbach, Denys Duchier, Chris Rowley, Rainer Schépf, Johannes Braams, Michael Downes,
David Carlisle, Alan Jeffrey, Morten Hggholm, Thomas Lotze, Javier Bezos, Will Robertson, Joseph
Wright

e \IfBoolean(TF)

with the other functions currently regarded as ‘experimental’. Please try all of the com-
mands provided here, but be aware that the experimental ones may change or disappear.

1.1 Specifying arguments

Before introducing the functions used to create document commands, the method for
specifying arguments with xparse will be illustrated. In order to allow each argument to
be defined independently, xparse does not simply need to know the number of arguments
for a function, but also the nature of each one. This is done by constructing an argument
specification, which defines the number of arguments, the type of each argument and
any additional information needed for xparse to read the user input and properly pass it
through to internal functions.

The basic form of the argument specifier is a list of letters, where each letter defines a type
of argument. As will be described below, some of the types need additional information,
such as default values. The argument types can be divided into two, those which define
arguments that are mandatory (potentially raising an error if not found) and those which
define optional arguments. The mandatory types are:

m A standard mandatory argument, which can either be a single token alone or mul-
tiple tokens surrounded by curly braces. Regardless of the input, the argument will
be passed to the internal code surrounded by a brace pair. This is the xparse type
specifier for a normal TEX argument.

1 An argument which reads everything up to the first open group token: in standard
ITEX this is a left brace.

u Reads an argument ‘until’ (tokens) are encountered, where the desired (tokens) are
given as an argument to the specifier: u{(tokens)}.
The types which define optional arguments are:
o A standard I¥TEX optional argument, surrounded with square brackets, which will
supply the special \NoValue token if not given (as described later).

d An optional argument which is delimited by (token!) and (token2), which are given
as arguments: d(tokenl)(token2). As with o, if no value is given the special token
\NoValue is returned.

0 As for o, but returns {default) if no value is given. Should be given as 0{(default)}.

D As for 4, but returns (default) if no value is given: D(tokenl){token2){(default)}.
Internally, the o, d and 0 types are short-cuts to an appropriated-constructed D
type argument.

s An optional star, which will result in a value \BooleanTrue if a star is present and
\BooleanFalse otherwise (as described later).

t An optional (token), which will result in a value \BooleanTrue if (token) is present
and \BooleanFalse otherwise. Given as t(token).

g An optional argument given inside a pair of TEX group tokens (in standard I¥TEX,
{ ...}), which returns \NoValue if not present.

G As for g but returns (default) if no value is given: G{{default)}.

Using these specifiers, it is possible to create complex input syntax very easily. For
example, given the argument definition ‘s o o m 0{default}’, the input ‘* [Foo]{Bar}’
would be parsed as:

e #1 = \BooleanTrue

e #2 = {Foo}
e #3 = \NoValue
o #4 — {Bar}

o #5 = {default}
whereas ‘ [One] [Two] {} [Three]’ would be parsed as:
e #1 = \BooleanFalse

o #2 = {One}
o #3 = {Two}
o #4 ={}

e #5 = {Three}

Note that after parsing the input there will be always exactly the same number of
(balanced text) arguments as the number of letters in the argument specifier. The
\BooleanTrue and \BooleanFalse tokens are passed without braces; all other argu-
ments are passed as brace groups.

Two more tokens have a special meaning when creating an argument specifier. First, + is
used to make an argument long (to accept paragraph tokens). In contrast to INTEX 2¢’s
\newcommand, this applies on an argument-by-argument basis. So modifying the example
to ‘s o o +m O{default}’ means that the mandatory argument is now \long, whereas
the optional arguments are not.

Secondly, the token > is used to declare so-called ‘argument processors’, which can be used
to modify the contents of an argument before it is passed to the macro definition. The
use of argument processors is a somewhat advanced topic, (or at least a less commonly
used feature) and is covered in Section 1.5.

1.2 Spacing and optional arguments

TeX will find the first argument after a function name irrespective of any intervening
spaces. This is true for both mandatory and optional arguments. So \foo[arg] and

\foo_,[arg] are equivalent. Spaces are also ignored when collecting arguments up to
the last mandatory argument to be collected (as it must exist). So after

\DeclareDocumentCommand \foo { m om } { ... }

the user input \foo{argl}[arg2] {arg3} and \foo{argi} ., [arg2] ., {arg3} will both
be parsed in the same way. However, spaces are not ignored when parsing optional
arguments after the last mandatory argument. Thus with

\DeclareDocumentCommand \foo { mo } { ... }

\foo{argl}[arg2] will find an optional argument but \foo{argl} [arg2] will not. This
is so that trailing optional arguments are not picked up ‘by accident’ in input.

1.3 Declaring commands and environments

With the concept of an argument specifier defined, it is now possible to describe the
methods available for creating both functions and environments using xparse.

The interface-building commands are the preferred method for creating document-level
functions in BTEX3. All of the functions generated in this way are naturally robust (using
the e-TEX \protected mechanism).

\DeclareDocumentCommand
\NewDocumentCommand
\RenewDocumentCommand
\ProvideDocumentCommand

\DeclareDocumentCommand (function) {{arg spec)} {(code)}

This family of commands are used to create a document-level (function). The argu-
ment specification for the function is given by (arg spec), and the function will execute
(code).

As an example:

\DeclareDocumentCommand \chapter { s om } {
\IfBooleanTF {#1} {
\typesetnormalchapter {#2} {#3}
H
\typesetstarchapter {#3}
}
}

would be a way to define a \chapter command which would essentially behave like the
current BTEX 22 command (except that it would accept an optional argument even when

a * was parsed). The \typesetnormalchapter could test its first argument for being
\NoValue to see if an optional argument was present.

The difference between the \Declare..., \New... \Renew... and \Provide... ver-
sions is the behaviour if {function) is already defined.
e \DeclareDocumentCommand will always create the new definition, irrespective of
any existing (function) with the same name.

o \NewDocumentCommand will issue an error if (function) has already been defined.

¢ \RenewDocumentCommand will issue an error if (function) has not previously been
defined.

¢ \ProvideDocumentCommand creates a new definition for (function) only if one has
not already been given.

TEXhackers note: Unlike M TEX 2¢’s \newcommand and relatives, the \DeclareDocumentCommand
function do not prevent creation of functions with names starting \end. . ..

\DeclareDocumentEnvironment
\NewDocumentEnvironment

\ReneV.JDoCumentEnV1r(?nment \DeclareDocumentEnvironment {(environment)} {(arg spec)}
\ProvideDocumentEnvironment {(start code)} {{end code)}

These commands work in the same way as \DeclareDocumentCommand, etc., but cre-
ate environments (\begin{(function)} ...\end{(function)}). Both the (start code) and
(end code) may access the arguments as defined by (arg spec).

TEXhackers note: When loaded as part of a IXTEX3 format, these, these commands do not
create a pair of macros \(environment) and \end(environment). Thus ETEX3 environments
have to be accessed using the \begin ...\end mechanism. When xparse is loaded as a KTEX 2¢
package, \{environment) and \end(environment) are defined, as this is necessary to allow the
new environment to work!

1.4 Testing special values

Optional arguments created using xparse make use of dedicated variables to return infor-
mation about the nature of the argument received.

\NoValue \NoValue is a special marker returned by xparse if no value is given for

an optional argument. If typeset (which should not happen), it will print the value
-NoValue-.

’ \IfNoValueTF x \IfNoValueTF {({argument)} {(true code)} {(false code)}
The \IfNoValue tests are used to check if (argument) (#1, #2, etc.) is the special
\NoValue token. For example

\DeclareDocumentCommand \foo { om } {
\IfNoValueTF {#1} {
\DoSomethingJustWithMandatoryArgument {#2}
H
\DoSomethingWithBothArguments {#1} {#2}
}
}

will use a different internal function if the optional argument is given than if it is not
present.

As the \IfNoValue (TF) tests are expandable, it is possible to test these values later, for
example at the point of typesetting or in an expansion context.

’ \IfValueTF x ‘\IfValueTF {(argument)} {(true code)} {(false code)}
The reverse form of the \IfNoValue (TF) tests are also available as \IfValue(TF). The
context will determine which logical form makes the most sense for a given code scenario.

\BooleanFalse
\BooleanTrue

The true and false flags set when searching for an optional token
(using s or t(token)) have names which are accessible outside of code blocks.

’ \IfBooleanTF x ‘\IfBooleanTF (argument) {(true code)} {(false code)}
Used to test if (argument) (#1, #2, etc.) is \BooleanTrue or \BooleanFalse. For example

\DeclareDocumentCommand \foo { s m } {
\IfBooleanTF #1 {
\DoSomethingWithStar {#2}
H
\DoSomethingWithoutStar {#2}
}
}

checks for a star as the first argument, then chooses the action to take based on this
information.

1.5 Argument processors

xparse introduces the idea of an argument processor, which is applied to an argument
after it has been grabbed by the underlying system but before it is passed to (code). An
argument processor can therefore be used to regularise input at an early stage, allowing
the internal functions to be completely independent of input form. Processors are applied
to user input and to default values for optional arguments, but not to the special \NoValue
marker.

Each argument processor is specified by the syntax >{(processor)} in the argument spec-
ification. Processors are applied from right to left, so that

>{\ProcessorB} >{\ProcessorA} m

would apply \ProcessorA followed by \ProcessorB to the tokens grabbed by the m
argument.

| \ProcessedArgument | xparse defines a very small set of processor functions. In the
main, it is anticipated that code writers will want to create their own processors. These
need to accept one argument, which is the tokens as grabbed (or as returned by a previous
processor function). Processor functions should return the processed argument as the
variable \ProcessedArgument.

’ \Xparse—process—to—Str:n"\xparse_process_to_str:n {(grabbed argument)}

The \xparse_process_to_str:n processor applies the I TEX3 \tl_to_str:n function
to the (grabbed argument). For example

\DeclareDocumentCommand \foo { >{\xparse_arg_to_str:n} m } {
#1 Y Which is now detokenized

}

’\ReverseBoolean \ReverseBoolean

This processor reverses the logic of \BooleanTrue and \BooleanFalse, so that the the
example from earlier would become

\DeclareDocumentCommand \foo { > { \ReverseBoolean } s m } {
\IfBooleanTF #1
{ \DoSomethingWithoutStar {#2} }
{ \DoSomethingWithStar {#2} }

’ \SplitArgument ‘\SplitArgument {(number)} {(token)}

This processor splits the argument given at each occurrence of the (token) up to a max-
imum of (number) tokens (thus dividing the input into (number) 4+ 1 parts). An error
is given if too many (tokens) are present in the input. The processed input is places
inside (number) + 1 sets of braces for further use. If there are less than {(number)}
of {(tokens)} in the argument then empty brace groups are added at the end of the
processed argument.

\DeclareDocumentCommand \foo
{ > { \SplitArgument { 2} { ; } } mn }
{ \InternalFunctionOfThreeArguments #1 }

Any category code 13 (active) (tokens) will be replaced before the split takes place.

\SplitList \SplitList {(token)}

This processor splits the argument given at each occurrence of the (token) where the
number of items is not fixed. Each item is then wrapped in braces within #1. The result
is that the processed argument can be further processed using a mapping function.

\DeclareDocumentCommand \foo
{ > { \SplitlList { ; } } m }
{ \MappingFunction #1 }

Any category code 13 (active) (tokens) will be replaced before the split takes place.

1.6 Separating interface and implementation

One ezperimental idea implemented in xparse is to separate out document com-
mand interfaces (the argument specification) from the implementation (code). This
is carried out using a pair of functions, \DeclareDocumentCommandInterface and
\DeclareDocumentCommandImplementation

\DeclareDocumentCommandInterface (function)
{(implementation)} {{arg spec)}

’ \DeclareDocumentCommandInterface ‘

This declares a (function), which will take arguments as detailed in the {arg spec). When
executed, the (function) will look for code stored as an (implementation).

\DeclareDocumentCommandImplementation
{(implementation)} {(args) {(code)}

’ \DeclareDocumentCommandImplementation ‘

Declares the (implementation) for a function to accept (args) arguments and expand
to (code). An implementation must take the same number of arguments as a linked
interface, although this is not enforced by the code.

1.7 Fully-expandable document commands

There are very rare occasion when it may be useful to create functions using a fully-
expandable argument grabber. To support this, xparse can create expandable functions
as well as the usual robust ones. This imposes a number of restrictions on the nature of
the arguments accepted by a function, and the code it implements. This facility should
only be used when absolutely necessary; if you do not understand when this might be, do
not use these functions!

\DeclareExpandableDocumentCommand
’ \DeclareExpandableDocumentCommand ‘ (function) {({arg spec)} {(code)}

This command is used to create a document-level (function), which will grab its ar-
guments in a fully-expandable manner. The argument specification for the function is
given by (arg spec), and the function will execute (code). In general, (code) will also be
fully expandable, although it is possible that this will not be the case (for example, a
function for use in a table might expand so that \omit is the first non-expandable token).

Parsing arguments expandably imposes a number of restrictions on both the type of

arguments that can be read and the error checking available:

o The function must have at least one mandatory argument, and in particular the
last argument must be one of the mandatory types (1, m or u).

e All arguments are either short or long: it is not possible to mix short and long
argument types.

o The ‘optional group’ argument types g and G are not available.

o It is not possible to differentiate between, for example \foo[and \foo{[}: in both
cases the [will be interpreted as the start of an optional argument. As a result
result, checking for optional arguments is less robust than in the standard version.

xparse will issue an error if an argument specifier is given which does not conform to the

first three requirements. The last item is an issue when the function is used, and so is
beyond the scope of xparse itself.

1.8 Access to the argument specification

The argument specifications for document commands and environments are available for
examination and use.

\GetDocumentCommandArgSpec

. \GetDocumentCommandArgSpec (function)
\GetDocumentEnvironmentArgSpec

\GetDocumentEnvironmentArgSpec (environment)

These functions transfer the current argument specification for the requested (function)
or (environment) into the token list variable \ArgumentSpecification. If the (function)
or (environment) has no known argument specification then an error is issued. The as-
signment to \ArgumentSpecification is local to the current TEX group.

\ShowDocumentCommandArgSpec
\ShowDocumentEnvironmentArgSpec

\ShowDocumentCommandArgSpec (function)
\ShowDocumentEnvironmentArgSpec (environment)

These functions show the current argument specification for the requested (function)
or (environment) at the terminal. If the (function) or (environment) has no known
argument specification then an error is issued.

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

B \NewDocumentEnvironment
\BooleanFalse0.... 6 \NoValueciuiuiuonon..
\BooleanTrue0o.... 6
D P
ProcessedArgument
\DeclareDocumentCommand 4 tProvideDocuﬁentCommand
\DeclareDocumentCommandImplementation R S s
8 \ProvideDocumentEnvironment
\DeclareDocumentCommandInterface &8 R
\DeclareDocumentEnvironment 5
\DeclareExpandableDocumentCommand 9 \RenewDocumentCommand
\RenewDocumentEnvironment
G \ReverseBoolean
\GetDocumentCommandArgSpec 9
\GetDocumentEnvironmentArgSpec 9 S
I \ShowDocumentCommandArgSpec
\IfBooleanTF 6 \ShowDocumentEnvironmentArgSpec
\IfNOVAalueTF ¢ \SPHEATgumeNt
\IEVALUETE o oo ooeoeeee e g \SPLitList ...
N X
\NewDocumentCommand 4 \xparse_process_to_str:n

10

	1 Creating document commands
	1.1 Specifying arguments
	1.2 Spacing and optional arguments
	1.3 Declaring commands and environments
	1.4 Testing special values
	1.5 Argument processors
	1.6 Separating interface and implementation
	1.7 Fully-expandable document commands
	1.8 Access to the argument specification

	Index
	B
	D
	G
	I
	N
	P
	R
	S
	X

