The Typo Aid Package (v.0.3.8)

Daniele Ratti
April 25, 2017

Abstract

The typo aid package provides some useful tools in order to provide
data regarding the used fonts, and some hints about typesetting them.
This manual is divided in two parts, the first mainly concerned with the
end-user commands and usage, the second is a collection of notes regarding
future development and code

Contents

I User manuall

1__Introductionl
I1.1 Compatibility]

12 Simple commands|

13 Char per width commands|
3.1 Characters fitting a given width|.
3.2 Width for a given number of characters|

(I’ Notes, details, licensing|
[5__Calculations|
6 _Known issues|

|7 Future implementations and roadmap|

8 Changelog

w W

U

[9 Acknowledgements| 7

(10 License and contacts| 7
Bibliograp 8
Mmdex| 9

Part 1
User manual

1 Introduction

Since typoaid comes as a set of diagnostic tools to decide on how to set the type
area, in a manner that can hopefully be typographically pleasant and equilibrate,
and that takes in consideration the typographic tradition.

The set of macros, though, are not meant to give a single directive on how
big should be the measure of the text, or something like that: the tools only give
tips and give common used guidelines to decide upon the correct measure for a
given font.

Each one of the package commands comes with:

e an unstarred version (e.g.) \tychperwidth{}, which types out the calcu-
lations to the page

e a starred vesion (e.g.) \tychperwidth#*{}, which outputs the calculation
to the terminal

e a copy of the output data to the log file (both starred and unstarred
commands do log)

e the possibility to accept, a series of one or morefont switches, such as
\bfseries\itshape, in order to provide calculation for the specific switch
or combination. Please note that also font-family switches from fontspec
are supported.

1.1 Compatibility

The package is compatible with pdfIATEX, Lual®TpXand Xgl4TEX, and will
accept a font family switch defined via the fontspec package.

2 Simple commands

The \typrintalph is used to calculate the alphabet length, given the font

\typrintalph

switches. The length is computed without kerning, that is: using the pure letter
widths.

The \typrintex command is used to calculate the ex-height of the font,
given the switches.

The \typrintem command, computes the em-width of the current font.
Namely this is the same as the font body size, but may yield different results for
different font switches, especially with T1 fonts, where each family could have
its em-width; this is proven not to be the case for OpenType fonts.

The \tyallsimple command simply calls internally the aforementioned
commands, and returns their outputs. Its starred version calls the starred
version of the same commands.

3 Char per width commands

The package provides two commands that calculate the char per width and width
given a number of characters desired in a line. The calculations are based on the
algorithm in section |5 on page 5| Please note that the calculations are bound to
be approximated estimates only, and do not imply that the result will produce
exactly what it’s asked of it (being it the char per width, or the width for a given
number of chars); again, refer to section to have further information.

3.1 Characters fitting a given width

The \tychperwidth command syntax extends the standard \typoaid syntax,
since this commands accepts an optional parameter which should be a dimension.
If given the calculation will be performed on that length, otherwise they will be
performed on the \columnwidth.

Note: the number of char is given as a rounded integer, so it’s bound to
be an approximate number.

Examples here are two examples on how to use the command:
\tychperwidth* [17pc]{}
Will produce:

e an output to the terminal (since the starred version is used) and the log

e a calculation on the current font with no extra switches (since the manda-
tory argument is empty)

e a calculation on how many characters will fit into 17pc
\tychperwidth{\itshape}

Will instead:

\typrintex

\typrintem

\tyallsimple

\tychperwidth

e an output to the page and the log (unstarred version)
e a calculation on the italic alphabet of the current font family
e a calculation on how many characters of the aforementioned alphabet will

fit into the current \columnwidth

3.2 Width for a given number of characters

Conversely on what is discussed in section [3.1 on the preceding pagel it may
be desirable to obtain the length of a column that will accommodate a specific
number of characters. This is done using the\tywidthgivchar command.

The command usage is somewhat different from the other commands of the
package, since the font switches are accepted as an optional argument, while the
mandatory argument is the number of characters for the calculations.

Examples here are two examples of the command usages:
\tywidthgivchar*{68}

will output in terminal (starred version) and log the width to typeset 68 characters
with the current font.

\tywidthgivchar [\bfseries]{35}

Will instead output — in the page and the log — the width of the column that
will accommodate 35 characters of the bold version of the current font.

4 Tabular data

The package provides two diagnostic commands, which will output tables when
used in the unstarred version — they will output a list of things in the terminal
for the starred version; and also for the log in any “version”.

4.1 Font tables

The \tyfonttable typesets a table containing
e alphabet length
e ex-height
e em-width
for the following font-shapes:
e roman

e bold

\tywidthgivchar

\tyfonttable

e italic

e small case
e slanted

e sans-serif

The command, nevertheless accepts a switch, which is conceived to printout
the data for a font family defined by the fontspec package, via \newfontfamily;
but any font-family changing command that behaves the same way is just as
suitable.

4.2 Width tables

The main purpose of the package is the use of the \tywidthtable command,
which will output some suggested widths, which are commonly used [I} 2] in the
professional typesetting world. The starred version, as usual, prints a long list
into the terminal.

There are a few remarks:

e where no name is given in parenthesis, the calculation are either provided
for reference, or are the author’s personal estimates of useful lengths;

e the name in parenthesis refers to methods or calculations given in [I} 2];

e all of the calculations are done on the em width, instead of the font body

size, since they’re almost always the same (see section [2 on page 2)), and

when they’re not, I think it would lead to better results
e multicol means that a setting is most suited for multiple columns

e the number of characters for width is the result of a rounding (as most
quantities here reported are) so all of the numbers are to be taken as
approximates.

Part II
Notes, details, licensing

5 Calculations

The calculations performed by this package are only indicative. The calculations
are based on two concepts:

Alphabet length: this is calculated by measuring the sum of the whole letters
without considering specific kernings.

\tywidthtable

Mean character width: this calculation is tricky. In fact using the typefitting
table in [I], T messed around with the data and found out that the mean
char width used there is ~ 1/(26.5+ 1% -) where « is the alphabet length.

Use of em: as it is said before, every calculation uses the em width (where
applicable) instead of the character size.

Regarding the mean char width, I don’t know whether the calculation are correct
for all languages or just for English. I just found out that since the calculations
cannot be other than approximations, these give consistent results, even in
Italian.

6 Known issues

The code works hopefully, and should do fine. Despite that it needs to be worked
on, both from the functionality and code prettyness. I will go on and work on
these issues. Please mark that I already know them, so don’t be scared by the
code

Some dirty tricks The code has many issues, it seems a garbled mass of
somewhat working stuff, but I know there’s space to improve it, starting, for
example, by making internal utility functions.

Let’s go global Also I struggled a bit with the sense of local and global in
expl3 language. The code has all the variables set to be global. This is highly
undesirable and an urgent step will be to refactor these in order to make them
global only if needed.

Command instantiation The creation of the functions is somewhat suspi-
cious and I need to reinspect that.

Outputs The way that the output is generated (mainly for the terminal and
log) is somewhat dissatisfying. I need to rework that in order to make it more
generic.

Required packages 1 don'’t like depending upon too many packages. Cur-
rently I depend on table typesetting packages such as array, booktabs. Since
the package could possibly be used without any typeset output, I will consider
to introduce a package-wide option to enable the aforementioned packages and
functionalities.

No comment Yes, the code is uncommented, for the most part. I will get
onto that too.

7 Future implementations and roadmap

As seen in the previous section, the package is far from complete. I set up a
little roadmap:
1. Reworking the code and make it good
. Adding vertical commands (i.e. to calculate textheight)

2
3. Rework and make good outputs in log and terminal
4

. Introduce LuaTgX specific commands and functionalities

8 Changelog

This is a stub and will be until version 1.0 will be released, since the package is
still in continuous development. The minor revisions indicate a refactoring or a
new functionalities. Subminor revision track tests and tunings

v0.0.7 First release

v0.1.0 Completed the simple commands
v0.2.0 Introduced the fonts table
v0.3.0 Introduced the width table

v0.3.8 Fixed various issues, second release

9 Acknowledgements

Special thanks to Enrico Gregorio, which, apart from helping me — especially for
the LuaTEX safe no-kerning code — also tried to teach me expl3 and some of its
nuisances. I'm a bit ashamed to be such an awful student. I would also like to
thank very much: TgXnician, Joseph Wright, David Carlisle and Barbara Beeton
for their support and kind remarks. Please mark that none of the people
mentioned above have any idea on how I chose to implement (and
typeset) the code inside the package, but they nevertheless provided
many useful tips and tools for me to develop this. They cannot be
blamed for anything that can be wrong in this package.

10 License and contacts

This package is released under the IATpX Project Public License, version 1.3c or
later. See http://www.latex-project.org/lppl.txtl

The package is maintained by DANIELE RATTI.

Email: ilfuria+tya at gmail dot com

Repository: https://github.com/ilFuria/typoaid/tree/master

http://www.latex-project.org/lppl.txt
https://github.com/ilFuria/typoaid/tree/master

References

[1] R. Bringhurst, The elements of typographic style, version 4.1, 2015.

[2] J. Felici, The complete manual of typography, second edition, 2012.

Index

\tyallsimple,
\tychperwidth,
\tyfonttable,
\typrintalph,
\typrintem,
\typrintex,

\tywidthgivchar, Ié-_ll
\tywidthtable,

Alphabet, 2]

Em-width, [3]
Ex-height, [3]

	I User manual
	Introduction
	Compatibility

	Simple commands
	Char per width commands
	Characters fitting a given width
	Width for a given number of characters

	Tabular data
	Font tables
	Width tables

	II Notes, details, licensing
	Calculations
	Known issues
	Future implementations and roadmap
	Changelog
	Acknowledgements
	License and contacts
	Bibliography
	Index

