
THE UNIVERSITY OF AKRON
Theoretical and Applied Mathematics

AcroTEX Bundle
eForm Support

D. P. Story

c© 1999-2004 dpstory@uakron.edu
March 23, 2004 Version 1.2

mailto:dpstory@uakron.edu

Table of Contents

1 Introduction 3

2 Package Requirement and Options 3
2.1 Package Requirements 3
2.2 Package Options . 4

3 Form Fields 4
3.1 Button Fields . 4

• Push Buttons . 4
• Check Boxes . 5
• Radio Buttons . 6

3.2 Choice Fields . 7
• List Boxes . 7
• Combo Boxes . 9

3.3 Text Fields . 10

4 Actions 11
4.1 Trigger Events . 11
4.2 Action Types . 14

5 JavaScript 16
5.1 Support of JavaScript 17

• The Convenience Command \JS 17
• Inserting Simple JavaScript 17
• Inserting Complex or Lengthy JavaScript 18

Appendix 20
A The Annotation Flag F 20
B Annotation Field flags Ff 20
C Supported Key Variables 21

References 27

Section 1: Introduction 3

1. Introduction

In this document, we describe the support for form elements in an
AcroTEX document. The PDF Specifications indicate there are four
different categories of fields for a total of seven types of fields.

1. Button Fields

(a) Push Button

(b) Check Box

(c) Radio Button

2. Choice Fields

(a) List Box

(b) Combo Box

3. Text Fields

4. Signature Fields

The AcroTEX Bundle does not support signature fields, this leaves six
types of fields. Commands for creating each of the remaining six types
will be discussed.

The hyperref Package (Rahtz, Oberdiek at al) provides support for
the same set of form fields; however, not all features of these fields
can be accessed through the hyperref commands. I was determined to
write my own set of commands which would be sufficiently compre-
hensive and extendable to suit all the needs of the AcroTEX Bundle.
All the quiz environments have been modified to use this new set of
form commands, in this way, there is a uniform treatment of all form
fields in AcroTEX Bundle.

� The demo files for eForm support are eqform.tex, for those using
the Acrobat Distiller to create a PDF document, and eqform pd.tex,
for those who use pdftex or dvipdfm.

2. Package Requirement and Options

Prior to Exerquiz version 5.9, eForms was a integral part of Exerquiz.
I’ve now separated the two, making eForms into a stand-alone package
that is called by Exerquiz.

2.1. Package Requirements

The eForms package requires hyperef (a newer version) and insdljs, a
package that is part of the AcroTEX Bundle.

Section 3: Form Fields 4

2.2. Package Options

The eForms package has the usual driver options: dvipsone, dvips,
pdftex and dvipdfm. The only other option is preview, this is useful
if you use a dvi previewer to view your document. When preview is
taken, a frame box is drawn around any form field created by eForms,
making the position of the field visible in the previewer. This makes
it easy to make any additional adjustments the position of the field.

3. Form Fields

The eForm support for AcroTEX defines six basic (and internal) com-
mands for creating the six types of form elements. These six are
used as “building blocks” for defining all buttons, check boxes, radio
buttons and text fields used in the AcroTEX quizzes; and for defining
six user-commands: \listBox, \comboBox, \pushButton, \checkBox,
\radioButton and \textField. These user commands are the topic
of the subsequent sections.

Each of the above listed field commands has an optional first pa-
rameter that is used to modify the appearance of the field, and/or
to add actions to the field. This is a “local” capability, i.e., a way
of modifying an individual field. There is also a “global” mechanism.
Each field type has its own \everyFieldTypeName command. For
example, all buttons created by \pushButton can be modified using
the \everyPushButton command. See the sections on Check Boxes
and Radio Buttons for examples and additional comments.

� The local modifications—the ones inserted into the field by the
first parameter—are read after the global modifications, in this way,
the local modifications overrides the global ones.

3.1. Button Fields

Buttons are form elements that the user interact with using only a
mouse. There are three types of buttons: push buttons, check boxes
and radio buttons.

• Push Buttons
The push button is a button field that has no value, it is neither on
or off. Generally, push buttons are used to initiate some action, such
as JavaScript action.

\pushButton: The command for creating a push button has four ar-
guments

\pushButton[#1]{#2}{#3}{#4}

Section 3: Form Fields 5

Parameter Description:

#1 = optional, used to enter any modification of appearance/actions
#2 = the title of the button field
#3 = the width of the bounding rectangle
#4 = the height of the bounding rectangle

Default Appearance: The default appearance of a push button is
determined by the following:

\W{1}\S{B}\F{\FPrint}\BC{0 0 0}
\H{P}\BG{.7529 .7529 .7529}

Key Variables: The first (optional) parameter can be used to mod-
ify the default appearance of a button field and to add some actions.
Following is a list of the variables used within the brackets of this op-
tional argument for the list box: \Ff, \F, \H, \TU, \W, \S, \R, \BC, \BG,
\CA, \RC, \AC, \mkIns, \textFont, \textSize, \textColor, \A, \AA
and \rawPDF. See the Support Key Variables table for descriptions
and notes on each of these variables.

☛ If the width argument (#3) is left empty, the LATEX code attempts
to determine the appropriate width based on the width of the text
given by \CA, \RC and \AC. See Example 2, below.

Global Modification: \everyPushButton{<key variables>}

Example 1. This example resets all forms in this document:

\pushButton[\CA{Push}\AC{Me}\RC{Reset}\A{/S/ResetForm}]
{myButton}{36bp}{12bp}

Example 2. Button with empty width argument:

\pushButton[\CA{Push}\AC{Me}\RC{Reset}\A{/S/ResetForm}]
{myButton}{}{12bp}

• Check Boxes
A check box is a type of button that has one of two values, “off” or
“on”. The value of the field when the field is “off” is Off; the value
of the “on” state can be defined by the user.

\checkBox: The command for creating a check box has five parame-
ters

\checkBox[#1]{#2}{#3}{#4}{#5}

Parameter Description:

#1 = optional, used to enter any modification of appearance/actions
#2 = the title of the check box button
#3 = the width of the bounding rectangle
#4 = the height of the bounding rectangle
#5 = the name of the ‘‘on’’ state (the export value)

Push

Push

Section 3: Form Fields 6

Default Appearance: The default appearance of a standard check
box are determined by the following:

\W{1}\S{S}\BC{0 0 0}\F{\FPrint}

Key Variables: The first (optional) parameter can be used to mod-
ify the default appearance of a check box and to add some actions.
Following is a list of the variables used within the brackets of this
optional argument for the list box: \Ff, \F, \TU, \W, \S, \MK, \DA,
\AP, \AS, \R, \textFont, \textSize, \textColor, \DV, \V, \A, \AA
and \rawPDF. See the Supported Key Variables table for descriptions
and notes on each of these variables.

Global Modification: \everyCheckBox{<key variables>}

Example 3. Are you married? Yes:

\checkBox[\symbolchoice{circle}]{myCheck}{10bp}{10bp}{On}

In the example, the appearance of this check box was modified through
the global modification scheme. The following command appears in
the preamble of this document:

\everyCheckBox{
\BC{.690 .769 .871} % border color
\BG{.941 1 .941} % background color
\textColor{1 0 0 rg} % text color

}

• Radio Buttons
A radio button field is similar to a check box, but is meant to be used
in unison with one or more additional radio buttons.

\radioButton: The command for creating a radio button has five
parameters

\radioButton[#1]{#2}{#3}{#4}{#5}

Parameter Description:

#1 = optional, used to enter any modification of appearance/actions
#2 = the title of the radio button
#3 = the width of the bounding rectangle
#4 = the height of the bounding rectangle
#5 = the name of the ‘‘on’’ state (the export value)

� A collection of radio buttons meant to be used in unison need
to all have the same title (parameter #2) but different export values
(parameter #5).

Default Appearance: The default appearance of a standard radio
button are determined by the following:

\W{1}\S{S}\BC{0 0 0}\F{\FPrint}

Section 3: Form Fields 7

Key Variables: The first (optional) parameter can be used to modify
the default appearance of a radio button and to add some actions.
Following is a list of the variables used within the brackets of this
optional argument for the list box: \Ff, \F, \TU, \W, \S, \MK, \DA,
\AP, \AS, \R, \textFont, \textSize, \textColor, \DV, \V, \A, \AA
and \rawPDF. See the Supported Key Variables table for descriptions
and notes on each of these variables.

� \Ff Field flags. There are two values appropriate to a radio
button are \FfNoToggleToOff (if set, one radio button must be set
a all times) and \FfRadiosInUnison (if set, radio buttons with the
same value will be turned on or off in unison, PDF 1.5).

Global Modification: \everyRadioButton{<key variables>}

Example 4. What is your gender? Male: Female: Neither:

Male: \radioButton{myRadio}{10bp}{10bp}{Male}
Female: \radioButton{myRadio}{10bp}{10bp}{Female}
Neither: \radioButton[\A{\JS{app.alert("You can’t be ’neither’!

I’m resetting the field, guess again!");\r
this.resetForm(["myRadio"])}}]{myRadio}{10bp}{10bp}{Neither}

In the example, the appearance of these radio button fields was modi-
fied through the global modification scheme. The following command
appears in the preamble of this document:

\everyRadioButton{
\BC{.690 .769 .871} % border color
\BG{.941 1 .941} % background color
\textColor{0 0 1 rg} % text color
\symbolchoice{star} % check symbol

}

3.2. Choice Fields

A choice field is a list of text items, one or more of which can be
selected by the user.

• List Boxes
A scrollable list box is a type of choice field in which several of the
choice are visible in a rectangle. A scroll bar becomes available if any
of the items in the list are not visible in the rectangle provided.

\listBox: The command for creating a list box has five arguments,
the first of which is optional.

\listBox[#1]{#2}{#3}{#4}{#5}

Section 3: Form Fields 8

Parameter Description:

#1 = optional, used to enter any modification of appearance/actions
#2 = the title of the list box
#3 = the width of the bounding rectangle
#4 = the height of the bounding rectangle
#5 = an array of appearance/values of list.

The fifth parameter needs more explanation. The value of this
parameter which defines the items in the list—their appearance text
and their export values—take two forms:

1. An array of arrays:

[(v1)(item1)][(v2)(item2)]...[(vn)(itemn)]

The first entry in the two member array is the export value of the
item, the second is the appearance text of that item.

2. An array of strings:

(item1)(item2)...(itemn)

In this case, the export value is the same as the appearance text.

Default Appearance: The default appearance of a standard list box
are determined by the following:

\W{1}\S{I}\F{\FPrint}\BC{0 0 0}

Key Variables: The first (optional) parameter can be used to modify
the default appearance of a list and to add some actions. Following
is a list of the variables used within the brackets of this optional
argument for the list box: \Ff, \F, \TU, \W, \S, \R, \BC, \BG, \mkIns,
\textFont, \textSize, \textColor, \DV, \V, \A and \AA. See the
Supported Key Variables table for descriptions and notes on each of
these variables.

� \Ff Field flags. Values appropriate to a list box are \FfSort
(sort1the items); \FfMultiSelect. (allow more than one value to
be selected, PDF 1.4), and \FfCommitOnSelChange (commit imme-
diately after selection, PDF 1.5). It is important to note that the
flags \FfMultiSelect and \FfCommitOnSelChange cannot both be
in effect. See the Appendix for a complete list of vales for the Ff flag.

Global Modification: \everyListBox{<key variables>}
1This flag really is not useful unless you have the full Acrobat application,

the Sort items check box is checked in the Options tab of the Fields Properties
dialog for the field. Initially, the items are listed in the same order as listed in
the #5 argument; the Acrobat application will sort the list if you view the Fields
Properties for the field and click ‘Ok’. Be sure to save the changes.

Section 3: Form Fields 9

Example 5. List Box (Version 5.0 Required):

\listBox[\autoCenter{n}\DV{1}\V{1}
\BG{0.98 0.92 0.73}\BC{0 .6 0}
\AA{\AAKeystroke{%

if(!event.willCommit)app.alert(%
"You chose \\"" + event.change\r
+ "\\""+", which has an export value of "
+ event.changeEx);}]{myList}{1in}{55bp}
{[(1)(Socks)][(2)(Shoes)][(3)(Pants)][(4)(Shirt)][(5)(Tie)]}

• Combo Boxes
A combo box is a drop down list of items that can optionally have
an editable text box for the user to type in a value other than the
predefined choices.

\comboBox: The command for creating a combo box has five argu-
ments, the first of which is optional.

\comboBox[#1]{#2}{#3}{#4}{#5}

Parameter Description:

#1 = optional, used to enter any modification of appearance/actions
#2 = the title of the combo box
#3 = the width of the bounding rectangle
#4 = the height of the bounding rectangle
#5 = an array of appearance/values of list.

The fifth parameter needs more explanation. The value of this
parameter which defines the items in the list—their appearance text
and their export values—take two forms:

1. An array of arrays:

[(v1)(item1)][(v2)(item2)]...[(vn)(itemn)]

The first entry in the two member array is the export value of the
item, the second is the appearance text of that item.

2. An array of strings:

(item1)(item2)...(itemn)

In this case, the export value is the same as the appearance text.

Default Appearance: The default appearance of a standard combo
box are determined by the following:

\W{1}\S{I}\F{\FPrint}\BC{0 0 0}

Socks
Shoes
Pants
Shirt
Tie

Section 3: Form Fields 10

Key Variables: The first (optional) parameter can be used to modify
the default appearance of a list and to add some actions. Following
is a list of the variables used within the brackets of this optional
argument for the list box: \Ff, \F, \TU, \W, \S, \R, \BC, \BG, \mkIns,
\textFont, \textSize, \textColor, \DV and \V, \A and \AA. See
the Support Key Variables table for descriptions and notes on each of
these variables.

� \Ff Field flags. Values appropriate to a combo box are \FfEdit
(allow user to type in a choice); \FfCommitOnSelChange (commit im-
mediately after selection); \FfDoNotSpellCheck (do not spell check—
applicable only if \FfEdit is set); and \FfSort (sort the items—
see footnote 1). See the Appendix for a complete list of vales for the
Ff flag.

Global Modification: \everyComboBox{<key variables>}

Example 6. Editable combo box (Version 5.0):

\comboBox[\Ff\FfEdit\DV{1}\V{1}
\BG{0.98 0.92 0.73}\BC{0 .6 0}]{myCombo}{1in}{11bp}
{[(1)(Socks)][(2)(Shoes)][(3)(Pants)][(4)(Shirt)][(5)(Tie)]}\kern1bp%
% Follow up with a pushbutton
\pushButton[\BC{0 .6 0}\CA{Get}\AC{Combo}\RC{Box}\A{\JS{\getComboJS}}]
{myComboButton}{33bp}{11bp}

The JavaScript action for the button is given below:

\begin{defineJS}{\getComboJS}
var f = this.getField("myCombo");
var a = f.currentValueIndices;
if (a == -1)

app.alert("You’ve typed in \\"" + f.value +"\\".");
else

app.alert("Selection: " + f.getItemAt(a, false)
+ " (export value: " + f.getItemAt(a, true)+").");

\end{defineJS}

3.3. Text Fields

A text field is the way a user can enter text into a form.

\textField: The command for creating a text field has four param-
eters

\textField[#1]{#2}{#3}{#4}

Parameter Description:

#1 = optional, used to enter any modification of appearance/actions
#2 = the title of the text field
#3 = the width of the bounding rectangle
#4 = the height of the bounding rectangle

Socks Get

Section 4: Actions 11

Default Appearance: The default appearance of a standard text
field are determined by the following:

\F{\FPrint}\BC{0 0 0}\W{1}\S{S}

Key Variables: The first (optional) parameter can be used to modify
the default appearance of a list and to add some actions. Following
is a list of the variables used within the brackets of this optional
argument for the list box: \Ff, \F, \TU, \Q, \W, \S, \MaxLen, \R, \BC,
\BG, \mkIns, \textFont, \textSize, \textColor, \DV, \V, \A, \AA
and \rawPDF. See the Supported Key Variables table for descriptions
and notes on each of these variables.

� \Ff Field flags. There are several values appropriate to a text
field: \FfMultiline (create a multiline text fields); \FfPassword (cre-
ate a password field); \FfFileSelect (select a file from the local hard
drive as the value of the text field, PDF 1.4); \FfDoNotSpellCheck
(automatic spell check is not performed, PDF 1.4); \FfDoNotScroll
(disable the scrolling of long text, this limits the amount of text that
can be entered to the width of the text field provided, PDF 1.4);
\FfComb (if set, the text field becomes a comb field, the number of
combs is determined by the value of \MaxLen, PDF 1.5); \FfRichText
(allows rich text to be entered into the text field, PDF 1.5).

Global Modification: \everyTextField{<key variables>}

Example 7. Enter Name:

\textField
[\BC{0 0 1}\BG{0.98 0.92 0.73}
\textColor{1 0 0 rg}

]{myText}{1.5in}{12bp}

4. Actions

A form field may simply gather data from the user; additionally, it
may perform one or more actions. Actions include execute JavaScript
code, going to a particular page in a document, open a file, execute a
menu item, reset a form, play media or a sound, and so on. Beginning
with Acrobat 5.0, most actions can be performed using JavaScript
methods.

An action is initiated by a trigger, a field may have many actions,
each with a separate trigger. The different triggers are discussed in
Trigger Events, and the various types of actions available are covered
in the section Action Types.

4.1. Trigger Events

Event actions are initiated by triggers. For fields, there are ten differ-
ent triggers.

Section 4: Actions 12

1. Mouse Enter: The event is triggered when mouse enters the
region defined by the bounding rectangle. The \AAMouseEnter
key is used within the argument of \AA to define a mouse enter
event:

\textField[\AA{\AAMouseEnter{
\JS{app.alert("You’ve entered my text field, get out!")}}}]
{myText}{1.5in}{12bp}

2. Mouse Exit: The event is triggered when mouse exits the region
defined by the bounding rectangle. The \AAMouseExit key is used
within the argument \AA to define a mouse exit event:

\textField[\AA{\AAMouseExit{
\JS{app.alert("You’ve exited my domain, never return!")}}}]
{myText}{1.5in}{12bp}

3. Mouse Down: The event is triggered when the (left) mouse
button is push down while the mouse is within the bounding
rectangle of the field. The \AAMouseDown key is used within the
argument of \AA to define a mouse down event:

\pushButton[\AA{\AAMouseDown{\JS{app.alert("Mouse Down!")}}}]
{myButton}{30bp}{12bp}

4. Mouse Up: The event is triggered when the (left) mouse button
is released while the mouse is within the bounding rectangle of the
field. The \A key (or \AAMouseUp key is used within the argument
of \AA) is used to define a mouse up event:

\pushButton[\A{\JS{app.alert("Mouse Up!")}}]{myButton}{30bp}{12bp}

The same code can be performed as follows:

\pushButton[\AA{\AAMouseUp{\JS{app.alert("Mouse Up!")}}}]
{myButton}{30bp}{12bp}

When both types of mouse up actions are defined for the same
field, the one defined by \A is the one that is executed.

5. On Focus: The event is triggered when the field comes into focus
(either by tabbing from another field, or clicking the mouse within
the bounding rectangle. The \AAOnFocus key is used within the
argument of \AA to define an ‘on focus’ event:

\textField[\AA{\AAOnFocus{\JS{
app.alert("Please enter some data!")}}}]{myText}{1.5in}{12bp}

6. On Blur: The event is triggered when the field loses focus (either
by tabbing to another field, by clicking somewhere outside the
field, or (in the case of a text field, for example) pressing the
Enter button. The \AAOnBlur key is used within the argument
of \AA to define an ‘on blur’ event:

Section 4: Actions 13

\textField[\AA{
\AAOnBlur{\JS{app.alert("Thanks for the data, I think!")}}}]
{myText}{1.5in}{12bp}

7. Format: The format event is the event that occurs when text is
entered into a text or combo box; during this event, optionally
defined JavaScript code is executed to format the appearance of
the text within the field. The \AAFormat key is used within the
argument of \AA to define a format event:

\textField[\AA{
\AAKeystroke{AFNumber_Keystroke(2, 0, 1, 0, "\\u0024", true);}
\AAFormat{AFNumber_Format(2, 0, 1, 0, "\\u0024", true);}}]
{myText}{1.5in}{12bp}

The above example creates a text field which will accept only
a number into it and which will format the number into U.S.
currency.

8. Keystroke: This keystroke event is the event that occurs when
individual keystroke is entered into a choice field (list or combo)
or a text field; during this code, optionally defined JavaScript
can be used to process the keystroke. The \AAKeystroke key is
used within the argument of \AA to define a format event; see the
format example above.

9. Validate: The validate event is an event for which JavaScript
code can be defined to validate the data that has been entered.
(text and combo fields only) The \AAValidate key is used within
the argument of \AA to define a validate event:

\textField[\AA{
\AAKeystroke{AFNumber_Keystroke(2, 0, 1, 0, "\\u0024", true);}
\AAFormat{AFNumber_Format(2, 0, 1, 0, "\\u0024", true);}
\AAValidate{%

if (event.value > 1000 || event.value < -1000) {\r\t
app.alert("Invalid value, rejecting your value!");\r\t
event.rc = false;\r

}
}
}]{myText}{1.5in}{12bp}

10. Calculate: The calculate event is an event for which JavaScript
code can be defined to make automatic calculations based on
entries of one or more fields. (text and combo fields only) The
\AACalculate key is used within the argument of \AA to define
a calculate event:

\textField[\AA{
\AAKeystroke{AFNumber_Keystroke(2, 0, 1, 0, "\\u0024", true);}
\AAFormat{AFNumber_Format(2, 0, 1, 0, "\\u0024", true);}
\AACalculate{AFSimple_Calculate("SUM",new Array("Prices"));}
}]{myText}{1.5in}{12bp}

Additional example appear in the file eqforms.tex.

Section 4: Actions 14

4.2. Action Types

The following is only a partial listing of the action types, as given in
Table 8.36 of the PDF Reference [5]. The entire list and the details of
usage can be obtain from the PDF Reference.

Action Type Description
GoTo Go to a destination in the current document
GoToR Go to a destination in another document
Launch Launch an application, usually to open a file
URI Resolve a uniform resource identifier
Named Execute an action predefined by the viewer
SubmitForm Send data to a uniform resource locator
JavaScript Execute a JavaScript script (PDF 1.3)

Examples of each type of action follow.

� GoTo: Go to a (named or explicit) destination within the current
document. In this example, we ‘go to’ the named destination toc.1,
which references the table of contents pages. This button goes to a
named destination:

\pushButton[\CA{Go}\AC{Now!}\RC{to TOC}
\A{/S/GoTo/D(toc.1)}]{myButton1}{}{10bp}

For a named destination, the value of the /D key is a string, (doc.1)
in the above example, that specifies the destination name.

The following is an example of an explicit destination:

\pushButton[\CA{Go}\AC{Now!}\RC{to Page 3}
\A{/S/GoTo/D[{Page3}/Fit]}]{myButton1}{}{10bp}

The value of the destination key /D is an array referencing a page
number ({Page3}) and a view (/Fit).

For a GoTo action, the first entry in the destination array, {Page3},
is an indirect reference to a page, the notation {Page3} is understood
by the distiller. For dvipdfm, use the @page primitive:

\makeatletter\def\Page#1{@page#1}\makeatother
\pushButton[\CA{Go}\AC{Now!}\RC{to Page 3}
\A{/S/GoTo/D[\Page3/Fit]}]{myButton1}{}{10bp}

pdftex has no mechanism for inserting indirect page references
See section 8.5.3, ‘Go-To Actions’, of the PDF Reference [5] for

details of the syntax of GoTo, and section 8.2.1 for documentation on
explicit and named destinations.

� GoToR: Go to a (named or explicit) destination in a remote doc-
ument. In this example, we ‘go to a remote’ destination, a named
destination in another document.

Go

Go

Go

Section 4: Actions 15

\pushButton[\CA{Go}\AC{Now!}\RC{to TOC}
\pushButton[\CA{Go}\AC{Now!}\RC{to TOC}
\A{/S/GoToR/F(webeqtst.pdf)/D(webtoc)]{myButton2}{}{10bp}

This example illustrates an explicit destination; the following button
jumps to page 3 in another document:

\pushButton[\CA{Go}\AC{Now!}\RC{to Page 3}
\A{/S/GoToR/F(webeqtst.pdf)/D[2/Fit]}]{myButton2}{}{10bp}

The value of the destination key /D is an array referencing a page
number and a view (/Fit).

For a explicit destination, the PDF Reference [5] specifies that
the first entry in the destination array should be a page number (as
contrasted with an indirect reference to a page number, for the case of
GoTo). The destination, /D[2/Fit] would correctly work for distiller,
dvipdfm and pdftex.

See section 8.5.3, ‘Remote Go-To Actions’, of the PDF Refer-
ence [5] for details of the syntax of GoToR, and section 8.2.1 for doc-
umentation on explicit and named destinations.

� Launch: Launch an application (‘Open a file’). In this example,
we open a TEX file using the application associated with the .tex
extension:

\pushButton[\CA{Go}\AC{Now!}\RC{to TOC}
\A{/S/Launch/F(webeqtst.tex)}]{myButton3}{}{10bp}

See section 8.5.3, ‘Launch Actions’, of the PDF Reference [5] for de-
tails of the syntax.

� URI: Open a web link. In this example, we go to the Adobe web
site:

\pushButton[\CA{Go}\AC{Adobe!}\RC{To}
\A{/S/URI/URI(http://www.adobe.com/)}]{myButton4}{}{10bp}

See section 8.5.3, ‘URI Actions’, of the PDF Reference [5] for details
of the syntax.

� Named: Execute a ‘named’ action (i.e., a menu item). Named ac-
tions listed in the PDF Reference are NextPage, PrevPage, FirstPage
and LastPage. A complete list of named actions can be obtained by
executing the the code app.listMenuItems() in the JavaScript con-
sole of Acrobat (Pro).

\pushButton[\CA{Go}\AC{Previous!}\RC{To}
\A{/S/Named/N/PrevPage}]{myButton5}{}{10bp}

Go

Go

Go

Go

Section 5: JavaScript 16

See section 8.5.3, ‘Named Actions’, of the PDF Reference [5] for de-
tails of the syntax.

� SubmitForm: Submit forms Action. In this example, we submit a
URL to a CGI, which then sends requested file back to the browser:

\def\URL{http://www.math.uakron.edu/\noexpand~dpstory}
\comboBox[\DV{\URL}\V{\URL}\BG{0.98 0.92 0.73}\BC{0 .6 0}]
{dest}{1.75inin}{11bp}{%

[(\URL)(Homepage of D. P. Story)]
[(\URL/acrotex.html)(AcroTeX Homepage)]
[(\URL/webeq.html)(AcroTeX Bundle)]
[(\URL/acrotex/examples/webeqtst.pdf)(Exerquiz Demo file (PDF))]

}\kern1bp\pushButton[\BC{0 .6 0}\CA{Go!}
\A{/S/SubmitForm/F(http://www.math.uakron.edu/cgi-bin/nph-cgiwrap/%
dpstory/scripts/nph-redir.cgi)/Fields[(dest)]/Flags 4}]
{redirect}{33bp}{11bp}

See section 8.6.4 of the PDF Reference [5] for details of the syntax for
‘Submit Actions’.

� JavaScript: Execute a JavaScript action. This is perhaps the
most important type of action. In this example, the previous exam-
ple is duplicated using the Doc.getURL() method, we don’t need to
submit to a CGI.

\def\URL{http://www.math.uakron.edu/\noexpand~dpstory}
\comboBox[\DV{\URL}\V{\URL}\BG{0.98 0.92 0.73}\BC{0 .6 0}]
{dest}{1.75inin}{11bp}{%

[(\URL)(Homepage of D. P. Story)]
[(\URL/acrotex.html)(AcroTeX Homepage)]
[(\URL/webeq.html)(AcroTeX Bundle)]
[(\URL/acrotex/examples/webeqtst.pdf)(Exerquiz Demo file (PDF))]

}\kern1bp\pushButton[\BC{0 .6 0}\CA{Go!}
\A{\JS{%

var f = this.getField("dest");\r
this.getURL(f.value,false);

}}]{redirect}{33bp}{11bp}

Note the use of the convenience command \JS, which expands to the
correct syntax: /S/JavaScript/JS(#1), where #1 is the argument of
\JS.

Most all actions can be performed using JavaScript, the reader is
referred to the Acrobat JavaScript Scripting Reference [2].

5. JavaScript

Acrobat JavaScript is the cross-platform scripting language of the Ac-
robat suite of products. for Acrobat 5.0 or later, Acrobat JavaScript

 Homepage of D. P. Story Go!

 Homepage of D. P. Story Go!

Section 5: JavaScript 17

based on JavaScript version 1.5 of ISO-16262 (formerly known as EC-
MAScript), and adds extensions to the core language to manipulate
Acrobat forms, pages, documents, and even the viewer application.

Well-known, web-based references to core JavaScript are the Core
JavaScript 1.5 Guide [3] and the Core JavaScript 1.5 Reference [4].
For Acrobat JavaScript, we refer you to the Acrobat JavaScript Script-
ing Guide [1] and the Acrobat JavaScript Scripting Reference [2].

5.1. Support of JavaScript

The AcroTEX eDucation Bundle has extensive support for JavaScript,
not only for JavaScript executed in response to a field trigger, but for
document level and open page actions as well. As the topic of this
document is eForm support, the reader is referred to the documen-
tation in the insdljs package, which is distributed with the AcroTEX
Bundle.

• The Convenience Command \JS

The syntax for writing JavaScript actions is

\pushButton[\A{/S/JavaScript/JS(<JavaScript Code>)}]{jsEx}{22bp}{11bp}

Notice the code is enclosed in matching parentheses. As noted earlier,
AcroTEX defines the command \JS as a convenience for this very com-
mon actions; the above example becomes:

\pushButton[\A{\JS{<JavaScript Code>}}]{jsEx}{22bp}{11bp}

The code is now enclosed in matching braces.

• Inserting Simple JavaScript
Actions are introduced into a field command through its optional first
parameter. JavaScript actions, in particular, can be inserted by a
mouse up2 action, for example, using the \A and \JS commands.

The “environment” for entering JavaScript is not a verbatim en-
vironment: ‘\’ is the usual TEX escape character and expandable
commands are expanded; active characters are expanded (which is
usually not what you want); and primitive commands appear verba-
tim (so you can use, for example, ‘{’ and ‘}). Within the optional
argument, the macro \makeJSspecials, which can be redefined, is
expanded; the macro makes several special definitions: (1) it defines
\\ to be ‘\\’; (2) defines \r to be the JavaScript escape sequence for
new line; and (3) defines \t to be the JavaScript escape sequence for
tab.

2Other types of possible actions are discussed and illustrated in ‘Actions’ on
page 11.

Section 5: JavaScript 18

Example 8.
The verbatim listing for this button is

\pushButton[\CA{Sum}\A{\JS{%
var n = app.response("Enter a positive integer",

"Summing the first \\"n\\" integers");\r
if (n != null) {\r\t

var sum = 0;\r\t
for (var i=1; i <= n; i++) {\r\t\t

sum += i;\r\t
}\r

app.alert("The sum of the first n = " + n
+ " integers is " + sum + ".", 3);

}
}}]{jsSum}{22bp}{11bp}

Code Comments. Within the JavaScript string, we want literal dou-
ble quote ", to avoid " being interpreted as the end of the string (or
the beginning of a string) we have to double escape the double quote,
as in \\". (This is not necessary when entering code in the JavaScript
editor if you have the full Acrobat viewer.) I try to write JavaScript
which I am able to read, edit and debug in the JavaScript editor
(available in the full Acrobat viewer application); for this reason, I’ve
added in new lines and tabbing (\r and \t). Many people, however,
have only the Adobe Reader and cannot see their code to debug it; in
this case, the formatting is really not needed.

Consider the following code

\pushButton[\A{\JS{var x = "~"}}]{jsTilde}{22bp}{11bp}

In LATEX, ‘~’ is an active character. JavaScript above appears within
the JavaScript editor as

var x = "protect unhbox voidb@x penalty @M {}"

Not good! Using ‘\~’ or ‘\\~ fair no better.
Needless to say, the following sample will not compile because we

do not have matching braces.

\pushButton[\A{\JS{var x = "{"}}]{jsBrace}{22bp}{11bp}

• Inserting Complex or Lengthy JavaScript
For JavaScript that is more complex or lengthy, the insdljs Package,
distributed with the AcroTEX Bundle, has the verbatim defineJS
environment. Details and idiosyncracies of this environment are doc-
umented in the insdljs Package. The example, given in Example 6,
will suffice; the verbatim listing is reproduced here for convenience.

� First, we define the JavaScript action and name it \getComboJS
for the button (prior to defining the field, possibly in the preamble,
or in style files):

Sum

Section 5: JavaScript 19

\begin{defineJS}{\getComboJS}
var f = this.getField("myCombo");
var a = f.currentValueIndices;
if (a == -1)

app.alert("You’ve typed in \\"" + f.value +"\\".");
else

app.alert("Selection: " + f.getItemAt(a, false)
+ " (export value: " + f.getItemAt(a, true)+").");

\end{defineJS}

There is no need for the \r and \t commands to format the JavaScript;
the environment obeys lines and spaces.

Now we can define our fields, a combo (not shown) and button, in
this example. It is the button that uses the JavaScript defined above.

\pushButton[\BC{0 .6 0}\CA{Get}\AC{Combo}\RC{Box}
\A{\JS{\getComboJS}}]{myComboButton}{33bp}{11bp}

Within the argument of \JS we inset the macro command,

\JS{\getComboButton}

for our JavaScript defined earlier in the defineJS environment

� The demo file definejs.pdf (source definejs.tex) has additional
examples of this environment.

Appendix 20

Appendix

A. The Annotation Flag F

The annotation flag F is a bit field that is common to all annotations.

Annotation Flag F
Flag Description
\FHidden hidden field
\FPrint print
\FNoView no view
\FLock locked field (PDF 1.4)

In the user interface for Acrobat, there are four visibility attributes
for a form field The table below is a list of these, and an indication of
how each visibility attribute can be attained through the F.

UI Description Use
Visible (and printable)
Hidden but printable \F{\FNoView}

Visible but doesn’t print \F{-\FPrint}

Hidden (and does not print) \F{\FHidden}\F{-\FPrint}

� All fields created by the eForm commands are printable by default.
To remove the printable attribute, you must say \F{-\FPrint}. This
is why \F{-\FPrint} appears in the table above.

B. Annotation Field flags Ff

The table below lists some convenience macros for setting the the Ff
bit field.

Annotation Field flags Ff
Flag Description Fields
\FfReadOnly Read only field all
\FfRequired Required field (Submit) all
\FfNoExport Used with Submit Action all
\FfMultiline For Multiline text field text
\FfPassword Password field text
\FfNoToggleToOff Used with Radio Buttons Radio only
\FfRadio Radio Button Flag Radio if set
\FfPushButton Push Button Flag Pushbuton
\FfCombo Combo Flag choice
\FfEdit Edit/NoEdit combo
\FfSort Sort List choice
\FfFileSelect File Select (PDF 1.4) text
\FfMultiSelect multiple select (PDF 1.4) choice
\FfDoNotSpellCheck Do not spell check (PDF 1.4) text, combo
\FfDoNotScroll do not scroll (PDF 1.4) text

Appendix 21

Flag Description Fields
\FfComb comb field (PDF 1.5) text
\FfRadiosInUnison radios in unison (PDF 1.5) radio
\FfCommitOnSelChange commit on change (PDF 1.5) choice
\FfRichText rich text (PDF 1.5) text

C. Supported Key Variables

Below is a list of the keys supported for modifying the appearance
or for creating an action of a field. If the default value of a key is
empty, e.g., \Ff{}, then that key does not appear in the widget. The
Acrobat viewer may have a default when any particular key does not
appear, e.g. \W{} will be interpreted as \W{1} by the viewer.

Supported Key Variables

Key Description Default

Entries common to all annotations:

\F See the annotation F flag Table \F{}

Appendix 22

Key Description Default

Border Style Dictionary (BS)

\W Width in points around the
boundary of the field, for example,
\W{1}.

\W{}
(same as \W{1})

\S Line style, values are S (solid), D
(dashed), B (beveled), I (inset), U
(underlined); \S{B}

\S{}

\AA Additional actions, a dictionary.
These actions are triggers by mouse
up, mouse down, mouse enter,
mouse exit, on focus, on blur
events; for text and editable combo
boxes there is also the format,
keystroke, validate and calculate
events. The various triggers are
discussed in Trigger Events.

\AA{}
(no actions)

\A Action dictionary, use this to define
JavaScript actions, as well as other
actions, for mouse up events. See
Trigger Events for a discussion of
the mouse up event.

\A{}
(no action)

\Border Used with link annotations, an
array of three numbers and an
optional dash array. If all three
numbers are 0, no border is drawn

\Border{0 0 0}
(no border)

\AP Appearance dictionary, used mostly
in AcroTEX with check boxes to
define the ‘On’ value.

\AP{}

\AS Appearance state, normally used
with check boxes and radio buttons
when there are more than one
appearance. Advanced techniques
only.

\AS{}

Appendix 23

Key Description Default

Entries common to all fields:

\TU Tool tip (PDF 1.3), for example,
\TU{Address}

\TU{}

\Ff See the Field flag Ff table; e.g.
\Ff{\FfReadOnly} makes the field
read only.

\Ff{}

\DV Default value of a field. This is the
value that appears when the field is
reset; e.g., \DV{Name:}.

\DV{}

\V Current value of the field; for
example, \V{D. P. Story}

\V{}

Entries specific to a widget annotation:

\H Highlight, used in button fields and
link annotations. Possible values
are N (None), P (Push), O
(Outline), I (Invert); e.g., \H{P}.

\H{}
(same as \H{I})

Appearance Characteristics Dictionary (MK)

\MK A dictionary that contains the keys
listed below. For all fields the MK
has a template that is filled in
using the keys below; this key is
available only for check boxes and
radio buttons.

various

\R Number of degrees field is to be
rotated counterclockwise. Must be
a multiple of 90 degrees; \R{90}.

\R{}

\BC The boundary color, a list of 0
(transparent), 1 (gray), 3 (RGB)or
4 (CMYK) numbers between 0 and
1. For example, \BC{1 0 0} is a
red border.

\BC{}
(transparent)

\BG Background color. Color
specification same as \BC

\BC{}
(transparent)

Appendix 24

Key Description Default

\CA Button fields (push, check, radio)
The widget’s normal caption; e.g.
\CA{Push}, in the case of a push
button. For check boxes and radio,
the value of \CA is a code that
indicates whether a check, circle,
square, star, etc. is used. These
codes are introduced through
\symbolchoice

\CA{}

\RC Push button fields only. The roll
over text caption.

\RC{}

\AC Push button fields only. The down
button caption.

\AC{}

\mkIns A variable for introducing into the
MK dictionary any other key-value
pairs not listed above. Principle
examples are I, RI, IX, IF, TP,
which are used for displaying icons
on a button field. See an example
in the demo file eforms.tex

\mkIns{}

Entries common to fields containing variable text:

\Q Quadding for text fields. Values are
0 (left-justified), 1 (centered), 2
(right-justified); e.g., \Q{1}.

Q{}
(left justified)

Appendix 25

Key Description Default

Default Appearance (DA)

\DA Default appearance string of the
text in the widget. Normally, you
just specify text font, size and
color. Can be redefined, advance
techniques needed.

\textFont Font to be used to display the text \textFont{Helv}

\textSize size in points of the text \textSize{9}

\textColor color of the text, there are several
color spaces, including grayscale
and RGB; for example,
\textColor{1 0 0 rg}, gives a red
font.

\textColor{0 g}

Appendix 26

Key Description Default

Entries specific to text fields:

\MaxLen The maximum length of the text
string input into a text field. Used
also with comb fields to set the
number of combs. Example,
\MaxLeng{15}.

\MaxLen{}

Specialized, non-PDF Spec, commands:

\rawPDF If all else fails, you can always
introduce key-value pairs through
this variable.

\rawPDF{}

\autoCenter There are centering code that
attempts to give a pleasant
placement of the field. Say
\autoCenter{n} to turn this off.

\symbolchoice Use this variable to specify what
symbol is to be used with a check
box or radio button. Possible
values are check, circle, cross,
diamond, square and star. Can be
use to globally change the symbol
choice as well; for example,
\symbolchoice{check}, which is
the default value.

References 27

References

[1] Acrobat JavaScript Scripting Guide, Version 6.0., Technical
Note #5430, Adobe Systems, Inc., 20033 17

[2] Acrobat JavaScript Scripting Reference, Version 6.0., Technical
Note #5431, Adobe Systems, Inc., 20034 16, 17

[3] Core JavaScript 1.5 Guide Netscape Communications Corpora-
tion, 20015 17

[4] Core JavaScript 1.5 Reference Netscape Communications Cor-
poration, 20016 17

[5] Draft PDF Reference, Version 1.5 Adobe Systems, Inc., 20037

14, 15, 16

3http://partners.adobe.com/asn/acrobat/docs.jsp
4http://partners.adobe.com/asn/acrobat/docs.jsp
5http://developer.netscape.com/docs/manuals/javascript.html
6http://developer.netscape.com/docs/manuals/javascript.html
7http://partners.adobe.com/asn/tech/pdf/specifications.jsp

http://partners.adobe.com/asn/acrobat/docs.jsp
http://partners.adobe.com/asn/acrobat/docs.jsp
http://developer.netscape.com/docs/manuals/javascript.html
http://developer.netscape.com/docs/manuals/javascript.html
http://partners.adobe.com/asn/tech/pdf/specifications.jsp

	Table of Contents
	1 Introduction
	2 Package Requirement and Options
	2.1 Package Requirements
	2.2 Package Options

	3 Form Fields
	3.1 Button Fields
	• Push Buttons
	• Check Boxes
	• Radio Buttons

	3.2 Choice Fields
	• List Boxes
	• Combo Boxes

	3.3 Text Fields

	4 Actions
	4.1 Trigger Events
	4.2 Action Types

	5 JavaScript
	5.1 Support of JavaScript
	• The Convenience Command \JS
	• Inserting Simple JavaScript
	• Inserting Complex or Lengthy JavaScript

	 Appendix
	A The Annotation Flag F
	B Annotation Field flags Ff
	C Supported Key Variables

	 References

