The calc package Infix notation arithmetic in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}^{*}$

Kresten Krab Thorup, Frank Jensen (and Chris Rowley)
1998/07/07

Abstract

The calc package reimplements the $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ commands \setcounter, \addtocounter, \setlength, and \addtolength. Instead of a simple value, these commands now accept an infix notation expression.

1 Introduction

Arithmetic in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is done using low-level operations such as \advance and \multiply. This may be acceptable when developing a macro package, but it is not an acceptable interface for the end-user.

This package introduces proper infix notation arithmetic which is much more familiar to most people. The infix notation is more readable and easier to modify than the alternative: a sequence of assignment and arithmetic instructions. One of the arithmetic instructions (\divide) does not even have an equivalent in standard LaTEX.

The infix expressions can be used in arguments to macros (the calc package doesn't employ category code changes to achieve its goals) ${ }^{1}$.

2 Informal description

Standard $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ provides the following set of commands to manipulate counters and lengths [2, pages 194 and 216].
\setcounter\{ctr\}\{num\} sets the value of the counter ctr equal to (the value of) num. (Fragile)
\addtocounter\{ctr\}\{num\} increments the value of the counter ctr by (the value of) num. (Fragile)

[^0]\setlength $\{c m d\}\{l e n\}$ sets the value of the length command $c m d$ equal to（the value of）len．（Robust）
\addtolength $\{c m d\}\{l e n\}$ sets the value of the length command $c m d$ equal to its current value plus（the value of）len．（Robust）
（The \setcounter and \addtocounter commands have global effect，while the \setlength and \addtolength commands obey the normal scoping rules．）In standard $\mathrm{A}_{\mathrm{E}} \mathrm{XX}$ ，the arguments to these commands must be simple values．The calc package extends these commands to accept infix notation expressions，de－ noting values of appropriate types．Using the calc package，num is replaced by〈integer expression〉，and len is replaced by 〈glue expression〉．The formal syntax of \langle integer expression〉 and 〈glue expression〉 is given below．

In addition to these commands to explicitly set a length，many $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ com－ mands take a length argument．After loading this package，most of these com－ mands will accept a 〈glue expression〉．This includes the optional width argument of \backslash makebox，the width argument of \backslash parbox，minipage，and a tabluar p－column， and many similar constructions．（This package does not redefine any of these com－ mands，but they are defined by default to read their arguments by \setlength and so automatically benefit from the enhanced \setlength command provided by this package．）

In the following，we shall use standard $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ terminology．The correspondence between $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ terminology is as follows： $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ counters correspond to TEX＇s count registers；they hold quantities of type \langle number \rangle ．IATEX length commands correspond to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$＇s dimen（for rigid lengths）and skip（for rubber lengths）registers；they hold quantities of types 〈dimen〉 and 〈glue〉，respectively．
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ gives us primitive operations to perform arithmetic on registers as follows：
－addition and subtraction on all types of quantities without restrictions；
－multiplication and division by an integer can be performed on a register of any type；
－multiplication by a real number（i．e．，a number with a fractional part）can be performed on a register of any type，but the stretch and shrink components of a glue quantity are discarded．

The calc package uses these $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ primitives but provides a more user－friendly notation for expressing the arithmetic．

An expression is formed of numerical quantities（such as explicit constants and ${ }^{2} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ counters and length commands）and binary operators（the tokens＇+ ＇，＇- ＇， ＇＊＇，and＇／＇with their usual meaning）using the familiar infix notation；parentheses may be used to override the usual precedences（that multiplication／division have higher precedence than addition／subtraction）．

Expressions must be properly typed．This means，e．g．，that a dimen expression must be a sum of dimen terms：i．e．，you cannot say＇ $2 \mathrm{~cm}+4$＇but＇ $2 \mathrm{~cm}+4 \mathrm{pt}$＇is valid．

In a dimen term，the dimension part must come first；the same holds for glue terms．Also，multiplication and division by non－integer quantities require a special syntax；see below．

Evaluation of subexpressions at the same level of precedence proceeds from left to right．Consider a dimen term such as＂ $4 \mathrm{~cm} * 3 * 4$＂．First，the value of the factor 4 cm is assigned to a dimen register，then this register is multiplied by 3 （using \multiply），and，finally，the register is multiplied by 4 （again using \multiply）． This also explains why the dimension part（i．e．，the part with the unit designation） must come first； $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ simply doesn＇t allow untyped constants to be assigned to a dimen register．

The calc package also allows multiplication and division by real numbers． However，a special syntax is required：you must use \real\｛ $\{$ decimal constant $\rangle\}^{2}$ or \ratio\｛〈dimen expression〉\}\{〈dimen expression $\rangle\}$ to denote a real value to be used for multiplication／division．The first form has the obvious meaning，and the second form denotes the number obtained by dividing the value of the first expression by the value of the second expression．

A later addition to the package（in June 1998）allows an additional method of specifying a factor of type dimen by setting some text（in LR－mode）and measuring its dimensions：these are denoted as follows．

```
\widthof{\langletext\rangle} \heightof{\langletext\rangle} \depthof{\langletext\rangle}
```

These calculate the natural sizes of the \langle text \rangle in exactly the same way as is done for the commands \settowidth etc．on Page 216 of the manual［2］．

Note that there is a small difference in the usage of these two methods of accessing text dimensions．After \settowidth\｛\txtwd\}\{Some text\} you can use:

```
\setlength{\parskip}{0.68\textwd}
```

whereas using the more direct access to the width of the text requires the longer form for multiplication，thus：

```
\setlength{\parskip}{\widthof{Some text} * \real{0.68}}
```

T_{E} discards the stretch and shrink components of glue when glue is multiplied by a real number．So，for example，

```
\setlength{\parskip}{3pt plus 3pt * \real{1.5}}
```

will set the paragraph separation to 4.5 pt with no stretch or shrink．（Incidentally， note how spaces can be used to enhance readability．）

When $T_{E} X$ performs arithmetic on integers，any fractional part of the results are discarded．For example，

```
\setcounter{x}{7/2}
\setcounter{y}{3*\real{1.6}}
\setcounter{z}{3*\real{1.7}}
```

will assign the value 3 to the counter x ，the value 4 to y ，and the value 5 to z ． This truncation also applies to intermediate results in the sequential computation of a composite expression；thus，the following command

```
\setcounter{x}{3 * \real{1.6} * \real{1.7}}
```

[^1]will assign 6 to x ．
As an example of the use of \ratio，consider the problem of scaling a figure to occupy the full width（i．e．，\textwidth）of the body of a page．Assume that the original dimensions of the figure are given by the dimen（length）variables， \backslash Xsize and \Ysize．The height of the scaled figure can then be expressed by

```
\setlength{\newYsize}{\Ysize*\ratio{\textwidth}{\\size}}
```


3 Formal syntax

The syntax is described by the following set of rules．Note that the definitions of \langle number \rangle,\langle dimen \rangle,\langle glue〉，\langle decimal constant \rangle ，and \langle plus or minus〉 are as in Chap－ ter 24 of The T_{E} Xbook［1］；and 〈text〉 is LR－mode material，as in the manual［2］． We use type as a meta－variable，standing for＇integer＇，＇dimen＇，and＇glue＇．${ }^{3}$

```
\(\langle\) type expression \(\rangle \longrightarrow\langle\) type term \(\rangle\)
    | 〈type expression〉〈plus or minus〉〈type term〉
\(\langle\) type term〉 \(\longrightarrow\) 〈type factor〉
    | 〈type term \(\rangle\) <multiply or divide〉〈integer factor〉
    | 〈type term \(\rangle\langle\) multiply or divide \(\rangle\langle\) real number \(\rangle\)
\(\langle\) type factor \(\rangle \longrightarrow\langle\) type \(\rangle \mid\langle\) text dimen factor \(\rangle \mid\left({ }_{12}\langle\text { type expression }\rangle\right)_{12}\)
\(\langle\) integer〉 \(\longrightarrow\) number〉
\(\langle\) text dimen factor \(\rangle \longrightarrow\langle\) text dimen command \(\rangle\{\langle\) text \(\rangle\}\)
\(\langle\) text dimen command〉 \(\longrightarrow\) \widthof \(|\) \heightof \(\mid\) \depthof
\(\left\langle\right.\) multiply or divide〉 \(\left.\longrightarrow *_{12}\right| / 12\)
\(\langle\) real number〉 \(\longrightarrow\) \ratio\{〈dimen expression〉\}\{〈dimen expression〉\}
    \(\mid \backslash\) real \(\{\langle\) decimal constant \(\rangle\}\)
```

Note that during most of the parsing of calc expressions，no expansion happens； thus the above syntax must be explicit ${ }^{4}$ ．

4 The evaluation scheme

In this section，we shall for simplicity consider only expressions containing＇+ ＇ （addition）and＇$*$＇（multiplication）operators．It is trivial to add subtraction and division．

An expression E is a sum of terms：$T_{1}+\cdots+T_{n}$ ；a term is a product of factors：$F_{1} * \cdots * F_{m}$ ；a factor is either a simple numeric quantity f（like \langle number〉 as described in the $\mathrm{T}_{\mathrm{E}} \mathrm{Xbook}$ ），or a parenthesized expression $\left(E^{\prime}\right)$ ．

[^2]Since the $T_{E} X$ engine can only execute arithmetic operations in a machinecode like manner, we have to find a way to translate the infix notation into this 'instruction set'.

Our goal is to design a translation scheme that translates X (an expression, a term, or a factor) into a sequence of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ instructions that does the following [Invariance Property]: correctly evaluates X, leaves the result in a global register A (using a global assignment), and does not perform global assignments to the scratch register B; moreover, the code sequence must be balanced with respect to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ groups. We shall denote the code sequence corresponding to X by $\llbracket X \rrbracket$.

In the replacement code specified below, we use the following conventions:

- A and B denote registers; all assignments to A will be global, and all assignments to B will be local.
- " \Leftarrow " means global assignment to the register on the lhs.
- " \leftarrow " means local assignment to the register on the lhs.
- " $\hookrightarrow[C]$ " means "save the code C until the current group (scope) ends, then execute it." This corresponds to the $T_{E} X$-primitive \aftergroup.
- "\{" denotes the start of a new group, and "\}" denotes the end of a group.

Let us consider an expression $T_{1}+T_{2}+\cdots+T_{n}$. Assuming that $\llbracket T_{k} \rrbracket(1 \leq k \leq n)$ attains the stated goal, the following code clearly attains the stated goal for their sum:

$$
\begin{array}{r}
\llbracket T_{1}+T_{2}+\cdots+T_{n} \rrbracket \Longrightarrow \quad\left\{\llbracket T_{1} \rrbracket\right\} B \leftarrow A \quad\left\{\llbracket T_{2} \rrbracket\right\} B \leftarrow B+A \\
\cdots \quad\left\{\llbracket T_{n} \rrbracket\right\} B \leftarrow B+A \quad A \Leftarrow B
\end{array}
$$

Note the extra level of grouping enclosing each of $\llbracket T_{1} \rrbracket, \llbracket T_{2} \rrbracket, \ldots, \llbracket T_{n} \rrbracket$. This will ensure that register B, used to compute the sum of the terms, is not clobbered by the intermediate computations of the individual terms. Actually, the group enclosing $\llbracket T_{1} \rrbracket$ is unnecessary, but it turns out to be simpler if all terms are treated the same way.

The code sequence " $\left\{\llbracket T_{2} \rrbracket\right\} B \leftarrow B+A$ " can be translated into the following equivalent code sequence: " $\left\{\varsigma[B \leftarrow B+A] \llbracket T_{2} \rrbracket\right\}$ ". This observation turns out to be the key to the implementation: The " $\hookrightarrow[B \leftarrow B+A]$ " is generated before T_{2} is translated, at the same time as the ' + ' operator between T_{1} and T_{2} is seen.

Now, the specification of the translation scheme is straightforward:

$$
\begin{aligned}
& \llbracket f \rrbracket \quad \Longrightarrow \quad A \Leftarrow f \\
& \llbracket\left(E^{\prime}\right) \rrbracket \quad \Longrightarrow \quad \llbracket E^{\prime} \rrbracket \\
& \llbracket T_{1}+T_{2}+\cdots+T_{n} \rrbracket \quad \Longrightarrow \quad\left\{\hookrightarrow[B \leftarrow A] \llbracket T_{1} \rrbracket\right\} \quad\left\{\hookrightarrow[B \leftarrow B+A] \llbracket T_{2} \rrbracket\right\} \\
& \ldots \quad\left\{\hookrightarrow[B \leftarrow B+A] \llbracket T_{n} \rrbracket\right\} \quad A \Leftarrow B \\
& \llbracket F_{1} * F_{2} * \cdots * F_{m} \rrbracket \quad \Longrightarrow \quad\left\{\hookrightarrow[B \leftarrow A] \llbracket F_{1} \rrbracket\right\} \quad\left\{\hookrightarrow[B \leftarrow B * A] \llbracket F_{2} \rrbracket\right\} \\
& \ldots \quad\left\{\hookrightarrow[B \leftarrow B * A] \llbracket F_{m} \rrbracket\right\} \quad A \Leftarrow B
\end{aligned}
$$

By structural induction，it is easily seen that the stated property is attained．
By inspection of this translation scheme，we see that we have to generate the following code：
－we must generate＂$\{\hookrightarrow[B \leftarrow A]\{\hookrightarrow[B \leftarrow A]$＂at the left border of an expression （i．e．，for each left parenthesis and the implicit left parenthesis at the begin－ ning of the whole expression）；
－we must generate＂$\} A \Leftarrow B\} A \Leftarrow B$＂at the right border of an expression （i．e．，each right parenthesis and the implicit right parenthesis at the end of the full expression）；
－＇$*$＇is replaced by＂$\}\{\hookrightarrow[B \leftarrow B * A]$＂；
－＇+ ＇is replaced by＂$\} A \Leftarrow B\}\{\hookrightarrow[B \leftarrow B+A]\{\hookrightarrow[B \leftarrow A]$＂；
－when we see（expect）a numeric quantity，we insert the assignment code ＂$A \Leftarrow$＂in front of the quantity and let $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ parse it．

5 Implementation

For brevity define
\langle numeric $\rangle \longrightarrow\langle$ number $\rangle \mid\langle$ dimen $\rangle\langle$ glue $\rangle \mid\langle$ muglue \rangle
So far we have ignored the question of how to determine the type of register to be used in the code．However，it is easy to see that（1）＇＊＇always initiates an 〈integer factor〉，（2）all 〈numeric〉s in an expression，except those which are part of an 〈integer factor〉，are of the same type as the whole expression，and all \langle numeric〉s in an 〈integer factor〉 are \langle number〉s．

We have to ensure that A and B always have an appropriate type for the〈numeric〉s they manipulate．We can achieve this by having an instance of A and B for each type．Initially，A and B refer to registers of the proper type for the whole expression．When an 〈integer factor〉 is expected，we must change A and B to refer to integer type registers．We can accomplish this by including instructions to change the type of A and B to integer type as part of the replacement code for＇$*$ ；if we append such instructions to the replacement code described above， we also ensure that the type－change is local（provided that the type－changing instructions only have local effect）．However，note that the instance of A referred to in $\hookrightarrow[B \leftarrow B * A]$ is the integer instance of A ．

We shall use \begingroup and \endgroup for the open－group and close－group characters．This avoids problems with spacing in math（as pointed out to us by Frank Mittelbach）．

5．1 Getting started

Now we have enough insight to do the actual implementation in $T_{E} X$ ．First，we announce the macro package ${ }^{5}$ ．

```
<*package〉
%\NeedsTeXFormat{LaTeX2e}
% \ProvidesPackage{calc}[\filedate\space\fileversion]
```


5．2 Assignment macros

The \calc＠assign＠generic macro takes four arguments：（1 and 2）the registers to be used for global and local manipulations，respectively；（3）the lvalue part； （4）the expression to be evaluated．

The third argument（the lvalue）will be used as a prefix to a register that contains the value of the specified expression（the fourth argument）．

In general，an lvalue is anything that may be followed by a variable of the appro－ priate type．As an example，\linepenalty and \global\advance\linepenalty may both be followed by an 〈integer variable〉．

The macros described below refer to the registers by the names \calc＠A and \calc＠B；this is accomplished by \let－assignments．

As discovered in Section 4，we have to generate code as if the expression is parenthesized．As described below，\calc＠open is the macro that replaces a left parenthesis by its corresponding $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code sequence．When the scanning process sees the exclamation point，it generates an \endgroup and stops．As we recall from Section 4，the correct expansion of a right parenthesis is＂$\} A \Leftarrow B\} A \Leftarrow$ B＂．The remaining tokens of this expansion are inserted explicitly，except that the last assignment has been replaced by the lvalue part（i．e．，argument \＃3 of \calc＠assign＠generic）followed by \calc＠B．

```
4\def\calc@assign@generic#1#2#3#4{\let\calc@A#1\let\calc@B#2%
    \expandafter\calc@open\expandafter(#4!%
    \global\calc@A\calc@B\endgroup#3\calc@B}
```

（The \expandafter tokens allow the user to use expressions stored one－level deep in a macro as arguments in assignment commands．）
\calc＠assign＠count
\calc＠assign＠dimen
\calc＠assign＠skip

We need three instances of the \calc＠assign＠generic macro，corresponding to the types \langle integer \rangle,\langle dimen \rangle ，and \langle glue \rangle ．

```
7\def\calc@assign@count{\calc@assign@generic\calc@Acount\calc@Bcount}
8\def\calc@assign@dimen{\calc@assign@generic\calc@Adimen\calc@Bdimen}
9\def\calc@assign@skip{\calc@assign@generic\calc@Askip\calc@Bskip}
```

These macros each refer to two registers，one to be used globally and one to be used locally．We must allocate these registers．

$10 \backslash$ newcount\calc＠Acount	\newcount\calc＠Bcount
11 \newdimen\calc＠Adimen	\newdimen\calc＠Bdimen
$12 \backslash$ newskip\calc＠Askip	\newskip\calc＠Bskip

[^3]
5．3 The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ interface

As promised，we redefine the following standard $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ commands：\setcounter， \addtocounter，\setlength，and \addtolength．

```
\def\setcounter#1#2{\@ifundefined{c@#1}{\@nocounterr{#1}}%
    {\calc@assign@count{\global\csname c@#1\endcsname}{#2}}}
\def\addtocounter#1#2{\@ifundefined{c@#1}{\@nocounterr{#1}}%
    {\calc@assign@count{\global\advance\csname c@#1\endcsname}{#2}}}
\DeclareRobustCommand\setlength{\calc@assign@skip}
\DeclareRobustCommand\addtolength[1]{\calc@assign@skip{\advance#1}}
（\setlength and \addtolength are robust according to［2］．）
```


5．4 The scanner

We evaluate expressions by explicit scanning of characters．We do not rely on active characters for this．

The scanner consists of two parts，\calc＠pre＠scan and \calc＠post＠scan； \calc＠pre＠scan consumes left parentheses，and \calc＠post＠scan consumes bi－ nary operator，\real，\ratio，and right parenthesis tokens．
\calc＠pre＠scan Note that this is called at least once on every use of calc processing，even when none of the extended syntax is present；it therefore needs to be made very efficient．

It reads the initial part of expressions，until some 〈text dimen factor〉 or〈numeric〉 is seen；in fact，anything not explicitly recognized here is taken to be a〈numeric〉 of some sort as this allows unary＇+ ＇and unary＇- ＇to be treated easily and correctly ${ }^{6}$ but means that anything illegal will simply generate a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$－level error，often a reasonably comprehensible one！

The many \expandafters are needed to efficiently end the nested conditionals that \calc＠textsize can process its argument．

```
def\calc@pre@scan#1{%
    \ifx(#1%
    \expandafter\calc@open
    \else
        \ifx\widthof#1%
            \expandafter\expandafter\expandafter\calc@textsize
        \else
            \calc@numeric% no \expandafter needed for this one.
        \fi
    \fi
    #1}
```

\calc＠open is used when there is a left parenthesis right ahead．This parenthesis is replaced by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code corresponding to the code sequence＂$\{\hookrightarrow[B \leftarrow A]\{\hookrightarrow[B \leftarrow A]$＂ derived in Section 4．Finally，\calc＠pre＠scan is called again．

```
\def\calc@open({\begingroup\aftergroup\calc@initB
    \begingroup\aftergroup\calc@initB
```

[^4]```
33\def\calc@initB{\calc@B\calc@A}
```

32 \calc@pre@scan\}
\calc@numeric assigns the following value to \calc@A and then transfers control to \calc@post@scan.
34 \def \calc@numeric\{\afterassignment\calc@post@scan \global\calc@A\}
\widthof These do not need any particular definition when they are scanned so, for effi\heightof ciency and robustness, we make them all equivalent to the same harmless (I hope) \depthof unexpandable command ${ }^{7}$. Thus the test in \calc@pre@scan finds any of them. They are first defined using \newcommand so that they appear to be normal user commands to a $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ user ${ }^{8}$.
35 \newcommand\widthof \{\}
36 \let\widthof \ignorespaces
37 \newcommand \heightof \{\}
38 \let $\backslash$ heightof $\backslash i g n o r e s p a c e s$
39 \newcommand \depthof\{\}
40 \let \depthof \ignorespaces
\calc@textsize The presence of the above three commands invokes this code, where we must distinguish them from each other. This implementation is somewhat optimized by using low-level code from the commands \settowidth, etc ${ }^{9}$.

Within the text argument we must restore the normal meanings of the three user-level commands since arbitrary material can appear in here, including further uses of calc

```
\def\calc@textsize #1#2{%
 \begingroup
 \let\widthof\wd
 \let\heightof\ht
 \let\depthof\dp
 \@settodim #1%
 {\global\calc@A}%
 {%
 \let\widthof\ignorespaces
 \let\heightof\ignorespaces
 \let\depthof\ignorespaces
 #2}%
 \endgroup
 \calc@post@scan}
```

\calc@post@scan The macro \calc@post@scan is called right after a value has been read. At this point, a binary operator, a sequence of right parentheses, and the end-of-expression mark ('!') is allowed ${ }^{10}$. Depending on our findings, we call a suitable macro to generate the corresponding $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code (except when we detect the end-of-expression marker: then scanning ends, and control is returned to \calc@assign@generic).

[^5]This macro may be optimized by selecting a different order of \ifx-tests. The test for '!' (end-of-expression) is placed first as it will always be performed: this is the only test to be performed if the expression consists of a single 〈numeric〉. This ensures that documents that do not use the extra expressive power provided by the calc package only suffer a minimum slowdown in processing time.

```
def\calc@post@scan#1{%
 \ifx#1!\let\calc@next\endgroup \else
 \ifx#1+\let\calc@next\calc@add \else
 \ifx#1-\let\calc@next\calc@subtract \else
 \ifx#1*\let\calc@next\calc@multiplyx \else
 \ifx#1/\let\calc@next\calc@dividex \else
 \ifx#1)\let\calc@next\calc@close \else \calc@error#1%
 \fi
 \fi
 \fi
 \fi
 \fi
 \fi
 \calc@next}
```

The replacement code for the binary operators ' + ' and ' - ' follow a common pattern; the only difference is the token that is stored away by \aftergroup. After this replacement code, control is transferred to \calc@pre@scan.

```
\def\calc@add{\calc@generic@add\calc@addAtoB}
\def\calc@subtract{\calc@generic@add\calc@subtractAfromB}
\def\calc@generic@add#1{\endgroup\global\calc@A\calc@B\endgroup
 \begingroup\aftergroup#1\begingroup\aftergroup\calc@initB
 \calc@pre@scan}
\def\calc@addAtoB{\advance\calc@B\calc@A}
\def\calc@subtractAfromB{\advance\calc@B-\calc@A}
```

\real The multiplicative operators, '*' and '/', may be followed by a \real or a \ratio \ratio token. Those control sequences are not defined (at least not by the calc package); this, unfortunately, leaves them highly non-robust. We therefore equate them to \relax but only if they have not already been defined ${ }^{11}$ (by some other package: dangerous but possible!); this will also make them appear to be undefined to a ${ }^{\mathrm{LA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ user (also possibly dangerous).

```
76\ifx\real\@undefined\let\real\relax\fi
```

$77 \backslash i f x \backslash r a t i o \backslash @ u n d e f i n e d \backslash l e t \backslash r a t i o \backslash r e l a x \backslash f i$

In order to test for them, we define these two ${ }^{12}$.
\def \calc@ratio@x\{\ratio\}
$\backslash d e f \backslash c a l c @ r e a l @ x\{\backslash r e a l\}$
\def \calc@multiplyx\#1\{\def \calc@tmp\{\#1\}\%
\ifx\calc@tmp\calc@ratio@x \let\calc@next\calc@ratio@multiply \else

[^6]```
        \ifx\calc@tmp\calc@real@x \let\calc@next\calc@real@multiply \else
        \let\calc@next\calc@multiply
        \fi
    \fi
    \calc@next#1}
\def\calc@dividex#1{\def\calc@tmp{#1}%
    \ifx\calc@tmp\calc@ratio@x \let\calc@next\calc@ratio@divide \else
    \ifx\calc@tmp\calc@real@x \let\calc@next\calc@real@divide \else
                \let\calc@next\calc@divide
        \i
    \fi
    \calc@next#1}
```

The binary operators ' $*$ ' and '/' also insert code as determined above. Moreover, the meaning of \calc@A and \calc@B is changed as factors following a multiplication and division operator always have integer type; the original meaning of these macros will be restored when the factor has been read and evaluated.

```
\def\calc@multiply{\calc@generic@multiply\calc@multiplyBbyA}
\def\calc@divide{\calc@generic@multiply\calc@divideBbyA}
\def\calc@generic@multiply#1{\endgroup\begingroup
    \let\calc@A\calc@Acount \let\calc@B\calc@Bcount
    \aftergroup#1\calc@pre@scan}
\def\calc@multiplyBbyA{\multiply\calc@B\calc@Acount}
100 \def\calc@divideBbyA{\divide\calc@B\calc@Acount}
```

Since the value to use in the multiplication/division operation is stored in the \calc@Acount register, the \calc@multiplyBbyA and \calc@divideBbyA macros use this register.
\calc@close generates code for a right parenthesis (which was derived to be " $\} A \Leftarrow B\} A \Leftarrow B$ " in Section 4). After this code, the control is returned to \calc@post@scan in order to look for another right parenthesis or a binary operator.

```
\def\calc@close
    {\endgroup\global\calc@A\calc@B
        \endgroup\global\calc@A\calc@B
        \calc@post@scan}
```


5.5 Calculating a ratio

When \calc@post@scan encounters a \ratio control sequence, it hands control to one of the macros \calc@ratio@multiply or \calc@ratio@divide, depending on the preceding character. Those macros both forward the control to the macro \calc@ratio@evaluate, which performs two steps: (1) it calculates the ratio, which is saved in the global macro token \calc@the@ratio; (2) it makes sure that the value of \calc@B will be multiplied by the ratio as soon as the current group ends.

The following macros call \calc@ratio@evaluate which multiplies \calc@B by the ratio, but \calc@ratio@divide flips the arguments so that the 'opposite'
fraction is actually evaluated.

```
105\def\calc@ratio@multiply\ratio{\calc@ratio@evaluate}
106\def\calc@ratio@divide\ratio#1#2{\calc@ratio@evaluate{#2}{#1}}
```

We shall need two registers for temporary usage in the calculations. We can save one register since we can reuse \calc@Bcount.

```
107\let\calc@numerator=\calc@Bcount
108 \newcount\calc@denominator
```

Here is the macro that handles the actual evaluation of ratios. The procedure is this: First, the two expressions are evaluated and coerced to integers. The whole procedure is enclosed in a group to be able to use the registers \calc@numerator and \calc@denominator for temporary manipulations.

```
09 \def\calc@ratio@evaluate#1#2{%
1 1 0 \ e n d g r o u p \ b e g i n g r o u p
111 \calc@assign@dimen\calc@numerator{#1}%
112 \calc@assign@dimen\calc@denominator{#2}%
```

Here we calculate the ratio. First, we check for negative numerator and/or denominator; note that $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ interprets two minus signs the same as a plus sign. Then, we calculate the integer part. The minus sign(s), the integer part, and a decimal point, form the initial expansion of the \calc@the@ratio macro.

```
\gdef\calc@the@ratio{}%
\ifnum\calc@numerator<0 \calc@numerator-\calc@numerator
        \gdef\calc@the@ratio{-}%
\fi
\ifnum\calc@denominator<0 \calc@denominator-\calc@denominator
    \xdef\calc@the@ratio{\calc@the@ratio-}%
\fi
\calc@Acount\calc@numerator
\divide\calc@Acount\calc@denominator
\xdef\calc@the@ratio{\calc@the@ratio\number\calc@Acount.}%
```

Now we generate the digits after the decimal point, one at a time. When $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ scans these digits (in the actual multiplication operation), it forms a fixed-point number with 16 bits for the fractional part. We hope that six digits is sufficient, even though the last digit may not be rounded correctly.

```
123 \calc@next@digit \calc@next@digit \calc@next@digit
124 \calc@next@digit \calc@next@digit \calc@next@digit
125 \endgroup
```

Now we have the ratio represented (as the expansion of the global macro \calc@the@ratio) in the syntax 〈decimal constant〉[1, page 270]. This is fed to \calc@multiply@by@real that will perform the actual multiplication. It is important that the multiplication takes place at the correct grouping level so that the correct instance of the B register will be used. Also note that we do not need the \aftergroup mechanism in this case.

```
126 \calc@multiply@by@real\calc@the@ratio
127 \begingroup
128 \calc@post@scan}
```

The \begingroup inserted before the \calc@post@scan will be matched by the \endgroup generated as part of the replacement of a subsequent binary operator or right parenthesis.

```
29\def\calc@next@digit{%
    \multiply\calc@Acount\calc@denominator
    \advance\calc@numerator -\calc@Acount
    \multiply\calc@numerator 10
    \calc@Acount\calc@numerator
    \divide\calc@Acount\calc@denominator
    \xdef\calc@the@ratio{\calc@the@ratio\number\calc@Acount}}
```

In the following code, it is important that we first assign the result to a dimen register. Otherwise, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ won't allow us to multiply with a real number.
136 \def \calc@multiply@by@real\#1\{\calc@Bdimen \#1\calc@B \calc@B\calc@Bdimen\}
(Note that this code wouldn't work if \calc@B were a muglue register. This is the real reason why the calc package doesn't support muglue expressions. To support muglue expressions in full, the \calc@multiply@by@real macro must use a muglue register instead of \calc@Bdimen when \calc@B is a muglue register; otherwise, a dimen register should be used. Since integer expressions can appear as part of a muglue expression, it would be necessary to determine the correct register to use each time a multiplication is made.)

5.6 Multiplication by real numbers

This is similar to the \calc@ratio@evaluate macro above, except that it is considerably simplified since we don't need to calculate the factor explicitly.

```
37\def\calc@real@multiply\real#1{\endgroup
138 \calc@multiply@by@real{#1}\begingroup
139 \calc@post@scan}
40\def\calc@real@divide\real#1{\calc@ratio@evaluate{1pt}{#1pt}}
```


6 Reporting errors

If \calc@post@scan reads a character that is not one of ' + ', '-', '*', '/', or ' ')', an error has occurred, and this is reported to the user. Violations in the syntax of〈numeric〉s will be detected and reported by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$

```
\def\calc@error#1{%
    \PackageError{calc}%
        {'#1' invalid at this point}%
        {I expected to see one of: + - * / )}}
//package\rangle
```


References

[1] D. E. Knuth. The $T_{E} X b o o k$ (Computers \& Typesetting Volume A). AddisonWesley, Reading, Massachusetts, 1986
[2] L. Lamport. ${ }^{A} T_{E} X$, A Document Preparation System. Addison-Wesley, Reading, Massachusetts, Second edition 1994/1985.

[^0]: *We thank Frank Mittelbach for his valuable comments and suggestions which have greatly improved this package.
 ${ }^{1}$ However, it therefore assumes that the category codes of the special characters, such as (*/) in its syntax do not change.

[^1]: ${ }^{2}$ Actually，instead of 〈decimal constant〉，the more general 〈optional signs〉〈factor〉 can be used．However，that doesn＇t add any extra expressive power to the language of infix expressions．

[^2]: ${ }^{3}$ This version of the calc package doesn＇t support evaluation of muglue expressions．
 ${ }^{4}$ Two exceptions to this are：the first token is expanded one－level（thus the whole expression can be put into a macro）；wherever a 〈decimal constant〉 or 〈type〉 is expected．

[^3]: ${ }^{5}$ Code moved to top of file

[^4]: ${ }^{6}$ In the few contexts where signs are allowed：this could，I think，be extended（CAR）．

[^5]: ${ }^{7}$ If this level of safety is not needed then the code can be speeded up: CAR.
 ${ }^{8}$ Is this necessary, CAR?
 ${ }^{9}$ It is based on suggestions by Donald Arsenau and David Carlisle.
 ${ }^{10}$ Is ! a good choice, CAR?

[^6]: ${ }^{11}$ Suggested code from David Carlisle.
 ${ }^{12}$ May not need the extra names, CAR?

