The Package widetable*

Claudio Beccari

September 28, 2009

Contents 4 The long division algorithm 3
1 Introduction 1
5 Acknowledgements 3
2 Usage 2
3 The method 3 6 Implementation 4
Abstract

This package allows to typeset tables of specified width, provided they
fit in one page. Instead of introducing an infinite stretching glue, which has
an unsymmetrical effect in standard ETEX, here the \tabcolsep dimension
is computed so as to have the table come out with the proper width.

1 Introduction

It is well known that when the standard environment tabular* is opened with a
specified width, it is necessary to introduce in the delimiter declaration @{. ..} of
(possibly) the first cell of the model row a declaration such as

\extraclosep{\fill}

in addition to other possible printable delimiters, such as vertical lines, and other
fixed spacing commands. The effect is that the extra stretchable glue operates only
on the left of each cell after (to the right of) the cell that received the declaration;
the first cell will never get larger in spite of the presence of this glue.

Another package, tabularX, normally distributed by the BTEX 3 Team with
every version of the TEX system distribution, allows to create expandable cells,
provided they contain only text. These expandable cells are identified with the
column identifier X; this identifier defines a paragraph-like cell, the width of which
gets determined after some runs of the typesetter on the same source tabular
material, so as to find out the correct width of the textual columns.

*Version number v.1.0; last revision 2009/07/21.

The approach here is a little bit different: the cell contents need not be textual
and no cell width is determined in one or more runs of the typesetter; instead the
inter column glue is determined so as to fill every cell on both sides with the proper
space. The macros contained in this package are insensitive to the particular kind
of cell descriptors and to the presence of multiple \multicolumn commands. It
proved to work properly also if the array package extensions are used.

On the other hand, as well as for tabularX, it needs to typeset the table
three times; the first two times with standard values for the inter column glue
\tabcolsep, in order to find the exact parameters of the linear dependence of
the table width from the value of that glue; then executes some computations so
as to extrapolate the final correct value of \tabcolsep, and on the third run it
eventually typesets the table with the specified width.

The time increase needed for these three table typesettings are in general rather
negligible, nevertheless if a specific document contained many dozens of such ta-
bles, the compilation time might become observable.

It might be noticed that in order to perform the necessary computations a frac-
tional division algorithm had to be implemented; A specific B'TEX run that loads
several different packages might then contain several fractional division macros,
besides those already contained in the kernel. But unfortunately each of these
macros has been designed for a specific purpose and a specific interface.

2 Usage

This package issues an error message only in case the environment includes other
unhided environment; this is explained in the Implementation section. Here it is
assumed that the table is first typeset to its natural width; should it appear too
small, and should it be typeset at a larger width, for example by filling the total
\linewidth available at that specific point, then and only then the tabular en-
vironment is changed to widetable, Should the initial table be moderately larger
than the \1inewidth, than it might be shrinked to \linewidth with widetable,
provided there are enough columns, and therefore delimiters, to be reduced in
size. Of course it’s impossible to typeset any table with any negative value of
\tabcolsep; or better, it is possible, but the result in general is very messy.

In other words widetable should be used as a second resort, so as to correct
some typesetting features not considered aesthetically acceptable.

The syntax for the use of the environment widetable is the same as that of
the tabular* environment; the only difference is the name. Therefore one has to
specify:

\begin{widetable}{{width)}{(column descriptors)}
(line of cells)\\
(line of cells)\\

(line of cells)\\
(line of cells)\\
\end{widetable}

3 The method

The principle on which this little package is based is the following; suppose a
certain table is typeset with an inter column glue ¢ty = 0 and that its width turns
out to be ly; suppose the same tabular material is typeset again with an inter
column glue ¢t; > 0 so that the table table gets as large as l; > lg. Then, if the
table has to be as wide as [the inter column glue must equal the value

Therefore we need to run the typesetting of the same tabular material with the
two values of the inter column glue set to zero and to t1, respectively, so as to
find the widths [y and ;. Afterwards it has to determine the correct final value ¢,
and typeset once again the same tabular material for the last time. Of course the
first two runs must put their results into suitable boxes so as to avoid outputting
them into the output file, while at the same time allowing to record the width of
the enclosing boxes.

4 The long division algorithm

The only simple equation the algorithm must compute consists in evaluating the
difference of of two lengths (a computation that is perfectly feasible with the
available simple TEX primitive commands); a fractional division (not feasible with
any TEX primitive command), and finally into multiplying this division result by
the only non zero inter column glue (another simple task to be done with TEX
primitive commands).

I have tried several algorithms for computing the fractional result of the divi-
sion of two lengths; unfortunately no one guarantees a minimum of precision with
any sized operands; overflows and similar “accidents” are very common. Iterative
algorithms are difficult to initialize; scaling the operands give a good chance of get-
ting acceptable results, but in one way or another I always found some drawbacks.
Therefore I decided to program the so called “long division” algorithm preceded
by a number of tests in order to avoid spending time in vanishing results, and,
even more important, to waste time in getting overflows that cause an abnormal
termination of the typesetting program.

Of course there is no limit to a better solution; nevertheless the one I imple-
mented never crashed in any real world situation I tested.

5 Acknowledgements

I must deeply thank Enrico Gregorio for the revision of this package macros and
for his wise suggestions about the correct programming style. If some glitch still
remains in the programming style, that is just my fault.

6 Implementation

the first thing to do is to globally define a certain number of TEX dimensions and
counters; these dimension and counter registers are selected among the first even
numbered ones, as our Grand Wizard suggested in the TEXbook.

Actually I'd prefer to define such registers within the group of the division
algorithm, so as not to mess up anything that might be used by other macros, but
I accepted the suggestion of Enrico Gregorio, about the programming style and I
left these register definitions in a global position, instead of a local group position.

Another point that initially I had solved in a different way was to use register
numbers over the value 255, the maximum that good old TEX could handle. Now
the typesetting/interpreter program pdftex embeds all the extensions introduced
with the former e-TEX program; now the numbering of the registers can go up to
2% — 1, and there is enough choice for any numbering. But it may be argued that
ETEX users do not upgrade their software so often, while there are some situations
where the use of obsolete versions must be still preferred (I can’t imagine any, but
they assure me that there are some). Therefore Enrico correctly suggests to use
the scratch even numbered registers (Knuth’s suggestion, although Knuth excluded
the counter registers from this statement, being the first 10 counters reserved for
complicated page numbering applications).

1 \dimendef\wt@Numer=2
2 \dimendef \wt@Denom=4
3 \countdef \wt@Num=2

4 \countdef\wt@Den=4

5 \countdef\wt@I=6

6 \def\wt@segno{}

We then start the definition of the division algorithm; the name of the macro
and the separators of the delimited arguments are in Italian, thus minimizing the
risk of colliding with macros of other packages. “dividi...per...in...” means
“divide...by..., to...”; the first “...” represent the dividend, the second “dots”
represent the divisor (both are lengths), while the third “...” represent the quo-
tient (a signed fractional decimal number).

The first operations performed on the operands are to copy them into named
dimension registers; the named registers make the programming a little easier, in
the sense that the chosen names have a meaning and their contents should conform
to that meaning.

Then the sings of the register operands are checked and pssibly changed so as
to work with positive values; the overall result sign is memorized into a named
macro (all macros are named, but here the name conforms to its contents “segno”
maps to “sign”). Afterwards the zero value of the denominator is tested; if the
test is true the result assigned to the internal quotient macro \wt@Q is the signed
dimensional “infiniy”, that in TEX and ITEX is equal to 23° — 1 scaled points; this
value is assigned by the format to the kernel dimension register \maxdimen, so we
need just use this name, instead of assigning strange numerical values; the only
thing we must pay attention to is to strip the “pt” information from this “infinite”
dimension, since the quotient must be a dimensionless signed fractional decimal

number.

Otherwise we load the operands in similarly named counter registers, effectively
transferring the dimension integer number of scaled points to integer variables over
which we continue our operations.

We compute by the primitive TEX integer division command the integer part of
the quotient and we assing its expanded decimal value, followed by a decimal point,
to the temporary internal quotient. Getting back to dimensions, we compute the
remainder of the numerator minus the quotient times the denominator in terms
of lengths. We locally set the number of iterations \wt@I to six, and then we call
the iterative algorithm of the long division within a \@whilenumn...\do cycle.

At the exit of this cycle the internal quotient \wt@Q contains all the digits of
the integer and the fractional part of the result.

Now comes the interesting part: we are within a group and we must “throw”
the quotient outside the group, but hopefully we would not like to leave some-
thing behind; we then define an expanded macro that contains the unexpanded
\endgroup so that when we execute that macro, it is this very action that closes
the group and at the same time, in spite of having been started within it, it keeps
being executed bringing outside the definition of the external quotient that will
be executed outside the group with the expanded value of the internal quotient.
When \x is finished it does not exist any more as well as any value that was
assigned or defined within the group.

7 \def\dividi#1\per#2\in#3{Y

8 \begingroup

9 \wt@Numer #1\relax \wt@Denom #2\relax

10 \ifdim\wt@Denom<\z@ \wt@Denom -\wt@Denom \wt@Numer -\wt@Numer\fi
11 \ifdim\wt@Numer<\z@ \def\wt@segno{-}\wtONumer -\wt@Numer\fi

12 \ifdim\wt@Denom=\z@

13 \edef\wt@Q{\ifdim\wt@Numer<\z@-\fi\strip@pt\maxdimen}

14 \else

15 \wt@Num=\wt@Numer \wt@en=\wt@Denom \divide\wt@Num\wt@Den
16 \edef\wt@Q{\number\wt@Num. }%

17 \advance\wt@Numer -\wt@Q\wt@Denom \wt@I=6

18 \@whilenum \wt@I>\z@ \do{\wt@dividiDec\advance\wt@I\m@nel},
19 \fi

20 \edef\x{\noexpand\endgroup\noexpand\def\noexpand#3{\wt@segno\wt@Q}}
21 \x
22 }

The cycle for the long division consists in multiplying the remainder in
\wt@Numer by ten, then reassigning the dimension value to the numerator in-
teger counter so as to determine a new digit of the quotient in \wt@q. After this,
this digit is appended by means of an expanded definition of the internal quotient,
but it is used also for determining the new remainder in the \wt@Numer dimen-
sion register. Since the iteration is performed six times, six fractional digits are
determined by this procedure, probably one digit too many, but its better one too
many than the opposite.

23 \def\wt@dividiDec{,

24 \wt@Numer=10\wtO@Numer \wtO@Num=\wtONumer \divide\wt@Num\wt@Den
25 \edef\wt@q{\number\wt@Num}\edef\wt@Q{\wt0Q\wt@q}%
26 \advance\wt@Numer -\wt@q\wt@Denom}

Now we define the dimension register that is to contain the desired table width.
We further define the start of the tabular typesetting that will be useful in a while.
Actually the table preamble is being saved into a macro, so that when the (width)
and the (column descriptors) are given to the opening environment statement,
these saved quantities can be used again and again.

27 \newdimen\wtQwidth
28 \def\wt@starttabular{\expandafter\tabular\expandafter{\wt@preamble}}

The environment opening as well as the environment closing are defined by
means of low level commands. Due to the syntax of the opening command that
requires two compulsory arguments, these are saved in the recently defined dimen-
sion register and to a macro respectively; anotehr macro \wt@getTable is used to
get the body of the table; the \end{widetable} statement represents the ending
delimiter of the table contents.

29 \def\widetable#1#2{/,
30 \def\@tempC{widetable}\setlength{\wt@width}{#1}%
31 \def\wt@preamble{#2}\wt@getTable}

A new boolean, wt@scartare, is defined; this boolean variable will be set true
in order to detect if the table body is is not well formed, with \begin and \end
statements tha don’t match, and the like; actually the widetable environment can
contain other environmente, even another widetable environment, but the exter-
nal one should not be upset by the internal ones. In order to achieve this result,
it is necessary that any embedded environment is hidden int a group delimited by
a pair of matching braces.

32 \newif\ifwt@scartare\wt@scartarefalse

The closing statement will acttually do the greatest part of the job. First of all
if the above mentioned boolean variable is true, it skips everyting and it does not
set any table; but if the boolean variable is false, the table body is well formed and
it can do the job as described in the previous sections. It first sets \tabcolsep
to zero and sets the resulting table in box zero; the lower level tabular with the
information saved into \wt@startabular and the body of the table contained into
the token register zero.

Then it sets \tabcolsep to 1cm (arbitrarily chosen) and typesets again the
table into box two. The width of box zero is [y and that of box two is I1; these
are the lengths needed by the equation that evaluates the final typesetting glue.
The arbitrary constant of 1cm is ¢1, and the specified width [is the dimension
saved into \wt@width. The subtractions are operated directly on the dimension
registers \wt@width (the numerator) and on the auxiliary register \@tempdimenb;
the \dividi command is executed in order to get the quotient in \@tempA, and
the final definitive value of \tabcolsep is eventually computed. The table is
finally typeset without using boxes, while the contents of box zero and two are

restored upon exiting the environment to any value they might have contained
before entering widetable.

33 \def\endwidetable{’,
34 \ifwt@scartare

35 \noindent\null

36 \else

37 \tabcolsep=\z0@

38 \setbox\z@=\hbox{\wt@starttabular\the\toks@\endtabular}y,
39 \tabcolsep=1cm\relax

40 \setbox\tw@=\hbox{\wt@starttabular\the\toks@\endtabular}},
41 \advance\wt@width-\wd\z@

42 \@tempdimb=\wd\tw@

43 \advance\@tempdimb-\wd\z@

44 \dividi\wt@width\per\Q@tempdimb\in\@tempA

45 \tabcolsep=\@tempA\tabcolsep

46 \wt@starttabular\the\toks@\endtabular

47 \fi

48 \ignorespacesafterend

49 }

Of course other actions must be performed before executing the closing envi-
ronment statement. We need a macro wt@finetabella that is equivalent to the
ending environment statement.

50 \def\wt@finetabella{\end{widetable}}}

We finally can define the all important macro that gets the table body; it
requires two delimited arguments: in #1 the table body and, after the \end com-
mand, the closing environment name will be set in #2. The environment name
is assigned to the macro \@tempB, which is checked against the correct name
widetable saved in the macro \@tempC by the opening command. If the names
match, then the table body is assigned to the token register zero, to be used later
on by the typesetting macros. But if the names don’t match, then something went
wrong and a package message is issued to explain what happened and how the
program will manage the situation.

Specifically the names may not match if a cell contained another environment
and its whole \begin{...}...\end{. ..} was not closed within a pair of matched
braces. If an enclosed environment is hidden within a group, the delimited macro
\wt@getTable will ignore such embedded environment, otherwise it will get a non
matching name and messy things might happen. Besides warning about this fact,
the body of the table, at least what has been read by the macro, will be discarded
and substituted with a box containing a message; therefore a table will be typeset,
but not the desired one. The remaining part of the body remains in the input
stream and might cause, presumably, strange errors, such as & characters used
outside a tabular or array environment. We must take care of this so that the
typesetting procedure does not crash.

51 \def\wt@getTable#1\end#2{\def\@tempB{#21}/,
52 \ifx\O@tempB\@tempC
53 \toks@={#1}/,

54 \expandafter\wt@finetabella

55 \else

56 \PackageWarning{widetable}{%

57 The table contains environment ‘\Q@tempB’ 7%

58 \MessageBreak

59 not enclosed in braces. This is expressly forbidden!’,

60 \MessageBreak

61 The table is not typeset and is substituted)

62 \MessageBreak

63 with a framed box}

64 \noindent\framebox [\wt@width]{The table was not typeset because
65 it contains a visible \texttt{\char‘\\end} in one or more cells.l}\par
66 \expandafter\wt@finishTable

67 \fi

68 ¥

In order to avoid a complete mess, we have to iteratively gobble the rest of the
input stream until a valid \end{widetable} is encountered; Actually the following
macro will do a nice job in general, but it is not infallible if the input stream is
really composed in a very bad way. In facts it calls itself again and again, always
gobbling it arguments, until a valid terminating environment name matches the
name widetable
69 \def\wt@finishTable#1\end#2{%

70 \def\@tempB{#2}%
71 \ifx\O@tempB\@tempC

72 \wt@scartaretrue\expandafter\wt@finetabella
73 \else

74 \expandafter\wt@finishTable

75 \fi

76 }

77 \endinput

