The template package®

DPC, FMi

2009/11/01

Contents
1 Introduction

2 Commands
2.1 Template declaration commands
2.2 Instance declaration commands Lo
2.3 Key value commands oo
2.4 Processing commandso oLl o e

2.5 Test commands

3 Examples of template key types
3.1 Attributes that receive names as values
3.2 Attributes that receive functions as values
3.3 Attributes that receive dimensions as values
3.4 Attributes that receive integers as values
3.5 Attributes that receive template instances as values.
3.6 Attributes that receive true or false values

3.7 Attributes that accept any value

4 A complete example
4.1 Declaring the template type oL
4.2 Defining a first template oL oL
4.3 Defining a better template oL oL oL

4.4 Defining a few instances

*This file has version number 1670, last revised 2009/11/01.

(=2 BN, S, S BTN

O 00 N N 9 N o o

Qo

5 Notes 17

5.1 Note on multi-valued parameters 17
5.2 Notes on template restriction 18
5.3 Openissueso e 18
6 Implementation 19

1 Introduction

A Template is a named ‘function’ that has a fixed number of mandatory arguments and
an additional set of keys or ‘named attributes’ that are set in a ‘key value list’. That is,
a comma separated set of assignments of the form:

(keyr) = (valuer) , (keys) = {values) ...

More specific instances of the template may be declared by specifying settings of the
parameters. The key value list is parsed at the time the instance is declared, and an
‘internal’ set of parameter assignments is passed to the template code. It is normally not
parsed at run-time, though it is possible to enforce this behaviour.

Templates have a type and a name. Templates of the same type have the same argument
and parameter structure. That is, templates of the same type are expected to be ex-
changeable semantically. (However, except for checking that templates of the same type
always have the same number of arguments this is not enforced by the code.)

A template type is declared via the \DeclareTemplateType declaration which takes two
arguments: the name for the type and the number of arguments a template of this type
requires.

Templates are declared via the \DeclareTemplate command which takes five arguments

e The type of the template (no \).
o The name of the template (no \).
o The number of arguments for the template (same as on type declaration).

e A list declaring the keys accepted by the template, with information about the
action to take when the key is specified with a value.

e The code for the template. This may be arbitrary TEX code. At some point it
should execute \DoParameterAssignments to run the parameter assigments.

The mandatory arguments are accessed via #1, #2, ...
Each element of the key specification list is of the form:

(key name) = (key type) {optional default) {(internal code)

The (key types) are essentially specified by giving a symbolic representation of the as-
signment function to be used by TEX.

Currently the possibilities are

key type letter internal code argument form
Command | fn command name command definition
name n command name command definition
length 1 length register calc length syntax
fake length | L command name calc length syntax
count C count register calc count syntax
fake count | C command name calc count syntax
boolean b name of \newif switch true or false

switch s {(true code)}{(false code)} | true or false
instance i{(type)} command name instance of this type
direct X Internal code any

general g general code any

In addition, any of these types may be prefixed by + to denote a global assignment
(described below). £ takes a digit from 0-9 to denote the number of arguments. n is in
fact the same as £0. When an instance is declared The value assigned to the key should
be the definition of the command, using #1. .. #9 to denote the specified arguments.

c takes an internal form a count register, not a INTEX counter name.

For £, n, 1, and c, the assignment is done twice, once at the time an instance is declared.
(This may involve using calc expresions. Then the ‘primitive assignment’ of the value
(not using calc) is copied to the internal parameter list, to be executed when an instance
is run. Sometimes you need the expression to be evaluated at the time an instance is run
rather than the time it is declared. For example it may be an expression involving some
values that are not fixed throughout a document. In this case the instance declaration
may give a value in the form \DelayedEvaluation{(calc expression)}. In this case the
value is not evaluated when the instance is declared, and instead the entire expression is
copied to the ‘internal parameter list’ and is evaluated whenever the instance is used.

L and C take the same value types as 1 and c but the internal assignments are to macros
not registers.

Keys declared with b and s each take values either true or false. if the key zzz is declared
with b then specifying zzz=true will essentially pass \zzztrue to the internal parameter
list (although in fact \zzztrue need not be defined) . If instead zzz had been declared via
s, then zzz=true would pass the tokens of the {(true code)} to the internal parameter
list.

If a key is specified as x, then when used the internal code will be copied to the internal
parameter lists. This code may use #1 to denote the value supplied to the key in the
instance declaration. Note that this code is only copied at the time the instance is
declared. It is not executed at this time. It is executed when the instance is executed.’

1Despite the question of whether or not x and g are still necessary these days, they have the wrong
‘names’ since x is the one that is not executed during delcaration while g is.

If a key is declared with g then the code is run at the time the instance is declared. By
default nothing is passed to the internal parameter list. This code may use #1 to denote
the value that will be supplied when an instance is declared. Any code that should be
run when an instance is executed should be explicitly passed to the internal parameter
list using \toks_add_right:Nn\1_TP_KV_assignments_toks{...}

A key declared with i{(type)} takes as value the name of a declared instance of that type.
The command token associated with the key will store a command essentially equivalent
to a call to \UseInstance{(type)}{(name)}, but in a slightly optimised internal form.
As an exception to this rule the replacement code may be of the form \UseTemplate
followed by the key settings for the template but without the mandatory arguments. In
this case the ‘inner’ instance declaration is ‘pre compiled’ and the token assigned to the
store the value assigned to this key will execute an instance of the template directly, it
will not re-parse the keyword settings each time the instance is used.

2 Commands

2.1 Template declaration commands

[\DeclareTemplateType {(type)}{({num)} |

Declare a template type.

| \DeclareTemplate {{type)}{(tname)}{{num)}{{keyspec)H (code)} |

Declare a template (tname) of type (type) with the set of keys as defined by (keyspec).
From this template instances can be declared using \DeclareInstance At runtime such
instances will run (code) and expect (num) mandatory arguments (same number for all
templates of one type).?

| \DeclareRestrictedTemplate {{type)}{(new-tname)}{{old-tname)H (keyvals)} |

Declare as new template (new-tname) for type (type) by taking template {old-tname) as
the basis and setting one or more of its keys to specific values.

l \DoParameterAssignments ‘

The list of key value assignments made (and saved) during template declaration is eval-
uated at this point in the template code.

2The (num) argument is redundent as it can be deduced from the type. However, for practical reasons
it seems better to keep that information with each individual template declaration.

2.2 Instance declaration commands

| \DeclareInstance {{type)H (iname)}H{tname)}{(keyvals)} |

Declare an instance of type (type) named (iname) build from using template (tname)
with key settings as given by (keyvals).

| \DeclareCollectionInstance {(collection)}{{type)H (iname)H (tname)}{ (keyvals)} |

Same as \DeclarelInstance except that this instance is only active when for the type
(type) the collection (collection) was selected via \UseCollection. E.g., within the
frontmatter one could make all headings behave differently by defining collection instances
for template type ‘head’.

2.3 Key value commands

l \DelayEvaluation{(code)} ‘

Used in the value spec for an instance to declare that the value (code) should not be
evaluated at declaration time but at run-time. Can also be used in the defaults for keys
(given in square brackets) in the declaration of templates.

[\MultiSelection (counter) {(cases)} {{else)} |

Used in the value spec for an instance key to declare that the value of this key depends on
the current setting of (counter) at run-time. The (cases) argument is a comma-separated
list of “values”, the (else) argument a single “value”. If at run-time (counter) has the
value i then the i-th element of the (cases) list is selected. If that does not exist the
(else) case is returned.

2.4 Processing commands

| \UseTemplate {({type)H{tname)}{ (keyval)} |

Execute a template (tname) of type (type) at run-time using (keyvals) as the value as-
signments for its keys. In this case the keys are evaluated at run-time thus this method is
far slower than using a predeclared instance of this template (see below). This command
can also appear as the value for a key of type ‘i’ in which case the evaluation happens at
declaration time of the template that contains this key!

| \UseInstance {{type)}H{iname)} |

Run the instance (iname) of template type (type). If a collection is in force see if there
is a collection instance of name (iname) and if so run that instead.

l \UseCollection {(type)}{(collection)} [

Declare that from now on (normal scoping rules) the collection (collection) for template
type (type) is in force. This means that a call to \UseInstance will first check if there
is a collection instance defined, and if so use that instance, otherwise use the normal
instance.

2.5 Test commands

l \IfExistsInstanceTF {(type)}{(iname)}{(true)}{(false)} ‘

Test if for template type (type) an instance with name (iname) exists. Select (true) or
(false) code accordingly.

3 Examples of template key types

The general syntax for key specification in templates (fourth argument of the command
\DeclareTemplate) is:

{
(key-name,) =(key-type1) (optional-default;) (storage-biny),
(key-namey) =(key-types) (optional-defaults) (storage-bing),

In this section we look at all possible key types and give examples for them.

3.1 Attributes that receive names as values

The type n expects to receive a A TEX name as a value. Used, for example, to specify the
name of a INTEX counter to use.

heading-id =n \heading@id,
counter-id =n [\DelayEvaluation{\heading@id}] \heading@counter,

Notice the use of \DelayEvaluation in the default of counter-id. It is necessary to make
the default the token \heading@id if we want to inherit the value from the heading-id
key. Otherwise it gets value of \heading@id at the time the instance is declared.

3.2 Attributes that receive functions as values

The type f(num) expects a function with (num) arguments as a value. The arguments
are denoted by #1, #2, etc. In most cases either £0 (for declarations) or £f1 (to format
one argument) are needed.

initial-font =f0 \initial@font,
initial-format =f1 [#1] \initial@boxhandling,

3.3 Attributes that receive dimensions as values

As far as specifying instances the 1 and L type behave identically. They differ only in
the type of internal storage-bin they need: 1 expects a length register while L expects an
ordinary macro name and assigns its value via \cs_set_nopar:Npn .

pre-sep =1 \topsep,
post-sep =L \botsep,

3.4 Attributes that receive integers as values

The ¢ and C type receive integers as values. Again either of them can be transparently
used. In case of c the (storage-bin) has to be a TEX count register not a A TEX counter
name, i.e., set up via \newcount. (ITEX counters can be used as well if they are accessed
via their internal name, i.e., via \c@({ETEX-counter))

pre-penalty =c \@beginparpenalty,
penalty =C \hmaterial@penalty,

3.5 Attributes that receive template instances as values

The type i{({type)} takes as value the name of a declared instance of that type. The
(storage-bin) associated with the key will store a command essentially equivalent to a
call to \UseInstance{(type)}{(name)}, but in a slightly optimised internal form.

As an exception to this rule the replacement code may be of the form \UseTemplate
followed by the key settings for the template but without the mandatory arguments. In
this case the ‘inner’ instance declaration is ‘pre compiled’ and the token assigned to the
store the value assigned to this key will execute an instance of the template directly, it
will not re-parse the keyword settings each time the instance is used.

justification-setup =i{justification} \list@justification,
Usage within an instance declaration is either

justification-setup = raggedright,

i.e., name of a declared instance or a call to \UseTemplate

justification-setup = \UseTemplate{justification}{TeX}
{ startskip = Opt, ... },

3.6 Attributes that receive true or false values

The type s expects the strings true or false as values. In this case the declaration
has no (storage-bin). Instead the declaration consists of two brace groups containing
code. Depending on the value one of the groups gets copied verbatim into the inter-
nal parameter list of the instance and gets executed at run-time at the point where
\DoParameterAssignments is seen.

item-implicit-boolean =s
{ \cs_set_nopar:Npn \item@implicit@code{\item\relax} }},
numbered-boolean =b [true] Gheading@nums,

3.7 Attributes that accept any value

The type g is a low-level specification which contains arbitrary code in place of the
(storage-bin). This code is evaluated at declaration time of the instance and by default
nothing is passed to the internal parameter list (this has to happen explicitly from within
the code). #1 may be used to access the value specified.

The main purpose for this type is of historical nature (originally most of the other types
have been implemented internally using g).

The type x also requires code in place of the (storage-bin). However with this type all of
the code is copied unevaluated to the internal parameter list. There are some applications
for this type when implementing customisable defaults. However, it is likely that it will
not survive a final release.

generic-key =g \typeout{#1},
extra-assigns =x \typeout{#1},

4 A complete example

The following example shows a sketch of a template for typesetting captions to be used
as part of a larger mechanism setting whole floats.?

We declare a template type caption then define an example template for that type and
finally produce some instances from that.

3] made it up while I went along so if you spot the “missing brace” or some other blunder tell me,
FMi.

4.1 Declaring the template type

To define the template type we first have to ask ourselves what information would be
varying each time such a template is used? A potential answer could be the following:

e The float name, e.g., ‘Table’ or ‘Fig. etc.
e The float number e.g., ‘10’ or ‘3—¢’ etc.

e The actual caption text as specified in the document.

Since the above items would be differed in each instantiation of such a template we would
pass them as mandatory argument to the template.

Are there others? Possibly. Here are two more that seem to be useful, at least in a
number of cases:

e The text of the legend in document classes that distinguish between caption text
(heading to the figure/table) and legend (explanatory material)

e Measure to which the caption should be typeset.

The last one of these might need some extra explanation. Suppose a design requires
that the caption width is decided depending on the width of the table of figure, e.g., the
caption is supposed to typeset below some illustration and should not be wider than that
illustration, or the caption is typeset aside to the illustration using the remaining space.
In that case the process that formats the whole float needs to communicate with the
current template to pass that (varying) information along. Of course, that could happen
by using global variables, e.g., the outer process sets the measure as desired before calling
the caption formatting template. What makes more sense is likely to be a matter of taste
but it also has to do with the precise semantics of the template type. Staying with our
example: if the the semantics of the template type caption is supposed to produce a
formatted box (in TEX terms) then we should pass the measure as an argument if we
ever intend to allow for variations. If on the other hand the semantics are to format a
certain set of text into the current galley (which has measure of its own) then a measure
argument would not belong to this template type.

Are there other variations sensible? Yes, for example, instead of passing a fixed string
like “Fig.” as the first argument one could pass an abstract float type identifier and let
the template worry to deduce from that information what fixed string to produce.

Another question: why should we pass the fixed text (or an abstract identifier from
which it can be deduced) and the number as separate arguments to the template instead
of passing a combined string (like it is done in the \@makecaption command of I’ TEX 2¢)7
Answer: because this allows to build templates that can individually manipulate both
bits of information, e.g., to format the number in a different font, etc.

So what are the conclusions of this discussion? Defining the semantics of a template type
is difficult and often needs several trials to come up with something that is covering the

anticipated use. There is clearly not a cardinal way for defining template types; how
the overall separation into smaller units is done is partly a matter of taste and partly a
matter of the major layout characteristics that one tries to support.

Returning to our example: let’s assume we settle for the first four arguments, i.e., the
calling template is responsible for setting the measure for the caption text if necessary.

What we also have to do is to define (at least for ourselves) what data the arguments
accept and what their semantics are. An informal summary of that could be the following;:

Arg Data Type Description
1 text fixed float description
2 text/\NoValue float number
3 text caption text

4 text/\NoValue legend text

The second and the fourth argument are allowed to be missing (i.e., can get \NoValue
passed as a value). Note that the empty string in case of a text argument is different
from \NoValue.

We further declare that it is permissible for a template of this type to ignore the infor-
mation provided by all arguments except 3, i.e., the caption text.

Finally the result of the template formatting should is to typeset text into a current
galley (paragraph mode in KTEX lingua).

All the above is semantic information that (at least right now) is not being enforced by
declaring a template type (except for the number of arguments) but each template of a
certain type is supposed to conform to this specification nonetheless.*

This finally leads to the following declaration:

\DeclareTemplateType{caption}{4}

4.2 Defining a first template

We start by defining a simple template of type caption which roughly formats a caption
like those being presented in TEX 2¢’s article class, i.e., the caption is typeset as a
paragraph if it is longer than a single line, otherwise it is centered. The legend even if
present is ignored. Above and below we give the designer the possibility to add some
space.

In fact the examples is more or less identical in code to \@makecaption except that if the
second argument (i.e., the number) is \NoValue it and its preceding space’ gets ignored.

4To make this even clearer we are thinking of extending the template type declaration with another
argument in which one has to formally or informally (?) specifies information like the one in the table
above.

5For those who wonder: spaces are by default ignored within definitions when the new packages are
used due to a command \InternalSyntaxOn, do get a normal space one has to use ~ and to obtain an
unbreakable space \nobreakspace.

10

We start by declaring the template toosimple of type caption having four mandatory
arguments (as described in the discussion of the template type).

\DeclareTemplate{caption}{toosimple}{4}

The next argument of \DeclareTemplate lists all keys for the template. In this case
we have keys for the vertical spaces above and below. We make them type L to save on
registers but with a bit of care we could also have used scratch registers like \@tempskipa
etc. Their default values are both zero.

{
above-skip =L [Opt] \caption®@above@skip ,
below-skip =L [Opt] \caption@below@skip ,
}

The final argument of \DeclareTemplate contains the actual processing code. We start
with looking at the second mandatory argument (caption number) to find out if it is
\NoValue and depending on the result define a helper command \caption@start.

{
\IfNoValueTF{#2}
{ \cs_set_nopar:Npn \caption@start{#1:~} }
{ \cs_set_nopar:Npn \caption@start{#1~#2:~} }

Having dealt with the prelims we now run \DoParameterAssigments at which point the
keys of the template are made available, e.g., at this point all those right hand containers
such as \caption@above@skip get assigned the value specified in an instantiation of the
template. (That scheme allows to do preliminary processing up front, e.g., defaults for
the keys could be assigned prior to that point in which case they are overwritten if the
template instance specifies a different value. the use of specifying defaults via the [..]
syntax as done above is slightly faster at run-time but needs more memory.)

\DoParameterAssigments

The rest of the code should look familiar to anybody who ever looked at article.cls.
The only point worth mentioning are the \relax commands after \caption@above@skip
and \caption@below@skip. Since we have decided to use L as key type these commands
are macros and not registers containing the dimensions as strings. This means that we
have to be careful to ensure that TEX knows where the dimension ends. In certain cases
text following such a command might be mistaken as being part of the dimension (e.g.,
if followed by the word plus, etc.). In the code below this could only happen for the
second \vskip but it is good practice to always add a terminating \relax to avoid such
hidden traps.

\vskip \caption@above@skip \relax
\sbox \@tempboxa {\caption@start #3}

11

\ifdim \wd\@tempboxa >\hsize
\caption@start #3\par

\else
\global \@minipagefalse
\hb@xt@\hsize{\hfil\box\@tempboxa\hfil}

\fi

\vskip \caption@below@skip \relax

Why is the above template of not much use? Simply because it doesn’t offer any flexibility
to declare different designs. The only alteration offered to the designer is to modify
the space above and below the caption, e.g., the following declaration would mimic the
definition within the article.cls class of BTEX 2¢:

\DeclareInstance{caption}{article}{toosimple}
{
above-skip
below-skip
}

Opt,
10pt,

And that’s all that can be manipulated. All items that people asking to change, e.g.,
not having a colon after the number, using different fonts and font sizes, etc. are still
hard-wired and thus inaccessible. So we have to do better if we want to make use of the
power the template mechanism offers.

4.3 Defining a better template
First step in defining better templates is to ask ourselves a couple of questions:

e What are the main characteristics of the layout the template is supposed to support?

e What are the elements that we want to allow (or can allow) the designer to modify?

Take the first question first: the layout supported by the template of the previous section
had as its main characteristics that it would center the caption if it would fit in a single
line in the current measure. We could consider this being an unchangable characteristic of
the layout this template produces (and a designer would need to use a different template
of type caption if a design compatible with this restriction is desired) or we could try
to make our template smarter by adding bells and wistles that allow the designer to say
stuff like:

one-line-format \hfil #1 \hfil,

or

one-line-action = center,

12

depending on how we intend to offer changing the behavior of the template. Like when
trying to define sensible template types we have no single road to heaven (and probably
as many to hell) — it has a lot to do with how we think about design.

My advice, after having tried to work with these concepts for a while, is to keep templates
simple in so far as that most of not all attribute for a template should be relevant for
the design. In other words, if you have attributes that, depending on their setting,
make half of the other attributes not applicable then it may be appropriate to think
about providing several templates instead. To give an example from IX#TEX 2¢: instead of
having \@startsection deal with both vertical heads and run-in heads provide individual
templates. (\@startsection is this famous command where design switches are build
in by making dimensions negative to signal something and afterwards use the absolute
value.) Another way to look at this is to say that a template should normally not contain
large amounts of code which is only selected in a subset of attribute settings.

As said before there are no golden rules, it is perfectly possible to make hugely complicated
templates that solve every possible aspect of layout one could think of in one go — it
is just that with keeping it more simple one can get the same functionality with less
headaches for the template writer as well as the template user later on.

Returning to our example: allowing to handle the case of a single line caption specially
could well be considered part of the template. In contrast: layouts that would put the
caption number sideways, i.e., which would need totally different internal coding should
probably be coded as a separate template of type caption.

So for our next example template we settle for the fixed caption text plus number (if
any) being at the beginning of the variable caption text (coming from the document)
and being together formatted as some sort of a pargraph. In case of the whole caption
being a single line we allow the designer to specify how to lay it out (e.g., centered, flush
left, etc.). If there is a legend it will get formatted by a vertical space followed by the
legend formatted as another paragraph.

More precisely we allow for the following bells and wistles:

\DeclareTemplate{caption}{lesssimple}{4}
{

The designer can specify the space above and below the caption like we did in our first
example.

above-skip =L [Opt] \caption@above@skip ,
below-skip =L [Opt] \caption@below@skip ,

Regarding the caption number we support the case where no number is present (the value
being \NoValue) as well as the number being present. For both cases the designer has to
specify what formatting should be attached. By default all is being typeset in the font the
whole caption is presented but if there is a need for it the designer can use the following

13

keys to attach special formatting devices to each particular item beside specifying special
spacing information or replacing the default colon after the number with something else.

number-format =f2 [#1~#2:~] \caption@number@format,
nonumber-format =f1 [#1:~] \caption@nonumber@format,

If the caption is fitting onto a single line we make it possible for the designer to specify
how this single line should be positioned (the default is to center the line).

single-line-format =f1 [\hfil#1\hfil] \caption@single@line@format,

The font for the caption (including the fixed text and the number unless specified differ-
ently above) is going to be the one decided by the next key.

caption-font =f0 [\normalfont] \caption@font,

The next attribute deserves some extra explanation: here we make use of an interface
which is explained in more detail when we reveil the support for galley formatting.®
In a nutshell the template type hj (hyphenation & justification) allows one to define
a) the justification concepts applied to the upcoming paragraphs, e.g., whether they
should be set flush left, adjusted, first line centered, etc. b) the linebreaking strategy
used and c) the hyphenation rules which should apply. All this is done by selecting an
appropriate (predefined) instance of this type as will hopefully become somewhat clearer
in the example instances shown below.

caption-hj-setup =i {hj} [default] \caption@hj@instance,

In case there is a legend to format we give the designer the possibility to specify by how
much vertical space it should be separated from the preceding paragraph (i.e., the caption
text). The attributes for font and hj setup are comparable to those for the caption text
itself (except that they will only apply to the legend). The only addition is the key
legend-text which is allowed to take a fixed text (plus any formating and spacing for
it) which will be added to the front of the legend in case it is provided at all (by default
it is empty).

legend-sep =L [Opt] \caption@legend®@sep ,

legend-text =f0 [1 \caption@legend@text,

legend-font =f0 [\normalfont] \caption@legend@font,

legend-hj-setup =i {hj} [default] \caption@legend®hj@instance,
}

6Guess I have to apologize for the fact that i partly make use of that interface in this example while
on other occasions (like the use of vertical spacing) within the example I do not—consistency around
midnight is not my strength I fear (FMi).

14

The actual code for the template should hold few if any surprises. In fact it is more
or less identical to the one of the first template example, except that now we have now
taken out some of the hardwired decisions and placed them into attributes.

{
\IfNoValueTF{#2}
{ \cs_set_nopar:Npn \caption@start{\caption@uumber@format{#1}{#2}} }
{ \cs_set_nopar:Npn \caption@start{\caption@nonumber@format{#1}} }
\DoParameterAssigments
\vskip \caption@above@skip \relax

To properly measure the caption to determine if it fits a single line we have to set it in
the right font, so here as well as below we have to apply \caption@font.

\sbox \@tempboxa {\caption@font \caption@start #3}
\ifdim \wd\@tempboxa >\hsize
\begingroup
\caption@font \caption@hj@instance
\caption@start #3\par
\endgroup
\else
\global \@minipagefalse
\hb@xt@\hsize{\caption@single@line@format{\box\@tempboxal}}
\fi

To decide whether or not we have to set any legend we have to test #4 for being \NoValue.
This part of the code was not present in the previous example but otherwise should be
straight forward.

\IfNoValueF{#4}
{
\vskip \caption@legend@sep \relax
\begingroup
\caption@legend@font \caption@legend@hj@instance
\caption@legend@text
#4\par
\endgroup
}
\vskip \caption@below@skip \relax
}

I wouldn’t claim the the above template is good or contains everything that would be
desired and I'm sure that in the end we will have several such template for typesetting
the caption part and perhaps decide on a different template type in the first place. So
this is only to give a glimpse of how the template interface could be applied and I hope
that reading it can see a) how they can apply it to other areas as well as see what is
wrong with the example itself.

15

To just note one point that i thought of being wrong after writing the above paragraphs:
the key single-line-format was declared to be a function with one argument with the
idea that besides specifying the single line should be centered (\hfil) on both sides, or
flush left, or flush right (\hfil on one side) one could also specify something like

single-line-format = \hspace{10pt}#1\hfil,

that is a fixed indentation on the left in case where the caption is a single line. However,
of course one can’t. Or at least it is not safe to do so since our test in the code tests
the width of the line without taking into account such a finite fixed space and guess
what might happen? So in summary, flexibility needs some thought and often some
afterthoughts as well — happy thinking :-)

4.4 Defining a few instances

So let us conclude this example with a few sample instances. We start with one that
repeats what current I#TEX 2¢ provides in the article class. It shows all keys with values.
However in fact only the first key is actually needed since all others are the same as the
default values in the template (and of course a legend is not specifiable in standard WTEX
coding so those settings simply do not apply anyway).

\DeclareInstance{caption}{article}{lesssimple}

{
above-skip = 10pt,
below-skip = Opt,
number-format = #1~#2:~,
nonumber-format = #1:~,
single-line-format = \hfil#1\hfil,
caption-font = \normalfont,
caption-hj-setup = default,
legend-sep = Opt,
legend-text =,
legend-font = \normalfont,
legend-hj-setup = default,
}

The next examples are taken from books on the shelf essentially a random selection I fear.
This one is from Introduction to Database Design by C. J. Date and it uses Helvetica
for the caption text with the caption flush left, with the figure and the fixed string (e.g.,
‘Fig. in bold face) separated by a quad of space. No legend either so this is not set up.
The hj instance noindentflushleft is supposed to produce a ragged right paragraph
without any indentation. It would have to be set up elsewhere (instance to the template
of type hj).

\DeclareInstance{caption}{DATE}{lesssimple}
{

16

above-skip 10pt,

below-skip = Opt,
number-format = \textbf{#1~#2}\quad,
nonumber-format = \textbf{#1}\quad,

single-line-format = #1\hfil,
caption-font \fontfamily{phv} \normalfont,
caption-hj-setup = noindentflushleft,

The final example is from the book “Methods of Book Design” by H. Williamson which
sets the caption centered if it fits a single line but adjusted as a paragraph without any
indentation if longer than a single line. It uses old style numerals followed by a period
for the number (though the example isn’t quite right as i guess the text font used already
has oldstyle numerals as default, so \oldstylenunms is in fact not necessary).

\DeclareInstance{caption}{WILLIAMSON}{lesssimple}

{

above-skip = 10pt,

below-skip = Opt,

number-format = #1~\oldstylenums{#2}.~,
nonumber-format = #1~,

single-line-format = \hfil#1\hfil,
caption-font = \normalfont,
caption-hj-setup = noindentadjusted,

}

5 Notes

5.1 Note on multi-valued parameters

The following code” implements for registers (ie L,1,C,c keys) and for names (ie n key) a
multi-selection mechanism of the following form:

key = \MultiSelection \ListDepth {
\DelayEvaluation {2.5em},
20pt + 34pt }
{ \DelayEvaluation {lem} },

where the first argument to \MultiSelection is a counter, the second argument is a
comma separated list of values denoting the values for the cases 1, 2,..., and the third
argument contains the value for all other cases.

The values are evaluated at declaration time in case of registers and therefore can contain
calc expressions as well as \DelayEvaluation.

7docu taken from trial implementation in xlists.dtx, FMi

17

Due to the implementation the case list is not allowed to have a trailing comma! And of
course no checks are made whatsoever :-(

A probably much nicer syntax would be something like this:

key = \MultiSelection {
selector = \ListDepth,

1 = \DelayEvaluation {2.5em},
2 = 20pt + 34pt,
else = \DelayEvaluation {lem}

but i found that too difficult to implement right now.

I think it should also be considered if this kind of thing should be a generally available
feature on all key types especially on the f(number) ones.

Anyway it is what i need for lists right now and as such it is sufficient.

5.2 Notes on template restriction

Possible semantics:

a: just:-) changes the defaults ie the new template has as defaults those of its source as
modified by the supplied keyvals;

b: similar to a: but also removes some keywords ie the new template will not accept the
keywods whose values are set by the suppied keyvals;

c: plan C.

Towards an implementation of b: but without a restriction on what keys appear where.

5.3 Open issues

In this section unresolved issues or ideas to think about and perhaps implement are
collected. There is no particular order to them.

e The order of arguments in \UseCollection is illogical in my eyes! A collection
typically modifies the behavior of several types and thus should perhaps be first (as
it is in the \DeclareCollectionInstance case). Or not, or what?

e« How should \IfExistsInstanceTF behave for Collection instances? Do we need a
special check for those or a default action? Or do we need an additional test for
the existence of collection instances?

18

\TP_declare_instance:Nnn
\TP_declare_instance:cnn

-

N

IS

@

It was suggested that the template type declaration should get another argument in
which (in?)formally the semantics for the template types are described, e.g., data
type of arguments, resulting output, ... (somewhat like the description arguments
for functions and variables in Emacs-Lisp). The advantage being that this helps
employing the templates better as well as perhaps guiding context sensitive editors
to support the work with such templates (e.g., providing help texts).

The same might be of interest for the keys of individual templates though here
syntax support is already available to some extend by the declaration of key types.

There might be a need to distinguish between TEX’s dimen and skip registers. Right
now this is not done and both 1 and L accepts what IWTEX calls “rubber length”
specifications.

The type b can probably vanish. It is equivalent to specifying the mutators of a
\newif command in the brace groups, e.g.

numbered-boolean =b [true] @heading®@nums,
numbered-boolean =s [true] {\Gheading@numstrue}
{\@heading@numsfalse},

See issue raised about syntax (and semantics) for \Multiselection.

f0 keys should perhaps support \UseTemplate by replacing it with its internal
form. or perhaps this is a rubbish idea?

Marcin Wolinski suggested to use \EvalOnUse instead or in addition to \DelayEvalutation.

Implementation

(*package)
\ProvidesExplPackage

{\filename}{\filedate}{\fileversion}{\filedescription}

\RequirePackage{expl3}
\RequirePackage{ldcsetup,xparse}

Declare a private token register for building parameter lists. Having the number saves a
few expandafters (probably not needed in the end).

6 \toks_new:N\1_TP_KV_assignments_toks
7 \toks_new:N\1_TP_default_assignments_toks

Declare a command name to be an instance of a template ie with a particular setting of
the parameters.

#1 internal command name for instance to be (globally) declared

#2 template type/template name

#3 key value assignments for parameters of #2

19

s \cs_new_nopar:Npn \TP_declare_instance:Nnn #1#2#3 {

o \group_begin:

10 \TP_instdecl_generate_assignments:nn {#2}{#3}

11 \cs_gset_nopar:Npx #1 {

12 \tl_if_eq:cNTF { TP>/#2 } \c_TP_doparameterassignments_tl

If the body of the template consists only of the token \DoParameterAssignments, then
we insert the list of parameter assignments directly. Otherwise we have push them onto
the stack and prepare to execute the body code (which in turn will pop them again when
it reaches \DoParameterAssignments inside).

13 { \toks_use:N \1_TP_KV_assignments_toks }
14 {

15 \exp_not:N \TP_push_assignments:n

16 {\toks_use:N\1_TP_KV_assignments_toks}
17 \exp_not:c {TP>/#2}

19 }
20 \group_end:}
»1 \cs_generate_variant:Nn \TP_declare_instance:Nnn {cnn}

\c_TP_doparameterassignments_t1

22 \tl_set:Nn \c_TP_doparameterassignments_tl {\DoParameterAssignments}

\UseTemplate {typel}{templatename}{keyval} Directly use a template with a particular parameter
setting. This is also picked up if used in a nested fashion inside a parameter list.
#1 type of a template.
#2 name of a template.
#3 key value assignments for parameters of #1.

3 \cs_new_nopar:Npn \UseTemplate #1#2#3{

2 \TP_instdecl_generate_assignments:nn {#1/#2}{#3}
25 \TP_push_assignments:

% \use:c { TP>/#1/#2 }

7}

\DoParameterAssignments Access the parameter assignment list that was once stored in \1_TP_KV_assignments_toks
and then moved onto the \g_TP_assignments_stack_toks.

s \cs_new_nopar:Npn \DoParameterAssignments{

20 \exp_after:wN

30 \TP_pop_and_execute_assignments:nw

31 \toks_use:N \g_TP_assignments_stack_toks \q_stop

_pop_and_execute_assignments:nw

33 \cs_new_nopar:Npn \TP_pop_and_execute_assignments:nw#1#2\q_stop{
s \toks_gset:Nn \g_TP_assignments_stack_toks {#2}
35 #1}

20

\g_TP_assignments_stack_toks

;6 \toks_new:N \g_TP_assignments_stack_toks
57 \toks_gset:Nn \g_TP_assignments_stack_toks {\scan_stop:}) avoid brace loss

\TP_push_assignments:n Push a list of parameter assignments onto the \g_TP_assignments_stack_toks. As it
\TP_push_assignments: all happens in token registers #s need no doubling. \TP_push_assignments: expects it
to be \1_TP_KV_assignments_toks (needs fixing).

;s \cs_new:Npn \TP_push_assignments:n#1{
s \toks_gput_left:Nn\g_TP_assignments_stack_toks{{#1}}
0 }
21 \cs_new_nopar:Npn \TP_push_assignments:{
42 \toks_gset:No \g_TP_assignments_stack_toks
{\exp_after:wN
a4 {\toks_use:N\exp_after:wN\1_TP_KV_assignments_toks\exp_after:wN}
a5 \toks_use:N\g_TP_assignments_stack_toks}
4% }

\DeclareTemplateType {type}{nofarg}

27 \cs_new_nopar:Npn \DeclareTemplateType #1#2{
s \tl_set:cn {TPe<#1>} {{}#2}}

\TP_get_csname_prefix:n {typel} returns prefix for csnames for template type, based on current collection.

2 \cs_new_nopar:Npn \TP_get_csname_prefix:n #1 {
so <\exp_after:wN\exp_after:wN\exp_after:wN

51 \use_i:nn

52 \cs:w TP@<#1>\cs_end:>#1/

\TP_get_arg_count:n {type} returns arg count for the template type.

s \cs_new_nopar:Npn \TP_get_arg_count:n #1 {
55 \exp_after:wN\exp_after:wN\exp_after:wN
56 \use_ii:nn

57 \cs:w TP@<#1>\cs_end:

\DeclareTemplate {type}{templatenamel}{nofarg}{keywordspec}{code}

so \cs_new:Npn\DeclareTemplate #1#2#3#4#5{

60 \cs_if_free:cTF{TPO<#1>}

61 {\undefinedtype\DeclareTemplateType{#1}#3}

62 {

63 \intexpr_compare :nNnF{#3}={\TP_get_arg_count:n{#1}}
64 { \BadArgCount }

65 }

21

\tl_set:cx

\TP_templdecl_process_KV:nn

Parse the key declaration, and execute the list with a suitable definition of \KV@elt.

66 \cs_set_eq:NN \KV_elt:nn \TP_templdecl_process_KV:nn

67 \cs_set_nopar:Npn \KV_default_elt:n##1{

68 \PackageError{template}{Missing~ =~ after~ ##1}\@ehd}
e \cs_set_eq:NN\KV@elt\KV_elt:nn

0 \cs_set_eq:NN\KV@default@elt\KV_default_elt:n

1 \tl_set:Nn \1_TP_curr_name_tl {#1/#2}

72 \toks_clear:N\1_TP_default_assignments_toks

o~

At this point there should be a test for which catcode regime we are in. We just test if
spaces are ignored.

73 %\intexpr_compare:nNnTF{\char_value_catcode:n{‘\ }}=\c_nine
74 %\KV_parse_picky_no_space_removal_no_sanitize:n

75 %\KV_parse_picky_space_removal_no_sanitize:n

76 \KV@parse{#4}

Define the defaults: the setting for TPD>/\1_TP_curr_name_tl is a tricky since
\1_TP_default_assignments_toks may contain #. We have to use an x expansion
rather than o since that will hide those during the assignment. FIX THIS (see below)!

7 \cs_set_nopar:cpx { TPD>/\1_TP_curr_name_tl }
78 {\toks_use:N\1_TP_default_assignments_toks}

80 \tl_clear:c {TPR>/\1_TP_curr_name_t1l}
2 \tl_set_eq:cN {TP0>/\1_TP_curr_name_t1}\1_TP_curr_name_tl

Define the template (using \cs_new_nopar :Npn means that one can’t redefine a template
easily).

ss \cs_generate_from_arg_count:cNnn {TP>/\1_TP_curr_name_t1l}
s \cs_set:Npn {#3}{#5}
85 }

FIX this: The code above only works because in the past \t1l_set:cx was defined as
follows:

s \cs_set:Npn \tl_set:cx {\exp_args:Nc \tl_set:Nx}

i.e., expanding the second arg at the very end. This is no longer the case but for the
moment I revert to the old definition until the template code is fixed to not rely on
\tl_set:cx expanding the second arg at the very last minute.

The list of undefined keys and values is put in the list of the form
\KV_elt:nn{(keyl)}{(vall)}\KV_elt :nn{(key2)}I{(val2)}...

So just need to give this macro a suitable definition. We just need to look at the first
token of the value, to see what sort of key it is, so call a helper function to split that off.

22

¢z \cs_new_nopar:Npn \TP_templdecl_process_KV:nn #1#2 {J

ss \cs_set_eq:NN \TP_templdecl_add_global_or_nothing: \prg_do_nothing:
s \bool_set_false:N\1_TP_global_assignment_bool

9% \tl_set:Nn\1_TP_currkey_tl{#1}

oo \TP_templdecl_parse_KV:N#2\q_stop}

\TP_templdecl_parse_KV:N Case switch on the possible key types.
o2 \cs_new_nopar:Npn \TP_templdecl_parse_KV:N #1 {

In #1 we have key, in #2 the first character after the equal sign and in #3 the remainder of
the line. We now have to parse that remainder to find out if it contains a default value (in
brackets) and then set up the key declaration needed to parse instance declarations. The
method is similar in most cases: we call \TP_parse_optional_key_default:nw which
parses for the default and pass it already found key name as first argument, what to do in
the end as second argument, and the remainder delimited by \q_stop so that it becomes
parseable.

Note that the code in the second argument to \TP_parse_optional_key_default:nw
normally calls on a macro with one more argument than actually provided: the rea-
son being that the missing argument will be the remainder of the line (added by
\TP_parse_optional_key_default:nw after the default has be removed (if present)).

o3 \cs_if_free:cTF{TP_use_arg_type_#1:w}
oo {\PackageError{template}{Unknown~key~type~ (#1)~for~\1_TP_currkey_t1l}\@eha}
95 {\use:c{TP_use_arg_type_#1:w}}

The f and i keys are somewhat different since there we first have to parse for an additional

argument (a digit in case of f or an template type name in case of i):

One more alternative: a + after the equal sign signals global so we change \TP_templdecl_add_global_or_:
to append a \pref_global:D to the assignment toks and then reparse the rest.

9% % \cs_set_nopar:Npn \TP_templdecl_add_global_or_nothing:

A {\toks_put_right:Nn \1_TP_KV_assignments_toks {\pref_global:D} }
95 % \TP_templdecl_parse_KV:nw{#1}#3\TP_templdecl_parse_KV:nnw

0 }

\1_TP_global_assignment_bool For keeping track of the assignments.
100 \bool_new:N \1_TP_global_assignment_bool
\TP_use_arg_type_+:w The + does two things: Sets a boolean true to be used by the types that can’t simply be

prefixed with \pref_global:D and defines \TP_templdecl_add_global_or_nothing:
to put the prefix onto the list. After that we simply call the big switch again.®.

101 \cs_new_nopar:cpn{TP_use_arg_type_+:w} {

81t should probably all be changed to not rely on the prefix working

23

102 \bool_set_true:N\1_TP_global_assignment_bool

103 \cs_set_nopar:Npn \TP_templdecl_add_global_or_nothing:

10s {\toks_put_right:Nn \1_TP_KV_assignments_toks {\pref_global:D} }
105 \TP_templdecl_parse_KV:N

\TP_use_arg_type_l:w The 1 sets a length register. We disable the prefix and insert either \gsetlength or
\setlength depending on whether a + was seen or not.

107 \cs_new_nopar :Npn\TP_use_arg_type_l:w {
s \TP_parse_optional_key_default:nw

109 {

110 \cs_set_eq:NN \TP_templdecl_add_global_or_nothing: \prg_do_nothing:
111 \bool_if:NTF \1_TP_global_assignment_bool

112 {\TP_templdecl_setup_register_key:Nn\gsetlength}

113 {\TP_templdecl_setup_register_key:Nn\setlength}

114 ¥

115

\TP_use_arg_type_L:w The L sets a fake length register.

116 \cs_new_nopar : Npn\TP_use_arg_type_L:w {
\TP_parse_optional_key_default:nw

1 {\TP_templdecl_setup_fakeregister_key:NNn\setlength\1l_tmpa_skip}
10 }

\TP_use_arg_type_c:w The c sets a count register.

120 \cs_new_nopar :Npn\TP_use_arg_type_c:w {
121 \TP_parse_optional_key_default:nw

122 {

123 \cs_set_eq:NN\TP_templdecl_add_global_or_nothing:\prg_do_nothing:
124 \bool_if :NTF \1_TP_global_assignment_bool

125 {\TP_templdecl_setup_register_key:Nn\GSetInternalCounter}

126 {\TP_templdecl_setup_register_key:Nn\SetInternalCounter}

127 }

128 }

\TP_use_arg_type_C:w The C sets a fake count register.
120 \cs_new_nopar :Npn\TP_use_arg_type_C:w {
130 \TP_parse_optional_key_default:nw
151 {\TP_templdecl_setup_fakeregister_key:NNn
132 \SetInternalCounter\l_tmpa_int}
133 }

\TP_use_arg_type_n:w The n sets a token list variable.

124 \cs_new_nopar :Npn\TP_use_arg_type_n:w {

24

\TP_use_arg_type_f:w
\TP_templdecl_parse_f_arg:nw

\TP_use_arg_type_b:w
\TP_templdecl_setup_b_key:nn

>_templdecl_eval_b_key_value:nn

\TP_use_arg_type_s:w
\TP_templdecl_setup_s_key:n

135 \TP_parse_optional_key_default:nw
136 {\TP_templdecl_setup_n_key:N}
137 }

The £ defines a command with between 0 and 9 arguments.

126 \cs_new_nopar :Npn\TP_use_arg_type_f:w #1{

130 %\TP_templdecl_parse_f_arg:nw {#1}

140 \TP_parse_optional_key_default:nw{\TP_templdecl_setup_f_key:Nn{#1}}
1}

Helper for \TP_templdecl_parse_KV:nnw.
12 \cs_new_nopar:Npn \TP_templdecl_parse_f_arg:nw#1#2{

The third argument of \TP_templdecl_setup_f_key:Nn, i.e., the macro name, is the re-
maining data up to \q_stop which is picked up by \TP_parse_optional_key_default:nw.

143 \TP_parse_optional_key_default:nw{\TP_templdecl_setup_f_key:Nn{#1}{#2}}
s}

The b uses access to the \if_true: and \if _false: primitives. Needed?

s \cs_new_nopar :Npn\TP_use_arg_type_b:w {
146 \TP_parse_optional_key_default:nw

w7 {\TP_templdecl_setup_b_key:n}

148 }

1o \cs_new_nopar:Npn \TP_templdecl_setup_b_key:n#1{
150 \cs_set_eq:cN { if#1 } \if_true:

151 \TP_templdecl_define_key:n

152 { \TP_templdecl_eval_b_key_value:nn {#1}{##1} }

Modify so the boolean does not need to have been declared with \newif

152 \cs_new_nopar:Npn \TP_templdecl_eval_b_key_value:nn#1#2{
155 \cs_if_free:cTF {if#2}
156 { \PackageError{template}{Bad~boolean~setting~#1=#2}\@eha }

157 { \tl_set_eq:cc {if_#1:}{if_#2:}

158 \toks_put_right:Nf \1_TP_KV_assignments_toks
150 { \tl_set_eq:cc {if_#1:}{if_#2:} }

160 }

161}

The s chooses between true and false.

162 \cs_new_nopar :Npn\TP_use_arg_type_s:w {
163 \TP_parse_optional_key_default:nw
12 {\TP_templdecl_setup_s_key:n}

25

166 \cs_new_nopar:Npn \TP_templdecl_setup_s_key:n #1 {
167 \TP_templdecl_define_key:n

168 { \TP_templdecl_eval_s_key_value:nnn{##1}#1 }
160 }

\TP_use_arg_type_i:w The i expects an instance.

170 \cs_new_nopar :Npn\TP_use_arg_type_i:w #1{
171 \TP_parse_optional_key_default:nw{\TP_templdecl_setup_i_key:nnn{#1}}
2}

declaration hd =i{head} \fooo
use hd = mine
makes \fooo shorthand for \UseInstance{head}{mine}

also allowed: hd = \UseTemplate{head}{...}{...}
in case you want to use an unnamed instance of type head in this place.

\TP_templdecl_setup_i_key:nnn MH change: do either local or global.

173 \cs_new_nopar:Npn \TP_templdecl_setup_i_key:nnn#1#2{
172 \TP_templdecl_define_key:n

175 {

176 \TP_templdecl_eval_i_key_value:Nnn #2 {#1}{##1}
177 }

178

templdecl_eval_i_key_value:Nnn MH change: Add extra argument for local or global.

170 \cs_new_nopar:Npn \TP_templdecl_eval_i_key_value:Nnn #1#2#3 {
10 \tl_if_head_eq_meaning:nNTF {#3.}\UseTemplate
181 {

182 \iow_term:x{\token_to_str:N\UseTemplate\space seen}

Code below from \TP_templdecl_setup_f_key:Nn (should be combined and cleaned up)
at this point one should also check if first arg of \UseTemplate corresponds to #2 and if
not complain (not done)

183 {\TP_templdecl_declare_tmp_instance:nnnn #3 }

184 \toks_put_right:No \1_TP_KV_assignments_toks

185 { \exp_after:wN \KV@toks \exp_after:wN {\g_tmpa_tll} }
186 %\TP_templdecl_add_global_or_nothing:

187 %\toks_put_right:Nn \1_TP_KV_assignments_toks

188 % { \cs_set_nopar:Npx #1{ \toks_use:N \KV@toks} }

189 \bool_if:NTF \1_TP_global_assignment_bool

190 {\toks_put_right:Nn \1_TP_KV_assignments_toks

101 {\cs_gset_nopar:Npx #1 { \toks_use:N \KV@toks}}

192 T

103 {\toks_put_right:Nn \1_TP_KV_assignments_toks

26

\TP_use_arg_type_x:w
\TP_templdecl_setup_x_key:nn

\TP_use_arg_type_g:w
\TP_templdecl_setup_g_key:nn

\TP_templdecl_define_key:n

104 {\cs_set_nopar:Npx #1 { \toks_use:N \KV@toksl}}
195 }

196 }

197 {

108 \TP_let_instance:Nnn#1{#2}{#3}

We want the \cs_set_eq:Nc hiding in \TP_let_instance:Nnn to expand fully to two
csnames so we put a \tex_romannumeral:D O (which in itself expands to nothing) in
front. This expands the \cs_set_eq:Nc fully before finding out that \cs_set_eq:NwN is
not expandable.

199 \toks_put_right:Nf \1_TP_KV_assignments_toks
200 { \TP_let_instance:Nnn#1{#2}{#3} }

201 }

200}

The x runs internal code.

203 \cs_new_nopar:Npn\TP_use_arg_type_x:w {
204 \TP_parse_optional_key_default:nw

205 {\TP_templdecl_setup_x_key:n}

206 F

207 \cs_new_nopar:Npn \TP_templdecl_setup_x_key:n#1{

208 \TP_templdecl_define_key:n

20 { \toks_put_right:Nn\1_TP_KV_assignments_toks{#1} }
210}

The g runs any code.

211 \cs_new_nopar:Npn\TP_use_arg_type_g:w {
212 \TP_parse_optional_key_default:nw

213 {\TP_templdecl_setup_g_key:n}

o}

215 \cs_new_nopar:Npn \TP_templdecl_setup_g_key:n #1 {
216 \TP_templdecl_define_key:n{#1}}

Here we define the key in the current template. Original code from r522 is essentially
unreadable but we keep it here until the internal structure is finally sorted out.

217 \cs_new_nopar:Npn \TP_templdecl_define_key:n#1{
218 \exp_after:wN \cs_set:Npn \cs:w

219 KV@\1_TP_curr_name_tl @\1_TP_currkey_tl

220 \exp_after:wN\cs_end:

21 \exp_after:wN##\exp_after:wNi\exp_after:wN{

222 \exp_after:wN\TP_templdecl_remove_from_default_assignments:N

223 \cs:w KVO\1_TP_curr_name_tl O\1_TP_currkey_tl
224 \exp_after:wN \cs_end:

27

>_parse_optional_key_default:nw

>_templdecl_finish_key_setup:nw

1ish_key_setup_with_default:nnw

205 \TP_templdecl_add_global_or_nothing:
226 #1

227 }

228 }

Look for default value.

20 \cs_set:Npn \TP_ignore_leading_space_in_arg_ii:nn#1#2{

230 \exp_args:Nf\TP_ignore_leading_space_in_arg_ii_aux:nn

231 {\exp_not:N #2}{#1}

0}

233 \cs_set:Npn \TP_ignore_leading_space_in_arg_ii_aux:nn#1#2{#2{#1}}

236 \DeclareDocumentCommand\TP_parse_optional_key_default:nw{mo}{
237 \IfNoValueTF{#2}

238 {\TP_templdecl_finish_key_setup:nw{#1}}
239 {\TP_templdecl_finish_key_setup_with_default:nnw{#1}{#2}}
240 }

21 %\show\TP_parse_optional_key_default:nw
22 %h\exp_args:Nc\show{\string\TP_parse_optional_key_default:nw}

After having parsed the line and not found any default value it remains to actually define
the key for the instance parsing by executing the setup code (in #1) giving it #2 (i.e., the
remainder of the line) as an argument.

23 \cs_new_nopar:Npn \TP_templdecl_finish_key_setup:nw#1#2\q_stop{
24 \TP_ignore_leading_space_in_arg_ii:nn{#1}{#2}

245 %hli#1{#2}

o6}

If there is a default the situation is more complicated since we not only have
to set up the key for the instance but also have to add the default value to
\1_TP_default_assignments_toks in an appropriate way.

First set up the the key itself:

227 \cs_new_nopar:Npn \TP_templdecl_finish_key_setup_with_default:nnw#1#2#3\q_stop{
248 \TP_ignore_leading_space_in_arg_ii:nn{#1}{#3}
249 Y%ht #1 {#3}

Now we run the new key code (which is stored in \KV@. . . hopefully) and give it the de-
fault found. By doing this in a group and by locally emptying \1_TP_KV_assignments_toks
we will get the resulting assignment code into that register.

(We set \TP_templdecl_remove_from_default_assignments:N to \use_none:n since
this is a temporary operation and we don’t want to change the default really.)

20 \group_begin:

251 \toks_clear:N \1_TP_KV_assignments_toks

252 \cs_set_eq:NN \TP_templdecl_remove_from_default_assignments:N \use_none:n
253 \use:c{KV@\1_TP_curr_name_tl @\1_TP_currkey_t1}{#2}

28

\c_TP_true_tl

templdecl_eval_s_key_value:nnn

mpldecl_setup_register_key:Nnn

And now for a final trick: before closing the group again and losing our local changes we
run \exp_after:wN several times to get the value of \1_TP_KV_assignments_toks into
\1_TP_default_assignments_toks outside that group!

24 \exp_after:wN

25 \group_end:

26 \exp_after:wN

257 \toks_set:Nn

s \exp_after:wN

20 \1_TP_default_assignments_toks
0 \exp_after:wN

261 { \cs:w KVO\1_TP_curr_name_tl @\1_TP_currkey_tl \exp_after:wN \cs_end:
%2 \exp_after:wlN

263 { \toks_use:N \exp_after:wN \1_TP_KV_assignments_toks

64 \exp_after:wN

265 }

266 \toks_use:N\1_TP_default_assignments_toks

267 }

65

260 \tl_new:Nn \c_TP_true_tl {true}

270 \cs_new_nopar:Npn \TP_templdecl_eval_s_key_value:nnn#1#2#3 {
271 % no error check on this yet.

272 \tl_set:Nn \1_tmpa_tl {#1}

273 \tl_if_eq:NNTF \1_tmpa_tl \c_TP_true_tl

274 { \toks_put_right:Nn \1_TP_KV_assignments_toks {#2} }
275 { \toks_put_right:Nn \1_TP_KV_assignments_toks {#3} }

This is normally called automatically by \DeclareTemplate.

Command for setting a template attribute whose name corresponds directly to a TEX
count or length register

#1 the function to set the value eg \setlength.

#2 key name.

#3 the register to set.

This command fully evaluates the argument at declare time, and assigns the value to the
register. It also passes an assignment of the register to the final value into the parameter
list for the template.

If the value is a call to \DelayEvaluation, don’t evaluate it now, just pass the whole
assignment to the template. Remember to remove the \DelayEvaluation.

277 \cs_new_nopar:Npn \TP_templdecl_setup_register_key:Nn #1#2{

29

278 \TP_templdecl_define_key:n{
279 \tl_if_head_eq_meaning:nNTF{##1}\DelayEvaluation
280 {

Old line commented out. Remove \DelayEvaluation and also remove the braces sur-
rounding its argument.

281 \toks_put_right:Nn \1_TP_KV_assignments_toks {#1#2{##1}}
282 %\toks_set:No\1l_tmpa_toks{\use_ii:nn ##1}

283 %\toks_put_right:Nx \1_TP_KV_assignments_toks

284 % {\exp_not:n{#1#2}{\toks_use:N \1_tmpa_toks}}

285 3

check for \MultiSelection creeping up and if so add something like

\setlength\register{\ifcase\selector \or valuel \or value2
... \else valueotherwise \fi}

to \1_TP_KV_assignments_toks.

286 {

287 \tl_if_head_eq_meaning:nNTF{##1..}\MultiSelection
288 {

289 \group_begin:

290 \TP_multiselection_add:nnnnnn #1#2##1

201 \group_end:

there are probably better ways to do this (:-)

202 \tl_if_in:onTF{\toks_use:N\g_TP_multiselection_toks}\DelayEvaluation
293 {

204 \toks_put_right:No\1l_TP_KV_assignments_toks
205 {

296 \exp_after:wN#1\exp_after:wN#2\exp_after:wN
207 {\toks_use:N\g_TP_multiselection_toks}

208 }

299 }

300 {

301 \toks_put_right:No\1l_TP_KV_assignments_toks
302 {

303 \exp_after:wN #2

304 \exp_after:wN= \toks_use:N\g_TP_multiselection_toks\scan_stop:
305 }
306 }

otherwise do as before

307 }

30

\DelayEvaluation
\MultiSelection

nove_from_default_assignments:N

\TP_templdecl_setup_f_key:Nn

309 #1#2{##1}

310 \toks_put_right:No\1_TP_KV_assignments_toks {

311 \exp_after:wN #2 \exp_after:wN = \tex_the:D #2\scan_stop:
312 }

313 }

314 3

315 }

316 }

Since we are testing explicitly for \DelayEvaluation and \MultiSelection a few places
we better give them unique meanings!

517 \cs_new_nopar :Npn\DelayEvaluation #1{\use_none:n{\DelayEvaluationl}#1}
315 \cs_new_nopar:Npn\MultiSelection #1{\use_none:n{\MultiSelectionl}#1}

Note: the toks register is more or less a plists and should perhaps be implemented as
such as this would make far more readable code.

319 \cs_new_nopar:Npn \TP_templdecl_remove_from_default_assignments:N#1{
20 \cs_set_nopar:Npn \TP_tmp:w ##1#1##2##3#1##4\q_stop{

321 \1_TP_default_assignments_toks{##1##3}

322 }

223 \exp_after:wN \TP_tmp:w

324 \toks_use:N\1_TP_default_assignments_toks #1\scan_stop:#1\q_stop}

Same for macro names. Again usually called automatically when declaring a new tem-

plate.
#1 Determines how many arguments the function should have.

#2 The macro to be defined.

If the ‘##1°, the value passed as the argument of the key to the macro #2 is invoked starts
with \FunctionInstance, then a special procedure is taken. Instead of defining a macro
with the specified number of arguments, the paramater list of the nested function instance
is parsed, and #2 is defined to be a macro expanding to that instance. In this case the
specified template is responsible for picking up the requested number of arguments. (This
is not checked.)

325 \cs_new_nopar:Npn \TP_templdecl_setup_f_key:Nn#1#2{

##1 can either be arbitrary inline code, in which case it will be defined with something
similar to \newcommand [val] so it needs to use #1 — #val.

define it locally here (why this, David???)

326 \TP_templdecl_define_key:n
327 { \TP_templdecl_define_function:NNn#1#2{##1} }

38 F

31

>_templdecl_define_function:NNn

\TP_templdecl_setup_n_key:N

>_templdecl_multiselection:nnnn

Use number of arguments to define function.

220 \cs_new_nopar:Npn \TP_templdecl_define_function:NNn#1#2#3{
30 \cs_generate_from_arg_count:NNnn #2 \cs_set:Npn {#1}{#3}
331 \toks_put_right:Nf \1_TP_KV_assignments_toks {

332 \cs_generate_from_arg_count:NNnn #2 \cs_set:Npn {#1}{#3}
333 }

334}

Here is the extended version that tries to deal with \MultiSelection.

In case of ‘n’ keys there is no evaluation at declaration time so it is not sensi-
ble to look for \DelayEvaluation. For this reason as well as for the fact that
\TP_multiselection_add:nnnnnn above assumes that it deals with registers that can
be accessed via \toks_use:N we have to use a different command to handle the
\MultiSelection args but it is essentially doing the same.

335 \cs_new_nopar:Npn \TP_templdecl_setup_n_key:N#1{
336 \TP_templdecl_define_key:n{
337 \tl_if_head_eq_meaning:nNTF{##1..}\MultiSelection

338 {

339 \group_begin:

340 \TP_templdecl_multiselection:nnnn ##1
341 \group_end:

Extracting the correct item from the \if_case:w we are building requires a bit of care.
Firstly we want to expand the appropirate number of times to get to the item but we
also want to ensure we do not have any unwanted leftover \fi:s or other junk which is
bound to cause errors later on. Therefore we start an £ expansion (so we don’t have to
count \exp_after:wNs and then stop it again when we want to.

342 \toks_put_right:Nx\1_TP_KV_assignments_toks {

343 \exp_not:n{\tl_set:Nf #1} { \toks_use:N \g_TP_multiselection_toks}
344 }

345 }

346 {

347 \cs_set_nopar:Npn #1{##1} % setting it?
348 \toks_put_right:Nn \1_TP_KV_assignments_toks

349 { \tl_set:Nn #1{##1} }

350 }

31}

350}

Start the \if_case:w. When the item is retrieved using an f type expansion we better
stop it at the right place once we have emerged on the other side of the conditional.

353 \cs_new_nopar:Npn \TP_templdecl_multiselection:nnnn #1#2#3#4{

35 \toks_gset:Nn \g_TP_multiselection_toks {\if_case:w #2}
355 \clist_map_inline:nn {#3}{

32

\DeclareInstance

\DeclareCollectionInstance

\UseCollection

\TP_let_instance:Nnn

\UseInstance

356 \TP_multiselection_add_or_case:n {\exp_stop_f:##1}
357 }

355 \toks_gput_right:Nn\g_TP_multiselection_toks {

350 \else: \use_i_after_fi:nw { \exp_stop_f: #4} \fi:

{type}{instname}{templatename}{keyval}

562 \cs_new_nopar:Npn \DeclareInstance { \DeclareCollectionInstance{} }

{collection}{typet{instname}{templatename}{keyvall} The fifth argument is picked
up implicitly.

563 \cs_new:Npn \DeclareCollectionInstance#1#2#3#4{
34 \TP_declare_instance:cnn { <#1>#2/#3 }{ #2/#4 }
365 }

{type}{collection}

366 \cs_new_nopar:Npn \UseCollection#1#2{
367 \tl_set:cx { TP@<#1> }

368 { {#2} \TP_get_arg_count:n{#1} }
360 F

\internalcommand{type}{instname}

The way this macro is used, it must result in \cs_set_eq:NwN <csnamel> <csname2> after
exactly two expansions as it is used this way in \TP_templdecl_eval_i_key_value:nnn!

570 \cs_new_nopar:Npn \TP_let_instance:Nnn#1#2#3{
371 \cs_set_eq:Nc #1

372 {

373 \cs_if_free:cTF { \TP_get_csname_prefix:n{#2} #3 }
374 { <>#2/ }

375 { \TP_get_csname_prefix:n{#2} }

376 #3

377 }

378 }

{type}{instname}

370 \cs_new_nopar:Npn \UseInstance#1#2{

350 \TP_let_instance:Nnn \1_tmpa_tl {#1}{#2}
381 \tl_if_eq:NNTF \1_tmpa_tl \scan_stop:

382 \INSTANCEundefined

383 \1_tmpa_tl

33

|ldecl_declare_tmp_instance:nnnn

\ShowTemplate

\ShowCollectionInstance

lecl_setup_fakeregister_key:NNn

This macro is called when we have seen a \UseTemplate declaration as part of an i key
value. Therefore the first argument will be dropped (it contains the token \UseTemplate)
the second and third will be combined to refer to the template and the fourth argument
will be implictly picked up by \TP_declare_instance:Nnn.

35 \cs_new:Npn \TP_templdecl_declare_tmp_instance:nnnn#1#2#3{/
386 \TP_declare_instance:Nnn \g_tmpa_tl {#2/#3} }

Some extension to \ShowTemplate so that we also get to see the restrictions if any

se7 \cs_new_nopar:Npn \ShowTemplate#1#2{

388 \iow_term:x{****x**x~ Template:~ #1/#2~ *kk**x*}
389 \iow_term:x{*}

300 \iow_term:x{*~ Defaults:}

301 \iow_term:x{*}

392 \iow_term:x{\token_to_str:N\TPD>/#1/#2=
303 \cs_meaning: c{TPD>/#1/#2}}

304 \iow_term:x{*}

395 \iow_term:x{*~ Restrictioms:}

306 \iow_term:x{*}

307 \iow_term:x{\token_to_str:N\TPR>/#1/#2=
398 \cs_meaning:c{TPR>/#1/#2}}

309 \iow_term:x{*}

400 \iow_term:x{*~ Body:}
401 \iow_term:x{*}

402 \cs_show:c {TP>/#1/#2}}

203 \cs_new_nopar:Npn \ShowCollectionInstance#1#2#3{

404 \iow_term:x{*xx****~ Instance:~ <#1>#2/#3~ *kkkkxx}
405 \iow_term:x{*}
406 \cs_show:c {<#1>#2/#3}}

207 \cs_new_nopar:Npn \ShowInstance{\ShowCollectionInstance{}}

{setcomand}{privateregister}{key}{internalcode}

205 \cs_new_nopar:Npn \TP_templdecl_setup_fakeregister_key:NNn#1#2#3{
400 \TP_templdecl_define_key:n{

410 \tl_if_head_eq_meaning:nNTF{##1..}\DelayEvaluation

411 {

In the v0.08 version of template.dtx a \DelayEvaluation for a faked register would
simply be equiv to a \cs_set_nopar:Npn (code is below commented out). The negative
side effect of this is that something like =L used with \DelayEvaluation would not allow
for calc syntax since it would end up as \cs_set_nopar:Npn \foo{a+b}. The code below
changes this to first assign to a scratch register (at runtime) and then do an \edef. Could
be coded differently to save space (at cost of time)

34

\g_TP_multiselection_toks

\TP_multiselection_add:nnnnnn

a2 % \toks_put_right:Nn \1_TP_KV_assignments_toks {\cs_set_nopar:Npn #3{##1}}

a3 h \toks_put_right:Nn \1_TP_KV_assignments_toks

as h {#1#2{##1}\cs_set_nopar:Npx #3{\toks_use:N#2}}
415 \toks_set:No \1_tmpa_toks {\use_ii:nn ##1}

416 \toks_put_right:Nx \1_TP_KV_assignments_toks {

a7 \exp_not :n{#1#2}{\toks_use:N \1_tmpa_toks}

418 \exp_not:n{ \cs_set_nopar:Npx #3{\toks_use:N#2} }

419

420 }

421 ¥

Otherwise same game for fake registers except that instead of passing the register to
\TP_multiselection_add:nnnnnn we pass a temp fake one and doing a def instead of
using \setlength or \setcounter

and i haven’t done the \DelayEvaluation bit for that case! as i’m not sure what the
best approach is for those things’

422 {

423 \tl_if_head_eq_meaning:nNTF{##1..}\MultiSelection

424 {

425 \group_begin:

426 \TP_multiselection_add:nnnnnn#1#2##1

427 \group_end:

428 \toks_put_right:Nx\1_TP_KV_assignments_toks

429 {\exp_not:n{\cs_set_nopar:Npn #3} {\toks_use:N\g_TP_multiselection_toks}}
430 3

431 {

432 #1#2{##1}

433 \toks_put_right:Nx\1_TP_KV_assignments_toks

434 {\exp_not:n{\cs_set_nopar:Npn#3} {\toks_use:N#2}}
435 }

436 3

437 }

438 }

139 \toks_new:N \g_TP_multiselection_toks

{{operation)} {(register)} \MultiSelection {(selector)} {(case-list)} {{else-case)}

This command builds up the \if_case:w code from the three arguments of \MultiSelection
and stores it in \g_TP_multiselection_toks. This code is supposed to be run in a group

so a) we don’t have to initialise \g_TP_multiselection_toks and b) all changes to the
used registers not affecting the outside.

20 \cs_new_nopar:Npn \TP_multiselection_add:nnnnnn #1#2#3#4#5#6{

9we might disallow it for that case in general — not a nice rule but an explainable one

35

[P_multiselection_add_or_case:o

\IfExistsInstanceTF

441 \toks_gset:Nn \g_TP_multiselection_toks {\if_case:w #4}
w2 \clist_map_inline:nn {#5}{

43 \tl_if_head_eq_meaning:nNTF{##1..}\DelayEvaluation
444 {

445 \TP_multiselection_add_or_case:n {##1}

446 T

447 {

448 #1#2{##17}

449 \TP_multiselection_add_or_case:o { \toks_use:N #2 }
450 ¥

451 }

452 \toks_gput_right:Nn \g_TP_multiselection_toks {

453 \else: \use_i_after_fi:nw{#6}\fi:

45 b

455 }

No need to worry about where \or: is allowed to be added since all loops in IETEX3
process the item outside conditionals.

156 \cs_new_nopar:Npn \TP_multiselection_add_or_case:n #1 {
ss7 \toks_gput_right:Nn \g_TP_multiselection_toks {

458 \or: \use_i_after_orelse:nw{#1}

459 }

460 F

w1 \cs_generate_variant:Nn \TP_multiselection_add_or_case:n {o}

Since i like to set things like item-label-text using this mechanism i need to handle
the ‘n’ key specially.

Actually i could have probably extended \TP_templdecl_setup_f_key:nnN thus making
this generally available to all f{number) keys but was too lazy (or too stupid) to get it
right first time so settled for the simple solution.

So \TP_templdecl_parse_KV:nnw now calls \TP_templdecl_setup_n_key:nN for the ‘n’
key. looks like this thus be fixed some time soon

tests that there is a default definition taken from xinitials.dtx:

262 \cs_new_nopar:Npn \IfExistsInstanceTF#1#2{
463 \cs_if_exist:cTF{<>#1/#2}
464 }

FMi: what happens if we are in collection FOO and there exists an instance I for type T
within this collection but there doesn’t exist an instance in the empty collection?

What would happen if ... — not clear to me what the sematics really should be. The
code below is not better only different(and slower).'"

10fx semantics

36

w65 \cs_set_nopar:Npn \IfExistsInstanceTF#1#2{

w6 \TP_let_instance:Nnn \1_tmpa_t1l {#1}{#2}

w67 % next is not \tl_if_eq:NNTF but ...FT so done manually
468 \if _meaning:w\l_tmpa_tl\scan_stop:

469 \exp_after:wN\use_ii:nn

a0 \else:

a1 \exp_after:wN\use_i:nn

472 \fi:}

\DeclareRestrictedTemplate Setting it up:

\DeclareRestrictedTemplate
{T-type} {new-T-name} {source-T-name} {keyvals}

This uses the same code as T-type source-T-name but adds settings from keyvals

473 \cs_new_nopar:Npn \DeclareRestrictedTemplate#1#2#3#4{

a7 % CCC do we need a group here??

a5 \tl_set_eq:cc { TPD>/#1/#2 } { TPD>/#1/#3 }

476 \tl_set_eq:cc { TP>/#1/#2 } { TP>/#1/#3 }

477 \toks_set:Nv \1_TP_KV_assignments_toks { TPR>/ #1 / #3 }
a5 % adds stuff to \1_TP_KV_assignments_toks

a9 \setkeys {\cs:w TPO>/#1/#3\cs_end: }H{#4}

1 \tl_set:cx { TPR>/#1/#2 }

482 { \toks_use:N \1_TP_KV_assignments_toks }
a3 \cs_if_free:cTF { TPO>/#1/#3 }

484 { \tl_set:cn {TPO>/#1/#2}{#1/#3} }

485 { \tl_set_eq:cc {TPO>/#1/#2}{TPO>/#1/#3} 1}

486 F

Internals:

1stdecl_generate_assignments:nn These could probably be inlined, even when they do something!

Assumption: setkeys fully expands its first argument.

27 \cs_new_nopar:Npn \TP_instdecl_generate_assignments:nn#1#2 {

488 % Returns to \1_TP_KV_assignments_toks
489 % the restrictions

490 % stored in the TP-structure (at present
491 % in YAM) of the template #1

492

N}

\exp_args:NNo \toks_set:No \1_TP_default_assignments_toks
493 {\cs:w TPD>/#1\cs_end:\scan_stop:\scan_stop:}

494 \toks_set:Nv \1_TP_KV_assignments_toks { TPR>/ #1 }
495 \setkeys { \cs:w TPO>/#1 \cs_end: }
496 {#2} % adds stuff to \1_TP_KV_assignments_toks

497
s % prepends stuff to \1_TP_KV_assignments_toks
499 \exp_after:wN\TP_instdecl_add_default_recurse:nn

5

37

500 \toks_use:N\1_TP_default_assignments_toks

501

502 }

instdecl_add_default_recurse:nn [2001/06/10 Think about doing this properly with explicit plists! — but this means that
one has to think about whether or not plists should be implemented as token registers
and not as tl vars as they are now.]

s0: \cs_new_nopar:Npn \TP_instdecl_add_default_recurse:nn#1#2{
soo \token_if_eq_meaning:NNF #1\scan_stop:

505 {

506 \1_tmpa_toks{#2}

507 \tl_set:Nx \1_tmpa_tl {

508 {\toks_use:N \1_tmpa_toks \toks_use:N \1_TP_KV_assignments_toks}
509 ¥

510 \1_TP_KV_assignments_toks \1_tmpa_tl

511 \TP_instdecl_add_default_recurse:nn

512 }

13

TPD>/type/name stores the default parameter assignments.

TPR>/type/name stores the parameter assignments that have been made for a restricted
template otherwise it is undefined (or \scan_stop:).

TPO>/type/name stores the full name (i.e. as type/name) of the template a restricted
template is coming from originally.

'P_split_finite_skip_value:nnNN This macro is for use in error checking template values like text-float-sep that can’t
contain infinite glue and needs the shrink and/or stretch components. First argument is
the skip register (which is likely to be user input), second is a template key name, and
the last two are the (dimen) registers that stores the stretch and shrink components.
Assignments are global.

5.2 \cs_new_nopar:Npn \TP_split_finite_skip_value:nnNN #1#2{
sis \skip_split_finite_else_action:nnNN {#1} {

516 \PackageError{template}{Value~ for~ key~ #2~ contains~ ‘fil(11)°’}

517 {Only~ finite~ minus~ or~ plus~ parts~ are~ allowed~ for~ this~ key.}
518 }

519 F

s20 (/package)

38

	Contents
	1 Introduction
	2 Commands
	2.1 Template declaration commands
	2.2 Instance declaration commands
	2.3 Key value commands
	2.4 Processing commands
	2.5 Test commands

	3 Examples of template key types
	3.1 Attributes that receive names as values
	3.2 Attributes that receive functions as values
	3.3 Attributes that receive dimensions as values
	3.4 Attributes that receive integers as values
	3.5 Attributes that receive template instances as values
	3.6 Attributes that receive true or false values
	3.7 Attributes that accept any value

	4 A complete example
	4.1 Declaring the template type
	4.2 Defining a first template
	4.3 Defining a better template
	4.4 Defining a few instances

	5 Notes
	5.1 Note on multi-valued parameters
	5.2 Notes on template restriction
	5.3 Open issues

	6 Implementation

