
The package witharrows∗

F. Pantigny
fpantigny@wanadoo.fr

February 12, 2018

Abstract

The LaTeX package witharrows gives an environment {WithArrows} which is similar to envi-
ronment {aligned} of amsmath (and mathtools) but gives the possibility to draw arrows on the
right side of the alignment. These arrows are usually used to give explanations concerning the
mathematical calculus presented.

This package can be used with xelatex, lualatex, pdflatex but also by the classical workflow latex-
dvips-ps2pdf (or Adobe Distiller). Two compilations may be necessary. This package requires the
packages expl3, xparse and tikz. The following Tikz libraries are also required: calc, arrows.meta and
bending.

This package gives an environment {WithArrows} to construct alignments of equations with arrows
for the explanations on the right side:

$\begin{WithArrows}
A & = (a+1)^2 \Arrow{we expand} \\
& = a^2 + 2a + 1

\end{WithArrows}$

A = (a + 1)2

= a2 + 2a + 1
we expand

The arrow has been drawn with the command \Arrow on the line from which it starts. The command
\Arrow must be used in the second column (the best way is to put it at the end of the second cell of
the line as in the previous example).

1 Options for the shape of the arrows
The commande \Arrow has several options. These options can be put between square brackets,
before, or after the mandatory argument.
The option jump gives the number1 of lines the arrow must jump (the default value is, of course, 1).

$\begin{WithArrows}
A & = \bigl((a+b)+1\bigr)^2 \Arrow[jump=2]{we expand} \\
& = (a+b)^2 + 2(a+b) +1 \\
& = a^2 + 2ab + b^2 + 2a + 2b +1

\end{WithArrows}$
∗This document corresponds to the version 1.5 of witharrows, at the date of 2018/02/12.
1It’s not possible to give a non-positive value to jump. See below (p. 2) the way to draw an arrow which goes

backwards.

1

A =
(
(a + b) + 1

)2

= (a + b)2 + 2(a + b) + 1
= a2 + 2ab + b2 + 2a + 2b + 1

we expand

It’s possible to put several arrows which start from the same line.

$\begin{WithArrows}
A & = \bigl((a+b)+1\bigr)^2 \Arrow{}\Arrow{}[jump=2] \\
& = (a+b)^2 + 2(a+b) +1 \\
& = a^2 + 2ab + b^2 + 2a + 2b +1

\end{WithArrows}$

A =
(
(a + b) + 1

)2

= (a + b)2 + 2(a + b) + 1
= a2 + 2ab + b2 + 2a + 2b + 1

The option xoffset shift the arrows to the right (we usually don’t want the arrows to be stucked on
the text). The default value of xoffset is 3 mm.

$\begin{WithArrows}
A & = \bigl((a+b)+1\bigr)^2
\Arrow[xoffset=1cm]{with \texttt{xoffset=1cm}} \\
& = (a+b)^2 + 2(a+b) +1

\end{WithArrows}$

A =
(
(a + b) + 1

)2

= (a + b)2 + 2(a + b) + 1
with xoffset=1cm

The arrows are drawn with Tikz. That’s why the command \Arrow has an option tikz which can
be used to give to the arrow (in fact, the command \path of Tikz) the options proposed by Tikz for
such an arrow. The following example gives an thick arrow.

$\begin{WithArrows}
A & = (a+1)^2 \Arrow[tikz=thick]{we expand} \\
& = a^2 + 2a + 1

\end{WithArrows}$

A = (a + 1)2

= a2 + 2a + 1
we expand

It’s also possible to change the arrowheads. For example, we can draw an arrow which goes backwards
with the Tikz option <-.

$\begin{WithArrows}
A & = (a+1)^2 \Arrow[tikz=<-]{we factorize} \\
& = a^2 + 2a + 1

\end{WithArrows}$

A = (a + 1)2

= a2 + 2a + 1
we factorize

It’s also possible to suppress both tips of the arrow with the Tikz option -.

$\begin{WithArrows}
A & = (a+1)^2 \Arrow[tikz=-]{very classical} \\

& = a^2 + 2a + 1
\end{WithArrows}$

2

A = (a + 1)2

= a2 + 2a + 1
very classical

In order to have straight arrows instead of curved ones, we must use the Tikz option “bend left = 0”.

$\begin{WithArrows}
A & = (a+1)^2 \Arrow[tikz={bend left=0}]{we expand} \\
& = a^2 + 2a + 1

\end{WithArrows}$

A = (a + 1)2

= a2 + 2a + 1
we expand

In fact, it’s possible to change more drastically the shape or the arrows with the option TikzCode
presented p. 13.

One of the most useful options is “text width” to control the width of the text associated to the
arrow.

$\begin{WithArrows}
A & = \bigl((a+b)+1\bigr)^2
\Arrow[jump=2,tikz={text width=5.3cm}]{We have done...} \\
& = (a+b)^2 + 2(a+b) +1 \\
& = a^2 + 2ab + b^2 + 2a + 2b +1

\end{WithArrows}$

A =
(
(a + b) + 1

)2

= (a + b)2 + 2(a + b) + 1
= a2 + 2ab + b2 + 2a + 2b + 1

We have done a two-stages expansion
but it would have been clever to ex-
pand with the multinomial theorem.

If we want to change the font of the text associated to the arrow, we can, of course, put a command
like \bfseries, \large or \sffamily at the beginning of the text. But, by default, the texts are
composed with a combination of \small and \itshape. When adding \bfseries at the beginning
of the text, we won’t suppress the \small and the \itshape and we will consequently have a text in
a bold, italic and small font.

$\begin{WithArrows}
A & = (a+1)^2 \Arrow{\bfseries we expand} \\
& = a^2 + 2a + 1

\end{WithArrows}$

A = (a + 1)2

= a2 + 2a + 1
we expand

If we put commands \\ in the text to force newlines, a command of font placed in the beginning of
the text will have effect only until the first command \\ (like in an environment {tabular}). That’s
why Tikz gives a option font to modify the font of the whole text. Nevertheless, if we use the option
tikz={font={\bfseries}}, the default specification of \small and \itshape will be overwritten.

$\begin{WithArrows}
A & = (a+1)^2 \Arrow[tikz={font={\bfseries}}]{we expand} \\

& = a^2 + 2a + 1
\end{WithArrows}$

3

A = (a + 1)2

= a2 + 2a + 1
we expand

If we want exactly the same result as previously, we have to give to the option font the value
{\itshape\small\bfseries}.

Almost all the options can be given directly to the environment {WithArrows} (between square
brackets). In this case, they apply to all the arrows of the environment.2

$\begin{WithArrows}[tikz=blue]
A & = \bigl((a+b)+1\bigr)^2 \Arrow{First expansion.} \\
& = (a+b)^2 + 2(a+b) +1 \Arrow{Second expansion.} \\
& = a^2 + 2ab + b^2 + 2a + 2b +1

\end{WithArrows}$

A =
(
(a + b) + 1

)2

= (a + b)2 + 2(a + b) + 1
= a2 + 2ab + b2 + 2a + 2b + 1

First expansion.
Second expansion.

The environment {WithArrows} has an option displaystyle. With this option, all the elements are
composed in \displaystyle (like in an environment {aligned} of amsmath).

Without the option displaystyle:

$\begin{WithArrows}
\int_0^1 (x+1)^2 dx
& = \int_0^1 (x^2+2x+1) dx
\Arrow{linearity of integration} \\
& = \int_0^1 x^2 dx + 2 \int_0^1 x dx + \int_0^1 dx \\
& = \frac13 + 2\frac12 + 1 \\
& = \frac73
\end{WithArrows}$∫ 1

0 (x + 1)2dx =
∫ 1

0 (x2 + 2x + 1)dx

=
∫ 1

0 x2dx + 2
∫ 1

0 xdx +
∫ 1

0 dx

= 1
3 + 2 1

2 + 1
= 7

3

linearity of integration

The same example with the option displaystyle:∫ 1

0
(x + 1)2dx =

∫ 1

0
(x2 + 2x + 1)dx

=
∫ 1

0
x2dx + 2

∫ 1

0
xdx +

∫ 1

0
dx

= 1
3

+ 21
2

+ 1

= 7
3

linearity of integration

The version 1.3 of witharrows give two options for a fine tuning of the arrows:

• the option ystart set the vertical distance between the base line of the text and the start of
the arrow (default value: 0.4 ex);

• the option ygap set the vertical distance between two consecutive arrows (default value: 0.4 ex).
2They also apply to the nested environments {WithArrows} (with the logical exceptions of interline, CodeBefore

and CodeAfter).

4

(cos x + sin x)2 = cos2 x + 2 cos x sin x + sin2 x

= cos2 x + sin2 x + 2 sin x cos x

= 1 + sin(2x)

ystart
ygap

Remark: It’s also possible to use the options “shorten <” and “shorten >” of Tikz (via the option
tikz of witharrows).

Almost all the options can also be set at the document level with the command \WithArrowsOptions.
In this case, the scope of the declarations is the current TeX group (these declarations are “semi-
global”). For example, if we want all the environments {WithArrows} composed in \displaystyle
with blue arrows, we can write \WithArrowsOptions{displaystyle,tikz=blue}.3

\WithArrowsOptions{displaystyle,tikz=blue}
$\begin{WithArrows}
\sum_{i=1}^n (x_i+1)^2
& = \sum_{i=1}^n (x_i^2+2x_i+1) \Arrow{by linearity}\\
& = \sum_{i=1}^n x_i^2 + 2\sum_{i=1}^nx_i+ n
\end{WithArrows}$

n∑
i=1

(xi + 1)2 =
n∑

i=1
(x2

i + 2xi + 1)

=
n∑

i=1
x2

i + 2
n∑

i=1
xi + n

by linearity

The command \Arrow is recognized only in the environments {WithArrows}. If we have a command
\Arrow previously defined, it’s possible to go on using it outside the environments {WithArrows}.
However, a previouly defined command \Arrow may still be useful in an environment {WithArrows}.
If we want to use it in such an environment, it’s possible to change the name of the command \Arrow
of the package witharrows: there is an option CommandName for this purpose. The new name of the
command must be given to the option without the leading backslash.
\NewDocumentCommand {\Arrow} {} {\longmapsto}
$\begin{WithArrows}[CommandName=Explanation]
f & = \bigl(x \Arrow (x+1)^2\bigr)
\Explanation{we work directly on fonctions}\\
& = \bigl(x \Arrow x^2+2x+1\bigr)
\end{WithArrows}$

f =
(
x 7−→ (x + 1)2)

=
(
x 7−→ x2 + 2x + 1

) we work directly on fonctions

The environment {WithArrows} gives also two options CodeBefore and CodeAfter for LaTeX code
that will be executed at the beginning and at the end of the environment. Theses options are not
designed to be hooks (they are avalaible only at the environment level and they are not applied to
the nested environments).
$\begin{WithArrows}[CodeBefore = \color{blue}]
A & = (a+b)^2 \Arrow{we expand} \\
& = a^2 + 2ab + b^2

\end{WithArrows}$

A = (a + b)2

= a2 + 2ab + b2 we expand

Special commands are available in CodeAfter : a command \NbLines which gives the number of lines
of the current environment (this is a command and not a counter), a special form of the command
\Arrow and the command \MultiArrow : these commands are described in the section concerning
the nested environments, p. 10.

3Since version 1.4 of witharrows, it’s no longer possible to give these options directly when loading the package, i.e.
with the command \usepackage in the preamble.

5

2 Precise positioning of the arrows
The environment {WithArrows} defines, during the composition of the array, two series of nodes
materialized in red in the following example.4

I =
∫ 0

π
4

ln
(

1 + tan
(

π
4 − u

))
(−du)

=
∫ π

4

0
ln
(

1 + tan
(

π
4 − u

))
du

=
∫ π

4

0
ln
(

1 + 1 − tan u

1 + tan u

)
du

=
∫ π

4

0
ln
(

1 + tan u + 1 − tan u

1 + tan u

)
du

=
∫ π

4

0
ln
(

2
1 + tan u

)
du

=
∫ π

4

0

(
ln 2 − ln(1 + tan u)

)
du

= π

4
ln 2 −

∫ π
4

0
ln(1 + tan u) du

= π

4
ln 2 − I

The nodes of the left are at the end of each line of text. These nodes will be called left nodes. The
nodes of the right side are aligned vertically on the right side of the array. These nodes will be called
right nodes.
By default, the arrows use the right nodes. We will say that they are in rr mode (r for right). These
arrows are vertical (we will say that an arrow is vertical when its two ends have the same abscissa).
However, it’s possible to use the left nodes, or a combination of left and right nodes, with one of the
options lr, rl and ll (l for left). Those arrows are, usually, not vertical.

Therefore I =
∫ 0

π
4

ln
(

1 + tan
(

π
4 − u

))
(−du)

=
∫ π

4

0
ln
(

1 + tan
(

π
4 − u

))
du

=
∫ π

4

0
ln
(

1 + 1 − tan u

1 + tan u

)
du

=
∫ π

4

0
ln
(

1 + tan u + 1 − tan u

1 + tan u

)
du

=
∫ π

4

0
ln
(

2
1 + tan u

)
du

=
∫ π

4

0

(
ln 2 − ln(1 + tan u)

)
du

= π

4
ln 2 −

∫ π
4

0
ln(1 + tan u) du

= π

4
ln 2 − I

This arrow uses the lr option.

This arrow uses a ll option and a
jump equal to 2

There is also an option called i (i for intermediate). With this option, the arrow is vertical and at
the leftmost position.

4The option shownodes can be used to materialize the nodes. The nodes are in fact Tikz nodes of shape “rectangle”,
but with zero width. An arrow between two nodes starts at the south anchor of the first node and arrives at the north
anchor of the second node.

6

$\begin{WithArrows}
(a+b)(a+ib)(a-b)(a-ib)
& = (a+b)(a-b)\cdot(a+ib)(a-ib) \\
& = (a^2-b^2)(a^2+b^2) \Arrow[i]{because $(x-y)(x+y)=x^2-y^2$}\\
& = a^4-b^4
\end{WithArrows}$

(a + b)(a + ib)(a − b)(a − ib) = (a + b)(a − b) · (a + ib)(a − ib)
= (a2 − b2)(a2 + b2)
= a4 − b4 because (x − y)(x + y) = x2 − y2

The environment {WithArrows} gives also a group option. With this option, all the arrows of the
environment are grouped on a same vertical line and at a leftmost position.
$\begin{WithArrows}[displaystyle,group]
2xy'-3y=\sqrt x
& \Longleftrightarrow 2x(K'y_0+Ky_0')-3Ky_0 = \sqrt x \\
& \Longleftrightarrow 2xK'y_0 + K(2xy_0'-3y_0) = \sqrt x \\
& \Longleftrightarrow 2x K'y_0 = \sqrt x \Arrow{...}\\
...
\end{WithArrows}$

2xy′ − 3y =
√

x ⇐⇒ 2x(K ′y0 + Ky′
0) − 3Ky0 =

√
x

⇐⇒ 2xK ′y0 + K(2xy′
0 − 3y0) =

√
x

⇐⇒ 2xK ′y0 =
√

x

⇐⇒ 2xK ′x
3
2 = x

1
2

⇐⇒ K ′ = 1
2x2

⇐⇒ K = − 1
2x

We replace y0 by its value.

simplification of the x

antiderivation

The environment {WithArrows} gives also a groups option (with a s in the name). With this option,
the arrows are divided into several “groups”. Each group is a set of connected5 arrows. All the arrows
of a given group are grouped on a same vertical line and at a leftmost position.

A = B

= C + D

= D′

= E + F + G + H + I

= K + L + M

= N

= O

one
two

three
four

If desired, the option group or the option groups can be given to the command \WithArrowsOptions
so that it will become the default value. In this case, it’s still possible to come back to the default
behaviour for a given environment {WithArrows} with the option rr: \begin{WithArrows}{rr}

3 Comparison with the environment {aligned}
{WithArrows} bears similarities with the environment {aligned} of the extension amsmath. These
are only similarities because {WithArrows} has not been written upon the environment {aligned}.6

As in the environments of amsmath, it’s possible to change the spacing between two given lines with
the option of the command \\ of end of line (it’s also possible to use * but is has exactly the same
effect as \\ since an environment {WithArrows} is always unbreakable).

5More precisely: for each arrow a, we note i(a) the number of its initial line and f(a) the number of its final line ;
for two arrows a and b, we say that a ∼ b when Ji(a), f(a)K ∩ Ji(b), f(b)K ̸= ∅ ; the groups are the equivalence classes
of the transitive closure of ∼.

6In fact, it’s possible to use the package witharrows without the package amsmath.

7

$\begin{WithArrows}
A & = (a+1)^2 \Arrow{we expand} \\[2ex]
& = a^2 + 2a + 1

\end{WithArrows}$

A = (a + 1)2

= a2 + 2a + 1
we expand

In the environments of amsmath (or mathtools), the spacing between lines is fixed by a parameter
called \jot (it’s a dimension and not a skip). That’s also the case for the environment {WithArrows}.
An option jot has been given to the environment {WithArrows} in order to change the value of this
parameter \jot for an given environment.7

$\begin{WithArrows}[displaystyle,jot=2ex]
F & = \frac12G \Arrow{we expand}\\
& = H + \frac12K \Arrow{we go on}\\
& = K

\end{WithArrows}$

F = 1
2

G

= H + 1
2

K

= K

we expand

we go on

However, this new value of \jot will also be used in other alignments included in the environ-
ment {WithArrows}:

$\begin{WithArrows}[jot=2ex]
\varphi(x,y) = 0 & \Leftrightarrow (x+y)^2 + (x+2y)^2 = 0
\Arrow{x and y are real}\\
& \Leftrightarrow \left\{
\begin{aligned}
x+y & = 0 \\
x+2y & = 0 \\
\end{aligned}
\right.
\end{WithArrows}$

φ(x, y) = 0 ⇔ (x + y)2 + (x + 2y)2 = 0

⇔

{
x + y = 0

x + 2y = 0

x and y are real

Maybe this doesn’t correspond to the desired outcome. That’s why an option interline is proposed.
It’s possible to use a skip (=glue) for this option.

$\begin{WithArrows}[interline=2ex]
\varphi(x,y) = 0 & \Leftrightarrow (x+y)^2 + (x+2y)^2 = 0
\Arrow{x and y are real}\\
& \Leftrightarrow \left\{
\begin{aligned}
x+y & = 0 \\
x+2y & = 0 \\
\end{aligned}
\right.
\end{WithArrows}$

7It’s also possible to change \jot with the environment {spreadlines} of mathtools.

8

φ(x, y) = 0 ⇔ (x + y)2 + (x + 2y)2 = 0

⇔
{

x + y = 0
x + 2y = 0

x and y are real

Like the environment {aligned}, {WithArrows} has an option of placement which can assume the
values t, c or b. However, the default value is not c but t. If desired, it’s possible to have the c value
as the default with the command \WithArrowsOptions{c} at the beginning of the document.

So\enskip
$\begin{WithArrows}
A & = (a+1)^2 \Arrow{we expand} \\
& = a^2 + 2a + 1

\end{WithArrows}$

So A = (a + 1)2

= a2 + 2a + 1
we expand

The value c may be useful, for example, if we want to add curly braces:

On pose\enskip $\left\{
\begin{WithArrows}[c]
f(x) & = 3x^3+2x^2-x+4
\Arrow[tikz=-]{both are polynoms}\\
g(x) & = 5x^2-5x+6
\end{WithArrows}
\right.$

On pose
{

f(x) = 3x3 + 2x2 − x + 4
g(x) = 5x2 − 5x + 6

both are polynoms

Unlike {aligned}, the environment {WithArrows} uses \textstyle by default.
Once again, it’s possible to change this behaviour with \WithArrowsOptions:
\WithArrowsOptions{displaystyle}.

The following example is composed with {aligned}:

n∑
i=1

(xi + 1)2 =
n∑

i=1
(x2

i + 2xi + 1)

=
n∑

i=1
x2

i + 2
n∑

i=1
xi + n

The following is composed with {WithArrows}[c,displaystyle]. The results are stricly identical.8

n∑
i=1

(xi + 1)2 =
n∑

i=1
(x2

i + 2xi + 1)

=
n∑

i=1
x2

i + 2
n∑

i=1
xi + n

8In versions of amsmath older than the 5 nov. 2016, an thin space was added on the left of an environment {aligned}.
The new versions do not add this space and neither do {WithArrows}.

9

4 Arrows in nested environments
The environments {WithArrows} can be nested. In this case, the options given to the encompassing
environment applies also to the inner ones (with logical exceptions for interline, CodeBefore and
CodeAfter). The command Arrow can be used as usual in each environment {WithArrows}.

$\begin{WithArrows}
\varphi(x,y)=0

& \Leftrightarrow (x+2y)^2+(2x+4y)^2 = 0 \Arrow{the numbers are real}\\
& \Leftrightarrow
\left\{\begin{WithArrows}[c]
x+2y & = 0 \\
2x+4y & = 0
\end{WithArrows}\right. \\
& \Leftrightarrow
\left\{\begin{WithArrows}[c]
x+2y & = 0 \Arrow[tikz=-]{the same equation}\\
x+2y & = 0
\end{WithArrows}\right. \\
& \Leftrightarrow x+2y=0

\end{WithArrows}$

φ(x, y) = 0 ⇔ (x + 2y)2 + (2x + 4y)2 = 0

⇔

{
x + 2y = 0

2x + 4y = 0

⇔

{
x + 2y = 0
x + 2y = 0

the same equation

⇔ x + 2y = 0

the numbers are real

However, one may want to draw an arrow between lines that are not in the same environment. For
example, one may want to draw the following arrow :

φ(x, y) = 0 ⇔ (x + 2y)2 + (2x + 4y)2 = 0

⇔

{
x + 2y = 0

2x + 4y = 0

⇔
{

x + 2y = 0
x + 2y = 0

⇔ x + 2y = 0

Division by 2

Such a construction is possible by using \Arrow in the CodeAfter option. Indeed, in CodeAfter, a
special version of \Arrow is available (we will call it “\Arrow in CodeAfter”).
A command \Arrow in CodeAfter takes three arguments :

• a specification of the start line of the arrow ;

• a specification of the end line of the arrow ;

• the label of the arrow.

As usual, it’s also possible to give options within square brackets before or after the three arguments.
However, these options are limited (see below).

The specification of the line is constructed with the position of the concerned environment in the
nesting tree, followed (after an hyphen) by the number of the line.

In the previous example, there are two environments {WithArrows} nested in the main environment
{WithArrows}.

10

φ(x, y) = 0 ⇔ (x + 2y)2 + (2x + 4y)2 = 0

⇔

{
x + 2y = 0

2x + 4y = 0
environment number 1

⇔

{
x + 2y = 0
x + 2y = 0

environment number 2

⇔ x + 2y = 0

The arrow we want to draw starts in the line 2 of the sub-environment number 1 (and therefore,
the specification is 1-2) and ends in the line 2 of the sub-environment number 2 (and therefore, the
specification is 2-2). We can draw the arrow with the following command \Arrow in CodeAfter :

$\begin{WithArrows}[CodeAfter = {\Arrow{1-2}{2-2}{Division by 2}}]
\varphi(x,y)=0
& \Leftrightarrow (x+2y)^2+(2x+4y)^2 = 0 \\

.........
\end{WithArrows}$

φ(x, y) = 0 ⇔ (x + 2y)2 + (2x + 4y)2 = 0

⇔

{
x + 2y = 0

2x + 4y = 0

⇔

{
x + 2y = 0
x + 2y = 0

⇔ x + 2y = 0

Division by 2

The options allowed for a command \Arrow in CodeAfter are : ll, lr, rl, rr, v, xoffset, tikz and
TikzCode. Except v, which is specific to \Arrow in CodeAfter, all these options have their usual
meaning.
With the option v, the arrow drawn is vertical to an abscissa computed with the start line and the
end line only : the intermediate lines are not taken into account unlike with the option i. Currently,
the option i is not available for the command \Arrow in CodeAfter. However, it’s always possible
to translate an arrow with xoffset (or xshift of Tikz).

$\begin{WithArrows}[CodeAfter = {\Arrow[v]{1-2}{2-2}{Division by 2}}]
\varphi(x,y)=0
& \Leftrightarrow (x+2y)^2+(2x+4y)^2 = 0 \\

.........
\end{WithArrows}$

φ(x, y) = 0 ⇔ (x + 2y)2 + (2x + 4y)2 = 0

⇔

{
x + 2y = 0

2x + 4y = 0

⇔

{
x + 2y = 0
x + 2y = 0

⇔ x + 2y = 0

Division by 2

The package witharrows gives also another command available only in CodeAfter : the command
\MultiArrow. This commands draws a “rak”. The list of the lines of the environment concerned by
this rak are given in the first argument of the command \MultiArrow. This list is given with the
syntax of the list in a \foreach command of pgfkeys.

$\begin{WithArrows}[tikz = rounded corners,
CodeAfter = {\MultiArrow{1,...,4}{text}}]

A & = B \\
& = C \\

11

& = D \\
& = E \\
& = F

\end{WithArrows}$

A = B

= C

= D

= E

= F

text

As of now, there is no option available for the command \MultiArrow (maybe in a future release).

5 Arrows from outside environments WithArrows
If someone wants to draw arrows from outside the environments {WithArrows}, he can use the Tikz
nodes created in the environments.
The Tikz name of a node created by witharrows is prefixed by wa-. Then, we have a list of numbers
which give the position in the nesting tree and the number of the line in the environment. At the
end, we have the suffixe l for a “left node” and r for a “right node”.
For illustrative purposes, we give an example of nested environments {WithArrows}, and, for each
“right node”, the name of that node.9

A ▹ B + B + B + B + B + B + B + B + B + B + B + B + Bwa-37-1

▹
{

C ▹ Dwa-37-1-1
E ▹ F wa-37-1-2

wa-37-2

▹

G ▹ H + H + H + H + H + H + Hwa-37-2-1

I ▹
{

J ▹ K wa-37-2-1-1
L ▹ Mwa-37-2-1-2

wa-37-2-2
wa-37-3

▹
{

N ▹ Owa-37-3-1
P ▹ Qwa-37-3-2

wa-37-4

The package witharrows provides some tools to use directly these nodes :

• the command \WithArrowsLastEnv gives the number of the last environment of level 0 ;

• the Tikz style WithArrows/arrow is the style used by witharrows when drawing an arrow10 ;

• the Tikz style WithArrows/arrow/tips is the style for the style of the arrow (loaded by
WithArrows/arrow).

For example, we can draw an arrow from wa-37-2-1-2-r.south to wa-37-3-2-r.north with the
following Tikz command.

\begin{tikzpicture}[remember picture,overlay]
\draw [WithArrows/arrow]

($(wa-\WithArrowsLastEnv-2-1-2-r.south)+(3mm,0)$)
to ($(wa-\WithArrowsLastEnv-3-2-r.north)+(3mm,0)$) ;

\end{tikzpicture}
9There is an option shownodenames to show the names of these nodes.

10More precisely, this style is given to the Tikz option “every path” before drawing the arrow with the code of the
option TikzCode. This style is modified (in TeX scopes) by the option tikz of witharrows.

12

A ▹ B + B + B + B + B + B + B + B + B + B + B + B + B

▹
{

C ▹ D

E ▹ F

▹

G ▹ H + H + H + H + H + H + H

I ▹
{

J ▹ K

L ▹ M

▹
{

N ▹ O

P ▹ Q

In this case, it would be easier to use a command \Arrow in CodeAfter but this is an example to
explain how the Tikz nodes created by witharrows can be used.

6 Advanced features
6.1 The option TikzCode : how to change the shape of the arrows
The option TikzCode allows the user to change the shape of the arrow.
The value of this option must be an valid Tikz drawing instruction (with the final semi-colon) with
three markers #1, #2 and #3 for the start point, the end point and the label of the arrow.

By default, the value is the following :
\draw (#1) to node {#3} (#2) ;

In the following example, we replace this default path by a path with three segments (and the node
overwriting the second segment).

\begin{WithArrows}[ygap=5pt,interline=4mm,
TikzCode = {\draw[rounded corners]

(#1) -- ($(#1) + (5mm,0)$)
-- node[circle,

draw,
auto = false,
fill = gray!50,
inner sep = 1pt] {\tiny #3}

($(#2) + (5mm,0)$)
-- (#2) ; }]

E & \Longleftrightarrow 3 (2x+4) = 6 \Arrow{$\div 3$} \\
& \Longleftrightarrow 2x+4 = 2 \Arrow{-4} \\
& \Longleftrightarrow 2x = -2 \Arrow{$\div 2$} \\
& \Longleftrightarrow 2x = -1

\end{WithArrows}

E ⇐⇒ 3(2x + 4) = 6

⇐⇒ 2x + 4 = 2

⇐⇒ 2x = −2

⇐⇒ 2x = −1

÷3

−4

÷2

13

6.2 Footnotes in the environment WithArrows
If you want to put footnotes in an environment {WithArrows}, you can use a pair \footnotemark–
\footnotetext.
It’s also possible to extract the footnotes with the help of the package footnote or the package
footnotehyper.
If witharrows is loaded with the option footnote (with \usepackage[footnote]{witharrows} or
with \PassOptionsToPackage), the package footnote is loaded (if it is not yet loaded) and it is used
to extract the footnotes.
If witharrows is loaded with the option footnotehyper, the package footnotehyper is loaded (if it is
not yet loaded) ant it is used to extract footnotes.
Caution: The packages footnote and footnotehyper are incompatible. The package footnotehyper is
the successor of the package footnote and should be used preferently. The package footnote has some
drawbacks, in particular: it must be loaded after the package xcolor and it is not perfectly compatible
with hyperref.
In this document, the package witharrows has been loaded with the option footnotehyper and we
give an example with a footnote in the label of an arrow:
A = (a + b)2

= a2 + b2 + 2ab
We expand 11

7 Examples
7.1 With only one column
It’s possible to use the environment {WithArrows} with making use of the left column only, or the
right column only.
$\begin{WithArrows}
&f(x) \ge g(x) \Arrow{by squaring both sides} \\
& f(x)^2 \ge g(x)^2 \Arrow{by moving to left side} \\
& f(x)^2 - g(x)^2 \ge 0
\end{WithArrows}$

f(x) ≥ g(x)
f(x)2 ≥ g(x)2

f(x)2 − g(x)2 ≥ 0

by squaring both sides
by moving to left side

7.2 MoveEqLeft
It’s possible to use \MoveEqLeft of mathtools (if we don’t want ampersand on the first line):
$\begin{WithArrows}[interline=0.5ex]
\MoveEqLeft \arccos(x) = \arcsin \frac45 + \arcsin \frac5{13}
\Arrow{because both are in $[-\frac{\pi}2,\frac{\pi}2]$} \\
& \Leftrightarrow x = \sin\left(\arcsin\frac45 + \arcsin\frac5{13}\right) \\
& \Leftrightarrow x = \frac45\cos\arcsin\frac5{13} + \frac5{13} \cos\arcsin\frac45
\Arrow{$\forall x \in [-1,1], \cos(\arcsin x) = \sqrt{1-x^2}$} \\
& \Leftrightarrow x = \frac45\sqrt{1-\bigl(\frac5{13}\bigr)^2}
+ \frac5{13}\sqrt{1-\bigl(\frac45\bigr)^2} \\
\end{WithArrows}$

arccos(x) = arcsin 4
5 + arcsin 5

13

⇔ x = sin
(
arcsin 4

5 + arcsin 5
13
)

⇔ x = 4
5 cos arcsin 5

13 + 5
13 cos arcsin 4

5

⇔ x = 4
5

√
1 −

(5
13
)2 + 5

13

√
1 −

(4
5
)2

because both are in [− π
2 , π

2]

∀x ∈ [−1, 1], cos(arcsin x) =
√

1 − x2

11A footnote.

14

7.3 Modifying the shape of the nodes
It’s possible to change the shape of the labels, which are Tikz nodes, by modifying the key
“every node” of Tikz.

\begin{WithArrows}[%
interline = 4mm,
tikz = {every node/.style = {circle,

draw,
auto = false,
fill = gray!50,
inner sep = 1pt,
font = \tiny}}]

E & \Longleftrightarrow 3 (2x+4) = 6
\Arrow{$\div 3$}\\
& \Longleftrightarrow 2x+4 = 2

\Arrow{-4}\\
& \Longleftrightarrow 2x = -2

\Arrow{$\div 2$} \\
& \Longleftrightarrow 2x = -1

\end{WithArrows}

E ⇐⇒ 3(2x + 4) = 6

⇐⇒ 2x + 4 = 2

⇐⇒ 2x = −2

⇐⇒ 2x = −1

÷3

−4

÷2

7.4 Examples with the option TikzCode
We recall that the option TikzCode is the Tikz code used by witharrows to draw the arrows.
The value by defaut of TikzCode is \draw (#1) to node {#3} (#2) ; where the three markers #1,
#2 and #3 represent the start line, the end line and the label of the arrow.

7.4.1 Example 1

In the following example, we define the value of TikzCode with two instructions \path : the first
instruction draw the arrow itself and the second puts the label in a Tikz node in the rectangle
delimited by the arrow.

$\begin{WithArrows}[
displaystyle,
ygap = 2mm,
ystart = 0mm,
TikzCode = {\path[draw] (#1) -- ++(4.5cm,0) |- (#2) ;

\path (#1) -- (#2)
node[text width = 4.2cm, right, midway] {#3} ;}]

S_n
& = \frac1n \sum_{k=0}^{n-1}\cos\bigl(\tfrac{\pi}2\cdot\tfrac kn\bigr)
...........

15

Sn = 1
n

n−1∑
k=0

cos
(

π
2 · k

n

)
= 1

n

n−1∑
k=0

ℜ
(

ei kπ
2n

)
= 1

n
ℜ

(
n−1∑
k=0

ei kπ
2n

)

= 1
n

ℜ

(
n−1∑
k=0

(
ei π

2n

)k

)

= 1
n

ℜ

(
1 −

(
ei π

2n

)n

1 − ei π
2n

)

= 1
n

ℜ
(

1 − i

1 − ei π
2n

)

cos x = ℜ(eix)

ℜ(z + z′) = ℜ(z) + ℜ(z′)

exp is a morphism for × et +

sum of terms of a geometric
progression of ratio ei 2π

n

7.4.2 Example 2

In the following example, we change the shape of the arrow depending on wether the start line is
longer than the end line or not.

\begin{WithArrows}[ll,interline=5mm,xoffset=5mm,
TikzCode = {\draw[rounded corners,

every node/.style = {circle,
draw,
auto = false,
inner sep = 1pt,
fill = gray!50,
font = \tiny }]

let \p1 = (#1),
\p2 = (#2)

in \ifdim \x1 > \x2
(\p1) -- node {#3} (\x1,\y2) -- (\p2)

\else
(\p1) -- (\x2,\y1) -- node {#3} (\p2)

\fi ;}]
E & \Longleftrightarrow \frac{(x+4)}3 + \frac{5x+3}5 = 7
\Arrow{$\times 15$}\\
& \Longleftrightarrow 5(x+4) + 3(5x+3) = 105 \\
& \Longleftrightarrow 5x+20 + 15x+9 = 105 \\
& \Longleftrightarrow 20x+29 = 105

\Arrow{-29}\\
& \Longleftrightarrow 20x = 76

\Arrow{$\div 20$}\\
& \Longleftrightarrow x = \frac{38}{10}

\end{WithArrows}

16

E ⇐⇒ (x+4)
3 + 5x+3

5 = 7

⇐⇒ 5(x + 4) + 3(5x + 3) = 105

⇐⇒ 5x + 20 + 15x + 9 = 105

⇐⇒ 20x + 29 = 105

⇐⇒ 20x = 76

⇐⇒ x = 38
10

×15

−29

÷20

7.5 Automatic numbered loop
Assume we want to draw a loop of numbered arrows. In this purpose, it’s possible to write a dedicated
command \NumberedLoop which will do the job when used in CodeAfter. In the following example,
we write this command with \NewDocumentCommand of xparse and \foreach of pgffor (both packages
are loaded when witharrows is loaded).

\NewDocumentCommand \NumberedLoop {}
{\foreach \j in {2,...,\NbLines}

{ \pgfmathtruncatemacro{\i}{\j-1}
\Arrow[rr]{\i}{\j}{\i} }

\Arrow[rr,xoffset=1cm,tikz=<-]{1}{\NbLines}{\NbLines}}

The command \NbLines is a command available in CodeAfter which gives the total number of lines
of the current environment (it’s a command and not a counter).

$\begin{WithArrows}[CodeAfter = {\NumberedLoop}]
a.\;& f \text{ est continuous on } E \\
b.\;& f \text{ est continuous in } 0 \\
c.\;& f \text{ is bounded on the unit sphere} \\
d.\;& \exists K > 0\quad \forall x \in E\quad \|f(x)\| \le K \|x\| \\
e.\;& f \text{ is lipschitzian}
\end{WithArrows}$

a. f est continuous on E

b. f est continuous in 0
c. f is bounded on the unit sphere
d. ∃K > 0 ∀x ∈ E ∥f(x)∥ ≤ K∥x∥
e. f is lipschitzian

1
2
3
4

5

As usual, it’s possible to change the characteristic of both arrows and nodes with the option tikz.
However, if we want to change the style and to have, for example, numbers in parenthesis, the best
way is to change the value of TikzCode:

TikzCode = {\draw (#1) to node {\footnotesize (#3)} (#2) ;}}

a. f est continuous on E

b. f est continuous in 0
c. f is bounded on the unit sphere
d. ∃K > 0 ∀x ∈ E ∥f(x)∥ ≤ K∥x∥
e. f is lipschitzian

(1)

(2)

(3)

(4)

(5)

17

8 Implementation
8.1 Declaration of the package and extensions loaded
First, tikz and some Tikz libraries are loaded before the \ProvidesExplPackage. They are loaded
this way because \usetikzlibrary in expl3 code fails.12

1 \RequirePackage{tikz}
2 \usetikzlibrary{calc,arrows.meta,bending}

Then, we can give the traditionnal declaration of a package written with expl3:
3 \RequirePackage{l3keys2e}
4 \ProvidesExplPackage
5 {witharrows}
6 {\myfiledate}
7 {\myfileversion}
8 {Draws arrows for explanations on the right}

The package xparse will be used to define the environment {WithArrows} and the document-level
commands \Arrow and \WithArrowsOptions.

9 \RequirePackage{xparse}

8.2 The packages footnote and footnotehyper
A few options can be given to the package witharrows when it is loaded (with \usepackage,
\RequirePackage or \PassOptionsToPackage). Currently (version 1.5), there are two such options:
footnote and footnotehyper. With the option footnote, witharrows loads footnote and uses it to
extract the footnotes from the environments {WithArrows}. Idem for the option footnotehyper.
The boolean \g_@@_footnotehyper_bool will indicate if the option footnotehyper is used.

10 \bool_new:N \g_@@_footnotehyper_bool

The boolean \g_@@_footnote_bool will indicate if the option footnote is used, but quicky, it will
also be set to true if the option footnotehyper is used.

11 \bool_new:N \g_@@_footnote_bool

We define a set of keys WithArrows/package for these options. However, first, we define a “level of
options” \l_@@_level_int even if, in the version 1.5 of witharrows, this integer is not used by the
options of the set WithArrows/package.

12 \int_new:N \l_@@_level_int

13 \keys_define:nn {WithArrows/package}
14 {footnote .bool_gset:N = \g_@@_footnote_bool,
15 footnotehyper .bool_gset:N = \g_@@_footnotehyper_bool}

We process the options when the package is loaded (with \usepackage).
16 \ProcessKeysOptions {WithArrows/package}

17 \msg_new:nnn {witharrows}
18 {Option~incompatible~with~Beamer}
19 {The~option~"\tl_use:N \l_keys_key_tl"\ is~incompatible~
20 with~Beamer~because~Beamer~has~its~own~system~to~extract~footnotes.}

21 \msg_new:nnn {witharrows}
22 {footnote~with~footnotehyper~package}
23 {You~can't~use~the~option~footnote~because~the~package~
24 footnotehyper~has~already~been~loaded.~
25 If~you~want,~you~can~use~the~option~"footnotehyper"~and~the~footnotes~
26 within~the~environments~{WithArrows}~will~be~extracted~with~the~tools~
27 of~the~package~footnotehyper.}
12cf. tex.stackexchange.com/questions/57424/using-of-usetikzlibrary-in-an-expl3-package-fails

18

28 \msg_new:nnn {witharrows}
29 {footnotehyper~with~footnote~package}
30 {You~can't~use~the~option~"footnotehyper"~because~the~package~
31 footnote~has~already~been~loaded.~
32 If~you~want,~you~can~use~the~option~"footnote"~and~the~footnotes~
33 within~the~environments~{WithArrows}~will~be~extracted~with~the~tools~
34 of~the~package~footnote.}

35 \bool_if:NT \g_@@_footnote_bool
36 {\@ifclassloaded {beamer}
37 {\msg_fatal:nn {witharrows}
38 {Option~incompatible~with~Beamer}}
39 {}
40 \@ifpackageloaded{footnotehyper}
41 {\msg_fatal:nn {witharrows}
42 {footnote~with~footnotehyper~package}}
43 {}
44 \usepackage{footnote}}

45 \bool_if:NT \g_@@_footnotehyper_bool
46 {\@ifclassloaded {beamer}
47 {\msg_fatal:nn {witharrows}
48 {Option~incompatible~with~Beamer}}
49 {}
50 \@ifpackageloaded{footnote}
51 {\msg_fatal:nn {witharrows}
52 {footnotehyper~with~footnote~package}}
53 {}
54 \usepackage{footnotehyper}
55 \bool_gset_true:N \g_@@_footnote_bool}

The flag \g_@@_footnote_bool is raised and so, we will only have to test \g_@@_footnote_bool in
order to known if we have to insert an environnement {savenotes} (see the definition of environ-
nement {WithArrows}).

8.3 Some technical definitions
We define a Tikz style @@_node_style for the nodes that will be created in the \halign. The nodes
are Tikz nodes of shape “rectangle” but with zero width. An arrow between two nodes starts from
the south anchor of the first node and arrives at the north anchor of the second node.

56 \tikzset{@@_node_style/.style= {
57 above = \l_@@_ystart_dim,
58 inner~sep = 0 pt,
59 minimum~width = 0pt,
60 minimum~height = \l_@@_ygap_dim,
61 red,
62 \bool_if:NT \l_@@_shownodes_bool {draw} }}

The color of the nodes is red, but in fact, the nodes will be drawn only when the option shownodes
is used (this option is useful for debugging).

The style @@_standard is load in standard in the {tikzpicture} we need. The names of the nodes
are prefixed by wa (by security) but also by a prefix which is the position-in-the-tree of the nested
environments.

63 \tikzset{@@_standard/.style= { remember~picture,
64 overlay,
65 name~prefix = wa-\l_@@_prefix_str- }}

We also define a style for the tips of arrow. The final user of the extension witharrows will use this
style if he wants to draw an arrow directly with a Tikz command in his document (probably using
the Tikz nodes created by {WithArrows} in the \halign).

66 \tikzset{WithArrows/arrow/tips/.style = { > = {Straight~Barb[scale=1.2,bend]} }}

19

67 \tikzset{WithArrows/arrow/.style = { align = left,
68 auto = left,
69 font = {\small\itshape},
70 WithArrows/arrow/tips,
71 bend~left = 45,
72 -> }}

In order to increase the interline in the environments {WithArrows}, we will use the command
\spread@equation of amsmath. When used, this command becomes no-op (in the current TeX
group). Therefore, it will be possible to use the environments of amsmath (e.g. {aligned}) in an
environment {WithArrows}.
Nevertheless, we want the extension witharrows available without amsmath. That’s why we give a
definition of \spread@equation (this definition will be loaded only if amsmath — or mathtools —
has not been loaded yet).

73 \cs_if_free:NT \spread@equation
74 {\cs_set:Npn \spread@equation{\openup\jot
75 \cs_set:Npn \spread@equation {}}}

Don’t put \cs_set_eq:NN \spread@equation \prog_do_nothing: in the last line because this
would raise errors with nested environments.

8.4 Variables
The following sequence is the position of the last environment {WithArrows} in the tree of the nested
environments {WithArrows}.

76 \seq_new:N \g_@@_position_in_the_tree_seq
77 \seq_gput_right:Nn \g_@@_position_in_the_tree_seq 1

The following counter will give the number of the last environment {WithArrows} of level 0. This
counter will be used only in the definition of \WithArrowsLastEnv.

78 \int_new:N \g_@@_last_env_int

The following skip (=glue) is the vertical space inserted between two lines of the \halign.
79 \skip_new:N \l_@@_interline_skip

If the following flag is raised, then the user can use more than two columns.
80 \bool_new:N \l_@@_MoreColumns_bool

The following integer indicates the position of the box that will be created: 0 (=t=\vtop),
1 (=c=\vcenter) or 2 (=b=\vbox).

81 \int_new:N \l_@@_pos_env_int

82 \dim_new:N \l_@@_xoffset_dim
83 \dim_set:Nn \l_@@_xoffset_dim {3mm}

The integer \l_@@_pos_arrows_int indicates the position of the arrows with the following code (the
option v is accessible only for the arrows in CodeAfter where the options i, group et groups are not
available).

option rr ll rl lr v i group groups
\l_@@_pos_arrows_int 0 1 2 3 4 5 6 7

84 \int_new:N \l_@@_pos_arrows_int

20

When we scan a list of options, we want to be able to raise an error if two options of position of the
arrows are present. That’s why we keep the code of the first option of position in a variable called
\l_@@_previous_pos_arrows_int. This variable will be set to −1 each time we start the scanning
of a list of options.

85 \int_new:N \l_@@_previous_pos_arrows_int

At each possible level for the options (global, environment or local: see below), the new values will
be appended on the right of this token list.

The dimension \g_@@_x_dim will be used to compute the x-value for some vertical arrows when one
of the options i, group and groups (values 5, 6 and 7 of \l_@@_pos_arrows_int) is used.

86 \dim_new:N \g_@@_x_dim

In the \halign of an environment {WithArrows}, we will have to use three counters:

• \g_@@_arrow_int to count the arrows created in the environment ;

• \g_@@_line_int to count the lines of the \halign ;

• \g_@@_line_bis_int to count the lines of the \halign which have a second column.13

These three counters will be incremented in a cell of the \halign and, therefore, the incrementation
must be global. However, we want to be able to include a {WithArrows} in another {WithArrows}. To
do so, we must restore the previous value of these counters at the end of an environment {WithArrows}
and we decide to manage a stack for each of these counters.

87 \seq_new:N \g_@@_arrow_int_seq
88 \int_new:N \g_@@_arrow_int
89 \seq_new:N \g_@@_line_int_seq
90 \int_new:N \g_@@_line_int
91 \seq_new:N \g_@@_line_bis_int_seq
92 \int_new:N \g_@@_line_bis_int

8.5 The definition of the options
There are four levels where options can be set:

• in the options of the \usepackage: this level will be called package level (number 0);

• with \WithArrowsOptions{...}: this level will be called global level (number 1);

• with \begin{WithArrows}[...]: this level will be called environment level (number 2);

• with \Arrow[...] (included in CodeAfter): this level will be called local level (number 3).

The level is specified in the variable \l_@@_level_int and the code attached to the options can use
this information to alter their actions.

93 \int_set:Nn \l_@@_level_int 1

We go on with a submodule which will be loaded only at the global or the environment level.
The options t, c and b indicate if we will create a \vtop, a \vcenter of a \vbox. This information
is stored in the variable \l_@@_pos_env_int.

94 \keys_define:nn {WithArrows/GlobalOrEnv}
95 { t .code:n = \int_set:Nn \l_@@_pos_env_int 0,
96 t .value_forbidden:n = true,
97 c .code:n = \int_set:Nn \l_@@_pos_env_int 1,
98 c .value_forbidden:n = true,
99 b .code:n = \int_set:Nn \l_@@_pos_env_int 2,

100 b .value_forbidden:n = true,
13This counter is used in order to raise an error if there is a line without the second column (such an situation could

raise a pgf error for an undefined node).

21

The gap between two consecutive arrows.
101 ygap .dim_set:N = \l_@@_ygap_dim,
102 ygap .value_required:n = true,
103 ygap .initial:n = 0.4 ex,

The vertical position of the start point of an arrow.
104 ystart .dim_set:N = \l_@@_ystart_dim,
105 ystart .value_required:n = true,
106 ystart .initial:n = 0.4 ex,

Usually, the number of columns in a {WithArrows} environment is limited to 2. Nevertheless, it’s
possible to have more columns with the option MoreColumns.
107 MoreColumns .bool_set:N = \l_@@_MoreColumns_bool,
108 MoreColumns .value_forbidden:n = true,

If the user wants to give a new name to the \Arrow command (and the name \Arrow remains free).
109 CommandName .tl_set:N = \l_@@_CommandName_tl,
110 CommandName .initial:n = Arrow ,
111 CommandName .value_required:n = true,

112 TikzCode .tl_set:N = \l_@@_tikz_code_tl,
113 TikzCode .initial:n = \draw~(#1)~to~node{#3}~(#2)~; ,
114 TikzCode .value_required:n = true,

With the option displaystyle, the environments will be composed in \displaystyle.
115 displaystyle .bool_set:N = \l_@@_displaystyle_bool,
116 displaystyle .initial:n = false,

With the option shownodes, the nodes will be drawn in red (useful only for debugging).
117 shownodes .bool_set:N = \l_@@_shownodes_bool,
118 shownodes .initial:n = false,

With the option shownodenames, the name of the “right nodes” will be written in the document
(useful only for debugging).
119 shownodenames .bool_set:N = \l_@@_shownodenames_bool,
120 shownodenames .initial:n = false,

With the option group, all the arrows of the environment are vertical with the same abscissa and at
a leftmost position.
121 group .code:n = {\int_compare:nNnT \l_@@_previous_pos_arrows_int > {-1}
122 {\msg_error:nn {witharrows}
123 {Two~options~are~incompatible}}
124 \int_set:Nn \l_@@_previous_pos_arrows_int 6
125 \int_set:Nn \l_@@_pos_arrows_int 6} ,
126 group .value_forbidden:n = true,

With the option groups (with a s), the arrows of the environment are divided in groups by an
argument of connexity, and, in each group, the arrows are vertical with the same abscissa and at a
leftmost position. When the option group or groups is used, it’s not possible to another option of
position like ll, lr, etc. for a individual key.
127 groups .code:n = {\int_compare:nNnT \l_@@_previous_pos_arrows_int > {-1}
128 {\msg_error:nn {witharrows}
129 {Two~options~are~incompatible}}
130 \int_set:Nn \l_@@_previous_pos_arrows_int 7
131 \int_set:Nn \l_@@_pos_arrows_int 7} ,
132 groups .value_forbidden:n = true,

22

The option CodeBefore gives a code that is executed at the beginning of the environment
{WithArrows} (after the eventual \begin{savenotes}).
133 CodeBefore .code:n = {\int_compare:nNnTF \l_@@_level_int = 1
134 {\msg_error:nn {witharrows} {Option~will~be~ignored}}
135 {\tl_put_right:Nn \l_@@_code_before_tl {#1}}} ,

The option CodeAfter gives a code that is executed at the end of the environment {WithArrows}
(after the eventual \end{savenotes}).
136 CodeAfter .code:n = {\int_compare:nNnTF \l_@@_level_int = 1
137 {\msg_error:nn {witharrows} {Option~will~be~ignored}}
138 {\tl_put_right:Nn \l_@@_code_after_tl {#1}}} ,
139 unknown .code:n = \msg_error:nn {witharrows} {Option~unknown}
140 }

Then we define the main module called WithArrows/General which will be loaded at all the levels.

The option tikz gives Tikz parameters that will be given to the arrow when it is drawn (more
precisely, the parameters will be given to the command \path of Tikz).
141 \keys_define:nn {WithArrows/General}
142 {tikz .code:n = \tikzset {WithArrows/arrow/.append~style = {#1}},
143 tikz .initial:n = {},
144 tikz .value_required:n = true,

The other options are for the position of the arrows. The treatment is the same for the options ll,
rr, lr, lr and i and that’s why a dedicated fonction \@@_analyze_option_position:n has been
written (see below).
145 rr .value_forbidden:n = true,
146 rr .code:n = \@@_analyze_option_position:n 0 ,
147 ll .value_forbidden:n = true,
148 ll .code:n = \@@_analyze_option_position:n 1 ,
149 rl .value_forbidden:n = true,
150 rl .code:n = \@@_analyze_option_position:n 2 ,
151 lr .value_forbidden:n = true,
152 lr .code:n = \@@_analyze_option_position:n 3 ,
153 i .value_forbidden:n = true,
154 i .code:n = \@@_analyze_option_position:n 5 ,

The option xoffset change the x-offset of the arrows (towards the right). It’s a dimension and not a
skip. It’s not possible to change the value of this parameter for a individual arrow if the option group
or the option groups is used. When we will treat an individual arrow, we will give it the option
tikz={xshift=\l_@@_xoffset_dim} (we can’t to it at the global or the environment level because
the Tikz options xshift are cumulative.
155 xoffset .code:n = {\bool_if:nTF {\int_compare_p:nNn \l_@@_level_int = 3 &&
156 \int_compare_p:nNn \l_@@_pos_arrows_int > 5}
157 {\msg_error:nn {witharrows}
158 {Option~incompatible~with~"group(s)"}}
159 {\dim_set:Nn \l_@@_xoffset_dim {#1}}} ,
160 xoffset .value_required:n = true,

The option jot exists for compatibility. It changes directly the value of the parameter \jot, which
is a LaTeX parameter and not a parameter specific to witharrows. It’s allowed only at the level of the
environment (maybe we should suppress completely this option in the future).
161 jot .code:n = {\int_compare:nNnTF \l_@@_level_int = 2
162 {\dim_set:Nn \jot {#1}}
163 {\msg_error:nn {witharrows}
164 {Option~will~be~ignored}}} ,
165 jot .value_required:n = true,

23

The option interline gives the vertical skip (=glue) inserted between two lines (independently of
\jot). It’s accepted only at the level of the environment (this last point is a kind of security).
Futhermore, this option has a particular behaviour: it applies only to the current environment and
doesn’t apply to the nested environments.
166 interline .code:n = {\int_compare:nNnTF \l_@@_level_int = 2
167 {\skip_set:Nn \l_@@_interline_skip {#1}}
168 {\msg_error:nn {witharrows}
169 {Option~will~be~ignored}}} ,
170 interline .value_required:n = true,

Eventually, a key jump (see below) and a key for unknown keys.
171 jump .code:n = \msg_error:nn {witharrows} {Option~will~be~ignored} ,
172 unknown .code:n = \msg_error:nn {witharrows} {Option~unknown}
173 }

The key jump indicates the number of lines jumped by the arrow (1 by default). This key will be
extracted when the command \Arrow will be executed. That’s why there is a special module for this
key. The key jump is extracted in the command \Arrow because we want to compute right away the
final line of the arrow (this will be useful for the options group and groups).
174 \keys_define:nn {WithArrows/jump}
175 {jump .code:n = {\int_set:Nn \l_@@_jump_int {#1}
176 \int_compare:nNnF \l_@@_jump_int > 0
177 {\msg_error:nn {witharrows}
178 {The~option~"jump"~must~be~non~negative}}} ,
179 jump .value_required:n = true}

The following command is for technical reasons. It’s used for the following options of position: ll,
lr, rl, rr and i. The argument is the corresponding code for the position of the arrows.
180 \cs_new_protected:Nn \@@_analyze_option_position:n
181 {\int_compare:nNnT \l_@@_previous_pos_arrows_int > {-1}
182 {\msg_error:nn {witharrows}
183 {Two~options~are~incompatible}}
184 \int_set:Nn \l_@@_previous_pos_arrows_int {#1}
It’s not possible to use one of the considered options at the level of an arrow (level 2) when the option
group or the option groups is used. However, if we are at the level of an environment, it’s possible to
override a previous option group or groups (this previous option group or groups would necessarily
have been set at a global level by \WithArrowsOptions).
185 \bool_if:nTF { \int_compare_p:nNn \l_@@_level_int = 3 &&
186 \int_compare_p:nNn \l_@@_pos_arrows_int > 5}
187 {\msg_error:nn {witharrows}
188 {Option~incompatible~with~"group(s)"}}
189 {\int_set:Nn \l_@@_pos_arrows_int {#1}}}

\WithArrowsOptions is the command of the witharrows package to fix options at the document level.
190 \NewDocumentCommand \WithArrowsOptions {m}
191 {\int_set:Nn \l_@@_previous_pos_arrows_int {-1}
192 \keys_set_known:nnN {WithArrows/General} {#1} \l_tmpa_tl
193 \keys_set:nV {WithArrows/GlobalOrEnv} \l_tmpa_tl}

8.6 The command Arrow
In fact, the internal command is not named \Arrow but \@@_Arrow. Usually, at the beginning of
an environment {WithArrows}, \Arrow is set to be equivalent to \@@_Arrow. However, the user can
change the name with the option CommandName and the user command for \@@_Arrow will be different.
This mechanism can be useful when the user has already a command named \Arrow he wants to still
be able to use in the environment {WithArrows}.

194 \NewDocumentCommand \@@_Arrow {O{} m O{}}
195 {

24

The counter \g_@@_arrow_int counts the arrows in the environment. The incrementation must be
global (gincr) because the command \Arrow will be used in the cell of a \halign. It’s recalled that
we manage a stack for this counter.
196 \int_gincr:N \g_@@_arrow_int
We decide to extract immediatly the key jump in order to compute the end line. That’s the reason
why there is a module WithArrows/jump with this sole key. The remainded key-value pairs are stored
in \l_tmpa_tl and will be stored further in the properly list of the arrow.
197 \int_zero_new:N \l_@@_jump_int
198 \int_set:Nn \l_@@_jump_int 1
199 \keys_set_known:nnN {WithArrows/jump} {#1,#3} \l_tmpa_tl

We will construct a global property list to store the informations of the considered arrow. The four
fields of this property list are “initial”, “final”, “options” and “label”.

1. First, the line from which the arrow starts:

200 \prop_put:NnV \l_tmpa_prop {initial} \g_@@_line_int

2. The line where the arrow ends (that’s why it was necessary to extract the key jump):

201 \int_set:Nn \l_tmpa_int {\g_@@_line_int + \l_@@_jump_int}
202 \prop_put:NnV \l_tmpa_prop {final} \l_tmpa_int

3. All the options of the arrow (it’s a token list):

203 \prop_put:NnV \l_tmpa_prop {options} \l_tmpa_tl

4. The label of the arrow (it’s also a token list):

204 \prop_put:Nnn \l_tmpa_prop {label} {#2}

The property list has been created in a local variable for convenience. Now, it will be stored in a
global variable indicating both the position-in-the-tree and the number of the arrow.
205 \prop_gclear_new:c
206 {g_@@_arrow_\l_@@_prefix_str _\int_use:N\g_@@_arrow_int _prop}
207 \prop_gset_eq:cN
208 {g_@@_arrow_\l_@@_prefix_str _\int_use:N\g_@@_arrow_int _prop}
209 \l_tmpa_prop
210 }

211 \cs_new_protected:Nn \@@_Arrow_first_column:

All messages of LaTeX3 must be fully expandable and that’s why we do the affectation (necessary for
a comparison) before the \msg_error:nn.
212 {\tl_set:Nn \l_tmpa_tl {Arrow}
213 \msg_error:nn {witharrows} {Arrow~in~first~column}
214 \@@_Arrow}

8.7 The environment {WithArrows}
The environment {WithArrows} starts with the initialisation of the three counters \g_@@_arrow_int,
\g_@@_line_int and \g_@@_line_bis_int. However, we have to save their previous values with the
three stacks created for this end.
215 \NewDocumentEnvironment {WithArrows} {O{}}
216 { \seq_gput_right:NV \g_@@_arrow_int_seq \g_@@_arrow_int
217 \int_gzero:N \g_@@_arrow_int
218 \seq_gput_right:NV \g_@@_line_int_seq \g_@@_line_int
219 \int_gzero:N \g_@@_line_int
220 \seq_gput_right:NV \g_@@_line_bis_int_seq \g_@@_line_bis_int
221 \int_gzero:N \g_@@_line_bis_int

25

We also have to update the position on the nesting tree.
222 \seq_gput_right:Nn \g_@@_position_in_the_tree_seq 1
The nesting tree is used to create a prefix which will be used in the names of the Tikz nodes and in the
names of the arrows (each arrow is a property list of four fields). If we are in the second environment
{WithArrows} nested in the third environment {WithArrows} of the document, the prefix will be
3-2 (although the position in the tree is [3, 2, 1] since such a position always ends with a 1). First,
we do a copy of the position-in-the-tree and then we pop the last element of this copy (in order to
drop the last 1).
223 \seq_set_eq:NN \l_tmpa_seq \g_@@_position_in_the_tree_seq
224 \seq_pop_right:NN \l_tmpa_seq \l_tmpa_tl
225 \str_clear_new:N \l_@@_prefix_str
226 \str_set:Nx \l_@@_prefix_str {\seq_use:Nnnn \l_tmpa_seq {-} {-} {-}}

The environment {WithArrows} must be used in math mode.
227 \reverse_if:N \if_mode_math:
228 \msg_error:nn {witharrows}
229 {{WithArrows}~used~outside~math~mode}
230 \fi:

We define the command \\ to be the command \@@_cr: (defined below).
231 \cs_set_eq:NN \\ \@@_cr:
232 \mathsurround = \c_zero_dim

These counters will be used later as variables.
233 \int_zero_new:N \l_@@_initial_int
234 \int_zero_new:N \l_@@_final_int
235 \int_zero_new:N \l_@@_arrow_int

The value corresponding to the key interline is put to zero before the treatment of the options of
the environment.14

236 \skip_zero:N \l_@@_interline_skip

The value corresponding to the key CodeBefore is put to nil before the treatment of the options of
the environment, because, of course, we don’t want the code executed at the beginning of all the
nested environments {WithArrows}. Idem for CodeAfter.
237 \tl_clear_new:N \l_@@_code_before_tl
238 \tl_clear_new:N \l_@@_code_after_tl

We process the options given to the {WithArrows} environment. The level of options is set to 1.
239 \int_set:Nn \l_@@_previous_pos_arrows_int {-1}
240 \int_set:Nn \l_@@_level_int 2
241 \keys_set_known:nnN {WithArrows/General} {#1} \l_tmpa_tl
242 \keys_set:nV {WithArrows/GlobalOrEnv} \l_tmpa_tl

If the option footnote or the option footnotehyper is used, then we extract the footnotes with an
environment {savenotes} (of the package footnote or the package footnotehyper).
243 \bool_if:NT \g_@@_footnote_bool {\begin{savenotes}}

We execute the code \l_@@_code_before_tl of the option CodeBefore of the environment after the
eventual \begin{savenotes} and, symetricaly, we will execute the \l_@@_code_after_tl before
the eventual \end{savenotes} (we have a good reason for the last point : we want to extract the
footnotes of the arrows executed in the CodeAfter).
244 \l_@@_code_before_tl

14It’s recalled that, by design, the option interline of an environment doesn’t apply in the nested environments.

26

If the user has given a value for the option CommandName (at the global or at the environment level), a
command with this name is defined locally in the environment with meaning \@@_Arrow. The default
value of the option CommandName is “Arrow” and thus, by default, the name of the command will be
\Arrow.
245 \cs_set_eq:cN \l_@@_CommandName_tl \@@_Arrow

The environment begins with a \vtop, a \vcenter or a \vbox15 depending of the value of
\l_@@_pos_env_int (fixed by the options t, c or b). The environment {WithArrows} must be
used in math mode16 and therefore, we can use \vcenter.
246 \int_case:nn \l_@@_pos_env_int
247 {0 {\vtop}
248 1 {\vcenter}
249 2 {\vbox}}
250 \bgroup

The command \spread@equation is the command used by amsmath in the beginning of an alignment
to fix the interline. When used, it becomes no-op. However, it’s possible to use witharrows without
amsmath since we have redefined \spread@equation (if it is not defined yet).
251 \spread@equation

We begin the \halign and the preamble.
252 \ialign\bgroup

We increment the counter \g_@@_line_int which will be used in the names of the Tikz nodes created
in the array. This incrementation must be global (gincr) because we are in the cell of a \halign.
It’s recalled that we manage a stack for this counter.
253 \int_gincr:N \g_@@_line_int
254 \cs_set_eq:cN \l_@@_CommandName_tl \@@_Arrow_first_column:
255 \strut\hfil
256 $\bool_if:NT \l_@@_displaystyle_bool \displaystyle {##}$
257 &

In the second column, we increment the counter \g_@@_line_bis_int because we want to count the
lines with a second column and raise an error if there is lines without a second column. Once again,
the incrementation must be global and it’s recalled that we manage a stack for this counter too.
258 \int_gincr:N \g_@@_line_bis_int
259 $\bool_if:NT \l_@@_displaystyle_bool \displaystyle {{}##}$

We create the “left node” of the line (when using macros in Tikz node names, the macros have to be
fully expandable: here, \tl_use:N and \int_use:N are fully expandable).
260 \tikz [@@_standard] \node [@@_node_style] (\int_use:N\g_@@_line_int-l) {} ;
261 \hfil

Now, after the \hfil, we create the “right node” and, if the option shownodenames is raised, the
name of the node is written in the document (useful for debugging).
262 \tikz [@@_standard] \node [@@_node_style] (\int_use:N\g_@@_line_int-r) {} ;
263 \bool_if:NT \l_@@_shownodenames_bool
264 {\hbox_overlap_right:n {\small wa-\l_@@_prefix_str
265 -\int_use:N\g_@@_line_int}}

Usually, the \halign of an environment {WithArrows} will have exactly two columns. Nevertheless,
if the user wants to use more columns (without arrows) it’s possible with the option MoreColumns.
266 && \bool_if:NF \l_@@_MoreColumns_bool
267 {\msg_error:nn {witharrows} {Third~column~in~a~{WithArrows}~environment}}
268 $\bool_if:NT \l_@@_displaystyle_bool \displaystyle {##}$
269 \cr
270 }

15Notice that the use of \vtop seems color-safe here...
16An error is raised if the environment is used outside math mode.

27

We begin the second part of the environment {WithArrows}. We have two \egroup : one for the
\halign and one for the \vtop (or \vcenter or \vbox).
271 {\crcr
272 \egroup
273 \egroup

If there is a line without the second column, we raise an error (a line without the second column
could generate an pgf error for an unknown node since the nodes are created in the second column).
274 \int_compare:nNnT \g_@@_line_bis_int < \g_@@_line_int
275 {\msg_error:nn {witharrows} {All~lines~must~have~an~ampersand}}

It there is really arrows in the environment, we draw the arrows:

• if neither option group or groups is used, we can draw directly ;

• if option group or option groups is used (\l_@@_pos_arrows_int > 5), we have to draw the
arrows group by group ; the macro \@@_draw_arrows: does the work.

276 \int_compare:nNnT \g_@@_arrow_int > 0
277 {\int_compare:nNnTF \l_@@_pos_arrows_int > 5
278 \@@_draw_arrows:
279 {\@@_draw_arrows:nn 1 \g_@@_arrow_int}}

We will execute the code specified in the option CodeAfter, after some settings.
280 \group_begin:
281 \tikzset{every~picture/.style = @@_standard}
The command \NbLines is not used by witharrows. It’s only a convenience given to the user.
282 \cs_set:Npn \NbLines {\int_use:N \g_@@_line_int}
The command \MultiArrow is available in CodeAfter, and we have a special version of \Arrow, called
“\Arrow in CodeAfter” in the documentation.17

283 \cs_set_eq:NN \MultiArrow \@@_MultiArrow:nn
284 \cs_set_eq:cN \l_@@_CommandName_tl \@@_Arrow_code_after
285 \l_@@_code_after_tl
286 \group_end:

If the option footnote or the option footnotehyper is used, then we extract the footnotes with an
environment {footnote} (of the package footnote or the package footnotehyper).
287 \bool_if:NT \g_@@_footnote_bool {\end{savenotes}}

We update the position-in-the-tree. First, we drop the last component and then we increment the
last element.
288 \seq_gpop_right:NN \g_@@_position_in_the_tree_seq \l_tmpa_tl
289 \seq_gpop_right:NN \g_@@_position_in_the_tree_seq \l_tmpa_tl
290 \seq_gput_right:Nx \g_@@_position_in_the_tree_seq {\int_eval:n {\l_tmpa_tl+1}}

We update the value of the counter \g_@@_last_env_int. This counter is used only by the user
function \WithArrowsLastEnv.
291 \int_compare:nNnT {\seq_count:N \g_@@_position_in_the_tree_seq} = 1
292 {\int_gincr:N \g_@@_last_env_int}

17As for now, \MultiArrow has no option, and that’s why its internal name is a name of expl3 with the signature :nn
whereas \Arrow in CodeAfter provides options and has the name of a function defined with \NewDocumentCommand.

28

Finally, we restore the previous values of the three counters \g_@@_arrow_int, \g_@@_line_int and
\g_@@_line_bis_int. It is recalled that we manage three stacks in order to be able to do such a
restoration.
293 \seq_gpop_right:NN \g_@@_arrow_int_seq {\l_tmpa_tl}
294 \int_gset:Nn \g_@@_arrow_int {\l_tmpa_tl}
295 \seq_gpop_right:NN \g_@@_line_int_seq \l_tmpa_tl
296 \int_gset:Nn \g_@@_line_int {\l_tmpa_tl}
297 \seq_gpop_right:NN \g_@@_line_bis_int_seq \l_tmpa_tl
298 \int_gset:Nn \g_@@_line_bis_int {\l_tmpa_tl}
299 }
That’s the end of the environment {WithArrows}.

We give now the definition of \@@_cr: which is the definition of \\ in an environment {WithArrows}.
The two expl3 commands \group_align_safe_begin: and \group_align_safe_end: are specifically
designed for this purpose: test the token that follows in a \halign structure.
First, we remove an eventual token * since the commands \\ and * are equivalent in an environment
{WithArrows} (an environment {WithArrows}, like an environment {aligned} of amsmath is always
unbreakable).
300 \cs_set_protected:Nn \@@_cr:
301 {\scan_stop:
302 \group_align_safe_begin:
303 \peek_meaning_remove:NTF * \@@_cr_i: \@@_cr_i:}

Then, we peek the next token to see if it’s a [. In this case, the command \\ has an optional argument
which is the vertical skip (=glue) to put.
304 \cs_set_protected:Nn \@@_cr_i:
305 {\peek_meaning:NTF [{\@@_cr_ii:} {\@@_cr_ii:[\c_zero_dim]} }
306 \cs_new_protected:Npn \@@_cr_ii:[#1]
307 {\group_align_safe_end:
308 \cr\noalign{\skip_vertical:n {#1 + \l_@@_interline_skip}
309 \scan_stop:}}
According of the documentation of expl3, the previous addition in “#1 + \l_@@_interline_skip”
is really an addition of skips (=glues).

8.8 We draw the arrows

\@@_draw_arrows: draws the arrows when the option group or the option groups is used. In both
cases, we have to compute the x-value of a group of arrows before actually drawing the arrows of
that group. The arrows will actually be drawn by the macro \@@_draw_arrows:nn.
310 \cs_new_protected:Nn \@@_draw_arrows:
311 { \group_begin:

\l_@@_first_arrow_of_group_int will be the first arrow of the current group.
\l_@@_first_line_of_group_int will be the first line involved in the group of arrows (equal to the
initial line of the first arrow of the group because the option jump is always positive).
\l_@@_last_line_of_group_int will be the last line involved in the group (impossible to guess in
advance).
312 \int_zero_new:N \l_@@_first_arrow_of_group_int
313 \int_zero_new:N \l_@@_first_line_of_group_int
314 \int_zero_new:N \l_@@_last_line_of_group_int
315 \bool_set_true:N \l_@@_new_group_bool

We begin a loop over all the arrows of the environment. Inside this loop, if a group is finished, we
will draw the lines of that group.
316 \int_set:Nn \l_@@_arrow_int 1
317 \int_until_do:nNnn \l_@@_arrow_int > \g_@@_arrow_int
318 {

29

We extract from the property list of the current arrow the fields “initial” and “final” and we store
these values in \l_@@_initial_int and \l_@@_final_int. However, we have to do a conversion
because the components of a property list are token lists.
319 \prop_get:cnN {g_@@_arrow_\l_@@_prefix_str _\int_use:N\l_@@_arrow_int _prop}
320 {initial} \l_tmpa_tl
321 \int_set:Nn \l_@@_initial_int {\l_tmpa_tl}
322 \prop_get:cnN {g_@@_arrow_\l_@@_prefix_str _\int_use:N\l_@@_arrow_int _prop}
323 {final} \l_tmpa_tl
324 \int_set:Nn \l_@@_final_int {\l_tmpa_tl}

We test if the previous arrow was in fact the last arrow of a group. In this case, we have to draw all
the arrows of that group (with the x-value computed in \g_@@_x_dim).
325 \bool_if:nT { \int_compare_p:nNn \l_@@_pos_arrows_int = 7
326 && \int_compare_p:nNn \l_@@_arrow_int > 1
327 && \int_compare_p:nNn
328 \l_@@_initial_int > \l_@@_last_line_of_group_int}
329 {\@@_draw_arrows:nn \l_@@_first_arrow_of_group_int {\l_@@_arrow_int - 1}
330 \bool_set_true:N \l_@@_new_group_bool}

The flag \l_@@_new_group_bool indicates if we have to begin a new group of arrows. In fact,
We have to begin a new group in two circonstancies: if we are at the first arrow of the environ-
ment (that’s why the flag is raised before the beginning of the loop) an if we have just finished a
group (that’s why the flag is raised in the previous conditionnal). At the beginning of a group,
we have to initialize four variables: \l_@@_first_arrow_int, \l_@@_first_line_of_group_int,
\l_@@_last_line_of_group and \g_@@_x_dim (global for technical reasons). The last two will evolve
during the construction of the group.
331 \bool_if:nTF \l_@@_new_group_bool
332 {\bool_set_false:N \l_@@_new_group_bool
333 \int_set:Nn \l_@@_first_arrow_of_group_int \l_@@_arrow_int
334 \int_set:Nn \l_@@_first_line_of_group_int \l_@@_initial_int
335 \int_set:Nn \l_@@_last_line_of_group_int \l_@@_final_int
336 \tikz [@@_standard]
337 \path let \p1=(\int_use:N\l_@@_initial_int-l)
338 in \pgfextra {\dim_gset:Nn \g_@@_x_dim {\x1}} ;
339 }

If we are not at the beginning of a new group, we actualize \l_@@_last_line_of_group_int.
340 {\int_set:Nn \l_@@_last_line_of_group_int
341 {\int_max:nn \l_@@_last_line_of_group_int \l_@@_final_int}}

We actualise the current x-value (in \g_@@_x_dim) even if we are at the beginning of a group. Indeed,
the previous initialisation of \g_@@_x_dim only considers the initial line of the arrows and now we con-
sider all the lines between the initial and the final line. This is done with \@@_actualise_x_value:nn.
We have written a command for this because it is also used with the option i (\l_@@_pos_arrows_int
= 5).
342 \@@_actualise_x_value:nn \l_@@_initial_int \l_@@_final_int

Incrementation of the index of the loop (and end of the loop).
343 \int_incr:N \l_@@_arrow_int
344 }

After the last arrow of the environment, you have to draw the last group of arrows.
345 \@@_draw_arrows:nn \l_@@_first_arrow_of_group_int \g_@@_arrow_int
346 \group_end:
347 }

The following code is necessary because we will have to expand an argument exactly 3 times.
348 \cs_generate_variant:Nn \keys_set:nn {no}
349 \cs_new_protected:Nn \@@_keys_set: {\keys_set:no {WithArrows/General}}

30

The macro \@@_draw_arrows:nn draws all the arrows whose numbers are between #1 and #2. #1
and #2 must be expressions that expands to an integer (they are expanded in the beginning of the
macro).
350 \cs_new_protected:Nn \@@_draw_arrows:nn
351 {\group_begin:
352 \int_zero_new:N \l_@@_first_arrow_int
353 \int_set:Nn \l_@@_first_arrow_int {#1}
354 \int_zero_new:N \l_@@_last_arrow_int
355 \int_set:Nn \l_@@_last_arrow_int {#2}

We begin a loop over the arrows of the environment. The variable \l_@@_arrow_int (local in the
environment {WithArrows}) will be used as index for the loop.
356 \int_set:Nn \l_@@_arrow_int \l_@@_first_arrow_int
357 \int_until_do:nNnn \l_@@_arrow_int > \l_@@_last_arrow_int
358 {

We extract from the property list of the current arrow the fields “initial” and “final” and we store
these values in \l_@@_initial_int and \l_@@_final_int. However, we have to do a conversion
because the components of a property list are token lists.
359 \prop_get:cnN {g_@@_arrow_\l_@@_prefix_str _\int_use:N\l_@@_arrow_int _prop}
360 {initial} \l_tmpa_tl
361 \int_set:Nn \l_@@_initial_int {\l_tmpa_tl}
362 \prop_get:cnN {g_@@_arrow_\l_@@_prefix_str _\int_use:N\l_@@_arrow_int _prop}
363 {final} \l_tmpa_tl
364 \int_set:Nn \l_@@_final_int {\l_tmpa_tl}

If the arrow ends after the last line of the environment, we raise an error.
365 \int_compare:nNnTF \l_@@_final_int > \g_@@_line_int
366 {\msg_error:nn {witharrows} {Too~few~lines~for~an~arrow}}
367 {\@@_draw_arrows_i:}
368 \int_incr:N \l_@@_arrow_int
369 }
370 \group_end:
371 }

The macro \@@_draw_arrows_i: is only for the lisibility of the code. This macro will draw the current
arrow if the arrow is not impossible (that is to say if the Tikz node exists). The first \group_begin:
is for the options of the arrow.
372 \cs_new:Nn \@@_draw_arrows_i:
373 {\group_begin:
374 \int_set:Nn \l_@@_previous_pos_arrows_int {-1}
375 \int_set:Nn \l_@@_level_int 3

We process the options of the current arrow. The second argument of \keys_set:nn must be ex-
panded exactly three times. An x-expansion is not possible because there can be tokens like \bfseries
in the option font of the option tikz. This expansion is a bit tricky.
376 \prop_get:cnN {g_@@_arrow_\l_@@_prefix_str
377 _\int_use:N\l_@@_arrow_int _prop} {options} \l_tmpa_tl
378 \exp_args:NNo \exp_args:No
379 \@@_keys_set: {\l_tmpa_tl,tikz={xshift = \l_@@_xoffset_dim}}
We create two booleans to indicate the position of the initial node and final node of the arrow in
cases of options rr, rl, lr or ll:
380 \bool_set_false:N \l_@@_initial_r_bool
381 \bool_set_false:N \l_@@_final_r_bool
382 \int_case:nn \l_@@_pos_arrows_int
383 {0 {\bool_set_true:N \l_@@_initial_r_bool
384 \bool_set_true:N \l_@@_final_r_bool}
385 2 {\bool_set_true:N \l_@@_initial_r_bool}
386 3 {\bool_set_true:N \l_@@_final_r_bool}}

31

option rr ll rl lr v i group groups
\l_@@_pos_arrows_int 0 1 2 3 4 5 6 7
The option v can be used only in \Arrow in CodeAfter (see below).

In case of option i (\l_@@_pos_arrows_int = 5), we have to compute the x-value of the arrow
(which is vertical). The computed x-value is stored in \g_@@_x_dim (the same variable used when
the option group or the option groups is used). This variable is global for technical reasons: we have
to do assignments in a Tikz node.
387 \int_compare:nNnT \l_@@_pos_arrows_int = 5
388 {

First, we calculate the initial value for \g_@@_x_dim. We use a Tikz command, but, in fact, nothing
is drawn. We use this Tikz command only to read the abscissa of a Tikz node.
389 \tikz [@@_standard]
390 \path let \p1 = (\int_use:N\l_@@_initial_int-l)
391 in \pgfextra {\dim_gset:Nn \g_@@_x_dim {\x1}} ;
A global assignment is necessary because of Tikz.
Then, we will loop to determine the maximal length of the lines between the lines \l_@@_initial_int
and \l_@@_final_int... but we have written a command dedicated to this work because it will also
be used in \@@_draw_arrows:.
392 \@@_actualise_x_value:nn \l_@@_initial_int \l_@@_final_int
393 }

\l_@@_initial_tl contains the name of the Tikz node from which the arrow starts (in normal cases...
because with the option i, group and groups, the point will perhaps have another x-value — but
always the same y-value). Idem for \l_@@_final_tl.
394 \tl_set:Nx \l_@@_initial_tl
395 {\int_use:N\l_@@_initial_int-\bool_if:NTF\l_@@_initial_r_bool rl .south}
396 \tl_set:Nx \l_@@_final_tl
397 {\int_use:N\l_@@_final_int-\bool_if:NTF\l_@@_final_r_bool rl .north}
We use “.south” and “.north” because we want a small gap between two consecutive arrows (and
the Tikz nodes created have the shape of small vertical segments: use option shownodes to visualize
the nodes).

The label of the arrow will is stored in \l_tmpa_tl.
398 \prop_get:cnN {g_@@_arrow_\l_@@_prefix_str _\int_use:N\l_@@_arrow_int _prop}
399 {label}
400 \l_tmpa_tl

We have to compute the coordinates of the extremities of the arrow. We use the library calc to
define two points \p1 and \p2 and we retrieve the coordinates in \g_tmpa_tl and \g_tmpb_tl. This
extraction of the coordinates is necessary because we must give coordinates and not nodes (even
anchored) to \@@_draw_arrow:nnn to have the xshift correct.
401 \int_compare:nNnTF \l_@@_pos_arrows_int < 5
402 {\tikz [@@_standard]
403 \path let \p1 = (\l_@@_initial_tl),
404 \p2 = (\l_@@_final_tl)
405 in \pgfextra { \tl_gset:Nx \g_tmpa_tl {\p1}
406 \tl_gset:Nx \g_tmpb_tl {\p2}} ; }
If we use option i or group or groups, we use the abscissa specially computed in \g_@@_x_dim.
407 {\tikz [@@_standard]
408 \path let \p1 = (\l_@@_initial_tl),
409 \p2 = (\l_@@_final_tl)
410 in \pgfextra { \tl_gset:Nx \g_tmpa_tl {\dim_use:N \g_@@_x_dim , \y1}
411 \tl_gset:Nx \g_tmpb_tl {\dim_use:N \g_@@_x_dim , \y2}} ; }

32

Eventually, we can draw the arrow with the code in \l_@@_tikz_code_tl. We recall that the value
by default for this token list is : “\draw (#1) to node {#3} (#2) ;”. This value can be modified
with the option TikzCode.
412 \@@_draw_arrow:nnn {\g_tmpa_tl} {\g_tmpb_tl} {\l_tmpa_tl}

We close the TeX group opened for the options given to \Arrow[...] (local level of the options).
413 \group_end: }

The function @@_tmpa:nnn will draw the arrow. It’s merely an environment {tikzpicture}. How-
ever, the Tikz instruction in this environment must be inserted from \l_@@_tikz_code_tl with the
markers #1, #2 and #3. That’s why we create a function \@@_def_function_tmpa:n which will create
the function \@@_tmpa:nnn.
414 \cs_new_protected:Nn \@@_def_function_tmpa:n
415 {\cs_set:Nn \@@_tmpa:nnn
416 {\begin{tikzpicture}[@@_standard,every~path/.style = {WithArrows/arrow}]
417 #1
418 \end{tikzpicture}}}

When we draw the arrow (with \@@_draw_arrow:nnn), we create first the function \@@_tmpa:nnn
and, then, we use the function \@@_tmpa:nnn :
419 \cs_new_protected:Nn \@@_draw_arrow:nnn
420 {\exp_args:No \@@_def_function_tmpa:n \l_@@_tikz_code_tl
421 \@@_tmpa:nnn {#1} {#2} {#3} }

The command \@@_actualise_x_value:nn will analyze the lines between #1 and #2 in order to mod-
ify \g_@@_x_dim in consequence. More precisely, \g_@@_x_dim is increased if a line longer than the
current value of \g_@@_x_dim is found. \@@_actualise_x_value:nn is used in \@@_draw_arrows:
(for options group and groups) and in \@@_draw_arrows:nn (for option i).
422 \cs_new_protected:Nn \@@_actualise_x_value:nn
423 {\int_step_inline:nnnn {#1} \c_one {#2}
424 {\tikz [@@_standard]
425 \path let \p1 = (##1-l)
426 in \pgfextra {\dim_gset:Nn \g_@@_x_dim {\dim_max:nn \g_@@_x_dim {\x1}}}; }}

The command \WithArrowsLastEnv is not used by the package witharrows. It’s only a facility given
to the final user. It gives the number of the last environment {WithArrows} at level 0 (to the sens
of the nested environments). This macro is fully expandable and, thus, can be used directly in the
name of a Tikz node.
427 \cs_new:Npn \WithArrowsLastEnv {\int_use:N \g_@@_last_env_int}

8.9 The command Arrow in CodeAfter
The option CodeAfter is an option of the environment {WithArrows} (this option is only available at
the environment level). In the option CodeAfter, one can use the command Arrow but it’s a special
version of the command Arrow. For this special version (internally called \@@_Arrow_code_after),
we define a special set of keys called WithArrows/CodeAfter.
428 \keys_define:nn {WithArrows/CodeAfter}
429 {tikz .code:n = \tikzset {WithArrows/arrow/.append~style = {#1}} ,
430 tikz .value_required:n = true,
431 rr .value_forbidden:n = true,
432 rr .code:n = \@@_analyze_option_position:n 0 ,
433 ll .value_forbidden:n = true,
434 ll .code:n = \@@_analyze_option_position:n 1 ,
435 rl .value_forbidden:n = true,
436 rl .code:n = \@@_analyze_option_position:n 2 ,
437 lr .value_forbidden:n = true,
438 lr .code:n = \@@_analyze_option_position:n 3 ,
439 v .value_forbidden:n = true,

33

440 v .code:n = \@@_analyze_option_position:n 4 ,
441 TikzCode .tl_set:N = \l_@@_tikz_code_tl,
442 TikzCode .value_required:n = true,
443 xoffset .dim_set:N = \l_@@_xoffset_dim,
444 xoffset .value_required:n = true}

445 \NewDocumentCommand \@@_Arrow_code_after {O{} mmm O{}}
446 {\int_set:Nn \l_@@_pos_arrows_int 1
447 \int_set:Nn \l_@@_previous_pos_arrows_int {-1}
448 \group_begin:

Even if \Arrow in CodeAfter has its own set of options (WithArrows/CodeAfter), we set the level
of the options to 3 (as with the classical command \Arrow) because of the error messages.
449 \int_set:Nn \l_@@_level_int 3
450 \keys_set:nn {WithArrows/CodeAfter}
451 {#1,#5,tikz={xshift = \l_@@_xoffset_dim}}
452 \bool_set_false:N \l_@@_initial_r_bool
453 \bool_set_false:N \l_@@_final_r_bool
454 \int_case:nn \l_@@_pos_arrows_int
455 {0 {\bool_set_true:N \l_@@_initial_r_bool
456 \bool_set_true:N \l_@@_final_r_bool}
457 2 {\bool_set_true:N \l_@@_initial_r_bool}
458 3 {\bool_set_true:N \l_@@_final_r_bool}}
We test wether the two Tikz nodes (#2-l) and (#3-l) really exist. If not, the arrow won’t be drawn.
459 \cs_if_free:cTF {pgf@sh@ns@wa-\l_@@_prefix_str-#2-l}
460 {\msg_error:nnn {witharrows} {Wrong~line~specification~in~Arrow} {#2}}
461 {\cs_if_free:cTF {pgf@sh@ns@wa-\l_@@_prefix_str-#3-l}
462 {\msg_error:nnn {witharrows} {Wrong~line~specification~in~Arrow} {#3}}
463 {\int_compare:nNnTF \l_@@_pos_arrows_int = 4
464 {\tikz [@@_standard]
465 \path let \p1 = (#2-l.south),
466 \p2 = (#3-l.north),
467 \p3 = (\dim_max:nn {\x1} {\x2} , \y1),
468 \p4 = (\dim_max:nn {\x1} {\x2} , \y2)
469 in \pgfextra { \tl_gset:Nx \g_tmpa_tl {\p3}
470 \tl_gset:Nx \g_tmpb_tl {\p4}} ; }
471 {\tikz [@@_standard]
472 \path let \p1 = (#2-\bool_if:NTF\l_@@_initial_r_bool rl .south),
473 \p2 = (#3-\bool_if:NTF\l_@@_final_r_bool rl .north)
474 in \pgfextra { \tl_gset:Nx \g_tmpa_tl {\p1}
475 \tl_gset:Nx \g_tmpb_tl {\p2}} ; }
476 \@@_draw_arrow:nnn {\g_tmpa_tl} {\g_tmpb_tl} {#4} }}
477 \group_end:
478 }

8.10 MultiArrow
The command \@@_MultiArrow:nn will be linked to \MultiArrow when the CodeAfter is executed.
479 \cs_new_protected:Nn \@@_MultiArrow:nn
480 {

The user of the command \MultiArrow (in CodeAfter) will be able to specify the list of lines with
the same syntax as the loop \foreach of pgffor. That’s why we construct a “clist” of expl3 from the
specification of list given by the user. The construction of the “clist” must be global in order to exit
the \foreach and that’s why we construct the list in \g_tmpa_clist.
481 \foreach \x in {#1} {\cs_if_free:cTF {pgf@sh@ns@wa-\l_@@_prefix_str-\x-l}
482 {\msg_error:nnx {witharrows}
483 {Wrong~line~specification~in~MultiArrow} {\x}}
484 {\clist_gput_right:Nx \g_tmpa_clist {\x}}}

34

We sort the list \g_tmpa_clist because we want to extract the minimum and the maximum.
485 \int_compare:nNnTF {\clist_count:N \g_tmpa_clist} < 2
486 {\msg_error:nn {witharrows} {Too~small~specification~for~MultiArrow}}
487 {\clist_sort:Nn \g_tmpa_clist
488 {\int_compare:nNnTF {##1} > {##2}
489 {\sort_return_swapped:}
490 {\sort_return_same:}}
We extract the minimum in \l_tmpa_tl (it must be a integer but we store it in a token list of expl3).
491 \clist_pop:NN \g_tmpa_clist \l_tmpa_tl
We extract the maximum in \l_tmpb_tl. The remaining list (in \g_tmpa_clist will be sorted in
decreasing order but never mind...).
492 \clist_reverse:N \g_tmpa_clist
493 \clist_pop:NN \g_tmpa_clist \l_tmpb_tl
We draw the teeth of the rak (except the first one and the last one) with the auxiliary function
\@@_MultiArrow_i:n. This auxiliary fonction is necessary to expand the specification of the list in
the \foreach loop. The first and the last teeth of the rak can’t be drawn the same way as the others
(think, for example, to the case of the option “rounded corners” is used).
494 \exp_args:Nx \@@_MultiArrow_i:n {\g_tmpa_clist}
Now, we draw the rest of the structure.
495 \begin{tikzpicture}[@@_standard,every~path/.style={WithArrows/arrow}]
496 \draw [<->] ($(\l_tmpa_tl-r.south)+(\l_@@_xoffset_dim,0)$)
497 -- ++(5mm,0)
498 -- node {#2} ($(\l_tmpb_tl-r.south)+(\l_@@_xoffset_dim+5mm,0)$)
499 -- ($(\l_tmpb_tl-r.south)+(\l_@@_xoffset_dim,0)$) ;
500 \end{tikzpicture} } }
501

502 \cs_new_protected:Nn \@@_MultiArrow_i:n
503 {\begin{tikzpicture}[@@_standard,every~path/.style={WithArrows/arrow}]
504 \foreach \k in {#1}
505 {\draw[<-] ($(\k-r.south)+(\l_@@_xoffset_dim,0)$) -- ++(5mm,0) ;} ;
506 \end{tikzpicture}}

8.11 The error messages of the package
507 \msg_new:nnn {witharrows}
508 {Third~column~in~a~{WithArrows}~environment}
509 {By~default,~a~\{WithArrows\}~environment~can~only~have~two~columns.~
510 Maybe~you~have~forgotten~a~\str_use:N \c_backslash_str
511 \str_use:N \c_backslash_str.~If~you~really~want~more~than~two~columns,~
512 you~should~use~the~option~"MoreColumns"~at~a~global~level~or~for~
513 an~environment.~However,~you~can~go~one~for~this~time.}

514 \msg_new:nnn {witharrows}
515 {The~option~"jump"~must~be~non~negative}
516 {You~can't~use~a~strictly~negative~value~for~the~option~"jump"~of~command~
517 \token_to_str:N\Arrow.~ You~can~create~an~arrow~going~backwards~with~
518 the~option~"<-"~of~Tikz.}

519 \msg_new:nnn {witharrows}
520 {Too~few~lines~for~an~arrow}
521 {An~arrow~specified~in~line~\int_use:N \l_@@_initial_int\ can't~be~drawn~
522 because~it~arrives~after~the~last~line~of~the~environment.~If~you~go~on,~
523 this~arrow~will~be~ignored.}

524 \msg_new:nnn {witharrows}
525 {{WithArrows}~used~outside~math~mode}
526 {The~environment~\{WithArrows\}~should~be~used~only~in~math~mode.~
527 Nevertheless,~you~can~go~on.}

528 \msg_new:nnn {witharrows}
529 {Two~options~are~incompatible}

35

530 {You~try~to~use~the~option~"\tl_use:N\l_keys_key_tl"~but~
531 this~option~is~incompatible~or~redundant~with~the~option~"
532 \int_case:nn\l_@@_previous_pos_arrows_int
533 {0 {rr}
534 1 {ll}
535 2 {rl}
536 3 {lr}
537 4 {i}
538 5 {group}
539 6 {groups}
540 7 {v}}"~
541 previously~set~in~the~same~
542 \int_case:nn\l_@@_level_int
543 {1 {command~\token_to_str:N\WithArrowsOptions}
544 2 {declaration~of~options~of~the~environment~\{WithArrows\}}
545 3 {command~\token_to_str:N\Arrow}}.~
546 If~you~go~on,~I~will~overwrite~the~first~option.}

547 \msg_new:nnnn {witharrows}
548 {All~lines~must~have~an~ampersand}
549 {All~lines~of~an~environment~\{WithArrows\}~must~have~an~second~column~
550 (because~the~nodes~are~created~in~the~second~column).~
551 You~can~go~on~but~maybe~you~will~have~an~pgf~error~for~
552 an~undefined~shape.}
553 {The~ampersand~can~be~implicit~
554 (e.g.~if~you~use~\token_to_str:N\MoveEqLeft\ of~mathtools).}

555 \msg_new:nnn {witharrows}
556 {Option~incompatible~with~"group(s)"}
557 {You~try~to~use~the~option~"\tl_use:N\l_keys_key_tl"~while~
558 you~are~using~the~option~"
559 \int_compare:nNnTF \l_@@_pos_arrows_int = 5
560 {group}
561 {groups}".~
562 It's~incompatible.~You~can~go~on~ignoring~this~option~
563 "\tl_use:N\l_keys_key_tl"~but~you~should~correct~your~code.}

564 \msg_new:nnn {witharrows}
565 {Option~will~be~ignored}
566 {The~option~"\tl_use:N\l_keys_key_tl"~can't~be~used~here.~
567 If~you~go~on,~it~will~be~ignored.}

568 \msg_new:nnn {witharrows}
569 {Option~unknown}
570 {The~option~"\tl_use:N\l_keys_key_tl"~is~unknown~or~
571 meaningless~in~the~context.~If~you~go~on,~it~will~be~ignored.}

572 \msg_new:nnn {witharrows}
573 {Arrow~in~first~column}
574 {You~should~not~use~the~command~\token_to_str:N\Arrow\
575 \tl_if_eq:NNF \l_@@_CommandName_tl \l_tmpa_tl
576 {(renamed~in~\str_use:N \c_backslash_str
577 \tl_use:N \l_@@_CommandName_tl)~}
578 ~in~the~first~column~but~only~in~the~second~column.~
579 This~is~a~restriction~of~the~version~1.3~of~the~
580 package~witharrows~(in~the~aim~of~developping~further~
581 ~a~new~functionality~with~\token_to_str:N\Arrow\ in~the~
582 first~column).\\
583 However~you~can~go~on~for~this~time.}

584 \msg_new:nnn {witharrows}
585 {Wrong~line~specification~in~Arrow}
586 {The~specification~of~line~"#1"~you~use~in~\token_to_str:N\Arrow\
587 ~doesn't~exist.\\
588 If~you~go~on,~the~arrow~will~be~ignored.}

589 \msg_new:nnn {witharrows}
590 {Wrong~line~specification~in~MultiArrow}

36

591 {The~specification~of~line~"#1"~doesn't~exist.\\
592 If~you~go~on,~it~will~be~ignored~for~\token_to_str:N \MultiArrow.}

593 \msg_new:nnn {witharrows}
594 {Too~small~specification~for~MultiArrow}
595 {The~specification~of~lines~you~gave~to~\token_to_str:N \MultiArrow\
596 is~too~small:~we~need~at~least~two~lines.~If~you~go~on,~the~
597 command~\token_to_str:N\MultiArrow\ ~will~be~ignored.}

9 History
9.1 Changes between versions 1.0 and 1.1
Option for the command \\ and option interline
Compatibility with \usetikzlibrary{babel}
Possibility of nested environments {WithArrows}
Better error messages
Creation of a dtx file

9.2 Changes between versions 1.1 and 1.2
The package witharrows can now be loaded without having loaded previously tikz and the Tikz libraries
calc, arrow.meta and bending.
New option groups (with a s)
Better error messages

9.3 Changes between versions 1.2 and 1.3
New options ygap and ystart for fine tuning.
Minor bugs.

9.4 Changes between versions 1.3 and 1.4
The package footnote is no longer loaded by default. Instead, two options footnote and
footnotehyper have been added. In particular, witharrows becomes compatible with beamer.

9.5 Changes between versions 1.4 and 1.5
The Tikz code used to draw the arrows can be changed with the option TikzCode.
Two new options CodeBefore and CodeAfter have been added at the environment level.
A special version of \Arrow is available in CodeAfter in order to draw arrows in nested environments.
A command \MultiArrow is available in CodeAfter to draw arrows of other shapes.

37

	1 Options for the shape of the arrows
	2 Precise positioning of the arrows
	3 Comparison with the environment {aligned}
	4 Arrows in nested environments
	5 Arrows from outside environments WithArrows
	6 Advanced features
	6.1 The option TikzCode : how to change the shape of the arrows
	6.2 Footnotes in the environment WithArrows

	7 Examples
	7.1 With only one column
	7.2 MoveEqLeft
	7.3 Modifying the shape of the nodes
	7.4 Examples with the option TikzCode
	7.4.1 Example 1
	7.4.2 Example 2

	7.5 Automatic numbered loop

	8 Implementation
	8.1 Declaration of the package and extensions loaded
	8.2 The packages footnote and footnotehyper
	8.3 Some technical definitions
	8.4 Variables
	8.5 The definition of the options
	8.6 The command Arrow
	8.7 The environment {WithArrows}
	8.8 We draw the arrows
	8.9 The command Arrow in CodeAfter
	8.10 MultiArrow
	8.11 The error messages of the package

	9 History
	9.1 Changes between versions 1.0 and 1.1
	9.2 Changes between versions 1.1 and 1.2
	9.3 Changes between versions 1.2 and 1.3
	9.4 Changes between versions 1.3 and 1.4
	9.5 Changes between versions 1.4 and 1.5

