
The Package widetable
Claudio Beccari∗

Version number v.1.2; last revision 2017/09/05.

Contents
1 Legalese 1

2 Introduction 2

3 Usage 2

4 The method 3

5 The long division algorithm 3

6 Using the εTEX facilies 4

7 Acknowledgements 4

8 Implementation 4

9 Conclusion 8

Abstract
This package allows to typeset tables of specified width, provided they

fit in one page. Instead of introducing an infinite stretching glue, which has
an unsymmetrical effect in standard LATEX, here the \tabcolsep dimension
is computed so as to have the table come out with the proper width.

1 Legalese
This file is part of the widetable package.

This work may be distributed and/or modified under the conditions of the
LaTeX Project Public License, either version 1.3 of this license or (at your op-
tion) any later version. The latest version of this license is in http://www.latex-
project.org/lppl.txt and version 1.3 or later is part of all distributions of LaTeX
version 2003/12/01 or later.

This work has the LPPL maintenance status “maintained”.
The Current Maintainer of this work is Claudio Beccari
The list of all files belonging to the distribution is given in the file ‘manifest.txt’.
The list of derived (unpacked) files belonging to the distribution and covered

by the LPPL is defined by the unpacking scripts (with extension .ins) which are
part of the distribution.

∗claudio dot beccari at gmail dot com

1

2 Introduction
It is well known that when the standard environment tabular* is opened with a
specified width, it is necessary to introduce in the delimiter declaration @{...} of
(possibly) the first cell of the model row a declaration such as

\extracolsep{\fill}

in addition to other possible printable delimiters, such as vertical lines, and other
fixed spacing commands. The effect is that the extra stretchable glue operates only
on the left of each cell after (to the right of) the cell that received the declaration;
the first cell will never get larger in spite of the presence of this glue.

Another package, tabularX, normally distributed by the LATEX3 Team with
every version of the TEX system distribution, allows to create expandable cells,
provided they contain only text. These expandable cells are identified with the
column identifier X; this identifier defines a paragraph-like cell, the width of which
gets determined after some runs of the typesetter on the same source tabular
material, so as to find out the correct width of the textual columns.

The approach here is a little bit different: the cell contents need not be textual
and no cell width is determined in one or more runs of the typesetter; instead
the inter column glue is determined so as to fill every cell on both sides with
the proper space. The macros contained in this package are insensitive to the
particular kind of cell descriptors and to the presence of multiple \multicolumn
commands. It proved to work properly also if the array package extensions are
used. Nevertheless if multiple \multirow commands in different rows “interlace”
the columns thei work on, poor results are obtained, and sometimes no result at
all is obtained except a warning message.

On the other hand, as well as for tabularX, it needs to typeset the table
three times; the first two times with standard values for the inter column glue
\tabcolsep, in order to find the exact parameters of the linear dependence of
the table width from the value of that glue; then executes some computations so
as to extrapolate the final correct value of \tabcolsep, and on the third run it
eventually typesets the table with the specified width.

The time increase needed for these three table typesettings is in general rather
negligible, nevertheless if a specific document contained many dozens of such ta-
bles, the compilation time might become perceivable.

It might be noticed that in order to perform the necessary computations a
fractional division algorithm must be used; since 2009 any TEX installation uses
the εTEX extensions; therefore fractional division is not any more an issue as it
was in previous versions of this package.

3 Usage
This package issues an error message only in case the environment includes other
unhidden environment; this is explained in the Implementation section. Here it is

2

assumed that the table is first typeset to its natural width; should it appear too
small, and should it be typeset at a larger width, for example by filling the total
\linewidth available at that specific point, then and only then the tabular en-
vironment is changed to widetable. Should the initial table be moderately larger
than the \linewidth, then it might be shrunk to \linewidth with widetable,
provided there are enough columns, and therefore delimiters, to be reduced in
size. Of course it’s impossible to typeset any table with any negative value of
\tabcolsep; or better, it is possible, but the result in general is very messy.

In other words widetable should be used as a second resort, so as to correct
some typesetting features not considered aesthetically acceptable.

The syntax for the use of the environment widetable is the same as that of
the tabular* environment; the only difference is the name. Therefore one has to
specify:

\begin{widetable}{〈width〉}[〈alignment〉]{〈column descriptors〉}
〈row of cells〉\\
〈row of cells〉\\
...
〈row of cells〉\\
〈row of cells〉\\
\end{widetable}

4 The method
The principle on which this little package is based is the following; suppose a
certain table is typeset with an inter column glue t0 = 0 and that its width turns
out to be l0; suppose the same tabular material is typeset again with an inter
column glue t1 > 0 so that the table table gets as large as l1 > l0. Then, if the
table has to be as wide as l the inter column glue must equal the value

t = l − l0
l1 − l0

· t1

Therefore we need to run the typesetting of the same tabular material with
the two values of the inter column glue set to zero and to t1, respectively, so as to
find the widths l0 and l1. Afterwards it has to determine the correct final value t,
and typeset once again the same tabular material for the last time.

Of course the first two runs must put their results into suitable boxes so as
to avoid outputting them into the output file, while at the same time allowing to
record the width of the enclosing boxes.

5 The long division algorithm
In previous versions we provided a fractional length division macro to perform such
computations; the subtractions and multiplication could be done with regular

3

primitive commands of the TEX engine; but the fractional division required a
special long division algorithm.

With the εTEX extensions to the typesetting engine (already provided in xetex
and latex, therefore available in XeLaTeX and LuaLaTeX) there is no need to
create any long division macro, because such computation is already provided as
a primitive command.

6 Using the εTEX facilies
In facts the εTEX extension provides the scaling operation: given the length L1
and two homogeneous quantities X1 and X2 (where such quantities may be either
two integer numbers, or two dimensions), such scaling operation scales L1 to L2
by computing

L2 = L1 ·
X2

X1

The intermediate results are actually done with integer arithmetics (internally
length are an integer number of scaled points) but are done in double words so as
to avoid underflow and overflows almost always. Some unusual situations might
exist where underflows or overflows may occur, but they must be very unusual, and
very unlikely to happen for the calculations of this package. In case of overflow
a \maxdimen value is automatically obtained and computations go on as possible,
may be giving rise to other errors or warnings, for example overfull lines.

The use of the εTEX extensions implies that this package works correctly only
with modern engines and kernel formats. This is why the package starts with a
statement where the kernel format is required to be quite recent.

7 Acknowledgements
I must deeply thank Enrico Gregorio for the revision of this package macros and
for his wise suggestions about the correct programming style. If some glitch still
remains in the programming style, that is just my fault.

8 Implementation
We identify the package and the necessary LATEX kernel

1 \ProvidesPackage{widetable}[2017/09/05 v.1.2 A simpler way to produce
2 tables of specified width]

The first thing to do is to globally define a certain number of TEX dimensions
and counters; these dimension and counter registers are selected among the extra
registers available with the εTEX extensions. In facts such extensions allow to
use registers identified by numbers higher than 255, a limit of the good-old-TEX;
Enrico Gregorio in 2009 suggested to avoid such kind of usage, stating that not
all users upgrade so often their TEX system; OK, if they don’t upgrade, they have

4

available the previous versions of this package; now I assume that after so many
years from when the engines were extended with the εTEX facilities, I can’t see
why this package should resort to old approaches.

3 \dimendef\wt@Numer=2
4 \dimendef\wt@Denom=4
5 \countdef\wt@Num=2
6 \countdef\wt@Den=4

We require the xparse package in order to define the environment widetable
with its extended commands.

7 \usepackage{xparse}

We define a local scaling macro \WT@scale to execute the scaling operation
that is of interest to the widetable package. We provide some tests so as to set
some values for very unusual situations. The four arguments are as such: #1:
length to be scaled; #2: numerator of the scaling ratio; #3: denominator of the
scaling ratio; #4: scaled length.

8 \newcommand\WT@scale[4]{\begingroup
9 \wt@Num #2\relax \wt@Den #3\relax

10 \ifnum#3=\z@
11 \@tempdima\ifnum#2<0-\fi\maxdimen
12 \else
13 \@tempdima\dimexpr#1*#2/#3\relax
14 \fi
15 \edef\x{\noexpand\endgroup\noexpand\setlength{#4}{\the\@tempdima}}%
16 \x}

At this point it will be the widetable environment responsibility to call
\WT@scale with the proper arguments

Now we define the dimension register that is to contain the desired table width.
We further define the start of the tabular typesetting that will be useful in a while.
Actually the table preamble is being saved into a macro, so that when the 〈width〉
and the 〈column descriptors〉 are given to the opening environment statement,
these saved quantities can be used again and again.
17 \newdimen\wt@width

A new boolean, wt@scartare, is defined; this boolean variable will be set true
in order to detect if the table body is is not well formed, with \begin and \end
statements that don’t match, and the like; actually the widetable environment
can contain other environment, even another widetable environment, but the ex-
ternal one should not be upset by the internal ones. In order to achieve this result,
it is necessary that any embedded environment is hidden int a group delimited by
a pair of matching braces.
18 \newif\ifwt@scartare\wt@scartarefalse
19

The environment opening as well as the environment closing are defined by
means of low level commands. Due to the syntax of the opening command that
requires two compulsory arguments, these are saved in the recently defined dimen-
sion register and to a macro respectively; another macro \wt@getTable is used to

5

get the body of the table; the \end{widetable} statement represents the ending
delimiter of the table contents.
20 \DeclareDocumentCommand\widetable{m O{c} m}
21 {% OPENING WIDETABLE
22 \def\@tempC{widetable}
23 \setlength{\wt@width}{#1}%
24 \def\wt@preamble{#3}
25 \edef\wt@starttabular{\noexpand\tabular[#2]{\wt@preamble}}
26 \wt@getTable}%

The closing statement will actually do the greatest part of the job. First of all
if the above mentioned boolean variable is true, it skips everything and it does not
set any table; but if the boolean variable is false, the table body is well formed and
it can do the job as described in the previous sections. It first sets \tabcolsep
to zero and sets the resulting table in box zero; the lower level tabular with the
information saved into \wt@startabular and the body of the table contained into
the token register zero.

Then it sets \tabcolsep to 1 cm (arbitrarily chosen) and typesets again the
table into box two. The width of box zero is l0 and that of box two is l1; these
are the lengths needed by the equation that evaluates the final typesetting inter-
column spacing. The arbitrary constant of 1 cm is t1, and the specified width l is
the dimension saved into \wt@width. The subtractions are operated directly on
the dimension registers \wt@width (the numerator) and on the auxiliary register
\@tempdimenb; the \WT@scale command is executed in order to get the scaling
ratio and the final definitive value of \tabcolsep is eventually computed. The
table is finally typeset without using boxes, while the contents of box zero and two
are restored upon exiting the environment to any value they might have contained
before entering widetable.
27 \def\endwidetable{% CLOSING WIDETABLE
28 \ifwt@scartare
29 \noindent\null
30 \else
31 \tabcolsep=\z@
32 \setbox\z@=\hbox{\wt@starttabular\the\toks@\endtabular}%
33 \tabcolsep=6pt\relax
34 \setbox\tw@=\hbox{\wt@starttabular\the\toks@\endtabular}%
35 \ifdim\wt@width<\wd\z@
36 \@tempdimb=\dimexpr\wd\tw@-\wd\z@\relax
37 \PackageWorning{widetable}{%
38 The natural width ‘\the\wd\z@’ of the tabular
39 material\MessageBreak
40 is larger than the specified width
41 ‘\the\wt@width’\MessageBreak\null\space \MessageBreak
42 The table is typeset with the default column spacing}
43 \else
44 \@tempdimb=\dimexpr\wt@width-\wd\z@\relax
45 \fi
46 \@tempdimc=\dimexpr\wd\tw@-\wd\z@\relax

6

47 \WT@scale{\tabcolsep}{\@tempdimb}{\@tempdimc}{\tabcolsep}\relax
48 \wt@starttabular\the\toks@\endtabular
49 \fi
50 \ignorespacesafterend
51 }
52

Of course other actions must be performed before executing the closing envi-
ronment statement. We need a macro wt@finetabella that is equivalent to the
ending environment statement.
53 \def\wt@finetabella{\end{widetable}}%
54

We finally can define the all important macro that gets the table body; it
requires two delimited arguments: in #1 the table body and, after the \end com-
mand, the closing environment name will be set in #2. The environment name
is assigned to the macro \@tempB, which is checked against the correct name
widetable saved in macro \@tempC by the opening command. If the names match,
then the table body is assigned to the token register zero, to be used later on by
the typesetting macros. But if the names don’t match, then something went wrong
and a package message is issued to explain what happened and how the program
will manage the situation.

Specifically the names may not match if a cell contained another environment
and its whole \begin{...}...\end{...} was not closed within a pair of matched
braces. If an enclosed environment is hidden within a group, the delimited argu-
ment macro \wt@getTable will ignore such embedded environment, otherwise it
will get a non matching name and messy things might happen. Besides warning
about this fact, the body of the table, at least what has been read by the macro,
will be discarded and substituted with a box containing a message; therefore a
table will be typeset, but not the desired one. The remaining part of the body
remains in the input stream and might cause, presumably, strange errors, such as
& characters used outside a tabular or array environment. We must take care of
this so that the typesetting procedure does not crash.
55 \def\wt@getTable#1\end#2{\def\@tempB{#2}%
56 \ifx\@tempB\@tempC
57 \toks@={#1}%
58 \expandafter\wt@finetabella
59 \else
60 \PackageWarning{widetable}{%
61 The table contains environment ‘\@tempB’ %
62 \MessageBreak
63 not enclosed in braces. This is expressly forbidden!%
64 \MessageBreak
65 The table is not typeset and is substituted%
66 \MessageBreak
67 with a framed box}%
68 \advance\wt@width-2\fboxsep
69 \noindent\fbox{\parbox{\wt@width}{The table was not typeset
70 because it contains a visible \texttt{\char‘\\end} in one

7

71 or more cells.}}\par
72 \expandafter\wt@finishTable
73 \fi
74 }
75

In order to avoid a complete mess, we have to iteratively gobble the rest of the
input stream until a valid \end{widetable} is encountered; Actually the following
macro will do a nice job in general, but it is not infallible if the input stream is
really composed in a very bad way. In facts it calls itself again and again, always
gobbling it arguments, until a valid terminating environment name matches the
name widetable.
76 \def\wt@finishTable#1\end#2{%
77 \def\@tempB{#2}%
78 \ifx\@tempB\@tempC
79 \wt@scartaretrue\expandafter\wt@finetabella
80 \else
81 \expandafter\wt@finishTable
82 \fi
83 }

9 Conclusion
Tables should always have their natural width, but. . . The default value of\tabcolsep
is fixed by the document class, it is not prescribed by a supreme law: therefore
what does it mean “natural width”. Probably the one determined by the class
default value of \tabcolsep so all tables have the same general look.

Nevertheless sometimes a table is slightly wider than the current measure; why
not shrink the table by shrinking \tabcolsep by the right amount in order to fit
the measure? The result might be a table where only the intercolumn spaces
are shrunk, not the whole table, fonts, drawings, and figures included, a result
easily obtainable with a \resizebox command available through the graphicx.sty
package. Nobody forbids to follow this technique, of course, but the widetable
route might yield a better result.

The same is true when a natural width table is slightly shorter than the mea-
sure; enlarging it by retouching the \tabcolsep intercolumn space might be the
right solution in order to avoid a multitude of slightly different indents or left
margins.

This package might be useful also for copying some macros so as to avoid some
programming in other packages; this use is certainly permitted by the LaTeX
Project Public License, which sets the observance of very light obligations.
84
85 \endinput

8

