
Experimental Unicode mathematical
typesetting: The unicode-math package

Will Robertson
Philipp Stephani, Joseph Wright, Khaled Hosny, and others

http://github.com/wspr/unicode-math

2018/07/29 v0.8m

Abstract

This document describes the unicode-math package, which is intended as an
implementation of Unicode maths for LATEX using the XƎTEX and LuaTEX type-
setting engines. With this package, changing maths fonts is as easy as chang-
ing text fonts — and there are more and more maths fonts appearing now.
Maths input can also be simplified with Unicode since literal glyphs may be
entered instead of control sequences in your document source.

The package provides support for both XƎTEX and LuaTEX. The different
engines provide differing levels of support for Unicode maths. Please let us
know of any troubles.

Alongside this documentation file, you should be able to find a mini-
mal example demonstrating the use of the package, ‘unimath-example.ltx’.
It also comes with a separate document, ‘unimath-symbols.pdf’, containing a
complete listing of mathematical symbols defined by unicode-math, including
comparisons between different fonts.

Finally, while the STIX fontsmay be usedwith this package, accessing their
alphabets in their ‘private user area’ is not yet supported. (Of these additional
alphabets there is a separate caligraphic design distinct to the script design al-
ready included.) Better support for the STIX fonts is planned for an upcoming
revision of the package after any problems have been ironed out with the ini-
tial version.

1

http://github.com/wspr/unicode-math

Contents

1 Introduction 4

2 Acknowledgements 4

3 Getting started 4
3.1 New commands . 4
3.2 Package options . 6

4 Unicode maths font setup 6
4.1 Using multiple fonts . 7

4.1.1 Control over alphabet ranges 8
4.2 Script and scriptscript fonts/features 9
4.3 Maths ‘versions’ . 9
4.4 Legacy maths ‘alphabet’ commands 10

4.4.1 Default ‘text math’ fonts . 10
4.4.2 Replacing ‘text math’ fonts by symbols 10
4.4.3 Operator font . 11

5 Maths input 11
5.1 Math ‘style’ . 11
5.2 Bold style . 13
5.3 Sans serif style . 13

5.3.1 What about bold sans serif? 14
5.4 All (the rest) of the mathematical styles 14

5.4.1 Scope of the functionality of the \sym.. commands 14
5.4.2 Double-struck . 14
5.4.3 Caligraphic vs. Script variants 15

5.5 Miscellanea . 16
5.5.1 Nabla . 16
5.5.2 Partial . 16
5.5.3 Primes . 16
5.5.4 Subscripts and superscripts and symbol alphabets 17
5.5.5 Unicode subscripts and superscripts 17
5.5.6 Colon . 17
5.5.7 Slashes and backslashes . 18
5.5.8 Behaviour of hyphens in mathematics 19
5.5.9 Growing and non-growing accents 20
5.5.10 Negations and the \not command 20
5.5.11 Pre-drawn fraction characters 20
5.5.12 Circles . 21
5.5.13 Triangles . 21

2

6 Advanced 22
6.1 Warning messages . 22
6.2 How to overwrite a macro . 22
6.3 Programmer’s interface . 22

A stix table data extraction 23

B Documenting maths support in the NFSS 23

C Legacy TEX font dimensions 25

D XƎTEX math font dimensions 25

3

1 Introduction
This document describes the unicode-math package, which is an experimental im-
plementation of a macro to Unicode glyph encoding for mathematical characters.

Users who desire to specify maths alphabets only (Greek and Latin letters,
and Arabic numerals) may wish to use Andrew Moschou’s mathspec package in-
stead. (XƎTEX-only at time of writing.) Note that unicode-math and mathspec are
not compatible with each other.

2 Acknowledgements
Many thanks to:Microsoft for developing themathematics extension toOpenType
as part of Microsoft Office 2007; Jonathan Kew for implementing Unicode math
support in XƎTEX; Taco Hoekwater for implementing Unicode math support in
LuaTEX; Barbara Beeton for her prodigious effort compiling the definitive list of
Unicode math glyphs and their LATEX names (inventing them where necessary),
and also for her thoughtful replies to my sometimes incessant questions; Philipp
Stephani for extending the package to support LuaTEX. Ross Moore and Chris
Rowley have providedmoral and technical support from the very early days with
great insight into the issues we face trying to extend and use TEX in the future.
Apostolos Syropoulos, Joel Salomon, Khaled Hosny, and Mariusz Wodzicki have
been fantastic beta testers.

3 Getting started
Load unicode-math as a regular LATEX package. It should be loaded after any other
maths or font-related package in case it needs to overwrite their definitions.Here’s
an example using the filename syntax to load the TEXGyre PagellaMath font: (this
works for both XƎLATEX and LuaLATEX)

\usepackage{amsmath} % if desired

\usepackage{unicode-math}

\setmathfont{texgyrepagella-math.otf}

Once the package is loaded, traditional TFM-basedmaths fonts are no longer
supported; you can only switch to a different OpenType maths font using the
\setmathfont command. If you do not load an OpenType maths font before
\begin{document}, Latin Modern Math will be loaded automatically.

3.1 New commands
LATEX, since the first version of LATEX2𝜀, changed the math group selection from,
say, {\bf x} to \mathbf{x}. It introduced commands such as \mathbf, \mathit,
\mathsf, \mathtt and \mathcal, besides \mathnormal. This was not only done
to maintain the analogy with \textbf, \textit and so on, but with the precise

4

purpose of loading the needed math groups (or math families) on demand and
not allocating them if not required by the document.

The introduction of unicode-math posed some problems fitting into this de-
sign. For instance, there is a big difference between say fit as an operator name
in boldface type and the product of three boldface variables. With legacy TEX
engines, \mathbf{fit} would use a ligature and the same would happen with
the input \mathbf{f}\mathbf{i}\mathbf{t}. For the latter case, the user should
probably use \mathbf{f\/}.

However, there is another important point from a conceptual point of view. A
boldface variable name should be printed using themath font, whereas a boldface
operator name should be printed using the text font. OpenType math fonts make
this distinction feasible, because they contain several math alphabets. Of course a
boldface text ‘x’ will not differ much (or at all) from a boldface math ‘x’, but this
is not the point: they should be considered different, because the former is U+0078
in Unicode, the latter is U+1D431.

It was clear that two different commands are needed: one for using text bold-
face in math, one for using math boldface. Only the document’s author can know
whether one or the other is needed. The decisionwas to split off the twomeanings
with a command like \mathbf for the boldface text font in math and a command
like \symbf (for the bold math font).

The five new symbol font commands that behave in this way are: \symup,
\symit, \symbf, \symsf, and \symit. These commands switch to single-letter
mathematical symbols (generally within the same OpenType font).

The legacy \math.. commands switch to text fonts that are set up to be-
have correctly in mathematics, and should be used for multi-letter identifiers.
These could be denoted ‘text math alphabets’; further details are discussed in
section §4.4. Additional similar ‘text math alphabet’ commands can be defined
using the \setmathfontface command discussed in section §4.4. To control the
behaviour of the default text math alphabet commands to behave in a backwards-
compatible mode, see the package options described in section §4.4.2.

In addition, unicode-math also provides a number of commands (such as
\symcal) to select specific ‘symbol alphabets’ within the unicodemaths font, with
usage, e.g., \symcal{G} → 𝒢 . The full listing is shown in Table 1. For backwards
compatibility, many of these are also defined with ‘familiar’ synonyms such as
\mathcal. However, where possible the ‘sym’ prefix commands should be pre-
ferred, as certain synonyms may become deprecated in time. The \symliteral

command is described in section §5.1.
Using the \sym.. commands, the glyphs used to produce PDF output are

Unicode-encoded, and therefore a symbol such as 𝒢 can be copy-pasted into
another programme (or even into the source of another LATEX document using
unicode-math) without loss of meaning. This is an important aspect of Unicode
mathematics, but the unicode-math package is not ‘pure’ in the sense that the
package also provides other mechanisms to change the fonts used in the PDF out-
put; the philosophy of the package is to providemechanisms for technical authors
to invent and experiment with new syntaxes for their work.

5

Table 1: New unicode-math commands which overlap with legacy math com-
mands. For new documents the sym versions are recommended.

Command Synonym

\symnormal \mathnormal

\symliteral

\symbb \mathbb

\symbbit \mathbbit

\symcal \mathcal

\symscr \mathscr

\symfrak \mathfrak

\symsfup \mathsfup

\symsfit \mathsfit

Command Synonym

\symbfsf \mathbfsf

\symbfup \mathbfup

\symbfit \mathbfit

\symbfcal \mathbfcal

\symbfscr \mathbfscr

\symbffrak \mathbffrak

\symbfsfup \mathbfsfup

\symbfsfit \mathbfsfit

3.2 Package options
Package options may be set when the package as loaded or at any later stage with
the \unimathsetup command. Therefore, the following two examples are equiv-
alent:

\usepackage[math-style=TeX]{unicode-math}

% OR

\usepackage{unicode-math}

\unimathsetup{math-style=TeX}

Note, however, that some package options affects how maths is initialised and
changing an option such as math-stylewill not take effect until a newmaths font
is set up.

Package options may also be used when declaring new maths fonts, passed
via options to the \setmathfont command. Therefore, the following two examples
are equivalent:

\unimathsetup{math-style=TeX}

\setmathfont{texgyrepagella-math.otf}

% OR

\setmathfont{texgyrepagella-math.otf}[math-style=TeX]

A summary list of package options is shown in table 2. See following sections
for more information.

4 Unicode maths font setup
In the ideal case, a single Unicode font will contain all maths glyphs we need.
The file unicode-math-table.tex (based on Barbara Beeton’s stix table) provides

6

Table 2: Package options.

Option Description See…

math-style Style of letters §5.1
bold-style Style of bold letters §5.2
sans-style Style of sans serif letters §5.3
nabla Style of the nabla symbol §5.5.1
partial Style of the partial symbol §5.5.2
colon Behaviour of \colon §5.5.6
slash-delimiter Glyph to use for ‘stretchy’ slash §5.5.7

Table 3: Maths font options.

Option Description See…

range Style of letters section §4.1
script-font Font to use for sub- and super-scripts section §4.2
script-features Font features for sub- and super-scripts section §4.2
sscript-font Font to use for nested sub- and super-scripts section §4.2
sscript-features Font features for nested sub- and super-scripts section §4.2

the mapping between Unicode maths glyphs and macro names (all 3298 — or
however many — of them!). A single command

\setmathfont{⟨font name⟩}[⟨font features⟩]
implements this for every every symbol and alphabetic variant. That means x to 𝑥,
\xi to 𝜉 , \leq to ≤, etc., \symscr{H} to ℋ and so on, all for Unicode glyphs within
a single font.

This package deals well with Unicode characters for maths input. This in-
cludes using literal Greek letters in formulae, resolving to upright or italic de-
pending on preference.

Font features specific to unicode-math are shown in table 3. Package options
(see table 2) may also be used. Other fontspec features are also valid.

4.1 Using multiple fonts
There will probably be few cases where a single Unicodemaths font suffices (sim-
ply due to glyph coverage). The stix font comes to mind as a possible exception.
It will therefore be necessary to delegate specific Unicode ranges of glyphs to sep-
arate fonts:

\setmathfont{⟨font name⟩}[range=⟨unicode range⟩,⟨font features⟩]
where ⟨unicode range⟩ is a comma-separated list of Unicode slot numbers and
ranges such as {"27D0-"27EB,"27FF,"295B-"297F}. Note that TEX’s syntax for ac-
cessing the slot number of a character, such as `\+, will also work here. Only nu-
merical slots can be used in ranged declarations.

Note that, for efficiency, the unicode-math package only loads a default maths

7

setup when absolutely necessary. Before you use the range option you must first
load a ‘main’ maths font in the standard way.

You may also use the macro for accessing the glyph, such as range=\int, or
whole collection of symbols with the same math type, such as range=\mathopen,
or complete math styles such as range=\symbb (or just range=bb).

4.1.1 Control over alphabet ranges

As discussed earlier, Unicode mathematics consists of a number of ‘alphabet
styles’ within a single font. In unicode-math, these ranges are indicated with the
following (hopefully self-explanatory) labels:

up , it , bb , bbit , scr , cal , bfcal , frak , tt , sfup ,

sfit , bfup , bfit , bfscr , bffrak , bfsfup , bfsfit

Fonts can be selected (for predefined ranges only) using the following syntax, in
which case all other maths font setup remains untouched:

• [range=bb] to use the font for ‘bb’ letters only.

• [range=bfsfit/{greek,Greek}] for Greek lowercase and uppercase only
(also with latin, Latin, num as possible options for Latin lower-/upper-case
and numbers, resp.).

• [range=up->sfup] to map to different output styles.

A common request is to load numerals only from a specific font. This can be
achieved with an option such as range=up/{num}.

Note that ‘meta-styles’ such as ‘bf’ and ‘sf’ are not included in the list above
since they are context dependent. Use [range=bfup] and [range=bfit] to effect
changes to the particular ranges selected by ‘bf’ (and similarly for ‘sf’).

If a particularmath style is not defined in the font, we fall back onto the lower-
base plane (i.e., ‘upright’) glyphs. Therefore, to use an ascii-encoded fractur font,
for example, write

\setmathfont{SomeFracturFont}[range=frak]

and because the math plane fractur glyphs will be missing, unicode-math will
know to use the ascii ones instead. If necessary this behaviour can be forced with
[range=frak->up], since the ‘up’ range corresponds to ascii letters.

Users of the impressiveMinionMath fonts (commercial)may use remapping
to access the bold glyphs using:

\setmathfont{MinionMath-Regular.otf}

\setmathfont{MinionMath-Bold.otf}[range={bfup->up,bfit->it}]

To set up the complete range of optical sizes for these fonts, a font declaration such
as the following may be used: (adjust may be desired according to the font size of
the document)

8

\setmathfont{Minion Math}[

SizeFeatures = {

{Size = -6.01, Font = MinionMath-Tiny},

{Size = 6.01-8.41, Font = MinionMath-Capt},

{Size = 8.41-13.01, Font = MinionMath-Regular},

{Size = 13.01-19.91, Font = MinionMath-Subh},

{Size = 19.91-, Font = MinionMath-Disp}

}]

\setmathfont{Minion Math}[range = {bfup->up,bfit->it},

SizeFeatures = {

{Size = -6.01, Font = MinionMath-BoldTiny},

{Size = 6.01-8.41, Font = MinionMath-BoldCapt},

{Size = 8.41-13.01, Font = MinionMath-Bold},

{Size = 13.01-19.91, Font = MinionMath-BoldSubh},

{Size = 19.91-, Font = MinionMath-BoldDisp}

}]

4.2 Script and scriptscript fonts/features
Cambria Math uses OpenType font features to activate smaller optical sizes for
scriptsize and scriptscriptsize symbols (the 𝐵 and 𝐶, respectively, in 𝐴𝐵𝐶). Other
typefaces (such as Minion Math) may use entirely separate font files.

The features script-font and sscript-font allow alternate fonts to be se-
lected for the script and scriptscript sizes, and script-features and sscript-

features to apply different OpenType features to them.
By default script-features is defined as Style=MathScript and sscript-

features is Style=MathScriptScript. These correspond to the two levels of
OpenType’s ssty feature tag. If the (s)script-features options are specified
manually, you must additionally specify the Style options as above.

4.3 Maths ‘versions’
LATEX uses a concept known as ‘maths versions’ to switch math fonts mid-
document. This is useful because it is more efficient than loading a complete
maths font from scratch every time—especially with thousands of glyphs in the
case of Unicode maths! The canonical example for maths versions is to select a
‘bold’ maths font which might be suitable for section headings, say. (Not every-
one agrees with this typesetting choice, though; be careful.)

To select a new maths font in a particular version, use the syntax
\setmathfont{⟨font name⟩}[version=⟨version name⟩,⟨font features⟩]

and to switch betweenmaths versionsmid-document use the standard LATEX com-
mand \mathversion{⟨version name⟩}.

Note there are currently open issues regarding the interaction between the
version and the range features, so please proceed with caution.

9

4.4 Legacy maths ‘alphabet’ commands
LATEX traditionally uses \DeclareMathAlphabet and \SetMathAlphabet to define
document commands such as \mathit, \mathbf, and so on. While these com-
mands can still be used, unicode-math defines a wrapper command to assist with
the creation of new such maths alphabet commands. This command is known
as \setmathface in symmetry with fontspec’s \newfontface command; it takes
syntax:

\setmathfontface⟨command⟩{⟨font name⟩}[⟨font features⟩]
\setmathfontface⟨command⟩{⟨font name⟩}[version=⟨version name⟩,⟨font features⟩]

For example, if you want to define a new legacy maths alphabet font \mathittt:

\setmathfontface\mathittt{texgyrecursor-italic.otf}

...

$\mathittt{foo} = \mathittt{a} + \mathittt{b}$

4.4.1 Default ‘text math’ fonts

The five ‘text math’ fonts, discussed above, are: \mathrm, \mathbf, \mathit,
\mathsf, and \mathtt. These commands are also defined with their original defi-
nition under synonyms \mathtextrm, \mathtextbf, and so on. (These definitions
hold regardless of package option, in case you need to be sure.)

When selecting document fonts using fontspec commands such as \setmain-
font, unicode-math inserts some additional code into fontspec that keeps the cur-
rent default fonts ‘in sync’ with their corresponding \mathrm commands, etc.

For example, in standard LATEX, \mathsf doesn’t change even if the main doc-
ument font is changedusing \renewcommand\sfdefault{...}.With unicode-math
loaded, after writing \setsansfont{Helvetica}, \mathsf will now be set in Hel-
vetica.

If the \mathsf font is set explicitly at any time in the preamble, this ‘auto-
following’ does not occur. The legacy math font switches can be defined either
with commands defined by fontspec (\setmathrm, \setmathsf, etc.) or using the
more general \setmathfontface\mathsf interface defined by unicode-math.

4.4.2 Replacing ‘text math’ fonts by symbols

For certain types of documents that use legacy input syntax, itmay be preferable to
have \mathbf behave as if it were \symbf enmasse (et cetera respectively). A series
of package options (table 4) are provided to facilitate switching the definition of
\mathXYZ for the five legacy text math font definitions.

For example, if in a particular document \mathbf is used only for choosing
symbols of vectors and matrices, a dedicated symbol font (\symbf) will produce
better spacing and will better match the main math font. In that case loading
unicode-math with the mathbf=sym will achieve the desired result.

10

Table 4: Maths text font configuration options. Note that \mathup and \mathrm are
aliases of each other and cannot be configured separately.

Defaults (from ‘text’ font) From ‘maths symbols’

mathrm=text mathrm=sym

mathup=text∗ mathup=sym∗

mathit=text mathit=sym

mathsf=text mathsf=sym

mathbf=text mathbf=sym

mathtt=text mathtt=sym

4.4.3 Operator font

LATEXdefines an internal command \operator@font for typesetting elements such
as \sin and \cos. This font is selected from the legacy operators NFSS ‘MathAl-
phabet’, which is no longer relevant in the context of unicode-math. By default,
the \operator@font command is defined to switch to the \mathrm font. You may
now change these using the command:

\setoperatorfont\mathit

Or, to select a unicode-math range:

\setoperatorfont\symscr

For example, after the latter above, $\sin x$ will produce ‘𝓈𝒾𝓃 𝑥’.

5 Maths input
XƎTEX’s Unicode support allows maths input through twomethods. Like classical
TEX, macros such as \alpha, \sum, \pm, \leq, and so on, provide verbose access
to the entire repertoire of characters defined by Unicode. The literal characters
themselves may be used instead, for more readable input files.

5.1 Math ‘style’
Classically, TEX uses italic lowercase Greek letters and upright uppercase Greek
letters for variables in mathematics. This is contrary to the iso standards of us-
ing italic forms for both upper- and lowercase. Furthermore, in various historical
contexts, often associated with French typesetting, it was common to use upright
uppercase Latin letters as well as upright upper- and lowercase Greek, but italic
lowercase latin. Finally, it is not unknown to use upright letters for all characters,
as seen in the Euler fonts.

The unicode-math package accommodates these possibilities with the option
math-style that takes one of four (case sensitive) arguments: TeX, ISO, french, or
upright.1 The math-style options’ effects are shown in brief in table 5.

1Interface inspired by Walter Schmidt’s lucimatx package.

11

Table 5: Effects of the math-style package option.

Example
Package option Latin Greek

math-style=ISO (𝑎, 𝑧, 𝐵, 𝑋) (𝛼, 𝛽, 𝛤, 𝛯)
math-style=TeX (𝑎, 𝑧, 𝐵, 𝑋) (𝛼, 𝛽, Γ, Ξ)
math-style=french (𝑎, 𝑧, B, X) (α, β, Γ, Ξ)
math-style=upright (a, z, B, X) (α, β, Γ, Ξ)

The philosophy behind the interface to the mathematical symbols lies in
LATEX’s attempt of separating content and formatting. Because input source text
may come from a variety of places, the upright and ‘mathematical’ italic Latin and
Greek alphabets are unified from the point of view of having a specified meaning
in the source text. That is, to get a mathematical ‘𝑥’, either the ascii (‘keyboard’)
letter x may be typed, or the actual Unicode character may be used. Similarly for
Greek letters. The upright or italic forms are then chosen based on the math-style
package option.

If glyphs are desired that do not map as per the package option (for exam-
ple, an upright ‘g’ is desired but typing g yields ‘𝑔’),markup is required to spec-
ify this; to follow from the example: \symup{g}. Maths style commands such as
\symup are detailed later.

For compatibility and consistency, however, upright and italic Greek letters
can be ‘forced‘ using up or it prefixes before their names. For example, \Gamma
will give an upright or italic Gamma depending on the math-style, but \upGamma
and \itGamma will always give upright or italic Gammas, respectively.

‘Literal’ interface Some may not like this convention of normalising their input.
For them, an upright x is an upright ‘x’ and that’s that. (This will be the case
when obtaining source text from copy/pasting PDF or Microsoft Word docu-
ments, for example.) For these users, the literal option to math-stylewill effect
this behaviour. The \symliteral{⟨syms⟩} command can also be used, regardless
of package setting, to force the style to match the literal input characters. This is a
‘mirror’ to \symnormal{⟨syms⟩} (also alias \mathnormal) which ‘resets’ the char-
acter mapping in its argument to that originally set up through package options.

‘Full-width’ letters Unicode contains ‘full-width’ versions of ASCII from u+FF01.
The numerals and latin letters in this range are defined by unicode-math to map
to their standard ASCII counterparts, which are then controlled by the relevant
math-style setting. Other full-width symbols are not currently included but can
be if there is sufficient need or desire.

12

Table 6: Effects of the bold-style package option.

Example
Package option Latin Greek

bold-style=ISO (𝒂, 𝒛, 𝑩, 𝑿) (𝜶, 𝜷, 𝜞, 𝜩)
bold-style=TeX (𝐚, 𝐳, 𝐁, 𝐗) (𝜶, 𝜷, 𝚪, 𝚵)
bold-style=upright (𝐚, 𝐳, 𝐁, 𝐗) (𝛂, 𝛃, 𝚪, 𝚵)

5.2 Bold style
Similar as in the previous section, ISO standards differ somewhat to TEX’s con-
ventions (and classical typesetting) for ‘boldness’ in mathematics. In the past, it
has been customary to use bold upright letters to denote things like vectors and
matrices. For example, 𝐌 = (𝑀𝑥, 𝑀𝑦, 𝑀𝑧). Presumably, this was due to the rel-
atively scarcity of bold italic fonts in the pre-digital typesetting era. It has been
suggested by some that italic bold symbols should be used nowadays instead, but
this practise is certainly not widespread.

Bold Greek letters have simply been bold variant glyphs of their regular
weight, as in 𝝃 = (𝜉𝑟, 𝜉𝜙, 𝜉𝜃). Confusingly, the syntax in LATEX traditionally has
been different for obtaining ‘normal’ bold symbols in Latin and Greek: \mathbf
in the former (‘𝐌’), and \bm (or \boldsymbol, deprecated) in the latter (‘𝝃 ’).

In unicode-math, the \symbf command works directly with both Greek and
Latin maths characters and depending on package option either switches to
upright for Latin letters (bold-style=TeX) as well or keeps them italic (bold-
style=ISO). To match the package options for non-bold characters, with option
bold-style=upright all bold characters are upright, and bold-style=literal

does not change the upright/italic shape of the letter. The bold-style options’
effects are shown in brief in table 6.

Upright and italic bold mathematical letters input as direct Unicode charac-
ters are normalised with the same rules. For example, with bold-style=TeX, a
literal bold italic latin character will be typeset upright.

Note that bold-style is independent of math-style, although if the former
is not specified then matching defaults are chosen based on the latter.

5.3 Sans serif style
Unicode contains upright and italic, medium and bold mathematical style char-
acters. These may be explicitly selected with the \symsfup, \symsfit, \symbfsfup,
and \symbfsfit commands discussed in section §5.4.

How should the generic \symsf behave? Unlike bold, sans serif is used much
more sparingly in mathematics. I’ve seen recommendations to typeset tensors in
sans serif italic or sans serif italic bold (e.g., examples in the isomath and mattens
packages). But LATEX’s \mathsf is upright sans serif.

Therefore, the package options [sans-style=upright] and [sans-style=italic]

control the behaviour of \symsf. The upright style sets up the command to use

13

upright sans serif, including Greek; the italic style switches to using italic in
both Latin and Greek. In other words, this option simply changes the meaning of
\symsf to either \symsfup or \symsfit, respectively. Please let me know if more
granular control is necessary here.

There is also a [sans-style=literal] setting, set automatically with [math-

style=literal], which retains the uprightness of the input characters usedwhen
selecting the sans serif output.

5.3.1 What about bold sans serif?

While you might want your bold upright and your sans serif italic, I don’t believe
you’d also want your bold sans serif upright (etc.). Therefore, bold sans serif fol-
lows from the setting for sans serif; it is completely independent of the setting for
bold.

In otherwords, \symbfsf is either \symbfsfup or \symbfsfit based on [sans-

style=upright] or [sans-style=italic], respectively. And [sans-style = lit-

eral] causes \symbfsf to retain the same italic or upright shape as the input, and
turns it bold sans serif.

N.B.: there is no medium-weight sans serif Greek range in Unicode. There-
fore, \symsf{\alpha}does notmake sense (it produces ‘𝛼’),while \symbfsf{\alpha}
gives ‘𝝰’ or ‘𝞪’ according to the sans-style.

5.4 All (the rest) of the mathematical styles
Unicode contains separate codepoints for most if not all variations of style shape
one may wish to use in mathematical notation. The complete list is shown in ta-
ble 7. Some of these have been covered in the previous sections.

The math font switching commands do not nest; therefore if you want sans
serif bold, youmust write \symbfsf{...} rather than \symbf{\symsf{...}}. This
may change in the future.

5.4.1 Scope of the functionality of the \sym.. commands

The \sym.. commands are designed to affect only the follow sets of input let-
ters: numerals (0–9), Latin (𝑎–𝑧, 𝐴–𝑍), Greek (𝛼–𝜔, Α–Ω,), and the \partial and
\nabla symbols (𝜕, ∇). These are the only symbols for which Unicode defines
separate codepoints with varying mathematical style.

There is currently no scope for including other symbols in the \sym.. com-
mands, such as writing \symbf{\int} for a bold integral symbol. Therefore the
commands provided by unicode-math should not be compared to those provided
by the bm package.

5.4.2 Double-struck

The double-struck style (also known as ‘blackboard bold’) consists of upright
Latin letters {𝕒–𝕫,𝔸ℤ}, numerals 𝟘–𝟡, summation symbol ⅀, and four Greek
letters only: {ℽℼℾℿ}.

14

Table 7: Mathematical styles defined in Unicode. Closed dots indicate an style ex-
ists in the font specified; open dots indicate shapes that should always be taken
from the upright font even in the italic style. See main text for description of
\mathbbit.

Font Alphabet
Style Shape Series Switch Latin Greek Numerals

Serif Upright Normal \symup • • •
Bold \symbfup • • •

Italic Normal \symit • • ◦
Bold \symbfit • • ◦

Sans serif Upright Normal \symsfup • •
Bold \symbfsfup • • •

Italic Normal \symsfit • ◦
Bold \symbfsfit • • ◦

Typewriter Upright Normal \symtt • •
Double-struck Upright Normal \symbb • •

Italic Normal \symbbit •
Script Upright Normal \symscr •

Bold \symbfscr •
Fraktur Upright Normal \symfrak •

Bold \symbffrac •

While \symbb{\sum} does produce a double-struck summation symbol, its
limits aren’t properly aligned. Therefore, either the literal character or the control
sequence \Bbbsum are recommended instead.

There are also five Latin italic double-struck letters: ⅅⅆⅇⅈⅉ. These can be ac-
cessed (if not with their literal characters or control sequences) with the \mathb-
bit style switch, but note that only those five letters will give the expected output.

5.4.3 Caligraphic vs. Script variants

The Unicode maths encoding contains a style for ‘Script’ letters, and while by
default \mathcal and \mathscr are synonyms, there are some situations when
a separate ‘Caligraphic’ style is needed as well.

If a font contains alternate glyphs for a separate caligraphic style, they can be
selected explicitly as shown below. This feature is currently only supported by the
XITS Math font, where the caligraphic letters are accessed with the same glyph
slots as the script letters but with the first stylistic set feature (ss01) applied. An
example is shown below.

The Script style (\mathscr) in XITS Math is: 𝒜ℬ𝒞 𝒳𝒴𝒵
The Caligraphic style (\mathcal) in XITS Math is: 𝒜ℬ𝒞𝒳𝒴𝒵

15

Table 8: The various forms of nabla.

Description Glyph
Upright Serif ∇

Bold serif 𝛁
Bold sans 𝝯

Italic Serif 𝛻
Bold serif 𝜵
Bold sans 𝞩

Table 9: The partial differential.

Description Glyph
Regular Upright ∂

Italic 𝜕
Bold Upright 𝛛

Italic 𝝏
Sans bold Upright 𝞉

Italic 𝟃

5.5 Miscellanea
5.5.1 Nabla

The symbol ∇ comes in the six forms shown in table 8. We want an individual
option to specify whether we want upright or italic nabla by default (when either
upright or italic nabla is used in the source). TEX classically uses an upright nabla,
and iso standards agreewith this convention. The package options nabla=upright
(default) and nabla=italic switch between the two choices, and nabla=literal

respects the shape of the input character. nabla=literal is activated automati-
cally after math-style=literal.

These settings are then inherited through \symbf; \symit and \symup can be
used to force the shape of the nabla one way or the other.

5.5.2 Partial

The same logic as for nabla applies to the symbols u+2202 partial differential and
u+1D715 math italic partial differential. However, in practice these symbols are
often designed identically in an italic style.

If the font you are using supports it, use the partial=upright or partial=italic
(default) package options to specifywhich one youwould like, or partial=literal
to have the same character used in the output aswas used for the input. partial=literal
is activated following math-style=literal.

See table 9 for the variations on the partial differential symbol.

5.5.3 Primes

Primes (𝑥′) may be input in several ways. You may use any combination the ascii
straight quote (') or the Unicode prime u+2032 (′); when multiple primes occur
next to each other, they chain together to form double, triple, or quadruple primes
if the font contains pre-drawn glyphs. The individual prime glyphs are accessed,
as usual, with the \prime command, and the double-, triple-, and quadruple-
prime glyphs are available with \dprime, \trprime, and \qprime, respectively.

If the font does not contain the pre-drawn glyphs or more than four primes
are used, the single prime glyph is usedmultiple times with a negative kern to get

16

A ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁱ ⁿ ⁿ ʰ ʲ ʳ ʷ ʸ Z
Figure 1: The Unicode superscripts supported as input characters. These are the
literal glyphs from the ‘DejaVu Serif’ font, not the output seen when used for
maths input. The ‘A’ and ‘Z’ are to provide context for the size and location of
the superscript glyphs.

the spacing right. There is no user interface to adjust this negative kern yet (be-
cause I haven’t decided what it should look like); if you need to, write something
like this:

\ExplSyntaxOn

\muskip_gset:Nn \g_@@_primekern_muskip { -\thinmuskip/2 }

\ExplySyntaxOff

Backwards or reverse primes behave in exactly the same way; use the ascii back
tick (`) or theUnicode reverse prime u+2035 (‵). The command to access the back-
prime is \backprime, and multiple backwards primes can accessed with \backd-

prime, \backtrprime, and \backqprime.
In all cases above, no error checking is performed if you attempt to access a

multi-prime glyph in a font that doesn’t contain one. For this reason, it may be
safer to write x'''' instead of x\qprime in general.

If you ever need to enter the straight quote ' or the backtick ` in maths mode,
these glyphs can be accessed with \mathstraightquote and \mathbacktick.

5.5.4 Subscripts and superscripts and symbol alphabets

In traditional LATEX, users have for many years exploited a loophole in the imple-
mentation of \mathrm and similar to write expressions such as x_\mathrm f to
achieve 𝑥f instead of writing the more correct x_{\mathrm{f}}. Shorthand nota-
tion such as x_\mathrm f is not officially documented LATEX syntax, and due to a
particular implementation detail in unicode-math this incorrect syntax is no longer
supported.

5.5.5 Unicode subscripts and superscripts

You may, if you wish, use Unicode subscripts and superscripts in your source
document. For basic expressions, the use of these characters can make the input
more readable. Adjacent sub- or super-scripts will be concatenated into a single
expression.

The range of subscripts and superscripts supported by this package are
shown in figures 1 and 2. Please request more if you think it is appropriate.

5.5.6 Colon

The colon is one of the few confusing characters of Unicode maths. In TEX, : is
defined as a colon with relation spacing: ‘𝑎 ∶ 𝑏’. While \colon is defined as a
colon with punctuation spacing: ‘𝑎∶ 𝑏’.

17

A ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ᵢ ₒ ᵣ ᵤ ᵥ ₓ ᵦ ᵧ ᵨ ᵩ ᵪ Z
Figure 2: The Unicode subscripts supported as input characters. See note from
figure 1.

Table 10: Slashes and backslashes.
Slot Name Glyph Command

u+002F solidus / \slash

u+2044 fraction slash ⁄ \fracslash

u+2215 division slash ∕ \divslash

u+29F8 big solidus ⧸ \xsol

u+005C reverse solidus \ \backslash

u+2216 set minus ∖ \smallsetminus

u+29F5 reverse solidus operator ⧵ \setminus

u+29F9 big reverse solidus ⧹ \xbsol

In Unicode, u+003A colon is defined as a punctuation symbol, while u+2236

ratio is the colon-like symbol used in mathematics to denote ratios and other
things.

This breaks the usual straightforwardmapping from control sequence toUni-
code input character to (the same) Unicode glyph.

To preserve input compatibility, we remap the ascii input character ‘:’ to
u+2236. Typing a literal u+2236 char will result in the same output. If amsmath
is loaded, then the definition of \colon is inherited from there (it looks like a
punctuation colon with additional space around it). Otherwise, \colon is made
to output a colon with \mathpunct spacing.

The package option colon=literal forces ascii input ‘:’ to be printed as
\mathcolon instead.

5.5.7 Slashes and backslashes

There are several slash-like symbols defined in Unicode. The complete list is
shown in table 10.

In regular LATEXwe canwrite \left\slash…\right\backslash and so on and
obtain extensible delimiter-like symbols. Not all of the Unicode slashes are suit-
able for this (and do not have the font support to do it).

Slash Of u+2044 fraction slash, TR25 says that it is:

…used to build up simple fractions in running text…however parsers
of mathematical texts should be prepared to handle fraction slash
when it is received from other sources.

u+2215 division slash should be used when division is represented without
a built-up fraction; 𝜋 ≈ 22/7, for example.

18

u+29F8 big solidus is a ‘big operator’ (like ∑).

Backslash The u+005C reverse solidus character \backslash is used for denoting
double cosets: 𝐴\𝐵. (So I’m led to believe.) It may be used as a ‘stretchy’ delimiter
if supported by the font.

MathML uses u+2216 set minus like this: 𝐴 ∖ 𝐵.2 The LATEX command name
\smallsetminus is used for backwards compatibility.

Presumably, u+29F5 reverse solidus operator is intended to be used in a sim-
ilar way, but it could also (perhaps?) be used to represent ‘inverse division’:
𝜋 ≈ 7 \ 22.3 The LATEX name for this character is \setminus.

Finally, u+29F9 big reverse solidus is a ‘big operator’ (like ∑).

How to use all of these things Unfortunately, font support for the above charac-
ters/glyphs is rather inconsistent. In Cambria Math, the only slash that grows
(say when writing

[
𝑎 𝑏
𝑐 𝑑]/[

1 1
1 0])

is the fraction slash, which we just established above is sort of only supposed to
be used in text.

Of the above characters, the following are allowed to be used after \left,
\middle, and \right:

• \fracslash;

• \slash; and,

• \backslash (the only reverse slash).

However, we assume that there is only one stretchy slash in the font; this
is assumed by default to be u+002F solidus. Writing \left/ or \left\slash or
\left\fracslash will all result in the same stretchy delimiter being used.

The delimiter used can be changed with the slash-delimiter package op-
tion. Allowed values are ascii, frac, and div, corresponding to the respective
Unicode slots.

For example: as mentioned above, Cambria Math’s stretchy slash is u+2044

fraction slash. When using Cambria Math, then unicode-math should be loaded
with the slash-delimiter=frac option. (This should be a font option rather than
a package option, but it will change soon.)

5.5.8 Behaviour of hyphens in mathematics

Unicode defines the following related characters:

• u+0002Dhyphen-minus
2§4.4.5.11 http://www.w3.org/TR/MathML3/
3This is valid syntax in the Octave and Matlab programming languages, in which it means matrix

inverse pre-multiplication. I.e., 𝐴 \ 𝐵 ≡ 𝐴−1𝐵.

19

http://www.w3.org/TR/MathML3/

• u+02212minus sign

• u+02010hyphen (\mathhyphen)

The first two of these characters in the input will all behave as the binary operator
‘minus sign’. The third is defined by unicode-math as a ‘math letter’ for construc-
tions like $R�\text{Mod}$ (𝑅‐Mod). If more control is needed surrounding these
symbols, additional options can be added to the package; please get in touch if
this is the case for you.

5.5.9 Growing and non-growing accents

There are a few accents for which TEX has both non-growing and growing ver-
sions. Among these are \hat and \tilde; the corresponding growing versions
are called \widehat and \widetilde, respectively.

Older versions of XƎTEX and LuaTEX did not support this distinction, how-
ever, and all accents there were growing automatically. (I.e., \hat and \wide-

hat are equivalent.) As of LuaTEX v0.65 and XƎTEX v0.9998, these wide/non-wide
commands will again behave in their expected manner.

5.5.10 Negations and the \not command

The \not command in classic LATEX2𝜀 was a mathematical slash modifying glyph
that allowed for ‘negating‘ maths symbols where pre-built glyphs were not avail-
able. While Unicode encodes a slot for this modifying slash, it is only well-
supported in LuaTEX and not in XƎTEX.

To provide more flexibility, the unicode-math package defines \not to search
for a predefined ‘negated’ definitions for its argument and use that if available.
This method can be used for fine-tuning in cases where spacing needs to be ad-
justed.

A ‘negated definition‘ is any symbol commandprefixed by either n or not. For
example, unicode-math by default defines both \leftarrow (←) and \nleftarrow

(↚).
To define custom negated definitions for either symbols (e.g., \not=) or com-

mands (e.g., \not\equal), use the \NewNotCommand{⟨symbol or cmd⟩}{⟨definition⟩}
command. Its usage is as follows:

\NewNegationCommand {=} {\neq}

\NewNegationCommand {\equal} {\neq}

If the commandhas already beendefined, an errorwill result and \RenewNegationCommand

can be used to overwrite the original definition.

5.5.11 Pre-drawn fraction characters

Pre-drawn fractions u+00BC–u+00BE, u+2150–u+215E are not suitable for use in
mathematics output.However, they can be useful as input characters to abbreviate
common fractions.

20

Slot Command Glyph

u+00B7 \cdotp ·
u+22C5 \cdot ⋅
u+2219 \vysmblkcircle ∙
u+2022 \smblkcircle •
u+2981 \mdsmblkcircle ⦁
u+26AB \mdblkcircle ⚫
u+25CF \mdlgblkcircle ●
u+2B24 \lgblkcircle ⬤

Glyph Command Slot

∘ \vysmwhtcircle u+2218

◦ \smwhtcircle u+25E6

⚬ \mdsmwhtcircle u+26AC

⚪ \mdwhtcircle u+26AA

○ \mdlgwhtcircle u+25CB

◯ \lgwhtcircle u+25EF

Table 11: Filled and hollow Unicode circles.

¼ ½ ¾ ↉ ⅐ ⅑ ⅒ ⅓ ⅔ ⅕ ⅖ ⅗ ⅘ ⅙ ⅚ ⅛ ⅜ ⅝ ⅞

For example, instead of writing ‘\tfrac12 x’, you may consider it more readable
to have ‘½x’ in the source instead.

If the \tfrac command exists (i.e., if amsmath is loaded or you have spe-
cially defined \tfrac for this purpose), it will be used to typeset the fractions.
If not, regular \frac will be used. The command to use (\tfrac or \frac) can
be forced either way with the package option active-frac=small or active-

frac=normalsize, respectively.

5.5.12 Circles

Unicode defines a large number of different types of circles for a variety of math-
ematical purposes. There are thirteen alone just considering the all white and all
black ones, shown in table 11.

LATEX defines considerably fewer: \circ and \bigcirc for white; \bullet for
black. This package maps those commands to \vysmwhtcircle, \mdlgwhtcircle,
and \smblkcircle, respectively.

5.5.13 Triangles

While there aren’t as many different sizes of triangle as there are circle, there’s
some important distinctions tomake between a few similar characters. See table 12
for the full summary.

These triangles all have different intended meanings. Note for backwards
compatibility with TEX, u+25B3 has two different mappings in unicode-math.
\bigtriangleup is intended as a binary operator whereas \triangle is intended
to be used as a letter-like symbol.

But you’re better off if you’re using the latter form to indicate an increment
to use the glyph intended for this purpose, u+2206: ∆𝑥.

Finally, given that △ and ∆ are provided for you already, it is better off to only
use upright Greek Delta Δ if you’re actually using it as a symbolic entity such as
a variable on its own.

21

Slot Command Glyph Class

u+25B5 \vartriangle ▵ binary
u+25B3 \bigtriangleup △ binary
u+25B3 \triangle △ ordinary
u+2206 \increment ∆ ordinary
u+0394 \mathup\Delta Δ ordinary

Table 12: Different upwards pointing triangles.

6 Advanced

6.1 Warning messages
This package can produce a number of informational messages to try and inform
the user when somethingmight be goingwrong due to package conflicts or some-
thing else. As an experimental feature, these can be turn off on an individual ba-
sis with the package option warnings-off which takes a comma-separated list
of warnings to suppress. A warning will give you its name when printed on the
console output; e.g.,

* unicode-math warning: "mathtools-colon"

*

* ... <warning message> ...

This warning could be suppressed by loading the package as follows:

\usepackage[warnings-off={mathtools-colon}]{unicode-math}

6.2 How to overwrite a macro
unicode-math defines themacros by \AtBeginDocument, namely delays the defini-
tion until \begin{document} is met. If you want to overwrite a macro defined by
unicode-math, please redefine it in \AtBeginDocument after loading this package.

6.3 Programmer’s interface
(Tentative and under construction.) If you are writing some code that needs to
know the current maths style (\mathbf, \mathit, etc.), you can query the variable
\l_@@_mathstyle_tl. It will contain the maths style without the leading ‘math’
string; for example, \symbf { \show \l_@@_mathstyle_tl } will produce ‘bf’.

22

A stix table data extraction
The source for the TEX names for the very large number of mathematical glyphs
are provided via Barbara Beeton’s table file for the stix project (ams.org/STIX).
A version is located at http://www.ams.org/STIX/bnb/stix-tbl.asc but check
http://www.ams.org/STIX/ for more up-to-date info.

This table is converted into a form suitable for reading by TEX. A single file is
produced containing all (more than 3298) symbols. Future optimisations might
include generating various (possibly overlapping) subsets so not all definitions
must be read just to redefine a small range of symbols. Performance for now seems
to be acceptable without such measures.

This file is currently developed outside this DTX file. It will be incorporated
when the final version is ready. (I know this is not how things are supposed to
work!)

B Documenting maths support in the NFSS
In the following, ⟨NFSS decl.⟩ stands for something like {T1}{lmr}{m}{n}.

Maths symbol fonts Fonts for symbols: ∝, ≤, →
\DeclareSymbolFont{⟨name⟩}⟨NFSS decl.⟩
Declares a named maths font such as operators from which symbols are
defined with \DeclareMathSymbol.

Maths alphabet fonts Fonts for 𝐴𝐵𝐶 – 𝑥𝑦𝑧, 𝔄𝔅ℭ –𝒳𝒴𝒵 , etc.
\DeclareMathAlphabet{⟨cmd⟩}⟨NFSS decl.⟩
For commands such as \mathbf, accessed through maths mode that are un-
affected by the current text font, and which are used for alphabetic symbols
in the ascii range.
\DeclareSymbolFontAlphabet{⟨cmd⟩}{⟨name⟩}
Alternative (and optimisation) for \DeclareMathAlphabet if a single font is
being used for both alphabetic characters (as above) and symbols.

Maths ‘versions’ Different maths weights can be defined with the following,
switched in text with the \mathversion{⟨maths version⟩} command.
\SetSymbolFont{⟨name⟩}{⟨maths version⟩}⟨NFSS decl.⟩
\SetMathAlphabet{⟨cmd⟩}{⟨maths version⟩}⟨NFSS decl.⟩

Maths symbols Symbol definitions in maths for both characters (=) and macros
(\eqdef): \DeclareMathSymbol{⟨symbol⟩}{⟨type⟩}{⟨named font⟩}{⟨slot⟩}This
is the macro that actually defines which font each symbol comes from and
how they behave.

Delimiters and radicals use wrappers around TEX’s \delimiter/\radical primi-
tives, which are re-designed in XƎTEX. The syntax used in LATEX’sNFSS is therefore
not so relevant here.

23

Delimiters A special class of maths symbol which enlarge themselves in certain
contexts.
\DeclareMathDelimiter{⟨symbol⟩}{⟨type⟩}{⟨sym. font⟩}{⟨slot⟩}{⟨sym. font⟩}{⟨slot⟩}

Radicals Similar to delimiters (\DeclareMathRadical takes the same syntax) but
behave ‘weirdly’.

In those cases, glyph slots in two symbol fonts are required; one for the small
(‘regular’) case, the other for situations when the glyph is larger. This is not the
case in XƎTEX.

Accents are not included yet.

Summary For symbols, something like:

\def\DeclareMathSymbol#1#2#3#4{

\global\mathchardef#1"\mathchar@type#2

\expandafter\hexnumber@\csname sym#2\endcsname

{\hexnumber@{\count\z@}\hexnumber@{\count\tw@}}}

For characters, something like:

\def\DeclareMathSymbol#1#2#3#4{

\global\mathcode`#1"\mathchar@type#2

\expandafter\hexnumber@\csname sym#2\endcsname

{\hexnumber@{\count\z@}\hexnumber@{\count\tw@}}}

24

C Legacy TEX font dimensions

Text fonts

𝜙1 slant per pt
𝜙2 interword space
𝜙3 interword stretch
𝜙4 interword shrink
𝜙5 x-height
𝜙6 quad width
𝜙7 extra space
𝜙8 cap height (XƎTEX only)

Maths font, \fam2

𝜎5 x height
𝜎6 quad
𝜎8 num1
𝜎9 num2
𝜎10 num3
𝜎11 denom1
𝜎12 denom2
𝜎13 sup1
𝜎14 sup2
𝜎15 sup3
𝜎16 sub1
𝜎17 sub2
𝜎18 sup drop
𝜎19 sub drop
𝜎20 delim1
𝜎21 delim2
𝜎22 axis height

Maths font, \fam3

𝜉8 default rule thickness
𝜉9 big op spacing1
𝜉10 big op spacing2
𝜉11 big op spacing3
𝜉12 big op spacing4
𝜉13 big op spacing5

D XƎTEX math font dimensions
These are the extended \fontdimens available for suitable fonts in XƎTEX. Note
that LuaTEX takes an alternative route, and this package will eventually provide
a wrapper interface to the two (I hope).

\fontdimen Dimension name Description

10 ScriptPercentScaleDown Percentage of scaling down for script level 1.
Suggested value: 80%.

11 ScriptScriptPercentScale-
Down

Percentage of scaling down for script level 2
(ScriptScript). Suggested value: 60%.

12 DelimitedSubFormulaMin-
Height

Minimum height required for a delimited
expression to be treated as a subformula.
Suggested value: normal line height × 1.5.

13 DisplayOperatorMinHeight Minimum height of n-ary operators (such as
integral and summation) for formulas in
display mode.

25

\fontdimen Dimension name Description

14 MathLeading White space to be left between math
formulas to ensure proper line spacing. For
example, for applications that treat line gap
as a part of line ascender, formulas with ink
going above (os2.sTypoAscender +
os2.sTypoLineGap – MathLeading) or with
ink going below os2.sTypoDescender will
result in increasing line height.

15 AxisHeight Axis height of the font.
16 AccentBaseHeight Maximum (ink) height of accent base that

does not require raising the accents.
Suggested: x-height of the font
(os2.sxHeight) plus any possible overshots.

17 FlattenedAccentBase-
Height

Maximum (ink) height of accent base that
does not require flattening the accents.
Suggested: cap height of the font
(os2.sCapHeight).

18 SubscriptShiftDown The standard shift down applied to subscript
elements. Positive for moving in the
downward direction. Suggested:
os2.ySubscriptYOffset.

19 SubscriptTopMax Maximum allowed height of the (ink) top of
subscripts that does not require moving
subscripts further down. Suggested: /5
x-height.

20 SubscriptBaselineDropMin Minimum allowed drop of the baseline of
subscripts relative to the (ink) bottom of the
base. Checked for bases that are treated as a
box or extended shape. Positive for subscript
baseline dropped below the base bottom.

21 SuperscriptShiftUp Standard shift up applied to superscript
elements. Suggested:
os2.ySuperscriptYOffset.

22 SuperscriptShiftUpCramped Standard shift of superscripts relative to the
base, in cramped style.

23 SuperscriptBottomMin Minimum allowed height of the (ink) bottom
of superscripts that does not require moving
subscripts further up. Suggested: ¼ x-height.

26

\fontdimen Dimension name Description

24 SuperscriptBaselineDrop-
Max

Maximum allowed drop of the baseline of
superscripts relative to the (ink) top of the
base. Checked for bases that are treated as a
box or extended shape. Positive for
superscript baseline below the base top.

25 SubSuperscriptGapMin Minimum gap between the superscript and
subscript ink. Suggested: 4×default rule
thickness.

26 SuperscriptBottomMax-
WithSubscript

The maximum level to which the (ink)
bottom of superscript can be pushed to
increase the gap between superscript and
subscript, before subscript starts being
moved down. Suggested: /5 x-height.

27 SpaceAfterScript Extra white space to be added after each
subscript and superscript. Suggested: 0.5pt
for a 12 pt font.

28 UpperLimitGapMin Minimum gap between the (ink) bottom of
the upper limit, and the (ink) top of the base
operator.

29 UpperLimitBaselineRiseMin Minimum distance between baseline of
upper limit and (ink) top of the base
operator.

30 LowerLimitGapMin Minimum gap between (ink) top of the lower
limit, and (ink) bottom of the base operator.

31 LowerLimitBaselineDrop-
Min

Minimum distance between baseline of the
lower limit and (ink) bottom of the base
operator.

32 StackTopShiftUp Standard shift up applied to the top element
of a stack.

33 StackTopDisplayStyleShift-
Up

Standard shift up applied to the top element
of a stack in display style.

34 StackBottomShiftDown Standard shift down applied to the bottom
element of a stack. Positive for moving in the
downward direction.

35 StackBottomDisplayStyle-
ShiftDown

Standard shift down applied to the bottom
element of a stack in display style. Positive
for moving in the downward direction.

36 StackGapMin Minimum gap between (ink) bottom of the
top element of a stack, and the (ink) top of
the bottom element. Suggested: 3×default
rule thickness.

27

\fontdimen Dimension name Description

37 StackDisplayStyleGapMin Minimum gap between (ink) bottom of the
top element of a stack, and the (ink) top of
the bottom element in display style.
Suggested: 7×default rule thickness.

38 StretchStackTopShiftUp Standard shift up applied to the top element
of the stretch stack.

39 StretchStackBottomShift-
Down

Standard shift down applied to the bottom
element of the stretch stack. Positive for
moving in the downward direction.

40 StretchStackGapAboveMin Minimum gap between the ink of the
stretched element, and the (ink) bottom of
the element above. Suggested:
UpperLimitGapMin

41 StretchStackGapBelowMin Minimum gap between the ink of the
stretched element, and the (ink) top of the
element below. Suggested:
LowerLimitGapMin.

42 FractionNumeratorShiftUp Standard shift up applied to the numerator.
43 FractionNumerator-

DisplayStyleShiftUp
Standard shift up applied to the numerator
in display style. Suggested:
StackTopDisplayStyleShiftUp.

44 FractionDenominatorShift-
Down

Standard shift down applied to the
denominator. Positive for moving in the
downward direction.

45 FractionDenominator-
DisplayStyleShiftDown

Standard shift down applied to the
denominator in display style. Positive for
moving in the downward direction.
Suggested:
StackBottomDisplayStyleShiftDown.

46 FractionNumeratorGap-
Min

Minimum tolerated gap between the (ink)
bottom of the numerator and the ink of the
fraction bar. Suggested: default rule
thickness

47 FractionNumDisplayStyle-
GapMin

Minimum tolerated gap between the (ink)
bottom of the numerator and the ink of the
fraction bar in display style. Suggested:
3×default rule thickness.

48 FractionRuleThickness Thickness of the fraction bar. Suggested:
default rule thickness.

28

\fontdimen Dimension name Description

49 FractionDenominatorGap-
Min

Minimum tolerated gap between the (ink)
top of the denominator and the ink of the
fraction bar. Suggested: default rule
thickness

50 FractionDenomDisplay-
StyleGapMin

Minimum tolerated gap between the (ink)
top of the denominator and the ink of the
fraction bar in display style. Suggested:
3×default rule thickness.

51 SkewedFraction-
HorizontalGap

Horizontal distance between the top and
bottom elements of a skewed fraction.

52 SkewedFractionVertical-
Gap

Vertical distance between the ink of the top
and bottom elements of a skewed fraction.

53 OverbarVerticalGap Distance between the overbar and the (ink)
top of he base. Suggested: 3×default rule
thickness.

54 OverbarRuleThickness Thickness of overbar. Suggested: default rule
thickness.

55 OverbarExtraAscender Extra white space reserved above the
overbar. Suggested: default rule thickness.

56 UnderbarVerticalGap Distance between underbar and (ink)
bottom of the base. Suggested: 3×default rule
thickness.

57 UnderbarRuleThickness Thickness of underbar. Suggested: default
rule thickness.

58 UnderbarExtraDescender Extra white space reserved below the
underbar. Always positive. Suggested:
default rule thickness.

59 RadicalVerticalGap Space between the (ink) top of the
expression and the bar over it. Suggested: 1¼
default rule thickness.

60 RadicalDisplayStyle-
VerticalGap

Space between the (ink) top of the
expression and the bar over it. Suggested:
default rule thickness + ¼ x-height.

61 RadicalRuleThickness Thickness of the radical rule. This is the
thickness of the rule in designed or
constructed radical signs. Suggested: default
rule thickness.

62 RadicalExtraAscender Extra white space reserved above the radical.
Suggested: RadicalRuleThickness.

29

\fontdimen Dimension name Description

63 RadicalKernBeforeDegree Extra horizontal kern before the degree of a
radical, if such is present. Suggested: 5/18 of
em.

64 RadicalKernAfterDegree Negative kern after the degree of a radical, if
such is present. Suggested: −10/18 of em.

65 RadicalDegreeBottom-
RaisePercent

Height of the bottom of the radical degree, if
such is present, in proportion to the ascender
of the radical sign. Suggested: 60%.

30

	Contents
	1 Introduction
	2 Acknowledgements
	3 Getting started
	3.1 New commands
	3.2 Package options

	4 Unicode maths font setup
	4.1 Using multiple fonts
	4.1.1 Control over alphabet ranges

	4.2 Script and scriptscript fonts/features
	4.3 Maths `versions'
	4.4 Legacy maths `alphabet' commands
	4.4.1 Default `text math' fonts
	4.4.2 Replacing `text math' fonts by symbols
	4.4.3 Operator font

	5 Maths input
	5.1 Math `style'
	5.2 Bold style
	5.3 Sans serif style
	5.3.1 What about bold sans serif?

	5.4 All (the rest) of the mathematical styles
	5.4.1 Scope of the functionality of the \sym.. commands
	5.4.2 Double-struck
	5.4.3 Caligraphic vs. Script variants

	5.5 Miscellanea
	5.5.1 Nabla
	5.5.2 Partial
	5.5.3 Primes
	5.5.4 Subscripts and superscripts and symbol alphabets
	5.5.5 Unicode subscripts and superscripts
	5.5.6 Colon
	5.5.7 Slashes and backslashes
	5.5.8 Behaviour of hyphens in mathematics
	5.5.9 Growing and non-growing accents
	5.5.10 Negations and the \not command
	5.5.11 Pre-drawn fraction characters
	5.5.12 Circles
	5.5.13 Triangles

	6 Advanced
	6.1 Warning messages
	6.2 How to overwrite a macro
	6.3 Programmer's interface

	A stix table data extraction
	B Documenting maths support in the NFSS
	C Legacy TeX font dimensions
	D XeTeX math font dimensions

