
The template package∗

DPC, FMi

2007/09/21

Contents

1 Introduction 2

2 Commands 4
2.1 Template declaration commands 4
2.2 Instance declaration commands . 5
2.3 Key value commands . 5
2.4 Processing commands . 5
2.5 Test commands . 6

3 Examples of template key types 6
3.1 Attributes that receive names as values 6
3.2 Attributes that receive functions as values 6
3.3 Attributes that receive dimensions as values 7
3.4 Attributes that receive integers as values 7
3.5 Attributes that receive template instances as values 7
3.6 Attributes that receive true or false values 7
3.7 Attributes that accept any value 8

4 A complete example 8
4.1 Declaring the template type . 8
4.2 Defining a first template . 10
4.3 Defining a better template . 12
4.4 Defining a few instances . 15

5 Notes 16
5.1 Note on multi-valued parameters 16
5.2 Notes on template restriction . 17
5.3 Open issues . 17

6 Implementation 18
∗This file has version number 652, last revised 2007/09/21.

1

1 Introduction

A Template is a named ‘function’ that has a fixed number of mandatory arguments
and an additional set of keys or ‘named attributes’ that are set in a ‘key value
list’. That is, a comma separated set of assignments of the form:
〈key 1〉 = 〈value 1〉 , 〈key 2〉 = 〈value 2〉 . . .

More specific instances of the template may be declared by specifying settings
of the parameters. The key value list is parsed at the time the instance is declared,
and an ‘internal’ set of parameter assignments is passed to the template code. It
is normally not parsed at run-time, though it is possible to enforce this behaviour.

Templates have a type and a name. Templates of the same type have the
same argument and parameter structure. That is, templates of the same type
are expected to be exchangeable semantically. (However, except for checking that
templates of the same type always have the same number of arguments this is not
enforced by the code.)

A template type is declared via the \DeclareTemplateType declaration which
takes two arguments: the name for the type and the number of arguments a
template of this type requires.

Templates are declared via the \DeclareTemplate command which takes five
arguments

• The type of the template (no \).

• The name of the template (no \).

• The number of arguments for the template (same as on type declaration).

• A list declaring the keys accepted by the template, with information about
the action to take when the key is specified with a value.

• The code for the template. This may be arbitrary TEX code. At some
point it should execute \DoParameterAssignments to run the parameter
assigments.

The mandatory arguments are accessed via #1, #2, . . .

Each element of the key specification list is of the form:

〈key name〉 = 〈key type〉 〈optional default〉 〈internal code〉

The 〈key types〉 are essentially specified by giving a symbolic representation of
the assignment function to be used by TEX.

Currently the possibilities are

2

key type letter internal code argument form
Command fn command name command definition
name n command name command definition
length l length register calc length syntax
fake length L command name calc length syntax
count c count register calc count syntax
fake count C command name calc count syntax
boolean b name of \newif switch true or false
switch s {〈true code〉}{〈false code〉} true or false
instance i{〈type〉} command name instance of this type
direct x Internal code any
general g general code any

In addition, any of these types may be prefixed by + to denote a global as-
signment (described below). f takes a digit from 0–9 to denote the number of
arguments. n is in fact the same as f0. When an instance is declared The value
assigned to the key should be the definition of the command, using #1. . . #9 to
denote the specified arguments.

c takes an internal form a count register, not a LATEX counter name.
For f, n, l, and c, the assignment is done twice, once at the time an instance is

declared. (This may involve using calc expresions. Then the ‘primitive assignment’
of the value (not using calc) is copied to the internal parameter list, to be executed
when an instance is run. Sometimes you need the expression to be evaluated at
the time an instance is run rather than the time it is declared. For example
it may be an expression involving some values that are not fixed throughout a
document. In this case the instance declaration may give a value in the form
\DelayedEvaluation{〈calc expression〉}. In this case the value is not evaluated
when the instance is declared, and instead the entire expression is copied to the
‘internal parameter list’ and is evaluated whenever the instance is used.

L and C take the same value types as l and c but the internal assignments are
to macros not registers.

Keys declared with b and s each take values either true or false. if the key
zzz is declared with b then specifying zzz=true will essentially pass \zzztrue to
the internal parameter list (although in fact \zzztrue need not be defined) . If
instead zzz had been declared via s, then zzz=true would pass the tokens of the
{〈true code〉} to the internal parameter list.

If a key is specified as x, then when used the internal code will be copied to
the internal parameter lists. This code may use #1 to denote the value supplied
to the key in the instance declaration. Note that this code is only copied at the
time the instance is declared. It is not executed at this time. It is executed when
the instance is executed.1

If a key is declared with g then the code is run at the time the in-
stance is declared. By default nothing is passed to the internal parameter
list. This code may use #1 to denote the value that will be supplied when

1Despite the question of whether or not x and g are still necessary these days, they have the
wrong ‘names’ since x is the one that is not executed during delcaration while g is.

3

an instance is declared. Any code that should be run when an instance
is executed should be explicitly passed to the internal parameter list using
\toks_add_right:Nn\l_TP_KV_assignments_toks{. . . }

A key declared with i{〈type〉} takes as value the name of a declared instance
of that type. The command token associated with the key will store a command
essentially equivalent to a call to \UseInstance{〈type〉}{〈name〉}, but in a slightly
optimised internal form. As an exception to this rule the replacement code may
be of the form \UseTemplate followed by the key settings for the template but
without the mandatory arguments. In this case the ‘inner’ instance declaration is
‘pre compiled’ and the token assigned to the store the value assigned to this key
will execute an instance of the template directly, it will not re-parse the keyword
settings each time the instance is used.

2 Commands

2.1 Template declaration commands

\DeclareTemplateType {〈type〉}{〈num〉}

Declare a template type.

\DeclareTemplate {〈type〉}{〈tname〉}{〈num〉}{〈keyspec〉}{〈code〉}

Declare a template 〈tname〉 of type 〈type〉 with the set of keys as defined by
〈keyspec〉. From this template instances can be declared using \DeclareInstance
At runtime such instances will run 〈code〉 and expect 〈num〉 mandatory arguments
(same number for all templates of one type).2

\DeclareRestrictedTemplate {〈type〉}{〈new-tname〉}{〈old-tname〉}{〈keyvals〉}

Declare as new template 〈new-tname〉 for type 〈type〉 by taking template
〈old-tname〉 as the basis and setting one or more of its keys to specific values.

\DoParameterAssignments

The list of key value assignments made (and saved) during template declaration
is evaluated at this point in the template code.

2The 〈num〉 argument is redundent as it can be deduced from the type. However, for practical
reasons it seems better to keep that information with each individual template declaration.

4

2.2 Instance declaration commands

\DeclareInstance {〈type〉}{〈iname〉}{〈tname〉}{〈keyvals〉}

Declare an instance of type 〈type〉 named 〈iname〉 build from using template
〈tname〉 with key settings as given by 〈keyvals〉.

\DeclareCollectionInstance {〈collection〉}{〈type〉}{〈iname〉}{〈tname〉}{〈keyvals〉}

Same as \DeclareInstance except that this instance is only active when for the
type 〈type〉 the collection 〈collection〉 was selected via \UseCollection. E.g.,
within the frontmatter one could make all headings behave differently by defining
collection instances for template type ‘head’.

2.3 Key value commands

\DelayEvaluation{〈code〉}

Used in the value spec for an instance to declare that the value 〈code〉 should not
be evaluated at declaration time but at run-time. Can also be used in the defaults
for keys (given in square brackets) in the declaration of templates.

\MultiSelection 〈counter〉 {〈cases〉} {〈else〉}

Used in the value spec for an instance key to declare that the value of this key
depends on the current setting of 〈counter〉 at run-time. The 〈cases〉 argument
is a comma-separated list of “values”, the 〈else〉 argument a single “value”. If
at run-time 〈counter〉 has the value i then the i-th element of the 〈cases〉 list is
selected. If that does not exist the 〈else〉 case is returned.

2.4 Processing commands

\UseTemplate {〈type〉}{〈tname〉}{〈keyval〉}

Execute a template 〈tname〉 of type 〈type〉 at run-time using 〈keyvals〉 as the value
assignments for its keys. In this case the keys are evaluated at run-time thus this
method is far slower than using a predeclared instance of this template (see below).
This command can also appear as the value for a key of type ‘i’ in which case the
evaluation happens at declaration time of the template that contains this key!

\UseInstance {〈type〉}{〈iname〉}

Run the instance 〈iname〉 of template type 〈type〉. If a collection is in force see if
there is a collection instance of name 〈iname〉 and if so run that instead.

5

\UseCollection {〈type〉}{〈collection〉}

Declare that from now on (normal scoping rules) the collection 〈collection〉 for
template type 〈type〉 is in force. This means that a call to \UseInstance will first
check if there is a collection instance defined, and if so use that instance, otherwise
use the normal instance.

2.5 Test commands

\IfExistsInstanceTF {〈type〉}{〈iname〉}{〈true〉}{〈false〉}

Test if for template type 〈type〉 an instance with name 〈iname〉 exists. Select
〈true〉 or 〈false〉 code accordingly.

3 Examples of template key types

The general syntax for key specification in templates (fourth argument of the
command \DeclareTemplate) is:

{
〈key-name 1〉 =〈key-type 1〉 〈optional-default 1〉 〈storage-bin 1〉,
〈key-name 2〉 =〈key-type 2〉 〈optional-default 2〉 〈storage-bin 2〉,

...
}

In this section we look at all possible key types and give examples for them.

3.1 Attributes that receive names as values

The type n expects to receive a LATEX name as a value. Used, for example, to
specify the name of a LATEX counter to use.

heading-id =n \heading@id,

counter-id =n [\DelayEvaluation{\heading@id}] \heading@counter,

Notice the use of \DelayEvaluation in the default of counter-id. It is necessary
to make the default the token \heading@id if we want to inherit the value from the
heading-id key. Otherwise it gets value of \heading@id at the time the instance
is declared.

3.2 Attributes that receive functions as values

The type f〈num〉 expects a function with 〈num〉 arguments as a value. The
arguments are denoted by #1, #2, etc. In most cases either f0 (for declarations)
or f1 (to format one argument) are needed.

initial-font =f0 \initial@font,

initial-format =f1 [#1] \initial@boxhandling,

6

3.3 Attributes that receive dimensions as values

As far as specifying instances the l and L type behave identically. They differ only
in the type of internal storage-bin they need: l expects a length register while L
expects an ordinary macro name and assigns its value via \def:Npn .

pre-sep =l \topsep,

post-sep =L \botsep,

3.4 Attributes that receive integers as values

The c and C type receive integers as values. Again either of them can be trans-
parently used. In case of c the 〈storage-bin〉 has to be a TEX count register not a
LATEX counter name, i.e., set up via \newcount. (LATEX counters can be used as
well if they are accessed via their internal name, i.e., via \c@〈LATEX-counter〉)

pre-penalty =c \@beginparpenalty,

penalty =C \hmaterial@penalty,

3.5 Attributes that receive template instances as values

The type i{〈type〉} takes as value the name of a declared instance of that type. The
〈storage-bin〉 associated with the key will store a command essentially equivalent
to a call to \UseInstance{〈type〉}{〈name〉}, but in a slightly optimised internal
form.

As an exception to this rule the replacement code may be of the form
\UseTemplate followed by the key settings for the template but without the
mandatory arguments. In this case the ‘inner’ instance declaration is ‘pre com-
piled’ and the token assigned to the store the value assigned to this key will execute
an instance of the template directly, it will not re-parse the keyword settings each
time the instance is used.

justification-setup =i{justification} \list@justification,

Usage within an instance declaration is either

justification-setup = raggedright,

i.e., name of a declared instance or a call to \UseTemplate

justification-setup = \UseTemplate{justification}{TeX}

{ startskip = 0pt, ... },

3.6 Attributes that receive true or false values

The type s expects the strings true or false as values. In this case the decla-
ration has no 〈storage-bin〉. Instead the declaration consists of two brace groups
containing code. Depending on the value one of the groups gets copied verbatim
into the internal parameter list of the instance and gets executed at run-time at
the point where \DoParameterAssignments is seen.

7

item-implicit-boolean =s

{ \def:Npn \item@implicit@code{\item\relax} }{},

numbered-boolean =b [true] @heading@nums,

3.7 Attributes that accept any value

The type g is a low-level specification which contains arbitrary code in place of
the 〈storage-bin〉. This code is evaluated at declaration time of the instance and
by default nothing is passed to the internal parameter list (this has to happen
explicitly from within the code). #1 may be used to access the value specified.

The main purpose for this type is of historical nature (originally most of the
other types have been implemented internally using g).

The type x also requires code in place of the 〈storage-bin〉. However with this
type all of the code is copied unevaluated to the internal parameter list. There are
some applications for this type when implementing customisable defaults. How-
ever, it is likely that it will not survive a final release.

generic-key =g \typeout{#1},

extra-assigns =x \typeout{#1},

4 A complete example

The following example shows a sketch of a template for typesetting captions to be
used as part of a larger mechanism setting whole floats.3

We declare a template type caption then define an example template for that
type and finally produce some instances from that.

4.1 Declaring the template type

To define the template type we first have to ask ourselves what information would
be varying each time such a template is used? A potential answer could be the
following:

• The float name, e.g., ‘Table’ or ‘Fig.’ etc.

• The float number e.g., ‘10’ or ‘3–c’ etc.

• The actual caption text as specified in the document.

Since the above items would be differed in each instantiation of such a template
we would pass them as mandatory argument to the template.

Are there others? Possibly. Here are two more that seem to be useful, at least
in a number of cases:

• The text of the legend in document classes that distinguish between caption
text (heading to the figure/table) and legend (explanatory material)

3I made it up while I went along so if you spot the “missing brace” or some other blunder
tell me, FMi.

8

• Measure to which the caption should be typeset.

The last one of these might need some extra explanation. Suppose a design requires
that the caption width is decided depending on the width of the table of figure,
e.g., the caption is supposed to typeset below some illustration and should not be
wider than that illustration, or the caption is typeset aside to the illustration using
the remaining space. In that case the process that formats the whole float needs to
communicate with the current template to pass that (varying) information along.
Of course, that could happen by using global variables, e.g., the outer process
sets the measure as desired before calling the caption formatting template. What
makes more sense is likely to be a matter of taste but it also has to do with the
precise semantics of the template type. Staying with our example: if the the
semantics of the template type caption is supposed to produce a formatted box
(in TEX terms) then we should pass the measure as an argument if we ever intend
to allow for variations. If on the other hand the semantics are to format a certain
set of text into the current galley (which has measure of its own) then a measure
argument would not belong to this template type.

Are there other variations sensible? Yes, for example, instead of passing a
fixed string like “Fig.” as the first argument one could pass an abstract float type
identifier and let the template worry to deduce from that information what fixed
string to produce.

Another question: why should we pass the fixed text (or an abstract identifier
from which it can be deduced) and the number as separate arguments to the
template instead of passing a combined string (like it is done in the \@makecaption
command of LATEX 2ε)? Answer: because this allows to build templates that can
individually manipulate both bits of information, e.g., to format the number in a
different font, etc.

So what are the conclusions of this discussion? Defining the semantics of a
template type is difficult and often needs several trials to come up with something
that is covering the anticipated use. There is clearly not a cardinal way for defining
template types; how the overall separation into smaller units is done is partly a
matter of taste and partly a matter of the major layout characteristics that one
tries to support.

Returning to our example: let’s assume we settle for the first four arguments,
i.e., the calling template is responsible for setting the measure for the caption text
if necessary.

What we also have to do is to define (at least for ourselves) what data the
arguments accept and what their semantics are. An informal summary of that
could be the following:

Arg Data Type Description
1 text fixed float description
2 text/\NoValue float number
3 text caption text
4 text/\NoValue legend text

9

The second and the fourth argument are allowed to be missing (i.e., can get
\NoValue passed as a value). Note that the empty string in case of a text ar-
gument is different from \NoValue.

We further declare that it is permissible for a template of this type to ignore
the information provided by all arguments except 3, i.e., the caption text.

Finally the result of the template formatting should is to typeset text into a
current galley (paragraph mode in LATEX lingua).

All the above is semantic information that (at least right now) is not being en-
forced by declaring a template type (except for the number of arguments) but each
template of a certain type is supposed to conform to this specification nonetheless.4

This finally leads to the following declaration:

\DeclareTemplateType{caption}{4}

4.2 Defining a first template

We start by defining a simple template of type caption which roughly formats a
caption like those being presented in LATEX 2ε’s article class, i.e., the caption is
typeset as a paragraph if it is longer than a single line, otherwise it is centered.
The legend even if present is ignored. Above and below we give the designer the
possibility to add some space.

In fact the examples is more or less identical in code to \@makecaption except
that if the second argument (i.e., the number) is \NoValue it and its preceding
space5 gets ignored.

We start by declaring the template toosimple of type caption having four
mandatory arguments (as described in the discussion of the template type).

\DeclareTemplate{caption}{toosimple}{4}

The next argument of \DeclareTemplate lists all keys for the template. In this
case we have keys for the vertical spaces above and below. We make them type L
to save on registers but with a bit of care we could also have used scratch registers
like \@tempskipa etc. Their default values are both zero.

{

above-skip =L [0pt] \caption@above@skip ,

below-skip =L [0pt] \caption@below@skip ,

}

The final argument of \DeclareTemplate contains the actual processing code.
We start with looking at the second mandatory argument (caption number) to
find out if it is \NoValue and depending on the result define a helper command
\caption@start.

4To make this even clearer we are thinking of extending the template type declaration with
another argument in which one has to formally or informally (?) specifies information like the
one in the table above.

5For those who wonder: spaces are by default ignored within definitions when the new pack-
ages are used due to a command \InternalSyntaxOn, do get a normal space one has to use ~

and to obtain an unbreakable space \nobreakspace.

10

{

\IfNoValueTF{#2}

{ \def:Npn \caption@start{#1:~} }

{ \def:Npn \caption@start{#1~#2:~} }

Having dealt with the prelims we now run \DoParameterAssigments at which
point the keys of the template are made available, e.g., at this point all those right
hand containers such as \caption@above@skip get assigned the value specified in
an instantiation of the template. (That scheme allows to do preliminary processing
up front, e.g., defaults for the keys could be assigned prior to that point in which
case they are overwritten if the template instance specifies a different value. the
use of specifying defaults via the [..] syntax as done above is slightly faster at
run-time but needs more memory.)

\DoParameterAssigments

The rest of the code should look familiar to anybody who ever looked at
article.cls. The only point worth mentioning are the \relax commands af-
ter \caption@above@skip and \caption@below@skip. Since we have decided to
use L as key type these commands are macros and not registers containing the
dimensions as strings. This means that we have to be careful to ensure that TEX
knows where the dimension ends. In certain cases text following such a command
might be mistaken as being part of the dimension (e.g., if followed by the word
plus, etc.). In the code below this could only happen for the second \vskip but
it is good practice to always add a terminating \relax to avoid such hidden traps.

\vskip \caption@above@skip \relax

\sbox \@tempboxa {\caption@start #3}

\ifdim \wd\@tempboxa >\hsize

\caption@start #3\par

\else

\global \@minipagefalse

\hb@xt@\hsize{\hfil\box\@tempboxa\hfil}

\fi

\vskip \caption@below@skip \relax

}

Why is the above template of not much use? Simply because it doesn’t offer any
flexibility to declare different designs. The only alteration offered to the designer
is to modify the space above and below the caption, e.g., the following declaration
would mimic the definition within the article.cls class of LATEX 2ε:

\DeclareInstance{caption}{article}{toosimple}

{

above-skip = 0pt,

below-skip = 10pt,

}

And that’s all that can be manipulated. All items that people asking to change,
e.g., not having a colon after the number, using different fonts and font sizes, etc.
are still hard-wired and thus inaccessible. So we have to do better if we want to
make use of the power the template mechanism offers.

11

4.3 Defining a better template

First step in defining better templates is to ask ourselves a couple of questions:

• What are the main characteristics of the layout the template is supposed to
support?

• What are the elements that we want to allow (or can allow) the designer to
modify?

Take the first question first: the layout supported by the template of the
previous section had as its main characteristics that it would center the caption if
it would fit in a single line in the current measure. We could consider this being an
unchangable characteristic of the layout this template produces (and a designer
would need to use a different template of type caption if a design compatible
with this restriction is desired) or we could try to make our template smarter by
adding bells and wistles that allow the designer to say stuff like:

one-line-format = \hfil #1 \hfil,

or

one-line-action = center,

depending on how we intend to offer changing the behavior of the template. Like
when trying to define sensible template types we have no single road to heaven
(and probably as many to hell) — it has a lot to do with how we think about
design.

My advice, after having tried to work with these concepts for a while, is to
keep templates simple in so far as that most of not all attribute for a template
should be relevant for the design. In other words, if you have attributes that,
depending on their setting, make half of the other attributes not applicable then
it may be appropriate to think about providing several templates instead. To give
an example from LATEX 2ε: instead of having \@startsection deal with both
vertical heads and run-in heads provide individual templates. (\@startsection
is this famous command where design switches are build in by making dimensions
negative to signal something and afterwards use the absolute value.) Another way
to look at this is to say that a template should normally not contain large amounts
of code which is only selected in a subset of attribute settings.

As said before there are no golden rules, it is perfectly possible to make hugely
complicated templates that solve every possible aspect of layout one could think
of in one go — it is just that with keeping it more simple one can get the same
functionality with less headaches for the template writer as well as the template
user later on.

Returning to our example: allowing to handle the case of a single line caption
specially could well be considered part of the template. In contrast: layouts that
would put the caption number sideways, i.e., which would need totally different
internal coding should probably be coded as a separate template of type caption.

12

So for our next example template we settle for the fixed caption text plus
number (if any) being at the beginning of the variable caption text (coming from
the document) and being together formatted as some sort of a pargraph. In case
of the whole caption being a single line we allow the designer to specify how to
lay it out (e.g., centered, flush left, etc.). If there is a legend it will get formatted
by a vertical space followed by the legend formatted as another paragraph.

More precisely we allow for the following bells and wistles:

\DeclareTemplate{caption}{lesssimple}{4}

{

The designer can specify the space above and below the caption like we did in our
first example.

above-skip =L [0pt] \caption@above@skip ,

below-skip =L [0pt] \caption@below@skip ,

Regarding the caption number we support the case where no number is present
(the value being \NoValue) as well as the number being present. For both cases
the designer has to specify what formatting should be attached. By default all is
being typeset in the font the whole caption is presented but if there is a need for
it the designer can use the following keys to attach special formatting devices to
each particular item beside specifying special spacing information or replacing the
default colon after the number with something else.

number-format =f2 [#1~#2:~] \caption@number@format,

nonumber-format =f1 [#1:~] \caption@nonumber@format,

If the caption is fitting onto a single line we make it possible for the designer to
specify how this single line should be positioned (the default is to center the line).

single-line-format =f1 [\hfil#1\hfil] \caption@single@line@format,

The font for the caption (including the fixed text and the number unless specified
differently above) is going to be the one decided by the next key.

caption-font =f0 [\normalfont] \caption@font,

The next attribute deserves some extra explanation: here we make use of an in-
terface which is explained in more detail when we reveil the support for galley
formatting.6 In a nutshell the template type hj (hyphenation & justification)
allows one to define a) the justification concepts applied to the upcoming para-
graphs, e.g., whether they should be set flush left, adjusted, first line centered,
etc. b) the linebreaking strategy used and c) the hyphenation rules which should
apply. All this is done by selecting an appropriate (predefined) instance of this
type as will hopefully become somewhat clearer in the example instances shown
below.

caption-hj-setup =i {hj} [default] \caption@hj@instance,

6Guess I have to apologize for the fact that i partly make use of that interface in this ex-
ample while on other occasions (like the use of vertical spacing) within the example I do not—
consistency around midnight is not my strength I fear (FMi).

13

In case there is a legend to format we give the designer the possibility to specify
by how much vertical space it should be separated from the preceding paragraph
(i.e., the caption text). The attributes for font and hj setup are comparable to
those for the caption text itself (except that they will only apply to the legend).
The only addition is the key legend-text which is allowed to take a fixed text
(plus any formating and spacing for it) which will be added to the front of the
legend in case it is provided at all (by default it is empty).

legend-sep =L [0pt] \caption@legend@sep ,

legend-text =f0 [] \caption@legend@text,

legend-font =f0 [\normalfont] \caption@legend@font,

legend-hj-setup =i {hj} [default] \caption@legend@hj@instance,

}

The actual code for the template should hold few if any surprises. In fact it is more
or less identical to the one of the first template example, except that now we have
now taken out some of the hardwired decisions and placed them into attributes.

{

\IfNoValueTF{#2}

{ \def:Npn \caption@start{\caption@number@format{#1}{#2}} }

{ \def:Npn \caption@start{\caption@nonumber@format{#1}} }

\DoParameterAssigments

\vskip \caption@above@skip \relax

To properly measure the caption to determine if it fits a single line we have to set
it in the right font, so here as well as below we have to apply \caption@font.

\sbox \@tempboxa {\caption@font \caption@start #3}

\ifdim \wd\@tempboxa >\hsize

\begingroup

\caption@font \caption@hj@instance

\caption@start #3\par

\endgroup

\else

\global \@minipagefalse

\hb@xt@\hsize{\caption@single@line@format{\box\@tempboxa}}

\fi

To decide whether or not we have to set any legend we have to test #4 for being
\NoValue. This part of the code was not present in the previous example but
otherwise should be straight forward.

\IfNoValueF{#4}

{

\vskip \caption@legend@sep \relax

\begingroup

\caption@legend@font \caption@legend@hj@instance

\caption@legend@text

#4\par

\endgroup

14

}

\vskip \caption@below@skip \relax

}

I wouldn’t claim the the above template is good or contains everything that
would be desired and I’m sure that in the end we will have several such template
for typesetting the caption part and perhaps decide on a different template type
in the first place. So this is only to give a glimpse of how the template interface
could be applied and I hope that reading it can see a) how they can apply it to
other areas as well as see what is wrong with the example itself.

To just note one point that i thought of being wrong after writing the above
paragraphs: the key single-line-format was declared to be a function with one
argument with the idea that besides specifying the single line should be centered
(\hfil) on both sides, or flush left, or flush right (\hfil on one side) one could
also specify something like

single-line-format = \hspace{10pt}#1\hfil,

that is a fixed indentation on the left in case where the caption is a single line.
However, of course one can’t. Or at least it is not safe to do so since our test
in the code tests the width of the line without taking into account such a finite
fixed space and guess what might happen? So in summary, flexibility needs some
thought and often some afterthoughts as well — happy thinking :-)

4.4 Defining a few instances

So let us conclude this example with a few sample instances. We start with one
that repeats what current LATEX 2ε provides in the article class. It shows all keys
with values. However in fact only the first key is actually needed since all others
are the same as the default values in the template (and of course a legend is
not specifiable in standard LATEX coding so those settings simply do not apply
anyway).

\DeclareInstance{caption}{article}{lesssimple}

{

above-skip = 10pt,

below-skip = 0pt,

number-format = #1~#2:~,

nonumber-format = #1:~,

single-line-format = \hfil#1\hfil,

caption-font = \normalfont,

caption-hj-setup = default,

legend-sep = 0pt,

legend-text = ,

legend-font = \normalfont,

legend-hj-setup = default,

}

The next examples are taken from books on the shelf essentially a random
selection I fear. This one is from Introduction to Database Design by C. J. Date

15

and it uses Helvetica for the caption text with the caption flush left, with the
figure and the fixed string (e.g., ‘Fig.’ in bold face) separated by a quad of space.
No legend either so this is not set up. The hj instance noindentflushleft is
supposed to produce a ragged right paragraph without any indentation. It would
have to be set up elsewhere (instance to the template of type hj).

\DeclareInstance{caption}{DATE}{lesssimple}

{

above-skip = 10pt,

below-skip = 0pt,

number-format = \textbf{#1~#2}\quad,

nonumber-format = \textbf{#1}\quad,

single-line-format = #1\hfil,

caption-font = \fontfamily{phv} \normalfont,

caption-hj-setup = noindentflushleft,

}

The final example is from the book “Methods of Book Design” by H. Williamson
which sets the caption centered if it fits a single line but adjusted as a paragraph
without any indentation if longer than a single line. It uses old style numerals fol-
lowed by a period for the number (though the example isn’t quite right as i guess
the text font used already has oldstyle numerals as default, so \oldstylenums is
in fact not necessary).

\DeclareInstance{caption}{WILLIAMSON}{lesssimple}

{

above-skip = 10pt,

below-skip = 0pt,

number-format = #1~\oldstylenums{#2}.~,

nonumber-format = #1~,

single-line-format = \hfil#1\hfil,

caption-font = \normalfont,

caption-hj-setup = noindentadjusted,

}

5 Notes

5.1 Note on multi-valued parameters

The following code7 implements for registers (ie L,l,C,c keys) and for names (ie n
key) a multi-selection mechanism of the following form:

key = \MultiSelection \ListDepth {

\DelayEvaluation {2.5em},

20pt + 34pt }

{ \DelayEvaluation {1em} },

7docu taken from trial implementation in xlists.dtx, FMi

16

where the first argument to \MultiSelection is a counter, the second argument
is a comma separated list of values denoting the values for the cases 1, 2,. . . , and
the third argument contains the value for all other cases.

The values are evaluated at declaration time in case of registers and therefore
can contain calc expressions as well as \DelayEvaluation.

Due to the implementation the case list is not allowed to have a trailing comma!
And of course no checks are made whatsoever :-(

A probably much nicer syntax would be something like this:

key = \MultiSelection {

selector = \ListDepth,

1 = \DelayEvaluation {2.5em},

2 = 20pt + 34pt,

else = \DelayEvaluation {1em}

},

but i found that too difficult to implement right now.
I think it should also be considered if this kind of thing should be a generally

available feature on all key types especially on the f〈number〉 ones.
Anyway it is what i need for lists right now and as such it is sufficient.

5.2 Notes on template restriction

Possible semantics:
a: just:-) changes the defaults ie the new template has as defaults those of its

source as modified by the supplied keyvals;
b: similar to a: but also removes some keywords ie the new template will not

accept the keywods whose values are set by the suppied keyvals;
c: plan C.
Towards an implementation of b: but without a restriction on what keys appear

where.

5.3 Open issues

In this section unresolved issues or ideas to think about and perhaps implement
are collected. There is no particular order to them.

• The order of arguments in \UseCollection is illogical in my eyes! A collec-
tion typically modifies the behavior of several types and thus should perhaps
be first (as it is in the \DeclareCollectionInstance case). Or not, or what?

• How should \IfExistsInstanceTF behave for Collection instances? Do we
need a special check for those or a default action? Or do we need an addi-
tional test for the existence of collection instances?

• It was suggested that the template type declaration should get another ar-
gument in which (in?)formally the semantics for the template types are de-
scribed, e.g., data type of arguments, resulting output, . . . (somewhat like

17

the description arguments for functions and variables in Emacs-Lisp). The
advantage being that this helps employing the templates better as well as
perhaps guiding context sensitive editors to support the work with such
templates (e.g., providing help texts).

• The same might be of interest for the keys of individual templates though
here syntax support is already available to some extend by the declaration
of key types.

• There might be a need to distinguish between TEX’s dimen and skip registers.
Right now this is not done and both l and L accepts what LATEX calls “rubber
length” specifications.

• The type b can probably vanish. It is equivalent to specifying the mutators
of a \newif command in the brace groups, e.g.

numbered-boolean =b [true] @heading@nums,

numbered-boolean =s [true] {\@heading@numstrue}

{\@heading@numsfalse},

• See issue raised about syntax (and semantics) for \Multiselection.

• f0 keys should perhaps support \UseTemplate by replacing it with its in-
ternal form. or perhaps this is a rubbish idea?

• Marcin Wolinski suggested to use \EvalOnUse instead or in addition to
\DelayEvalutation.

6 Implementation

1 〈∗package〉
2 \ProvidesExplPackage

3 {\filename}{\filedate}{\fileversion}{\filedescription}

4 \RequirePackage{ldcsetup,xparse}

5 \RequirePackage{l3toks,l3tlp,l3skip,l3int,l3clist,l3token,l3calc}

Declare a private token register for building parameter lists. Having the num-
ber saves a few expandafters (probably not needed in the end).
6 \toks_new:N\l_TP_KV_assignments_toks

7 \toks_new:N\l_TP_default_assignments_toks

\TP_declare_instance:Nnn

\TP_declare_instance:cnn

Declare a command name to be an instance of a template ie with a particular
setting of the parameters.
#1 internal command name for instance to be (globally) declared
#2 template type/template name
#3 key value assignments for parameters of #2
8 \def_new:NNn \TP_declare_instance:Nnn 3{

9 \group_begin:

10 \TP_instdecl_generate_assignments:nn {#2}{#3}

18

11 \gdef:Npx #1 {

12 \tlp_if_eq:cNTF { TP>/#2 } \c_TP_doparameterassignments_tlp

If the body of the template consists only of the token \DoParameterAssignments,
then we insert the list of parameter assignments directly. Otherwise we have push
them onto the stack and prepare to execute the body code (which in turn will pop
them again when it reaches \DoParameterAssignments inside).
13 { \toks_use:N \l_TP_KV_assignments_toks }

14 {

15 \exp_not:N \TP_push_assignments:n

16 {\toks_use:N\l_TP_KV_assignments_toks}

17 \exp_not:c {TP>/#2}

18 }

19 }

20 \group_end:}

21 \def_new:Npn \TP_declare_instance:cnn{\exp_args:Nc\TP_declare_instance:Nnn}

\c_TP_doparameterassignments_tlp

22 \tlp_set:Nn \c_TP_doparameterassignments_tlp {\DoParameterAssignments}

\UseTemplate {type}{templatename}{keyval} Directly use a template with a particular pa-
rameter setting. This is also picked up if used in a nested fashion inside a param-
eter list.
#1 type of a template.
#2 name of a template.
#3 key value assignments for parameters of #1.
23 \def_new:NNn \UseTemplate 3{

24 \TP_instdecl_generate_assignments:nn {#1/#2}{#3}

25 \TP_push_assignments:

26 \cs_use:c { TP>/#1/#2 }

27 }

\DoParameterAssignments Access the parameter assignment list that was once stored in \l_TP_KV_assignments_toks
and then moved onto the \g_TP_assignments_stack_toks.
28 \def_new:Npn \DoParameterAssignments{

29 \exp_after:NN

30 \TP_pop_and_execute_assignments:nw

31 \toks_use:N \g_TP_assignments_stack_toks \q_stop

32 }

\TP_pop_and_execute_assignments:nw

33 \def_new:Npn \TP_pop_and_execute_assignments:nw#1#2\q_stop{

34 \toks_gset:Nn \g_TP_assignments_stack_toks {#2}

35 #1}

\g_TP_assignments_stack_toks

36 \toks_new:N \g_TP_assignments_stack_toks

37 \toks_gset:Nn \g_TP_assignments_stack_toks {\scan_stop:}% avoid brace loss

19

\TP_push_assignments:n

\TP_push_assignments:

Push a list of parameter assignments onto the \g_TP_assignments_stack_toks.
As it all happens in token registers #s need no doubling. \TP_push_assignments:
expects it to be \l_TP_KV_assignments_toks (needs fixing).
38 \def_long_new:Npn \TP_push_assignments:n#1{

39 \toks_gput_left:Nn\g_TP_assignments_stack_toks{{#1}}

40 }

41 \def_new:Npn \TP_push_assignments:{

42 \toks_gset:No \g_TP_assignments_stack_toks

43 {\exp_after:NN

44 {\toks_use:N\exp_after:NN\l_TP_KV_assignments_toks\exp_after:NN}

45 \toks_use:N\g_TP_assignments_stack_toks}

46 }

\DeclareTemplateType {type}{nofarg}

47 \def_new:NNn \DeclareTemplateType 2{

48 \tlp_set:cn {TP@<#1>} {{}#2}}

\TP_get_csname_prefix:n {type} returns prefix for csnames for template type, based on current collection.
49 \def_new:Npn \TP_get_csname_prefix:n#1{

50 <\exp_after:NN\exp_after:NN\exp_after:NN

51 \use_arg_i:nn

52 \cs:w TP@<#1>\cs_end:>#1/

53 }

\TP_get_arg_count:n {type} returns arg count for the template type.
54 \def_new:Npn \TP_get_arg_count:n#1{

55 \exp_after:NN\exp_after:NN\exp_after:NN

56 \use_arg_ii:nn

57 \cs:w TP@<#1>\cs_end:

58 }

\DeclareTemplate {type}{templatename}{nofarg}{keywordspec}{code}

59 \def_long_new:NNn\DeclareTemplate 5{

60 \cs_if_free:cTF{TP@<#1>}

61 {\undefinedtype\DeclareTemplateType{#1}#3}

62 {

63 \int_compare:nNnF{#3}={\TP_get_arg_count:n{#1}}

64 { \BadArgCount }

65 }

Parse the key declaration, and execute the list with a suitable definition of
\KV@elt.
66 \let:NN \KV_elt:nn \TP_templdecl_process_KV:nn

67 \def:Npn \KV_default_elt:n##1{

68 \PackageError{template}{Missing~ =~ after~ ##1}\@ehd}

69 \let:NN\KV@elt\KV_elt:nn

70 \let:NN\KV@default@elt\KV_default_elt:n

71 \tlp_set:Nn \l_TP_curr_name_tlp {#1/#2}

72 \toks_clear:N\l_TP_default_assignments_toks

20

At this point there should be a test for which catcode regime we are in. We just
test if spaces are ignored.
73 %\int_compare:nNnTF{\char_value_catcode:n{‘\ }}=\c_nine

74 %\KV_parse_picky_no_space_removal_no_sanitize:n

75 %\KV_parse_picky_space_removal_no_sanitize:n

76 \KV@parse{#4}

Define the defaults: the setting for TPD>/\l_TP_curr_name_tlp is a tricky
since \l_TP_default_assignments_toks may contain #. We have to use an x
expansion rather than o since that will hide those during the assignment.
77 \tlp_set:cx { TPD>/\l_TP_curr_name_tlp }

78 {\toks_use:N\l_TP_default_assignments_toks}

79

80 \tlp_clear:c {TPR>/\l_TP_curr_name_tlp}

81

82 \tlp_set_eq:cN {TPO>/\l_TP_curr_name_tlp}\l_TP_curr_name_tlp

Define the template (using \def_new:Npn means that one can’t redefine a
template easily).
83 \def:cNn {TP>/\l_TP_curr_name_tlp}{#3}{#5}

84 }

\TP_templdecl_process_KV:nn The list of undefined keys and values is put in the list of the form
\KV_elt:nn{〈key1 〉}{〈val1 〉}\KV_elt:nn{〈key2 〉}{〈val2 〉}. . .
So just need to give this macro a suitable definition. We just need to look at the
first token of the value, to see what sort of key it is, so call a helper function to
split that off.
85 \def_new:Npn \TP_templdecl_process_KV:nn#1#2{%

86 \let:NN \TP_templdecl_add_global_or_nothing: \use_noop:

87 \bool_set_false:N\l_TP_global_assignment_bool

88 \tlp_set:Nn\l_TP_currkey_tlp{#1}

89 \TP_templdecl_parse_KV:N#2\q_stop}

\TP_templdecl_parse_KV:N Case switch on the possible key types.
90 \def_new:Npn \TP_templdecl_parse_KV:N#1{

In #1 we have key, in #2 the first character after the equal sign and in #3 the
remainder of the line. We now have to parse that remainder to find out if it
contains a default value (in brackets) and then set up the key declaration needed
to parse instance declarations. The method is similar in most cases: we call
\TP_parse_optional_key_default:nw which parses for the default and pass it
already found key name as first argument, what to do in the end as second argu-
ment, and the remainder delimited by \q_stop so that it becomes parseable.

Note that the code in the second argument to \TP_parse_optional_key_default:nw
normally calls on a macro with one more argument than actually provided: the
reason being that the missing argument will be the remainder of the line (added
by \TP_parse_optional_key_default:nw after the default has be removed (if
present)).
91 \cs_if_free:cTF{TP_use_arg_type_#1:w}

21

92 {\PackageError{template}{Unknown~key~type~ (#1)~for~\l_TP_currkey_tlp}\@eha}

93 {\cs_use:c{TP_use_arg_type_#1:w}}

The f and i keys are somewhat different since there we first have to parse for an
additional argument (a digit in case of f or an template type name in case of i):

One more alternative: a + after the equal sign signals global so we change
\TP_templdecl_add_global_or_nothing: to append a \pref_global:D to the
assignment toks and then reparse the rest.
94 % \def:Npn \TP_templdecl_add_global_or_nothing:

95 % {\toks_put_right:Nn \l_TP_KV_assignments_toks {\pref_global:D} }

96 % \TP_templdecl_parse_KV:nw{#1}#3\TP_templdecl_parse_KV:nnw

97 }

\l_TP_global_assignment_bool For keeping track of the assignments.
98 \bool_new:N \l_TP_global_assignment_bool

\TP_use_arg_type_+:w The + does two things: Sets a boolean true to be used by the types that can’t sim-
ply be prefixed with \pref_global:D and defines \TP_templdecl_add_global_or_nothing:
to put the prefix onto the list. After that we simply call the big switch again.8.
99 \def_new:cpn{TP_use_arg_type_+:w} {

100 \bool_set_true:N\l_TP_global_assignment_bool

101 \def:Npn \TP_templdecl_add_global_or_nothing:

102 {\toks_put_right:Nn \l_TP_KV_assignments_toks {\pref_global:D} }

103 \TP_templdecl_parse_KV:N

104 }

\TP_use_arg_type_l:w The l sets a length register. We disable the prefix and insert either \gsetlength
or \setlength depending on whether a + was seen or not.

105 \def_new:Npn\TP_use_arg_type_l:w {

106 \TP_parse_optional_key_default:nw

107 {

108 \let:NN \TP_templdecl_add_global_or_nothing: \use_noop:

109 \bool_if:NTF \l_TP_global_assignment_bool

110 {\TP_templdecl_setup_register_key:Nn\gsetlength}

111 {\TP_templdecl_setup_register_key:Nn\setlength}

112 }

113 }

\TP_use_arg_type_L:w The L sets a fake length register.
114 \def_new:Npn\TP_use_arg_type_L:w {

115 \TP_parse_optional_key_default:nw

116 {\TP_templdecl_setup_fakeregister_key:NNn\setlength\l_tmpa_skip}

117 }

\TP_use_arg_type_c:w The c sets a count register.
118 \def_new:Npn\TP_use_arg_type_c:w {

119 \TP_parse_optional_key_default:nw

8It should probably all be changed to not rely on the prefix working

22

120 {

121 \let:NN\TP_templdecl_add_global_or_nothing:\use_noop:

122 \bool_if:NTF \l_TP_global_assignment_bool

123 {\TP_templdecl_setup_register_key:Nn\GSetInternalCounter}

124 {\TP_templdecl_setup_register_key:Nn\SetInternalCounter}

125 }

126 }

\TP_use_arg_type_C:w The C sets a fake count register.
127 \def_new:Npn\TP_use_arg_type_C:w {

128 \TP_parse_optional_key_default:nw

129 {\TP_templdecl_setup_fakeregister_key:NNn

130 \SetInternalCounter\l_tmpa_int}

131 }

\TP_use_arg_type_n:w The n sets a token list pointer.
132 \def_new:Npn\TP_use_arg_type_n:w {

133 \TP_parse_optional_key_default:nw

134 {\TP_templdecl_setup_n_key:N}

135 }

\TP_use_arg_type_f:w

\TP_templdecl_parse_f_arg:nw

The f defines a command with between 0 and 9 arguments.
136 \def_new:Npn\TP_use_arg_type_f:w #1{

137 %\TP_templdecl_parse_f_arg:nw {#1}

138 \TP_parse_optional_key_default:nw{\TP_templdecl_setup_f_key:Nn{#1}}

139 }

Helper for \TP_templdecl_parse_KV:nnw.
140 \def_new:Npn \TP_templdecl_parse_f_arg:nw#1#2{

The third argument of \TP_templdecl_setup_f_key:Nn, i.e., the macro name, is
the remaining data up to \q_stop which is picked up by \TP_parse_optional_key_default:nw.

141 \TP_parse_optional_key_default:nw{\TP_templdecl_setup_f_key:Nn{#1}{#2}}

142 }

\TP_use_arg_type_b:w

\TP_templdecl_setup_b_key:nn

The b uses access to the \if_true: and \if_false: primitives. Needed?
143 \def_new:Npn\TP_use_arg_type_b:w {

144 \TP_parse_optional_key_default:nw

145 {\TP_templdecl_setup_b_key:n}

146 }

147 \def_new:Npn \TP_templdecl_setup_b_key:n#1{

148 \let:cN { if#1 } \if_true:

149 \TP_templdecl_define_key:n

150 { \TP_templdecl_eval_b_key_value:nn {#1}{##1} }

151 }

\TP_templdecl_eval_b_key_value:nn Modify so the boolean does not need to have been declared with \newif

152 \def_new:Npn \TP_templdecl_eval_b_key_value:nn#1#2{

153 \cs_if_free:cTF {if#2}

23

154 { \PackageError{template}{Bad~boolean~setting~#1=#2}\@eha }

155 { \tlp_set_eq:cc {if_#1:}{if_#2:}

156 \toks_put_right:Nf \l_TP_KV_assignments_toks

157 { \tlp_set_eq:cc {if_#1:}{if_#2:} }

158 }

159 }

\TP_use_arg_type_s:w

\TP_templdecl_setup_s_key:n

The s chooses between true and false.
160 \def_new:Npn\TP_use_arg_type_s:w {

161 \TP_parse_optional_key_default:nw

162 {\TP_templdecl_setup_s_key:n}

163 }

164 \def_new:Npn \TP_templdecl_setup_s_key:n #1 {

165 \TP_templdecl_define_key:n

166 { \TP_templdecl_eval_s_key_value:nnn{##1}#1 }

167 }

\TP_use_arg_type_i:w The i expects an instance.
168 \def_new:Npn\TP_use_arg_type_i:w #1{

169 \TP_parse_optional_key_default:nw{\TP_templdecl_setup_i_key:nnn{#1}}

170 }

declaration hd =i{head} \fooo
use hd = mine
makes \fooo shorthand for \UseInstance{head}{mine}

also allowed: hd = \UseTemplate{head}{...}{...}
in case you want to use an unnamed instance of type head in this place.

\TP_templdecl_setup_i_key:nnn MH change: do either local or global.
171 \def_new:Npn \TP_templdecl_setup_i_key:nnn#1#2{

172 \TP_templdecl_define_key:n

173 {

174 \TP_templdecl_eval_i_key_value:Nnn #2 {#1}{##1}

175 }

176 }

\TP_templdecl_eval_i_key_value:Nnn MH change: Add extra argument for local or global.
177 \def_new:Npn \TP_templdecl_eval_i_key_value:Nnn #1#2#3 {

178 \tlist_if_head_eq_meaning:nNTF {#3.}\UseTemplate

179 {

180 \io_put_term:x{\token_to_string:N\UseTemplate\space seen}

Code below from \TP_templdecl_setup_f_key:Nn (should be combined and
cleaned up) at this point one should also check if first arg of \UseTemplate corre-
sponds to #2 and if not complain (not done)

181 {\TP_templdecl_declare_tmp_instance:nnnn #3 }

182 \toks_put_right:No \l_TP_KV_assignments_toks

183 { \exp_after:NN \KV@toks \exp_after:NN {\g_tmpa_tlp} }

184 %\TP_templdecl_add_global_or_nothing:

24

185 %\toks_put_right:Nn \l_TP_KV_assignments_toks

186 % { \def:Npx #1{ \toks_use:N \KV@toks} }

187 \bool_if:NTF \l_TP_global_assignment_bool

188 {\toks_put_right:Nn \l_TP_KV_assignments_toks

189 {\gdef:Npx #1 { \toks_use:N \KV@toks}}

190 }

191 {\toks_put_right:Nn \l_TP_KV_assignments_toks

192 {\def:Npx #1 { \toks_use:N \KV@toks}}

193 }

194 }

195 {

196 \TP_let_instance:Nnn#1{#2}{#3}

We want the \let:Nc hiding in \TP_let_instance:Nnn to expand fully to two
csnames so we put a \tex_romannumeral:D 0 (which in itself expands to nothing)
in front. This expands the \let:Nc fully before finding out that \let:NwN is not
expandable.

197 \toks_put_right:Nf \l_TP_KV_assignments_toks

198 { \TP_let_instance:Nnn#1{#2}{#3} }

199 }

200 }

\TP_use_arg_type_x:w

\TP_templdecl_setup_x_key:nn

The x runs internal code.
201 \def_new:Npn\TP_use_arg_type_x:w {

202 \TP_parse_optional_key_default:nw

203 {\TP_templdecl_setup_x_key:n}

204 }

205 \def_new:Npn \TP_templdecl_setup_x_key:n#1{

206 \TP_templdecl_define_key:n

207 { \toks_put_right:Nn\l_TP_KV_assignments_toks{#1} }

208 }

\TP_use_arg_type_g:w

\TP_templdecl_setup_g_key:nn

The g runs any code.
209 \def_new:Npn\TP_use_arg_type_g:w {

210 \TP_parse_optional_key_default:nw

211 {\TP_templdecl_setup_g_key:n}

212 }

213 \def_new:Npn \TP_templdecl_setup_g_key:n #1 {

214 \TP_templdecl_define_key:n{#1}}

\TP_templdecl_define_key:n Here we define the key in the current template.
215 \def_new:Npn \TP_templdecl_define_key:n#1{

216 \tlp_set:Nx \l_tmpa_tlp {

217 \exp_not:N \TP_templdecl_remove_from_default_assignments:N

218 \exp_not:c{KV@\l_TP_curr_name_tlp @\l_TP_currkey_tlp}

219 \exp_not:o {\TP_templdecl_add_global_or_nothing: }

220 }

221 \exp_args:NcNo \def:NNn {KV@\l_TP_curr_name_tlp @\l_TP_currkey_tlp} 1

25

222 { \l_tmpa_tlp #1 }

223 }

\TP_parse_optional_key_default:nw Look for default value. The t argument type here is one we define for template so
we can change it easily. Currently I just set it to be a regular optional argument
in brackets. #1 is what we are carrying over, #2 the optional argument.

224 \def_long:Npn \TP_ignore_leading_space_in_arg_ii:nn#1#2{

225 \exp_args:Nf\TP_ignore_leading_space_in_arg_ii_aux:nn

226 {\exp_not:N #2}{#1}

227 }

228 \def_long:Npn \TP_ignore_leading_space_in_arg_ii_aux:nn#1#2{#2{#1}}

229

230

231 \DeclareArgumentType t[{meaning}{}{\NoValue}{#1[#2]}{#2}

232 \DeclareDocumentCommand\TP_parse_optional_key_default:nw{mt}{

233 \IfNoValueTF{#2}

234 {\TP_templdecl_finish_key_setup:nw{#1}}

235 {\TP_templdecl_finish_key_setup_with_default:nnw{#1}{#2}}

236 }

237 %\show\TP_parse_optional_key_default:nw

238 %\exp_args:Nc\show{\string\TP_parse_optional_key_default:nw}

\TP_templdecl_finish_key_setup:nw After having parsed the line and not found any default value it remains to actually
define the key for the instance parsing by executing the setup code (in #1) giving
it #2 (i.e., the remainder of the line) as an argument.

239 \def_new:Npn \TP_templdecl_finish_key_setup:nw#1#2\q_stop{

240 \TP_ignore_leading_space_in_arg_ii:nn{#1}{#2}

241 %%%#1{#2}

242 }

\TP_templdecl_finish_key_setup_with_default:nnw If there is a default the situation is more complicated since we not only have
to set up the key for the instance but also have to add the default value to
\l_TP_default_assignments_toks in an appropriate way.

First set up the the key itself:
243 \def_new:Npn \TP_templdecl_finish_key_setup_with_default:nnw#1#2#3\q_stop{

244 \TP_ignore_leading_space_in_arg_ii:nn{#1}{#3}

245 %%% #1 {#3}

Now we run the new key code (which is stored in \KV@... hopefully) and
give it the default found. By doing this in a group and by locally emptying
\l_TP_KV_assignments_toks we will get the resulting assignment code into that
register.

(We set \TP_templdecl_remove_from_default_assignments:N to \use_none:n
since this is a temporary operation and we don’t want to change the default really.)

246 \group_begin:

247 \toks_clear:N \l_TP_KV_assignments_toks

248 \let:NN \TP_templdecl_remove_from_default_assignments:N \use_none:n

249 \cs_use:c{KV@\l_TP_curr_name_tlp @\l_TP_currkey_tlp}{#2}

26

And now for a final trick: before closing the group again and losing our local
changes we run \exp_after:NN several times to get the value of \l_TP_KV_assignments_toks
into \l_TP_default_assignments_toks outside that group!

250 \exp_after:NN

251 \group_end:

252 \exp_after:NN

253 \toks_set:Nn

254 \exp_after:NN

255 \l_TP_default_assignments_toks

256 \exp_after:NN

257 { \cs:w KV@\l_TP_curr_name_tlp @\l_TP_currkey_tlp \exp_after:NN \cs_end:

258 \exp_after:NN

259 { \toks_use:N \exp_after:NN \l_TP_KV_assignments_toks

260 \exp_after:NN

261 }

262 \toks_use:N\l_TP_default_assignments_toks

263 }

264 }

\c_TP_true_tlp

265 \tlp_new:Nn \c_TP_true_tlp {true}

\TP_templdecl_eval_s_key_value:nnn

266 \def_new:Npn \TP_templdecl_eval_s_key_value:nnn#1#2#3 {

267 % no error check on this yet.

268 \tlp_set:Nn \l_tmpa_tlp {#1}

269 \tlp_if_eq:NNTF \l_tmpa_tlp \c_TP_true_tlp

270 { \toks_put_right:Nn \l_TP_KV_assignments_toks {#2} }

271 { \toks_put_right:Nn \l_TP_KV_assignments_toks {#3} }

272 }

\TP_templdecl_setup_register_key:Nnn This is normally called automatically by \DeclareTemplate.
Command for setting a template attribute whose name corresponds directly to

a TEX count or length register
#1 the function to set the value eg .
#2 key name.
#3 the register to set.

This command fully evaluates the argument at declare time, and assigns the
value to the register. It also passes an assignment of the register to the final value
into the parameter list for the template.

If the value is a call to \DelayEvaluation, don’t evaluate it now, just pass the
whole assignment to the template. Remember to remove the \DelayEvaluation.

273 \def_new:Npn \TP_templdecl_setup_register_key:Nn #1#2{

274 \TP_templdecl_define_key:n{

275 \tlist_if_head_eq_meaning:nNTF{##1}\DelayEvaluation

276 {

Old line commented out. Remove \DelayEvaluation and also remove the braces
surrounding its argument.

27

277 \toks_put_right:Nn \l_TP_KV_assignments_toks {#1#2{##1}}

278 %\toks_set:No\l_tmpa_toks{\use_arg_ii:nn ##1}

279 %\toks_put_right:Nx \l_TP_KV_assignments_toks

280 % {\exp_not:n{#1#2}{\toks_use:N \l_tmpa_toks}}

281 }

check for \MultiSelection creeping up and if so add something like

\setlength\register{\ifcase\selector \or value1 \or value2

... \else valueotherwise \fi}

to \l_TP_KV_assignments_toks.
282 {

283 \tlist_if_head_eq_meaning:nNTF{##1..}\MultiSelection

284 {

285 \group_begin:

286 \TP_multiselection_add:nnnnnn #1#2##1

287 \group_end:

there are probably better ways to do this (:-)
288 \tlist_if_in:onTF{\toks_use:N\g_TP_multiselection_toks}\DelayEvaluation

289 {

290 \toks_put_right:No\l_TP_KV_assignments_toks

291 {

292 \exp_after:NN#1\exp_after:NN#2\exp_after:NN

293 {\toks_use:N\g_TP_multiselection_toks}

294 }

295 }

296 {

297 \toks_put_right:No\l_TP_KV_assignments_toks

298 {

299 \exp_after:NN #2

300 \exp_after:NN= \toks_use:N\g_TP_multiselection_toks\scan_stop:

301 }

302 }

otherwise do as before
303 }

304 {

305 #1#2{##1}

306 \toks_put_right:No\l_TP_KV_assignments_toks {

307 \exp_after:NN #2 \exp_after:NN = \tex_the:D #2\scan_stop:

308 }

309 }

310 }

311 }

312 }

\DelayEvaluation

\MultiSelection

Since we are testing explicitly for \DelayEvaluation and \MultiSelection a few
places we better give them unique meanings!

28

313 \def_new:NNn\DelayEvaluation 1{\use_none:n{\DelayEvaluation}#1}

314 \def_new:NNn\MultiSelection 1{\use_none:n{\MultiSelection}#1}

\TP_templdecl_remove_from_default_assignments:N Note: the toks register is more or less a plists and should perhaps be implemented
as such as this would make far more readable code.

315 \def_new:Npn \TP_templdecl_remove_from_default_assignments:N#1{

316 \def:Npn \tmp:w ##1#1##2##3#1##4\q_stop{

317 \l_TP_default_assignments_toks{##1##3}

318 }

319 \exp_after:NN \tmp:w

320 \toks_use:N\l_TP_default_assignments_toks #1\scan_stop:#1\q_stop}

\TP_templdecl_setup_f_key:Nn Same for macro names. Again usually called automatically when declaring a new
template.
#1 Determines how many arguments the function should have.
#2 The macro to be defined.

If the ‘##1‘, the value passed as the argument of the key to the macro #2
is invoked starts with \FunctionInstance, then a special procedure is taken.
Instead of defining a macro with the specified number of arguments, the paramater
list of the nested function instance is parsed, and #2 is defined to be a macro
expanding to that instance. In this case the specified template is responsible for
picking up the requested number of arguments. (This is not checked.)

321 \def_new:Npn \TP_templdecl_setup_f_key:Nn#1#2{

##1 can either be arbitrary inline code, in which case it will be defined with
something similar to \newcommand[val] so it needs to use #1 – #val.

define it locally here (why this, David???)
322 \TP_templdecl_define_key:n

323 { \TP_templdecl_define_function:NNn#1#2{##1} }

324 }

\TP_templdecl_define_function:NNn \def:Npn setup with a latex style ‘number of arguments’ argument.
325 \def_new:Npn \TP_templdecl_define_function:NNn#1#2#3{

326 \def:NNn #2 #1 {#3}

327 \toks_put_right:Nf \l_TP_KV_assignments_toks { \def:NNn #2 #1 {#3} }

328 }

\TP_templdecl_setup_n_key:N Here is the extended version that tries to deal with \MultiSelection.
In case of ‘n’ keys there is no evaluation at declaration time so it is not sen-

sible to look for \DelayEvaluation. For this reason as well as for the fact that
\TP_multiselection_add:nnnnnn above assumes that it deals with registers that
can be accessed via \toks_use:N we have to use a different command to handle
the \MultiSelection args but it is essentially doing the same.

329 \def_new:Npn \TP_templdecl_setup_n_key:N#1{

330 \TP_templdecl_define_key:n{

331 \tlist_if_head_eq_meaning:nNTF{##1..}\MultiSelection

332 {

333 \group_begin:

29

334 \TP_templdecl_multiselection:nnnn ##1

335 \group_end:

Extracting the correct item from the \if_case:w we are building requires a bit of
care. Firstly we want to expand the appropirate number of times to get to the item
but we also want to ensure we do not have any unwanted leftover \fi:s or other
junk which is bound to cause errors later on. Therefore we start an f expansion
(so we don’t have to count \exp_after:NNs and then stop it again when we want
to.

336 \toks_put_right:Nx\l_TP_KV_assignments_toks {

337 \exp_not:n{\tlp_set:Nf #1} { \toks_use:N \g_TP_multiselection_toks}

338 }

339 }

340 {

341 \def:Npn #1{##1} % setting it?

342 \toks_put_right:Nn \l_TP_KV_assignments_toks

343 { \tlp_set:Nn #1{##1} }

344 }

345 }

346 }

\TP_templdecl_multiselection:nnnn Start the \if_case:w. When the item is retrieved using an f type expansion we
better stop it at the right place once we have emerged on the other side of the
conditional.

347 \def_new:Npn \TP_templdecl_multiselection:nnnn #1#2#3#4{

348 \toks_gset:Nn \g_TP_multiselection_toks {\if_case:w #2}

349 \clist_map_inline:nn {#3}{

350 \TP_multiselection_add_or_case:n {\exp_stop_f:##1}

351 }

352 \toks_gput_right:Nn\g_TP_multiselection_toks {

353 \else: \use_arg_i_after_fi:nw { \exp_stop_f: #4} \fi:

354 }

355 }

\DeclareInstance {type}{instname}{templatename}{keyval}

356 \def_new:Npn \DeclareInstance { \DeclareCollectionInstance{} }

\DeclareCollectionInstance {collection}{type}{instname}{templatename}{keyval} The fifth argument is
picked up implicitly.

357 \def_long_new:Npn \DeclareCollectionInstance#1#2#3#4{

358 \TP_declare_instance:cnn { <#1>#2/#3 }{ #2/#4 }

359 }

\UseCollection {type}{collection}

360 \def_new:Npn \UseCollection#1#2{

361 \tlp_set:cx { TP@<#1> }

362 { {#2} \TP_get_arg_count:n{#1} }

363 }

30

\TP_let_instance:Nnn \internalcommand{type}{instname}
The way this macro is used, it must result in \let:NwN <csname1> <csname2>

after exactly two expansions as it is used this way in \TP_templdecl_eval_i_key_value:nnn!
364 \def_new:Npn \TP_let_instance:Nnn#1#2#3{

365 \let:Nc #1

366 {

367 \cs_if_free:cTF { \TP_get_csname_prefix:n{#2} #3 }

368 { <>#2/ }

369 { \TP_get_csname_prefix:n{#2} }

370 #3

371 }

372 }

\UseInstance {type}{instname}

373 \def_new:Npn \UseInstance#1#2{

374 \TP_let_instance:Nnn \l_tmpa_tlp {#1}{#2}

375 \tlp_if_eq:NNTF \l_tmpa_tlp \scan_stop:

376 \INSTANCEundefined

377 \l_tmpa_tlp

378 }

\TP_templdecl_declare_tmp_instance:nnnn This macro is called when we have seen a \UseTemplate declaration as part of an
i key value. Therefore the first argument will be dropped (it contains the token
\UseTemplate) the second and third will be combined to refer to the template and
the fourth argument will be implictly picked up by \TP_declare_instance:Nnn.

379 \def_long_new:Npn \TP_templdecl_declare_tmp_instance:nnnn#1#2#3{%

380 \TP_declare_instance:Nnn \g_tmpa_tlp {#2/#3} }

\ShowTemplate Some extension to \ShowTemplate so that we also get to see the restrictions if any
381 \def_new:Npn \ShowTemplate#1#2{

382 \io_put_term:x{*******~ Template:~ #1/#2~ *******}

383 \io_put_term:x{*}

384 \io_put_term:x{*~ Defaults:}

385 \io_put_term:x{*}

386 \io_put_term:x{\token_to_string:N\TPD>/#1/#2=

387 \cs_meaning:c{TPD>/#1/#2}}

388 \io_put_term:x{*}

389 \io_put_term:x{*~ Restrictions:}

390 \io_put_term:x{*}

391 \io_put_term:x{\token_to_string:N\TPR>/#1/#2=

392 \cs_meaning:c{TPR>/#1/#2}}

393 \io_put_term:x{*}

394 \io_put_term:x{*~ Body:}

395 \io_put_term:x{*}

396 \cs_show:c {TP>/#1/#2}}

\ShowCollectionInstance

397 \def_new:Npn \ShowCollectionInstance#1#2#3{

398 \io_put_term:x{*******~ Instance:~ <#1>#2/#3~ *******}

31

399 \io_put_term:x{*}

400 \cs_show:c {<#1>#2/#3}}

401 \def_new:Npn \ShowInstance{\ShowCollectionInstance{}}

\TP_templdecl_setup_fakeregister_key:NNn {setcomand}{privateregister}{key}{internalcode}

402 \def_new:Npn \TP_templdecl_setup_fakeregister_key:NNn#1#2#3{

403 \TP_templdecl_define_key:n{

404 \tlist_if_head_eq_meaning:nNTF{##1..}\DelayEvaluation

405 {

In the v0.08 version of template.dtx a \DelayEvaluation for a faked register
would simply be equiv to a \def:Npn (code is below commented out). The
negative side effect of this is that something like =L used with \DelayEvaluation
would not allow for calc syntax since it would end up as \def:Npn \foo{a+b}.
The code below changes this to first assign to a scratch register (at runtime) and
then do an \edef. Could be coded differently to save space (at cost of time)

406 % \toks_put_right:Nn \l_TP_KV_assignments_toks {\def:Npn #3{##1}}

407 % \toks_put_right:Nn \l_TP_KV_assignments_toks

408 % {#1#2{##1}\def:Npx #3{\toks_use:N#2}}

409 \toks_set:No \l_tmpa_toks {\use_arg_ii:nn ##1}

410 \toks_put_right:Nx \l_TP_KV_assignments_toks {

411 \exp_not:n{#1#2}{\toks_use:N \l_tmpa_toks}

412 \exp_not:n{ \def:Npx #3{\toks_use:N#2} }

413

414 }

415 }

Otherwise same game for fake registers except that instead of passing the
register to \TP_multiselection_add:nnnnnn we pass a temp fake one and doing
a def instead of using \setlength or \setcounter

and i haven’t done the \DelayEvaluation bit for that case! as i’m not sure
what the best approach is for those things9

416 {

417 \tlist_if_head_eq_meaning:nNTF{##1..}\MultiSelection

418 {

419 \group_begin:

420 \TP_multiselection_add:nnnnnn#1#2##1

421 \group_end:

422 \toks_put_right:Nx\l_TP_KV_assignments_toks

423 {\exp_not:n{\def:Npn #3} {\toks_use:N\g_TP_multiselection_toks}}

424 }

425 {

426 #1#2{##1}

427 \toks_put_right:Nx\l_TP_KV_assignments_toks

428 {\exp_not:n{\def:Npn#3} {\toks_use:N#2}}

429 }

430 }

431 }

9we might disallow it for that case in general — not a nice rule but an explainable one

32

432 }

\g_TP_multiselection_toks

433 \toks_new:N \g_TP_multiselection_toks

\TP_multiselection_add:nnnnnn {〈operation〉} {〈register〉} \MultiSelection {〈selector〉} {〈case-list〉} {〈else-case〉}
This command builds up the \if_case:w code from the three arguments of

\MultiSelection and stores it in \g_TP_multiselection_toks. This code is
supposed to be run in a group so a) we don’t have to initialise \g_TP_multiselection_toks
and b) all changes to the used registers not affecting the outside.

434 \def_new:Npn \TP_multiselection_add:nnnnnn #1#2#3#4#5#6{

435 \toks_gset:Nn \g_TP_multiselection_toks {\if_case:w #4}

436 \clist_map_inline:nn {#5}{

437 \tlist_if_head_eq_meaning:nNTF{##1..}\DelayEvaluation

438 {

439 \TP_multiselection_add_or_case:n {##1}

440 }

441 {

442 #1#2{##1}

443 \TP_multiselection_add_or_case:o { \toks_use:N #2 }

444 }

445 }

446 \toks_gput_right:Nn \g_TP_multiselection_toks {

447 \else: \use_arg_i_after_fi:nw{#6}\fi:

448 }

449 }

\TP_multiselection_add_or_case:o No need to worry about where \or: is allowed to be added since all loops in LATEX3
process the item outside conditionals.

450 \def_new:Npn \TP_multiselection_add_or_case:n #1 {

451 \toks_gput_right:Nn \g_TP_multiselection_toks {

452 \or: \use_arg_i_after_orelse:nw{#1}

453 }

454 }

455 \def_new:Npn \TP_multiselection_add_or_case:o {

456 \exp_args:No \TP_multiselection_add_or_case:n

457 }

Since i like to set things like item-label-text using this mechanism i need to
handle the ‘n’ key specially.

Actually i could have probably extended \TP_templdecl_setup_f_key:nnN
thus making this generally available to all f〈number〉 keys but was too lazy (or too
stupid) to get it right first time so settled for the simple solution.

So \TP_templdecl_parse_KV:nnw now calls \TP_templdecl_setup_n_key:nN
for the ‘n’ key. looks like this thus be fixed some time soon

\IfExistsInstanceTF tests that there is a default definition taken from xinitials.dtx:
458 \def_new:Npn \IfExistsInstanceTF#1#2{

33

459 \cs_if_exist:cTF{<>#1/#2}

460 }

FMi: what happens if we are in collection FOO and there exists an instance I
for type T within this collection but there doesn’t exist an instance in the empty
collection?

What would happen if . . . — not clear to me what the sematics really should
be. The code below is not better only different(and slower).10

461 \def:Npn \IfExistsInstanceTF#1#2{

462 \TP_let_instance:Nnn \l_tmpa_tlp {#1}{#2}

463 % next is not \tlp_if_eq:NNTF but ...FT so done manually

464 \if_meaning:NN\l_tmpa_tlp\scan_stop:

465 \exp_after:NN\use_arg_ii:nn

466 \else:

467 \exp_after:NN\use_arg_i:nn

468 \fi:}

\DeclareRestrictedTemplate Setting it up:
\DeclareRestrictedTemplate

{T-type} {new-T-name} {source-T-name} {keyvals}
This uses the same code as T-type source-T-name but adds settings from key-

vals
469 \def_new:Npn \DeclareRestrictedTemplate#1#2#3#4{

470 % CCC do we need a group here??

471 \tlp_set_eq:cc { TPD>/#1/#2 } { TPD>/#1/#3 }

472 \tlp_set_eq:cc { TP>/#1/#2 } { TP>/#1/#3 }

473

474 \toks_set:Nd \l_TP_KV_assignments_toks

475 {\cs:w TPR>/#1/#3\cs_end:}

476

477 % adds stuff to \l_TP_KV_assignments_toks

478 \setkeys {\cs:w TPO>/#1/#3\cs_end:}{#4}

479

480 \tlp_set:cx { TPR>/#1/#2 }

481 { \toks_use:N \l_TP_KV_assignments_toks }

482 \cs_if_free:cTF { TPO>/#1/#3 }

483 { \tlp_set:cn {TPO>/#1/#2}{#1/#3} }

484 { \tlp_set_eq:cc {TPO>/#1/#2}{TPO>/#1/#3} }

485 }

Internals:

\TP_instdecl_generate_assignments:nn These could probably be inlined, even when they do something!
Assumption: setkeys fully expands its first argument.

486 \def_new:Npn \TP_instdecl_generate_assignments:nn#1#2 {

487 % Returns to \l_TP_KV_assignments_toks

488 % the restrictions

10fix semantics

34

489 % stored in the TP-structure (at present

490 % in YAM) of the template #1

491

492 \toks_set:Nd \l_TP_default_assignments_toks

493 {\cs:w TPD>/#1\cs_end:\scan_stop:\scan_stop:}

494

495 \toks_set:Nd \l_TP_KV_assignments_toks

496 {\cs:w TPR>/#1\cs_end:}

497

498 \setkeys { \cs:w TPO>/#1 \cs_end: }

499 { #2 } % adds stuff to \l_TP_KV_assignments_toks

500

501 % prepends stuff to \l_TP_KV_assignments_toks :

502 \exp_after:NN\TP_instdecl_add_default_recurse:nn

503 \toks_use:N\l_TP_default_assignments_toks

504

505 }

\TP_instdecl_add_default_recurse:nn [2001/06/10 Think about doing this properly with explicit plists! — but this
means that one has to think about whether or not plists should be implemented
as token registers and not as tlps as they are now.]

506 \def_new:Npn \TP_instdecl_add_default_recurse:nn#1#2{

507 \token_if_eq_meaning:NNF #1\scan_stop:

508 {

509 \l_tmpa_toks{#2}

510 \tlp_set:Nx \l_tmpa_tlp {

511 {\toks_use:N \l_tmpa_toks \toks_use:N \l_TP_KV_assignments_toks}

512 }

513 \l_TP_KV_assignments_toks \l_tmpa_tlp

514 \TP_instdecl_add_default_recurse:nn

515 }

516 }

TPD>/type/name stores the default parameter assignments.
TPR>/type/name stores the parameter assignments that have been made for a

restricted template otherwise it is undefined (or \scan_stop:).
TPO>/type/name stores the full name (i.e. as type/name) of the template a

restricted template is coming from originally.

\TP_split_finite_skip_value:nnNN This macro is for use in error checking template values like ”text-float-sep” that
can’t contain infinite glue and needs the shrink and/or stretch components. First
argument is the skip register (which is likely to be user input), second is a template
key name, and the last two are the 〈dimen〉 registers that stores the stretch and
shrink components. Assignments are global.

517 \def_new:Npn \TP_split_finite_skip_value:nnNN #1#2{

518 \skip_split_finite_else_action:nnNN {#1} {

519 \PackageError{template}{Value~ for~ key~ #2~ contains~ ‘fil(ll)’}

520 {Only~ finite~ minus~ or~ plus~ parts~ are~ allowed~ for~ this~ key.}

521 }

35

522 }

523 〈/package〉

36

