The package witharrows*

F. Pantigny
fpantigny@wanadoo.fr

November 29, 2017

Abstract
The LaTeX package witharrows gives an environment {WithArrows} which is similar to envi-
ronment {aligned} of amsmath (and mathtools) but gives the possibility to draw arrows on the
right side of the alignment. These arrows are usually used to give explanations concerning the
mathematical calculus presented.

This package can be used with xelatex, lualatex, pdflatex but also by the classical workflow
latex-dvips-ps2pdf (or Adobe Distiller). Two compilations may be necessary. This package requires
the packages expl3, xparse, footnote! and tikz. The following Tikz libraries are also required: calc,
arrows.meta and bending.

This package gives an environment {WithArrows} to construct alignments of equations with arrows
for the explanations on the right side:

$\begin{WithArrows}
A & = (a+1)72 \Arrow{we expand} \\
& = a2+ 2a + 1

\end{WithArrows}$
A= (a+1)?
4241 Qwe expand

The arrow has been drawn with the command \Arrow on the line from which it starts. The command
\Arrow can be used anywhere on the line but the best way is to put it at the end.

1 Options for the shape of the arrows

The commande \Arrow has several options. These options can be put between square brackets,
before, or after the mandatory argument.
The option jump gives the number? of lines the arrow must jump (the default value is, of course, 1).

$\begin{WithArrows}

A & = \bigl((a+b)+1\bigr) "2 \Arrow[jump=2]{we expand} \\
& = (a+b)”"2 + 2(a+b) +1 \\
& = a"2 + 2ab + b72 + 2a + 2b +1

\end{WithArrows}$
A= ((a+b)+1)
=(a+b2+2a+b)+1 >we expand

=a?+2ab+b*+2a+2b+1

It’s possible to put several arrows which start from the same line.

*This document corresponds to the version 1.2 of witharrows, at the date of 2017/11/29.
1The package footnote is used to extract the notes from the environments {WithArrows}.
2It’s not possible to give a non-positive value to jump. See below the way to draw an arrow which goes backwards.

$\begin{WithArrows}

A & = \bigl((a+b)+1\bigr) 2 \Arrow{}\Arrow{}[jump=2] \\
& = (a+tb)”"2 + 2(a+b) +1 \\
& = a”2 + 2ab + b2 + 2a + 2b +1

\end{WithArrows}$

A:((a+b)+1)2
=(a+b)?+2(a+b)+1 ?
=a?+2ab+b%+2a+2b+1

The option xoffset shift the arrows to the right (we usually don’t want the arrows to be stucked on
the text). The default value of xoffset is 3 mm.

$\begin{WithArrows}

A & = \bigl((a+b)+1\bigr) 2

\Arrow[xoffset=1cm]{with \texttt{xoffset=1cm}} \\
& = (a+tb)”2 + 2(atb) +1

\end{WithArrows}$

A= ((a+b)+1)

ith t=1
=(a+b)2—|—2(a~|—b)+1 le zoffse cm

The arrows are drawn with Tikz. That’s why the command \Arrow has an option tikz which can
be used to give to the arrow (in fact, the command \path of Tikz) the options proposed by Tikz for
such an arrow. The following example gives an blue thick arrow.

$\begin{WithArrows}
A & = (a+1)72 \Arrow[tikz={blue,thick}]{we expand} \\
& =2a2+2a+1

\end{WithArrows}$
A= (a+1)?
w4241 \)/we expand

It’s also possible to change the arrowheads. For example, we can draw an arrow which goes backwards
with the Tikz option <-.

$\begin{WithArrows}
A & = (a+1)"2 \Arrow[tikz=<-]{we factorize} \\
& = a2+ 2a +1
\end{WithArrows}$
A= (a+1)2
we factorize
=a’+2a+1 Jwe S

It’s also possible to suppress both tips of the arrow with the Tikz option -.

$\begin{WithArrows}

A & = (a+1)72 \Arrow([tikz=-]{very classicall} \\
& =2a2+2a+1

\end{WithArrows}$

A= (a+1)?

very classical
=a?+2a+1) v

In order to have straight arrows instead of curved ones, we must use the Tikz option “bend left = 0”.

$\begin{WithArrows}
A & = (a+1)72 \Arrow[tikz={bend left=0}]{we expand} \\
& =a"2+ 2a +1

\end{WithArrows}$
A= (a+1)?
a4 241 \Lwe expand

One of the most useful options is “text width” to control the width of the text associated to the
arrow.

$\begin{WithArrows}

A & = \bigl((a+b)+1\bigr) 2

\Arrow [jump=2, tikz={text width=5.3cm}]{We have done...} \\
& = (a+b)~2 + 2(a+b) +1 \\
& = a"2 + 2ab + b72 + 2a + 2b +1

\end{WithArrows}$

A:((a+b)+1)2
=(a+b)2+2(a+b)+1
=a?+2ab+b%+2a+20+1

but it would have been clever to ex-

;> We have done a two-stages expansion
pand with the multinomial theorem.

If we want to change the font of the text associated to the arrow, we can, of course, put a command
like \bfseries, \large or \sffamily at the beginning of the text. But, by default, the texts are
composed with a combination of \small and \itshape. When adding \bfseries at the beginning
of the text, we won’t suppress the \small and the \itshape and we will consequently have a text in
a bold, italic and small font.

$\begin{WithArrows}
A & = (a+1)72 \Arrow{\bfseries we expand} \\
& =2a"2+ 2a +1

\end{WithArrows}$
A=(a+1)?
4% 41 Qwe expand

If we put commands \\ in the text to force newlines, a command of font placed in the beginning of
the text will have effect only until the first command \\ (like in an environment {tabular}). That’s
why Tikz gives a option font to modify the font of the whole text. Nevertheless, if we use the option
tikz={font={\bfseries}}, the default specification of \small and \itshape will be overwritten.

$\begin{WithArrows}

A & = (a+1)72 \Arrow[tikz={font={\bfseries}}]{we expand} \\
& =a"2+ 2a+1

\end{WithArrows}$

A=(a+1)? Q q
we expan
=a’+2a+1 P

If we want exactly the same result as previously, we have to give to the option font the value
{\itshape\small\bfseries}.

Almost all the options can be given directly to the environment {WithArrows} (between square
brackets). In this case, they apply to all the arrows of the environment.?

3They also apply to the nested environments {WithArrows} with the notable exception of interline.

$\begin{WithArrows} [tikz=blue]

A & = \bigl((a+b)+1\bigr)~2 \Arrow{First expansion.} \\
& = (a+b)~2 + 2(at+b) +1 \Arrow{Second expansion.} \\
& = a"2 + 2ab + b72 + 2a + 2b +1

\end{WithArrows}$

A:((a+b)+1)2
=(a+b?+2(a+b)+1
=a?+2ab+b%+2a+2b+1

Q First expansion.

Q_Second erpansion.

The environment {WithArrows} has an option displaystyle. With this option, all the elements are
composed in \displaystyle (like in an environment {aligned} of amsmath).

Without the option displaystyle:

$\begin{WithArrows}

\int_0"1 (x+1)72 dx

& = \int_0"1 (x72+2x+1) dx

\Arrow{linearity of integration} \\

& = \int_071 x72 dx + 2 \int_0"1 x dx + \int_0"1 dx \\
& = \frac13 + 2\frac12 + 1 \\

& = \frac73

\end{WithArrows}$

fol(x +1)%dx = fol(ac2 +2x + 1)dz
= (' 22de+2 [xde + [dx
0 0 0
=1+25+1

7

-3

\) linearity of integration

The same example with the option displaystyle:

1 1
/ (z +1)%dz = / (2% + 2z + 1)dx
0 0

1 1 1
:/ xgda:—I—Q/ xdw—l—/ dx
0 0 0

1.1
=-42-+1
o

> linearity of integration

Wl w

Almost all the options can also be set at the document level with the command \WithArrowsOptions.
In this case, the scope of the declarations is the current TeX group (these declarations are “semi-
global”). For example, if we want all the environments {WithArrows} composed in \displaystyle
with blue arrows, we can write \WithArrowsOptions{displaystyle,tikz=blue}.*

\WithArrowsOptions{displaystyle,tikz=blue}
$\begin{WithArrows}

\sum_{i=1}"n (x_i+1)72

& = \sum_{i=1}"n (x_i"2+2x_i+1) \Arrow{by linearityl}\\
& = \sum_{i=1}"n x_i"2 + 2\sum_{i=1}"nx_i+ n

\end{WithArrows}$

S @i+ 1)2 = (a7 42 +1)

i=1 i=1 >))
by linearity

zim?—i-Zzn:xi—l—n
i=1 i=1

41t’s also possible to give the options directly when loading the package, i.e. with the command \usepackage in the
preamble.

The command \Arrow is recognized only in the environments {WithArrows}. If we have a command
\Arrow previously defined, it’s possible to go on using it outside the environments {WithArrows}.
However, a previouly defined command \Arrow may still be useful in an environment {WithArrows}.
If we want to use it in such an environment, it’s possible to change the name of the command \Arrow
of the package witharrows: there is an option CommandName for this purpose. The new name of the
command must be given to the option without the leading backslash.

\newcommand{\Arrow}{\longmapsto}
$\begin{WithArrows} [CommandName=Explanation]
f & = \bigl(x \Arrow (x+1)~2\bigr)
\Explanation{we work directly on fonctions}\\
& = \bigl(x \Arrow x~2+2x+1\bigr)
\end{WithArrows}$
_ 2
f (I — @+) Qwe work directly on fonctions
= (xr—>x2+2x+1)

It’s possible to use directly the nodes created by {WithArrows} with explicit Tikz instructions (in
order, for example, to draw something that can’t be drawn with the command \Arrow). That’s why
a style for the tips of the arrows has be created: TipsOfWithArrows. By using this style, we will
have homogeneous tips for the arrows of the document.

Therefore, if we want to modify the tips of the arrows of {WithArrows}, we have to modify the style
TipsOfWithArrows.

\tikzset{TipsO0fWithArrows/.style= { > = {Latex[scale=1.2,bend]}} }

The names of the Tikz nodes created by witharrows in the whole document are explained below.

2 Precise positioning of the arrows

The environment {WithArrows} defines, during the composition of the array, two series of nodes
materialized in red in the following example.’

I= /WO ln(l + tan (5§ — u))(—du)w

T

%

/ln<1+tan(§f’u))dw

0

1—t

/1n(1+m> du

0 1+ tanu

l+tanu+1—tanu
hl du“
0 1+tanu

In (2) du
1+tanu

(In2 —In(1 + tanw)) dw

INE)

ENE]

I
S—
INE)

™

T
/ In(1 + tanu) duw
0

In2 -1

=)
S
|

Il
AR e S—
INE)

The nodes of the left are at the end of each line of text. These nodes will be called left nodes. The
nodes of the right side are aligned vertically on the right side of the array. These nodes will be called
right nodes.

By default, the arrows use the right nodes. We will say that they are in rr mode (r for right). These
arrows are vertical (we will say that an arrow is vertical when its two ends have the same abscissa).

5The option shownodes can be used to materialize the nodes.

However, it’s possible to use the left nodes, or a combination of left and right nodes, with one of the
options 1r, rl and 11 (I for left). Those arrows are, usually, not vertical.

0
Therefore I = / 1n<1 + tan (§ — u)) (—du)

. This arrow uses the lr option.
T
% s
/0 ln<1+tan (qu)>du

T l+tanu+1—tanu
= In du
0 1+tanu

i 2
(i) w
0 1+tanu

(In2 — In(1 + tanw)) du Jump equal to 2

This arrow uses a 11 option and a

i

/4 In(1 + tanu) du
0

=)
Do
|

5
N
\
~

Il
1D e S—
ENE]

There is also an option called i (i for intermediate). With this option, the arrow is vertical and at
the leftmost position.

$\begin{WithArrows}
(a+b) (a+ib) (a-b) (a-ib)
& (a+b) (a-b)\cdot (a+ib) (a-ib) \\
& (a72-b72) (a"2+b~2) \Arrow[i]{because $(x-y) (x+y)=x"2-y 23\
& = a”4-v74
\end{WithArrows}$
(a+b)(a+ib)(a—b)(a—1ib) = (a+b)(a—D>)-(a+ib)(a—id)
= (0% = b?)(a® +1?)
— (14 _ b4

\) because (x —y)(z +y) = 2 — y?

The environment {WithArrows} gives also a group option. With this option, all the arrows of the
environment are grouped on a same vertical line and at a leftmost position.

$\begin{WithArrows}[displaystyle,group]

2xy'-3y=\sqrt x

& \Longleftrightarrow 2x(K'y_O+Ky_0')-3Ky_0 = \sqrt x \\

& \Longleftrightarrow 2xK'y_0 + K(2xy_0'-3y_0) = \sqrt x \\
& \Longleftrightarrow 2x K'y_0 = \sqrt x \Arrow{...F\

iéﬁd{WithArrowsw

22y’ — 3y = Vo <= 2(K'yo + Kyg) — 3Kyo = Vo
> 20K'yo + K(2zy, — 3yo) = V&
— 22K'yy =

3 N We replace yo by its value.
— 2xK'z? = g2
1

2
2381 Q antiderivation

— K=—5

simplification of the x
— K' = Q

The environment {WithArrows} gives also a groups option (with a s in the name). With this option,
the arrows are divided into several “groups”. Each group is a set of connected® arrows. All the arrows
of a given group are grouped on a same vertical line and at a leftmost position.

6More precisely : for each arrow a, we note i(a) the number of its initial line and f(a) the number of its final line ;
for two arrows a and b, we say that a ~ b when [i(a), f(a)] N [i(b), f(b)] # 0 ; the groups are the equivalence classes of
the transitive closure of ~.

A=B

Qone
=C+D
D \ztwo
=E+F+G+HA+I
=K+L+M
=N
=0

Q three
beur

If desired, the option group or the option groups can be given to the command \WithArrowsOptions
so that it will become the default value. In this case, it’s still possible to come back to the default
behaviour for a given environment {WithArrows} with the option rr: \begin{WithArrows}{rr}

3 Comparison with the environment {aligned}

{WithArrows} bears similarities with the environment {aligned} of the extension amsmath. These
are only similarities because {WithArrows} has not been written upon the environment {aligned}.”

As in the environments of amsmath, it’s possible to change the spacing between two given lines with
the option of the command \\ of end of line (it’s also possible to use * but is has exactly the same
effect as \\ since an environment {WithArrows} is always unbreakable).

$\begin{WithArrows}

A & = (a+1)72 \Arrow{we expand} \\[2ex]
& = a2+ 2a + 1

\end{WithArrows}$

A= (a+1)2

> we expand
=a24+2a+1

In the environments of amsmath (or mathtools), the spacing between lines is fixed by a parameter
called \jot (it’s a dimension and not a skip). That’s also the case for the environment {WithArrows}.
An option jot has been given to the environment {WithArrows} in order to change the value of this
parameter \jot for an given environment.®

$\begin{WithArrows} [displaystyle, jot=2ex]
F & = \fracl2G \Arrow{we expand}\\

& = H + \frac12K \Arrow{we go on}\\

& =K
\end{WithArrows}$

F=lg

2
we expand

1
—H+-K
T3

> we go on
=K

However, this new value of \jot will also be used in other alignments included in the environ-
ment {WithArrows}:

"In fact, it’s possible to use the package witharrows without the package amsmath.
81t’s also possible to change \jot with the environment {spreadlines} of mathtools.

$\begin{WithArrows} [jot=2ex]

\varphi(x,y) = 0 & \Leftrightarrow (x+y)~2 + (x+2y)72 = 0
\Arrow{x and y are reall\\

& \Leftrightarrow \left\{

\begin{aligned}
x+ty & = 0 \\
x+2y & = 0 \\
\end{aligned}
\right.
\end{WithArrows}$
p(r,y) =06 (z+y)* + (x+2y)* =0
c4y=0 >xandyarereal
-~
r+2y=20

Maybe this doesn’t correspond to the desired outcome. That’s why an option interline is proposed.
It’s possible to use a skip (=glue) for this option.

$\begin{WithArrows} [interline=2ex]

\varphi(x,y) = 0 & \Leftrightarrow (x+y)~2 + (x+2y)~2 =0
\Arrow{x and y are reall\\

& \Leftrightarrow \left\{

\begin{aligned}

x+ty & = 0 \\

x+2y & = 0 \\

\end{aligned}

\right.

\end{WithArrows}$

p(z,y) =0 (z+y)* + (z+2y)° =0
x and y are real
z+y=0
54
z+2y=0

Like the environment {aligned}, {WithArrows} has an option of placement which can assume the
values t, c or b. However, the default value is not ¢ but t. If desired, it’s possible to have the ¢ value
as the default with the command \WithArrowsOptions{c} at the beginning of the document.

Et donc\enskip

$\begin{WithArrows}

A & = (a+1)72 \Arrow{we expand} \\
& = a2+ 2a + 1

\end{WithArrows}$
So A= (a+1)?
4%l Qwe expand

The value ¢ may be useful, for example, if we want to add curly braces:

On pose\enskip $\left\{
\begin{WithArrows} [c]

f(x) & = 3x73+2x"2-x+4
\Arrow[tikz=-]{both are polynoms}\\
g(x) & = bx~2-5x+6

\end{WithArrows}

\right.$

=323 + 222 — 4
On pose J(@) xz ert o > both are polynoms
g(z) =5z — b5z +6

Unlike {aligned}, the environment {WithArrows} uses \textstyle by default.
Once again, it’s possible to change this behaviour with \WithArrowsOptions:
\WithArrowsOptions{displaystyle}.

The following example is composed with {aligned}:
n n

Z(xi +1)%2 = Z(xf +2z; +1)

i=1 i=1
n n
= E 7+ 2 g Ti+n
i=1 i=1

The following is composed with {WithArrows}[c,displaystyle]. The results are stricly identical.’

n n

D @i+1)? = (a7 + 2z +1)

i=1 =1

zzn:x?—i—an:xi—l—n
i=1 i=1

4 Examples

4.1 With only one column

It’s possible to use the environment {WithArrows} with making use of the left column only, or the
right column only.

$\begin{WithArrows}

&f(x) \ge g(x) \Arrow{by squaring both sides} \\

& £(x)72 \ge g(x)~2 \Arrow{by moving to left side} \\
& £(x)72 - g(x)72 \ge 0

\end{WithArrows}$

f(z) > g(z)
2 2
f(l') > g(x)2 >0 \)by mol}ing to left side

f(@)? = g(x)* =

4.2 MoveEqLeft

It’s possible to use \MoveEqLeft of mathtools (if we don’t want ampersand on the firt line):

Q_by squaring both sides

$\begin{WithArrows} [jot=2mm]

\MoveEqLeft \arccos(x) = \arcsin \frac45 + \arcsin \frac5{13}

\Arrow{because both are in $[-\frac{\pi}2,\frac{\pi}21$} \\

& \Leftrightarrow x = \sin\left(\arcsin\frac45 + \arcsin\frac5{13}\right) \\

& \Leftrightarrow x = \frac45\cos\arcsin\frac5{13} + \frac5{13} \cos\arcsin\frac4b
\Arrow{$\forall x \in [-1,1], \cos(\arcsin x) = \sqrt{1-x"2}$} \\

& \Leftrightarrow x = \frac45\sqrt{1-\bigl(\frac5{13}\bigr) 2}

+ \frac5{13}\sqrt{1-\bigl (\frac45\bigr) "2} \\

\end{WithArrows}$

arccos(x) = arcsin 2 + arcsin -

5 13 R

because both are in [-%, 7]
& o =sin (arcsin % + arcsin 15—3)

_4 B o4 5 i 4
=T = 5 COS arcsin 13 + 13 COS arcsin 5

sa= 1= @+ /1= ()

91n versions of amsmath older than the 5 nov. 2016, an thin space was added on the left of an environment {aligned}.
The new versions do not add this space and neither do {WithArrows}.

D Va € [—1,1], cos(arcsinz) = V1 — z?

4.3 Nested environments

The environments {WithArrows} can be nested. In this case, the options given to the encompassing
environment applies also to the inner ones (with the notable exception of interline).

$\begin{WithArrows} [tikz=blue]

\varphi (x,y)=0
& \Leftrightarrow (x+2y) 2+(2x+4y)~2 = 0 \Arrow{the numbers are reall}\\
& \Leftrightarrow
\left\{\begin{WithArrows}[c]
x+2y & = 0 \\
2x+4y & = 0
\end{WithArrows}\right. \\
& \Leftrightarrow
\left\{\begin{WithArrows}[c]
x+2y & = 0 \Arrow[tikz=-]{the same quation}\\
x+2y & = 0
\end{WithArrows}\right. \\
& \Leftrightarrow x+2y=0

\end{WithArrows}$
o(x,y) =0« (z+2y)? + 2z +4y)2 =0
T+2y=0 > the numbers are real
{29: +4y =0
r+2y=20
& > the same equation
z+2y=0
Sr+2y=0

4.4 A loop flow

Here is an example with a loop flow.

$\begin{WithArrows} [tikz={font={\tinyl}}]

a.\;& f \text{ est continuous on } E

\Arrow{ (1) F\Arrow [tikz=<-, jump=4,xoffset=1cm] {(5) }\\
b.\;& f \text{ est continuous in } O

\Arrow{(2) H\\
c.\;& f \text{ is bounded on the unit sphere}
\Arrow{ (3) }\\
d.\;& \exists K > O\quad \forall x \in E\quad \[f(x)\| \le K \Ix\|
\Arrow{(4) \\
e.\;& f \text{ is lipschitzian}
\end{WithArrows}$
a. f est continuous on F Q
(1)
b. f est continuous in 0 Q
(2)
c. f is bounded on the unit sphere Q)
(3)

d.3IK>0 VeeE |f(2)] < K|zl

e. f is lipschitzian

4.5 Automatic numerotation

The option font of Tikz contains in fact a list of tokens which will be placed at the beginning of the
text.

These tokens can be true commands for a change of font (like \bfseries or \sffamily) but can also
be, in fact, any TeX command.

In the following example, the argument of font is the token list \tiny\counter where \counter
is a command which increments a counter previously defined and displays its new value. Thus, the
arrows are automatically numbered.

10

\newcounter{MyCounter}
\newcommand{\counter}{\stepcounter{MyCounter}\theMyCounter.}
$\begin{WithArrows} [tikz={font={\tiny\counter}}]

A(x
& =

B(x)
C(x)
Cc(x)
E(x)

\Arrow{} \\
\Arrow{} \\
\Arrow{} \\
\Arrow{} \\
\Arrow{} \\

= G(x)

&

&

&

& = F(x)
¥ =
\end{WithArrows}$

5 An technical remark about the names of the nodes

Environments {WithArrows} can be nested, and, therefore, we have a “nesting tree” for the environ-
ments {WithArrows} of the whole document. This nesting tree is used to give a unique name to each
node in the document.

The Tikz name of a node created by witharrows is prefixed by wa-. Then, we have a list of numbers
which give the position in the nesting tree and the number of the line in the environment. At the
end, we have the suffixe 1 for a “left node” and r for a “right node”.

For illustrative purposes, we give an example of nested environments {WithArrows}, and, for each
“right node”, the name of that node.'"

A<B+B+B+B+B+B+B+B+B+B+ B+ B+ Bwa-34-1

C < Dwa-34-1-1
| wa-34-2
F < Fiwa-34-1-2
G<H+H+H+H+ H+ H+ Hwa-34-2-1
< J < Kiwa-34-2-1-1 \ wa-34-3
I« I wa-34-2-2
L <1 Mwa-34-2-1-2
wa-34-4

N <1 Owa-34-3-1
P« Qu‘Wa—34—3—2

The command \WithArrowsLastEnv gives the number of the last environment of level 0. For exam-
ple, we can draw an arrow from the node wa-34-1 to the node wa-34-2-1 with the following Tikz
command.'!

\begin{tikzpicture} [remember picture,overlay,->,TipsOfWithArrows]
\draw (wa-\WithArrowsLastEnv-1-r) to (wa-\WithArrowsLastEnv-2-1-r) ;
\end{tikzpicture}

10There is an option shownodenames to show the names of these nodes.
"' The command \WithArrowsLastEnv is fully ezpandable and thus, can be used directly in the name of a Tikz node.

11

6 Implementation

6.1 Declaration of the package and extensions loaded

First, tikz and some Tikz libraries are loaded before the \ProvidesExplPackage. They are loaded
this way because \usetikzlibrary in expl3 code fails.'?

1 \RequirePackage{tikz}
> \usetikzlibrary{calc,arrows.meta,bending}

Then, we can give the traditionnal declaration of a package written with expl3:

3 \RequirePackage{13keys2e}
+ \ProvidesExplPackage
s {witharrows}
6 {\myfiledate}
7 {\myfileversion}
{Draws arrows for explanations on the right}

The package xparse will be used to define the environment {WithArrows} and the document-level
commands (\Arrow, \WithArrowsOptions ans \WithArrowsLastEnv).

o \RequirePackage{xparse}

The package footnote will be used to extract footnotes of the environments {WithArrows} via the
pair \savenotes-\spewnotes.

10 \RequirePackage{footnote}

6.2 Some technical definitions

We define a Tikz style @@_node_style for the nodes that will be created in the \halign.
11 \tikzstyle{@@_node_style}=[rectangle,

12 inner~sep = 0 pt,

13 minimum~height = 3 pt,

14 minimum~width = Opt,

15 red,

16 \bool_if:NT \1_@@_shownodes_bool {draw}]

The color of the nodes is red, but in fact, the nodes will be drawn only when the option shownodes
is used (this option is useful for debugging).

We also define a style for the tips of arrow. The final user of the extension witharrows will use this
style if he wants to draw an arrow directly with a Tikz command in his document (probably using
the Tikz nodes created by {WithArrows} in the \halign).

17 \tikzset{TipsOfWithArrows/.style= { > = {Straight~Barb[scale=1.2,bend]}} }

In order to increase the interline in the environments {WithArrows}, we will use the command
\spread@equation of amsmath. When used, this command becomes no-op (in the current TeX
group). Therefore, it will be possible to use the environments of amsmath (e.g. {aligned}) in an
environment {WithArrows}.
Nevertheless, we want the extension witharrows available without amsmath. That’s why we give a
definition of \spread@equation (this definition will be loaded only if amsmath — or mathtools —
has not been loaded yet).

15 \cs_if_free:NT \spread@equation

19 {\cs_set:Npn \spread@equation{\openup\jot

20 \cs_set_eq:NN \spread@equation \prg_do_nothing}}

12¢f. tex.stackexchange.com/questions/57424/using-of-usetikzlibrary-in-an-expl3-package-fails

12

6.3 Variables

The following sequence is the position of the last environment {WithArrows} in the tree of the nested
environments {WithArrows}.

21 \seq_new:N \g_0@_position_in_the_tree_seq
2 \seq_gput_right:Nn \g_@@_position_in_the_tree_seq 1

The following counter will give the number of the last environment {WithArrows} of level 0. This
counter will be used only in the definition of \WithArrowsLastEnv.

>3 \int_new:N \g_0@_last_env_int

The following counter will be use to specify the level when we set keys: 0 (global level as with
\WithArrowsOptions), 1 (environment level with the \begin{WithArrows}) or 2 (local level with
the \Arrow command).

22 \int_new:N \1_@@_level_int

The following skip (=glue) is the vertical space inserted between two lines of the \halign.

>5 \skip_new:N \1_@@_interline_skip

If the following flag is raised, then the user can use more than two columns.
26 \bool_new:N \1_0@_MoreColumns_bool

The following integer indicates the position of the box that will be created: 0 (=t=\vtop),
1 (=c=\vcenter) or 2 (=b=\vbox).

>7 \int_new:N \1_@@_pos_env_int

The integer \1_@@_pos_arrows_int indicates the position of the arrows with the following code:

option rr | 11 | rl | 1r | i | group | groups
\1_0@_pos_arrows_int | 0 1 2 3 |4 5 6

25 \int_new:N \1_@@_pos_arrows_int

When we scan a list of options, we want to be able to raise an error if two options of position of the
arrows are present. That’s why we keep the code of the first option of position in a variable called
\1_0@_previous_pos_arrows_int. This variable will be set to —1 each time we start the scanning
of a list of options.

20 \int_new:N \1_Q@@_previous_pos_arrows_int

The following dimension is the value of the translation of the whole arrow to the right (of course, it’s
a dimension and not a skip).

50 \dim_new:N \1_@@_xoffset_dim
31 \dim_set:Nn \1_@@_xoffset_dim {3mm}

If the following flag is raised, the nodes will be drawn in red (useful for debugging).
32 \bool_new:N \1_@@_shownodes_bool

If the following flag is raised, the name of the “right nodes” will be shown in the document (useful
for debugging).

33 \bool_new:N \1_@@_shownodenames_bool

If the following flag is raised, the elements of the \halign will be composed with \displaystyle:
32 \bool_new:N \1_0@_displaystyle_bool

13

The following token list variable will contains the Tikz options used to draw the arrows.

55 \tl_clear_new:N \1_Q@_options_tikz_tl
At each possible level for the options (global, environment or local: see below), the new values will
be appended on the right of this token list.

The dimension \g_@@_x_dim will be used to compute the z-value for some verticals arrows when one
of the options i, group and groups (values 4, 5 and 6 of \1_0@_pos_arrows_int) is used.

56 \dim_new:N \g_0@_x_dim

In the \halign of an environment {WithArrows}, we will have to use three counters:
e \g_00_arrow_int to count the arrows created in the environment ;

e \g_0@_line_int to count the lines of the \halign ;

e \g_0@_line_bis_int to count the lines of the \halign which have a second column.'?

These three counters will be incremented in a cell of the \halign and, therefore, the incrementation
must be global. However, we want to be able to include a {WithArrows} in another {WithArrows}. To
do so, we must restore the previous value of these counters at the end of an environment {WithArrows}
and we decide to manage a stack for each of these counters.

37 \seq_new:N \g_0@_arrow_int_seq

52 \int_new:N \g_@Q@_arrow_int

s \seq_new:N \g_0@_line_int_seq

20 \int_new:N \g_@@_line_int

21 \seq_new:N \g_0@_line_bis_int_seq
22 \int_new:N \g_0@_line_bis_int

6.4 The definition of the options

There are three levels where options can be set:
o with \WithArrowsOptions{...}: this level will be called global level (number 0);
o with \begin{WithArrows}[...]: this level will be called environment level (number 1);
o with \Arrow[...]: this level will be called local level (number 2).

The level is specified in the variable \1_@@_level_int and the code attached to the options can use
this information to alter their actions.

We begin with a first submodule which will be loaded only at the global or the environment level.

The options t, ¢ and b indicate if we will create a \vtop, a \vcenter of a \vbox. This information
is stored in the variable \1_Q@_pos_env_int.

23 \keys_define:nn {WithArrows/GlobalOrEnv}

a4 { t .code:n = {\int_set:Nn \1_@@_pos_env_int 0},
45 t .value_forbidden:n = true,
46 c .code:n = {\int_set:Nn \1_0@_pos_env_int 1},
47 c .value_forbidden:n = true,
a8 b .code:n = {\int_set:Nn \1_@@_pos_env_int 2},
49 b .value_forbidden:n = true,

Usually, the number of columns in a {WithArrows} environment is limited to 2. Nevertheless, it’s
possible to have more columns with the option MoreColumns.

\1_@@_MoreColumns_bool,
true,

50 MoreColumns .bool_set:N
51 MoreColumns .value_forbidden:n

I3 This counter is used in order to raise an error if there is a line without the second column (such an situation could
raise a PGF error for an undefined node).

14

If the user wants to give a new name to the \Arrow command (and the name \Arrow remains free).

52 CommandName .tl_set:N = \1_0@0@_CommandName_t1,
53 CommandName .initial:n = {Arrow},
54 CommandName .value_required:n = true,

With the option displaystyle, the environments will be composed in \displaystyle.
55 displaystyle .bool_set:N = \1_0@_displaystyle_bool,

With the option shownodes, the nodes will be drawn in red (useful only for debugging).

56 shownodes .bool_set:N = \1_@@_shownodes_bool,

With the option shownodenames, the name of the “right nodes” will be written in the document
(useful only for debugging).

57 shownodenames .bool_set:N = \1_@@_shownodenames_bool,

With the option group, all the arrows of the environment are vertical with the same abscissa and at
a leftmost position.

58 group .code:n = {\int_compare:nNnT \1_0@_previous_pos_arrows_int > {-1}
50 {\msg_error:nn {witharrows}

60 {Two~options~are~incompatible}}
61 \int_set:Nn \1_0@_previous_pos_arrows_int 5

62 \int_set:Nn \1_Q@_pos_arrows_int 5},

63 group .value_forbidden:n = true,

With the option groups (with a s), the arrows of the environment are divided in groups by an
argument of connexity, and, in each group, the arrows are vertical with the same abscissa and at a
leftmost position. When the option group or groups is used, it’s not possible to an other option of
position like 11, 1r, etc. for a individual key.

64 groups .code:n = {\int_compare:nNnT \1_0@_previous_pos_arrows_int > {-1}
65 {\msg_error:nn {witharrows}

66 {Two~options~are~incompatible}}
67 \int_set:Nn \1_0Q@_previous_pos_arrows_int 6

68 \int_set:Nn \1_0@_pos_arrows_int 6},

69 groups .value_forbidden:n = true}

Then we define the main module called WithArrows which will be loaded at all the levels.

The option tikz gives Tikz parameters that will be given to the arrow when it is drawn (more
precisely, the parameters will be given to the command \path of Tikz).

70 \keys_define:nn {WithArrows}

71 {tikz .code:n {\tl_put_right:Nn \1_0@_options_tikz_tl {,#1}},

72 tikz .value_required:n = true,

The other options are for the position of the arrows. The treatment is the same for the options 11,
rr, 1r, 1r and i and that’s why a dedicated fonction \@@_analyze_option_position:n has been
written (see below).

73 rr .value_forbidden:n = true,
74 rr .code:n = {\@@_analyze_option_position:n 0},
75 11 .value_forbidden:n = true,
76 11 .code:n = {\@@_analyze_option_position:n 1},
77 rl .value_forbidden:n = true,
78 rl .code:n = {\@@_analyze_option_position:n 2},
79 1r .value_forbidden:n = true,
80 1r .code:n = {\@@_analyze_option_position:n 3},
81 i .value_forbidden:n = true,
82 i .code:n = {\@@_analyze_option_position:n 4},

15

The option xoffset change the z-offset of the arrows (towards the right). It’s a dimension and not
a skip. It’s not possible to change the value of this parameter for a individual arrow if the option
group or the option groups is used.

xoffset .code:n = {\bool_if:nTF {\int_compare_p:nNn \1_@@_level_int = 2 &&

84 \int_compare_p:nNn \1_@@_pos_arrows_int > 4}
85 {\msg_error:nn {witharrows}

86 {Option~incompatible~with~"group(s)"}}
87 {\dim_set:Nn \1_@@_xoffset_dim {#1}}},

88 xoffset .value_required:n = true,

The option jot exists for compatibility. It changes directly the value of the parameter \ jot, which
is a LaTeX parameter and not a parameter specific to witharrows. It’s allowed only at the level of the
environment (maybe we should suppress completely this option in the future).

1

89 jot .code:n = {\int_compare:nNnTF \1_Q@_level_int =

% {\dim_set:Nn \jot {#1}}

01 {\msg_error:nn {witharrows} {Option~will~be~ignored} }},
92 jot .value_required:n = true,

The option interline gives the vertical skip (=glue) inserted between two lines (independently of
\jot). It’s accepted only at the level of the environment (this last point is a kind of security).
Futhermore, this option has a particular behaviour: it applies only to the current environment and
doesn’t apply to the nested environments.

03 interline .code:n = {\int_compare:nNnTF \1_0@_level_int = 1

94 {\skip_set:Nn \1_@@_interline_skip {#1}}

95 {\msg_error:nn {witharrows} {Option~will~be~ignored}}},
9% interline .value_required:n = true,

Eventually, a key jump (see below) and a key for unknown keys.

o7 jump .code:n = {\msg_error:nn {witharrows} {Option~will~be~ignored}},
08 unknown .code:n {\msg_error:nn {witharrows} {Option~unknown}}

90}

The key jump indicates the number of lines jumped by the arrow (1 by default). This key will be
extracted when the command \Arrow will be executed. That’s why there is a special module for this
key. The key jump is extracted in the command \Arrow because we want to compute right away the
final line of the arrow (this will be useful for the options group and groups).

10 \keys_define:nn {WithArrows/jump}

101 {jump .code:n = {\int_set:Nn \1_@@_jump_int {#1}

102 \int_compare:nNnF \1_0@_jump_int > O

103 {\msg_error:nn {witharrows}

104 {The~option~"jump"~must~be~non~negative}}},
105 jump .value_required:n = true}

The following command is for technical reasons. It’s used for the following options of position: 11,
1r, rl, rr and i. The argument is the corresponding code for the position of the arrows.

106 \cs_new_protected:Nn \@@_analyze_option_position:n

107 {\int_compare:nNnT \1_@@_previous_pos_arrows_int > {-1}

108 {\msg_error:nn {witharrows}

109 {Two~options~are~incompatiblel}}

110 \int_set:Nn \1_Q@_previous_pos_arrows_int {#1}

It’s not possible to use one of the considered options at the level of an arrow (level 2) when the option
group or the option groups is used. However, if we are at the level of an environment, it’s possible to
override a previous option group or groups (this previous option group or groups would necessarily
have been set at a global level by \WithArrowsOptions).

111 \bool_if:nTF { \int_compare_p:nNn \1_0@_level_int = 2 &&

112 \int_compare_p:nNn \1_@@_pos_arrows_int > 4}
13 {\msg_error:nn {witharrows}

114 {Option~incompatible~with~"group(s)"}}

115 {\int_set:Nn \1_0@_pos_arrows_int {#1}}}

16

We process the options when the package is loaded (with \usepackage) but we recommend to use
\WithArrowsOptions instead.

116 \ProcessKeysOptions {WithArrows}

\WithArrowsOptions is the command of the witharrows package to fix options at the document level.

117 \NewDocumentCommand \WithArrowsOptions {m}

118 {\int_set:Nn \1_0@_previous_pos_arrows_int {-1}
119 \keys_set_known:nnN {WithArrows} {#1} \1_tmpa_tl
120 \keys_set:nV {WithArrows/GlobalOrEnv} \1_tmpa_t1}

6.5 The command Arrow

In fact, the internal command is not named \Arrow but \@@_Arrow. Usually, at the beginning of
an environment {WithArrows}, \Arrow is set to be equivalent to \@@_Arrow. However, the user can
change the name with the option CommandName and the user command for \@@_Arrow will be different.
This mechanism can be useful when the user has already a command named \Arrow he wants to still
be able to use in the environment {WithArrows}.

121 \NewDocumentCommand \@@_Arrow {0{} m O{}}
122 {\tl_if_eq:noF {WithArrows} {\@currenvir}
123 {\msg_error:nn {witharrows} {Arrow-~used~outside~{WithArrowsl}~environment}}

The counter \g_0@_arrow_int counts the arrows in the environment. The incrementation must be
global (gincr) because the command \Arrow will be used in the cell of a \halign. It’s recalled that
we manage a stack for this counter.

124 \int_gincr:N \g_@@_arrow_int

We decide to extract immediatly the key jump in order to compute the end line. That’s the reason

why there is a module WithArrows/jump with this sole key. The remainded key-value pairs are stored
in \1_tmpa_t1 and will be stored further in the properly list of the arrow.

125 \int_zero_new:N \1_@@_jump_int
126 \int_set:Nn \1_0@_jump_int 1
127 \keys_set_known:nnN {WithArrows/jump} {#1,#3} \1_tmpa_tl

We will construct a global property list to store the informations of the considered arrow. The four
fields of this property list are “initial”; “final”, “options” and “label”.

1. First, the line from which the arrow starts:
128 \prop_put:NnV \1_tmpa_prop {initial} \g_Q@_line_int
2. The line where the arrow ends (that’s why it was necessary to extract the key jump):

129 \int_set:Nn \1_tmpa_int {\g_@@_line_int + \1_@@_jump_int}
130 \prop_put:NnV \1_tmpa_prop {final} \1_tmpa_int

3. All the options of the arrow (it’s a token list):

131 \prop_put:NnV \1_tmpa_prop {options} \1l_tmpa_tl
4. The label of the arrow (it’s also a token list):

132 \prop_put:Nnn \1_tmpa_prop {label} {#2}

The property list has been created in a local variable for convenience. Now, it will be stored in a
global variable indicating both the position-in-the-tree and the number of the arrow.

133 \prop_gclear_new:c

134 {g_0@_arrow_\1_0@_prefix_tl _\int_use:N\g_0@_arrow_int _prop}
135 \prop_gset_eq:cN

136 {g_0@_arrow_\1_0@_prefix_tl _\int_use:N\g_0@_arrow_int _prop}
137 \1_tmpa_prop

13 ¥

17

6.6 The environnement {WithArrows}

The environment {WithArrows} starts with the initialisation of the three counters \g_0@_arrow_int,
\g_0@_line_int dans \g_@@_line_bis_int. However, we have to save their previous values with
the three stacks created for this end.

130 \NewDocumentEnvironment {WithArrows} {0{}}

140 { \seq_gput_right:NV \g_0@_arrow_int_seq \g_00_arrow_int

141 \int_gzero:N \g_0@_arrow_int

142 \seq_gput_right:NV \g_0@_line_int_seq \g_0@_line_int

143 \int_gzero:N \g_0@_line_int

144 \seq_gput_right:NV \g_0@_line_bis_int_seq \g_Q@@_line_bis_int
145 \int_gzero:N \g_0@_line_bis_int

We also have to update the position on the nesting tree.
146 \seq_gput_right:Nn \g_@@_position_in_the_tree_seq 1

The nesting tree is used to create a prefix which will be used in the names of the Tikz nodes and in the
names of the arrows (each arrow is a property list of four fields). If we are in the second environment
{WithArrows} nested in the third environment {WithArrows} of the document, the prefix will be
3-2 (although the position in the tree is [3,2, 1] since such a position always ends with a 1). First,
we do a copy of the position-in-the-tree and then we pop the last element of this copy (in order to
drop the last 1).

147 \seq_set_eq:NN \1_tmpa_seq \g_Q@@_position_in_the_tree_seq

148 \seq_pop_right:NN \1_tmpa_seq \1_tmpa_tl

149 \tl_clear_new:N \1_Q@_prefix_tl

150 \tl_set:Nx \1_@@_prefix_tl {\seq_use:Nnnn \1_tmpa_seq {-} {-} {-}}

The environment {WithArrows} must be used in math mode.

151 \reverse_if:N \if_mode_math:
152 \msg_error:nn {witharrows} {{WithArrowsl}-~used~outside~math~mode}
153 \fi

We extract the footnotes of the environments {WithArrows} with the pair \savenotes-\spewnotes
of the extension footnote (of course, we have put a \spewnotes at the end of the environment).

154 \savenotes
We define the command \\ to be the command \@@_cr: (defined below).

155 \cs_set_eq:NN \\ \@@_cr:
156 \mathsurround = \c_zero_dim

These counters will be used later as variables.

157 \int_zero_new:N \1_@@_initial_int
158 \int_zero_new:N \1_@@_final_int
150 \int_zero_new:N \1_@@_arrow_int

The value corresponding to the key interline is put to zero before the treatment of the options of
the environment.'*

160 \skip_zero:N \1_0@_interline_skip

We process the options given to the {WithArrows} environment. The level of options is set to 1.

161 \int_set:Nn \1_@@_previous_pos_arrows_int {-1}
162 \int_set:Nn \1_@@_level_int 1

163 \keys_set_known:nnN {WithArrows} {#1} \1_tmpa_tl
164 \keys_set:nV {WithArrows/GlobalOrEnv} \1_tmpa_tl

141t’s recalled that, by design, the option interline of a environment doesn’t apply in the nested environments.

18

If the user has given a value for the option CommandName (at the global or at the environment level), a
command with this name is defined locally in the environment with meaning \@@_Arrow. The default
value of the option CommandName is “Arrow” and thus, by default, the name of the command will be
\Arrow.

165 \cs_set_eq:cN \1_Q@_CommandName_tl \@@_Arrow

The environment begins with a \vtop, a \vcenter or a \vbox'® depending of the value of
\1_00@_pos_env_int (fixed by the options t, ¢ or b). The environment {WithArrows} must be
used in math mode'® and therefore, we can use \vcenter.

166 \int_case:nn \1_0@_pos_env_int
167 {0 {\vtop}

168 1 {\vcenter}

169 2 {\vbox}}

170 \bgroup

The command \spread@equation is the command used by amsmath in the beginning of an alignment
to fix the interline. When used, it becomes no-op. However, it’s possible to use witharrows without
amsmath since we have redefined \spread@equation (if it is not defined yet).

171 \spread@equation

We begin the \halign and the preamble.
172 \ialign\bgroup

We increment the counter \g_@@_line_int which will be used in the names of the Tikz nodes created
in the array. This incrementation must be global (gincr) because we are in the cell of a \halign.
It’s recalled that we manage a stack for this counter.

173 \int_gincr:N \g_0@_line_int

174 \strut\hfil

175 $\bool_if:NT \1_0@_displaystyle_bool \displaystyle {##}$
176 &

In the second column, we increment the counter \g_0@_line_bis_int because we want to count the
lines with a second column and raise an error if there is lines without a second column. Once again,
the incrementation must be global and it’s recalled that we manage a stack for this counter too.

177 \int_gincr:N \g_0@_line_bis_int

178 $\bool_if:NT \1_@@_displaystyle_bool \displaystyle {{}##1}$

We create the “left node” of the line (when using macros in Tikz node names, the macros have to be
fully expandable: here, \t1_use:N and \int_use:N are fully expandable).

179 \tikz [remember~picture]

180 \node [@@_node_style]

181 (wa-\t1l_use:N\1_@@_prefix_tl-\int_use:N\g_@@_line_int-1) {} ;
182 \hfil

Now, after the \hfil, we create the “right node” and, if the option shownodenames is raised, the
name of the node is written in the document (useful for debugging).

183 \tikz[remember~picture,label~position=right]

184 \node [@Q_node_style]

185 (wa-\t1l_use:N\1_@@_prefix_tl-\int_use:N\g_@@_line_int-r) {} ;
186 \bool_if:NT \1_@@_shownodenames_bool

187 {\hbox_overlap_right:n {\small wa-\tl_use:N\1_0@_prefix_tl

188 -\int_use:N\g_0@_line_int}}

I5Notice that the use of \vtop seems color-safe here...
16 An error is raised if the environment is used outside math mode.

19

Usually, the \halign of an environment {WithArrows} will have exactly two columns. Nevertheless,
if the user wants to use more columns (without arrows) it’s possible with the option MoreColumns.

189 && \bool_if:NF \1_@@_MoreColumns_bool

190 {\msg_error:nn {witharrows} {Third~column~in~a~{WithArrows}~environment}}
101 $\bool_if:NT \1_@@_displaystyle_bool \displaystyle {##}$

192 \cr

193 }

We begin the second part of the environment {WithArrows}. We have two \egroup: one for the
\halign and one for the \vtop (or \vcenter or \vbox).

194 {\crcr
105 \egroup
196 \egroup

If there is a line without the second column, we raise an error (a line without the second column
could generate an PGF error for an unknown node since the nodes are created in the second column).

197 \int_compare:nNnT \g_00@_line_bis_int < \g_@@_line_int
108 {\msg_error:nn {witharrows} {All~lines~must~have~an~ampersand}}

It there is really arrows in the environment, we draw the arrows:
o if neither option group or groups is used, we can draw directly ;

o if option group or option groups is used (\1_0@_pos_arrows_int > 4), we have to draw the
arrows group by group ; the macro \@@_draw_arrows: does the work.

199 \int_compare:nNnT \g_0@_arrow_int > 0
200 {\int_compare:nNnTF \1_0@_pos_arrows_int > 4
201 \@@_draw_arrows:

202 {\@@_draw_arrows:nn 1 \g_0@_arrow_int}}

We use \spewnotes of footnote to spew the footnotes of the environment (a \savenotes has been
put at the beginning of the environment).

203 \spewnotes

We update the position-in-the-tree. First, we drop the last component and then we increment the
last element.

204 \seq_gpop_right:NN \g_0@_position_in_the_tree_seq \1_tmpa_tl
208 \seq_gpop_right:NN \g_0@@_position_in_the_tree_seq \1l_tmpa_tl
206 \seq_gput_right:Nx \g_0Q@_position_in_the_tree_seq {\int_eval:n {\1_tmpa_tl + 1}}

We update the value of the counter \g_0@_last_env_int. This counter is used only by the user
function \WithArrowsLastEnv.

207 \int_compare:nNnT {\seq_count:N \g_0@_position_in_the_tree_seq} = 1

208 {\int_gincr:N \g_0@_last_env_int}

Finally, we restore the previous values of the three counters \g_@@_arrow_int, \g_@@_line_int and
\g_0@_line_bis_int. It is recalled that we manage three stacks in order to be able to do such a
restoration.

200 \seq_gpop_right:NN \g_@@_arrow_int_seq {\1_tmpa_tl1l}

210 \int_gset:Nn \g_@@_arrow_int {\1_tmpa_tl1l}

211 \seq_gpop_right:NN \g_0@_line_int_seq \1l_tmpa_tl

212 \int_gset:Nn \g_0@_line_int {\1_tmpa_t1}

213 \seq_gpop_right:NN \g_0@_line_bis_int_seq \1l_tmpa_tl
214 \int_gset:Nn \g_00@_line_bis_int {\1_tmpa_t1l}

215 }

20

That’s the end of the environment {WithArrows}.

We give now the definition of \@@_cr: which is the definition of \\ in an environment {WithArrows}.
The two expl3 commands \group_align_safe_begin: and \group_align_safe_end: are specifically
designed for this purpose: test the token that follows in a \halign structure.

First, we remove an eventual token * since the commands \\ and * are equivalent in an environment
{WithArrows} (an environment {WithArrows}, like an environment {aligned} of amsmath is always
unbreakable).

216 \cs_set_protected:Nn \@@_cr:

217 {\scan_stop:
218 \group_align_safe_begin:
219 \peek_meaning_remove:NTF * \Q@@_cr_i: \Q@@_cr_i:}

Then, we peek the next token to see if it’s a [. In this case, the command \\ has an optional argument
which is the vertical skip (=glue) to put.

20 \cs_set_protected:Nn \Q@_cr_i:

21 {\peek_meaning:NTF [{\@@_cr_ii:} {\@@_cr_ii:[\c_zero_dim]} }
22 \cs_new_protected:Npn \@@_cr_ii: [#1]
223 {\group_align_safe_end:

224 \cr\noalign{\skip_vertical:n {#1 + \1_Q@_interline_skip}
225 \scan_stop:}}

According of the documentation of expl3, the previous addition in “#1 + \1_@@_interline_skip”
is really an addition of skips (=glues).

6.7 We draw the arrows

\@@_draw_arrows: draws the arrows when the option group or the option groups is used. In both
cases, we have to compute the z-value of a group of arrows before actually drawing the arrows of
that group. The arrows will actually be drawn by the macro \@@_draw_arrows:nn.

26 \cs_new_protected:Nn \@@_draw_arrows:
27 { \group_begin:

\1_@@_first_arrow_of_group_int will be the first arrow of the current group.
\1_0@_first_line_of_group_int will be the first line involved in the group of arrows (equal to the
initial line of the first arrow of the group because the option jump is always positive).
\1_0@_last_line_of_group_int will be the last line involved in the group (impossible to guess in
advance).

228 \int_zero_new:N \1_Q@_first_arrow_of_group_int

220 \int_zero_new:N \1_@@_first_line_of_group_int
230 \int_zero_new:N \1_0@@_last_line_of_group_int
231 \bool_set_true:N \1_@@_new_group_bool

We begin a loop over all the arrows of the environment. Inside this loop, if a group is finished, we
will draw the lines of that group.

232 \int_set:Nn \1_@@_arrow_int 1

233 \int_until_do:nNnn \1_@@_arrow_int > \g_@@_arrow_int

234 {

We extract from the property list of the current arrow the fields “initial” and “final” and we store
these values in \1_@@_initial_int and \1_@@_final_int. However, we have to do a conversion
because the components of a property list are token lists.

25 \prop_get:cnN {g_0@_arrow_\1_0@_prefix_tl _\int_use:N\1_@@_arrow_int _prop}
236 {initial} \1_tmpa_tl

237 \int_set:Nn \1_@@_initial_int {\1_tmpa_t1}

238 \prop_get:cnN {g_00@_arrow_\1_0@_prefix_tl _\int_use:N\1_@@_arrow_int _prop}
239 {final} \1_tmpa_t1l

240 \int_set:Nn \1_0@_final_int {\1_tmpa_t1l}

21

We test if the previous arrow was in fact the last arrow of a group. In this case, we have to draw all
the arrows of that group (with the z-value computed in \g_0@_x_dim).

241 \bool_if:nT { \int_compare_p:nNn \1_@@_pos_arrows_int = 6

242 && \int_compare_p:nNn \1_@@_arrow_int > 1

243 && \int_compare_p:nNn \1_Q@_initial_int > \1_@@_last_line_of_group_int}
244 {\@@_draw_arrows:nn \1_0@_first_arrow_of_group_int {\1_0@_arrow_int - 1}

25 \bool_set_true:N \1_0@_new_group_bool}

The flag \1_0@_new_group_bool indicates if we have to begin a new group of arrows. In fact,
We have to begin a new group in two circonstancies : if we are at the first arrow of the environ-
ment (that’s why the flag is raised before the beginning of the loop) an if we have just finished a
group (that’s why the flag is raised in the previous conditionnal). At the beginning of a group,
we have to initialize four variables: \1_@@_first_arrow_int, \1_Q@_first_line_of_group_int,
\1_0@_last_line_of_group dans \g_0@_x_dim (global for technical reasons). The last two will
evolve during the construction of the group.

246 \bool_if :nTF \1_@@_new_group_bool

247 {\bool_set_false:N \1_@@_new_group_bool

28 \int_set:Nn \1_0@_first_arrow_of_group_int \1_0@_arrow_int

249 \int_set:Nn \1_0@_first_line_of_group_int \1_Q@_initial_int

250 \int_set:Nn \1_Q@_last_line_of_group_int \1_@@_final_int

251 \tikz [remember~picture]

252 \path let \pl = (wa-\tl_use:N\1_0@_prefix_tl-\int_use:N\1_@@_initial_int-1)
253 in \pgfextra {\dim_gset:Nn \g_0@_x_dim {\x1}} ;

254 }

If we are not at the beginning of a new group, we actualize \1_0@_last_line_of_group_int.
255 {\int_set:Nn \1_@@_last_line_of_group_int
256 {\int_max:nn \1_0@_last_line_of_group_int \1_0@@_final_int}}

We actualise the current z-value (in \g_0@_x_dim) even if we are at the beginning of a group. Indeed,
the previous initialisation of \g_@@_x_dim only considers the initial line of the arrows and now we con-
sider all the lines between the initial and the final line. This is done with \@@_actualise_x_value:nn.
We have written a command for this because it is also used with the option i (\1_@@_pos_arrows_int
=4).

257 \@@_actualise_x_value:nn \1_@@_initial_int \1_@@_final_int

Incrementation of the index of the loop (and end of the loop).

258 \int_incr:N \1_@@_arrow_int

259 }

After the last arrow of the environment, you have to draw the last group of arrows.

260 \@@_draw_arrows:nn \1_QQ@_first_arrow_of_group_int \g_00@_arrow_int
261 \group_end:
262 T

The following code is necessary because we will have to expand an argument exactly 3 times.

263 \cs_generate_variant:Nn \keys_set:nn {no}
264+ \cs_new_protected:Nn \keys_set_WithArrows: {\keys_set:no {WithArrows}}

The macro \@@_draw_arrows:nn draws all the arrows whose numbers are between #1 and #2. #1
and #2 must be expressions that expands to an integer (they are expanded in the beginning of the
macro).

265 \cs_new_protected:Nn \@@_draw_arrows:nn

26 {\group_begin:

267 \int_zero_new:N \1_@@_first_arrow_int
268 \int_set:Nn \1_@@_first_arrow_int {#1}
260 \int_zero_new:N \1_@@_last_arrow_int

270 \int_set:Nn \1_@@_last_arrow_int {#2}

22

We begin a loop over the arrows of the environment. The variable \1_@@_arrow_int (local in the
environment {WithArrows}) will be used as index for the loop.

271 \int_set:Nn \1_Q@@_arrow_int \1_@@_first_arrow_int
272 \int_until_do:nNnn \1_@@_arrow_int > \1_@@_last_arrow_int
273 {

We extract from the property list of the current arrow the fields “initial” and “final” and we store
these values in \1_@@_initial_int and \1_0@_final_int. However, we have to do a conversion
because the components of a property list are token lists.

274 \prop_get:cnN {g_0@_arrow_\1_0@_prefix_tl _\int_use:N\1_@@_arrow_int _prop}
275 {initial} \1_tmpa_tl

276 \int_set:Nn \1_Q@_initial_int {\1_tmpa_t1}

277 \prop_get:cnN {g_0@_arrow_\1_0@_prefix_tl _\int_use:N\1_@@_arrow_int _prop}
278 {final} \1_tmpa_t1l

279 \int_set:Nn \1_Q@@_final_int {\1_tmpa_t1}
If the arrow ends after the last line of the environment, we raise an error.
280 \int_compare:nNnT \1_0@_final_int > \g_@@_line_int

281 {\msg_error:nn {witharrows} {Too~few~lines~for~an~arrow}}

We prepare the process of the options of the current arrow.

282 \group_begin:
28 \int_set:Nn \1_Q@_previous_pos_arrows_int {-1}
284 \int_set:Nn \1_0@_level_int 2

We process the options of the current arrow. The second argument of \keys_set:nn must be ex-
panded exactly three times. An x-expansion is not possible because there can be tokens like \bfseries
in the option font of the option tikz. This expansion is a bit tricky.

285 \prop_get:cnN {g_00@_arrow_\1_0@_prefix_tl

286 _\int_use:N\1_@@_arrow_int _prop} {options} \1_tmpa_tl

287 \exp_args:NNo \exp_args:No \keys_set_WithArrows: {\1_tmpa_tl}

We create two booleans to indicate the position of the initial node and final node of the arrow in
cases of options rr, rl, 1r or 11:

28 \bool_set_false:N \1_@@_initial_r_bool

230 \bool_set_false:N \1_@@_final_r_bool

20 \int_case:nn \1_0@_pos_arrows_int

201 {0 {\bool_set_true:N \1_@@_initial_r_bool
202 \bool_set_true:N \1_@@_final_r_bool}
203 2 {\bool_set_true:N \1_@@_initial_r_bool}

204 3 {\bool_set_true:N \1_@@_final_r_booll}}

In case of option i (\1_@@_pos_arrows_int = 4), we have to compute the z-value of the arrow
(which is vertical). The computed a-value is stored in \g_Q@@_x_dim (the same variable used when
the option group or the option groups is used). This variable is global for technical reasons: we have
to do assignments in a Tikz node.

205 \int_compare:nNnT \1_0@_pos_arrows_int = 4

296 {

First, we calculate the initial value for \g_0@_x_dim. We use a Tikz command, but, in fact, nothing
is drawn. We use this Tikz command only to read the abscissa of a Tikz node.

207 \tikz [remember~picture]
208 \path let \pl = (wa-\tl_use:N\1_@@_prefix_tl-\int_use:N\1_@@_initial_int-1)
209 in \pgfextra {\dim_gset:Nn \g_0@_x_dim {\x1}} ;

A global assignment is necessary because of Tikz.

Then, we will loop to determine the maximal length of all the lines between the lines \1_@@_initial_int
and \1_@@_final_int... but we have written a command dedicated to this work because it will also
be used in \@@_draw_arrows:.

300 \@@_actualise_x_value:nn \1_@@_initial_int \1_@@_final_int

301 }

23

\1_0@_initial_t1 contains the name of the Tikz node from which the arrow starts (in normal cases...
because with option group or option i, the point will perhaps have an other z-value — but always
the same y-value). Idem for \1_0@_final_t1.

302 \tl_set:Nx \1_@@_initial_t1

303 {wa-\tl_use:N\1_0@@_prefix_tl-\int_use:N\1_0@_initial_int-
- \bool if:NTF\l_@@_initial r_bool rl}

305 \tl_set:Nx \1_@@_final_t1

306 {wa-\t1l_use:N\1_0@@_prefix_tl-\int_use:N\1_0@_final_int-
307 \bool if:NTF\1l_@@ final r_bool rl . north}

We use “. north” because we want a small gap between two consecutive arrows (and the Tikz nodes
created have the shape of small vertical segments: use option shownodes to visualize the nodes).

We can now draw the arrow in a {tikzpicture}:

308 \begin{tikzpicture} [remember~picture,

300 overlay,

310 align=left,

311 auto=left,

312 font = {\smalllitshape},
313 TipsOfWithArrows,

314 ->,

315 looseness=1,

316 bend~left=45]

Of course, the arrow is drawn with the command \draw of Tikz. The syntax for this command is:
\draw (x1,y1) to node (name) {contents} (x2,y2)

The surprising aspect of this syntax is the position of contents which is the label of the arrow.

\pl and \p2 are the two ends of the arrow (in fact, if the option i or the option group is used, it’s

not exactly the two ends of the arrow because, in this case, the abscissa used is the value previously

calculated in g_@@_x_dim).

The ability to define \p1 and \p2 is given by the library calc of Tikz. When \p1 and \p2 are defined,

the z-value and y-value of these two points can be read in \x1, \x2, \y1 and \y2. This is the way to

have the coordinates of a node defined in Tikz.

317 \prop_get:cnN {g_0@_arrow_\1_0@_prefix_tl _\int_use:N\1_0@_arrow_int _prop}
318 {1label} \1_tmpa_tl

319 \draw \exp_after:wN [\1_@@_options_tikz_t1]

320 let \pl = (\tl_use:N \1_@@_initial_tl1),

321 \p2 = (\tl_use:N \1_0@_final_tl) in

322 (\int_compare:nNnTF \1_@@_pos_arrows_int > 3

323 {\dim_use:N \g_@@_x_dim + \dim_use:N \1_Q@_xoffset_dim, \y1}

324 {\x1 + \dim_use:N \1_0@_xoffset_dim, \y1})

There are two ways to give the content of the node: the classical way, with curly braces, and the
option “node contents”. However, both are not strictly equivalent: when \usetikzlibrary{babel}
is used, the tokens of the contents are rescanned in the first way but not in the second. We don’t
want the tokens to be rescanned (because this would lead to an error due of the characters _ and :
of the expl3 syntax) and that’s why we use the second method. '7

325 to node [node~contents = {\tl_use:N \1l_tmpa_t1}] {}

326 (\int_compare:nNnTF \1_@@_pos_arrows_int > 3

327 {\dim_use:N \g_00@_x_dim + \dim_use:N \1_0@_xoffset_dim, \y2}
328 {\x2 + \dim_use:N \1_00_xoffset_dim, \y2}) ;

329 \end{tikzpicture}

We close the TeX group opened for the options given to \Arrow[...] (local level of the options).

330 \group_end:

331 \int_incr:N \1_@@_arrow_int
332 }

333 \group_end:

334 }

17¢f.: tex.stackexchange.com/questions/298177/how-to-get-around-a-problem-with-usetikzlibrarybabel

24

The command \@@_actualise_x_value:nn will analyze the lines between #1 and #2 in order to mod-
ify \g_0@_x_dim in consequence. More precisely, \g_@@_x_dim is increased if a line longer than the
current value of \g_0@@_x_dim is found. \@@_actualise_x_value:nn is used in \@Q_draw_arrows:
(for options group and groups) and in \@@_draw_arrows:nn (for option i).

335

336

337

338

339

340

\cs_new_protected:Nn \@0_actualise_x_value:nn
{\group_begin:
\int_set:Nn \1_@@_initial_int {#1}
\int_set:Nn \1_@@_final_int {#2}
\int_compare:nNnT \1_0@_final_int > \g_0@_line_int
{\msg_error:nn {witharrows} {Too~few~lines~for~an~arrow}}

We begin a loop with \1_tmpa_int as index. In this loop, we use a Tikz command, but, in fact,
nothing is drawn. We use this Tikz command only to read the abscissa of a Tikz node.

341

342

343

344

345

350

\int_set:Nn \1_tmpa_int \1_@@_initial_int
\int_until_do:nNnn \1_tmpa_int > \1_@@_final_int

{\tikz[remember~picture]

\path let \pl = (wa-\tl_use:N\1_@@_prefix_tl-\int_use:N\1_tmpa_int-1)
in \pgfextra {\dim_gset:Nn \g_00_x_dim {\dim_max:nn \g_@@_x_dim {\x1}}} ;

\int_incr:N \1_tmpa_int

}
\group_end:
}

\cs_generate_variant:Nn \tl_if_eq:nnF {noF}

The command \WithArrowsLastEnv is not used by the package witharrows. It’s only a facility given
to the final user. It gives the number of the last environment {WithArrows} at level O (to the sens
of the nested environments). This macro is fully expandable and, thus, can be used directly in the
name of a Tikz node.

351

352

\NewDocumentCommand \WithArrowsLastEnv {}
{\int_use:N \g_0@_last_env_int}

6.8 The error messages of the package

359

360

361

362

363

364

365

\msg_new:nnn {witharrows}
{Third~column~in~a~{WithArrows}~environment}
{By~default,~a~\{WithArrows\}~environment~can~only~have~two~columns.~
Maybe~you~have~forgotten~a~newline~symbol.~If~you~really~want~
more~than~two~columns, ~you~should~use~the~option~"MoreColumns"~at~
a~global~level~or~for~an~environment.~However, ~you~can~go~one~for~this~time.}

\msg_new:nnn {witharrows}
{Arrow~used~outside~{WithArrows}~environment}
{The~command~\string\Arrow\space~should~be~used~only~directly~
in~\{WithArrows\}~environment~and~not~in~a~subenvironment . ~However, ~you~
can~go~on.}

\msg_new:nnn {witharrows}
{The~option~"jump"~must~be~non~negativelk
{You~can't~use~a~strictly~negative~value~for~the~option~"jump"~of~command~
\string\Arrow.~ You~can~create~an~arrow~going~backwards~with~
the~option~"<-"~of~Tikz.}

\msg_new:nnn {witharrows}
{Too~few~lines~for~an~arrow}
{There~is~at~least~an~arrow~that~can't~be~drawn~because~it~arrives~after~the~
last~line~of~the~environment.}

: \msg_new:nnn {witharrows}

{{WithArrows}~used~outside~math~mode}
{The~environment~\{WithArrows\}~should~be~used~only~in~math~mode. ~
Nevertheless, ~you~can~go~on.}

\msg_new:nnn {witharrows}
{Two~options~are~incompatible}
{You~try~to~use~the~option~"\tl_use:N\1_keys_key_tl"~but~

25

380 this~option~is~incompatible~or~redundant~with~the~option~"
381 \int_case:nn\1_QQ@_previous_pos_arrows_int

382 {0 {rr}

383 1 {11}

384 2 {r1}

385 3 {1r}

386 4 {1}

387 5 {group}

388 6 {groups}}"~

389 previously~set~in~the~same~

390 \int_case:nn\1_0@_level_int

301 {0 {command~\string\WithArrowsOptions}
392 1 {declaration~of~options~of~the~environment~\{WithArrows\}}

303 2 {command~\string\Arrowl}}.~
394 If~you~go~on,~I~will~overwrite~the~first~option.}

205 \msg_new:nnnn {witharrows}

396 {All~lines~must~have~an~ampersand}

307 {All~lines~of~an~environment~\{WithArrows\}~must~have~an~second~column~

308 (because~the~nodes~are~created~in~the~second~column) . ~You~can~go~on~but~maybe~
399 you~will~have~an~pgf~error~for~an~undefined~shape.}

400 {The~ampersand~can~be~implicit~

401 (e.g.~if~you~use~\string\MoveEqLeft\space~of~mathtools) .}
202 \msg_new:nnn {witharrows}

403 {Option~incompatible~with~"group(s)"}

404 {You~try~to~use~the~option~"\tl_use:N\1_keys_key_tl"~while~
405 you~are~using~the~option~"

406 \int_compare:nNnTF \1_@@_pos_arrows_int = 5

407 {group}

408 {groups}".~

409 It's~incompatible.~You~can~go~on~ignoring~this~option~

410 "\t1l_use:N\1_keys_key_t1l"~but~you~should~correct~your~code.}
211 \msg_new:nnn {witharrows}

412 {Option~will~be~ignored}

a13 {The~option~"\tl_use:N\1_keys_key_tl"~can't~be~used~here.~

a14 If~you~go~on,~it~will~be~ignored.}

415 \msg_new:nnn {witharrows}

416 {Option~unknown}

a7 {The~option~"\tl_use:N\1_keys_key_tl"~is~unknown~or-~meaningless~in~the~context.~
418 If~you~go~on,~it~will~be~ignored.}

7 History

7.1 Changes between versions 1.0 and 1.1

Option for the command \\ and option interline
Compatibility with \usetikzlibrary{babel}
Possibility of nested environments {WithArrows}
Better error messages

Creation of a DTX file

7.2 Changes between versions 1.1 and 1.2

The package witharrows can now be loaded without having loaded previously tikz and the Tikz libraries
calc, arrow.meta and bending.

New option groups (with a s)

Better error messages

26

	1 Options for the shape of the arrows
	2 Precise positioning of the arrows
	3 Comparison with the environment {aligned}
	4 Examples
	4.1 With only one column
	4.2 MoveEqLeft
	4.3 Nested environments
	4.4 A loop flow
	4.5 Automatic numerotation

	5 An technical remark about the names of the nodes
	6 Implementation
	6.1 Declaration of the package and extensions loaded
	6.2 Some technical definitions
	6.3 Variables
	6.4 The definition of the options
	6.5 The command Arrow
	6.6 The environnement {WithArrows}
	6.7 We draw the arrows
	6.8 The error messages of the package

	7 History
	7.1 Changes between versions 1.0 and 1.1
	7.2 Changes between versions 1.1 and 1.2

