
The calc package
Infix notation arithmetic in LATEX∗

Kresten Krab Thorup, Frank Jensen (and Chris Rowley)

2007/08/22

Abstract

The calc package reimplements the LATEX commands \setcounter,
\addtocounter, \setlength, and \addtolength. Instead of a simple value,
these commands now accept an infix notation expression.

1 Introduction
Arithmetic in TEX is done using low-level operations such as \advance and
\multiply. This may be acceptable when developing a macro package, but it
is not an acceptable interface for the end-user.

This package introduces proper infix notation arithmetic which is much more
familiar to most people. The infix notation is more readable and easier to modify
than the alternative: a sequence of assignment and arithmetic instructions. One of
the arithmetic instructions (\divide) does not even have an equivalent in standard
LATEX.

The infix expressions can be used in arguments to macros (the calc package
doesn’t employ category code changes to achieve its goals).1

2 Informal description
Standard LATEX provides the following set of commands to manipulate counters
and lengths [2, pages 194 and 216].

\setcounter{ctr}{num} sets the value of the counter ctr equal to (the value of)
num. (Fragile)

\addtocounter{ctr}{num} increments the value of the counter ctr by (the value
of) num. (Fragile)

\setlength{cmd}{len} sets the value of the length command cmd equal to (the
value of) len. (Robust)

\addtolength{cmd}{len} sets the value of the length command cmd equal to its
current value plus (the value of) len. (Robust)

(The \setcounter and \addtocounter commands have global effect, while the
\setlength and \addtolength commands obey the normal scoping rules.) In
standard LATEX, the arguments to these commands must be simple values. The
calc package extends these commands to accept infix notation expressions, de-
noting values of appropriate types. Using the calc package, num is replaced by

∗We thank Frank Mittelbach for his valuable comments and suggestions which have greatly
improved this package.

1However, it therefore assumes that the category codes of the special characters, such as (*/)
in its syntax do not change.

1

〈integer expression〉, and len is replaced by 〈glue expression〉. The formal syntax
of 〈integer expression〉 and 〈glue expression〉 is given below.

In addition to these commands to explicitly set a length, many LATEX com-
mands take a length argument. After loading this package, most of these com-
mands will accept a 〈glue expression〉. This includes the optional width argument
of \makebox, the width argument of \parbox, minipage, and a tabular p-column,
and many similar constructions. (This package does not redefine any of these com-
mands, but they are defined by default to read their arguments by \setlength
and so automatically benefit from the enhanced \setlength command provided
by this package.)

In the following, we shall use standard TEX terminology. The correspondence
between TEX and LATEX terminology is as follows: LATEX counters correspond
to TEX’s count registers; they hold quantities of type 〈number〉. LATEX length
commands correspond to TEX’s dimen (for rigid lengths) and skip (for rubber
lengths) registers; they hold quantities of types 〈dimen〉 and 〈glue〉, respectively.

TEX gives us primitive operations to perform arithmetic on registers as follows:

• addition and subtraction on all types of quantities without restrictions;

• multiplication and division by an integer can be performed on a register of
any type;

• multiplication by a real number (i.e., a number with a fractional part) can be
performed on a register of any type, but the stretch and shrink components
of a glue quantity are discarded.

The calc package uses these TEX primitives but provides a more user-friendly
notation for expressing the arithmetic.

An expression is formed of numerical quantities (such as explicit constants and
LATEX counters and length commands) and binary operators (the tokens ‘+’, ‘-’,
‘*’, and ‘/’ with their usual meaning) using the familiar infix notation; parentheses
may be used to override the usual precedences (that multiplication/division have
higher precedence than addition/subtraction).

Expressions must be properly typed. This means, e.g., that a dimen expression
must be a sum of dimen terms: i.e., you cannot say ‘2cm+4’ but ‘2cm+4pt’ is valid.

In a dimen term, the dimension part must come first; the same holds for glue
terms. Also, multiplication and division by non-integer quantities require a special
syntax; see below.

Evaluation of subexpressions at the same level of precedence proceeds from left
to right. Consider a dimen term such as “4cm*3*4”. First, the value of the factor
4cm is assigned to a dimen register, then this register is multiplied by 3 (using
\multiply), and, finally, the register is multiplied by 4 (again using \multiply).
This also explains why the dimension part (i.e., the part with the unit designation)
must come first; TEX simply doesn’t allow untyped constants to be assigned to a
dimen register.

The calc package also allows multiplication and division by real numbers.
However, a special syntax is required: you must use \real{〈decimal constant〉}2

or \ratio{〈dimen expression〉}{〈dimen expression〉} to denote a real value to be
used for multiplication/division. The first form has the obvious meaning, and
the second form denotes the number obtained by dividing the value of the first
expression by the value of the second expression.

A later addition to the package (in June 1998) allows an additional method of
specifying a factor of type dimen by setting some text (in LR-mode) and measuring
its dimensions: these are denoted as follows.

\widthof{〈text〉} \heightof{〈text〉} \depthof{〈text〉}
2Actually, instead of 〈decimal constant〉, the more general 〈optional signs〉〈factor〉 can be used.

However, that doesn’t add any extra expressive power to the language of infix expressions.

2

These calculate the natural sizes of the 〈text〉 in exactly the same way as is done
for the commands \settowidth etc. on Page 216 of the manual [2]. In August
2005 the package was further extended to provide the command

\totalheightof{〈text〉}
This command does exactly what you’d expect from its name. Additionally the
package also provides the command

\settototalheight{〈cmd〉}{〈text〉}
Note that there is a small difference in the usage of these two methods of

accessing text dimensions. After \settowidth{\txtwd}{Some text} you can use:
\setlength{\parskip}{0.68\textwd}

whereas using the more direct access to the width of the text requires the longer
form for multiplication, thus:

\setlength{\parskip}{\widthof{Some text} * \real{0.68}}

TEX discards the stretch and shrink components of glue when glue is multiplied
by a real number. So, for example,

\setlength{\parskip}{3pt plus 3pt * \real{1.5}}

will set the paragraph separation to 4.5pt with no stretch or shrink. Incidentally,
note how spaces can be used to enhance readability. When TEX is scanning for a
〈number〉 etc. it is common to terminate the scanning with a space token or by
inserting \relax. As of version 4.3 calc allows \relax tokens to appear in places
where they would usually be used for terminating TEX’s scanning. In short this
is just before any of +-*/) or at the end of the expression being evaluated.

When TEX performs arithmetic on integers, any fractional part of the results
are discarded. For example,

\setcounter{x}{7/2}
\setcounter{y}{3*\real{1.6}}
\setcounter{z}{3*\real{1.7}}

will assign the value 3 to the counter x, the value 4 to y, and the value 5 to z.
This truncation also applies to intermediate results in the sequential computation
of a composite expression; thus, the following command

\setcounter{x}{3 * \real{1.6} * \real{1.7}}

will assign 6 to x.
As an example of the use of \ratio, consider the problem of scaling a figure

to occupy the full width (i.e., \textwidth) of the body of a page. Assume that
the original dimensions of the figure are given by the dimen (length) variables,
\Xsize and \Ysize. The height of the scaled figure can then be expressed by

\setlength{\newYsize}{\Ysize*\ratio{\textwidth}{\Xsize}}

Another new feature introduced in August 2005 was max and min operations
with associated macros

\maxof{〈type expression〉}{〈type expression〉}
\minof{〈type expression〉}{〈type expression〉}

When type is either 〈glue〉 or 〈dimen〉 these macros are allowed only as part of
addition or subtraction but when type is 〈integer〉 they can also be used when
multiplying and dividing. In the latter case they follow the same syntax rules as
\ratio and \real which means they must come after the * or the /. Thus
\setcounter{x}{3*\maxof{4+5}{3*4}+\minof{2*\real{1.6}}{5-1}}

will assign 3×max(9, 12) + min(3, 4) = 39 to x. Similarly
\setlength{\parindent}{%

\minof{3pt}{\parskip}*\real{1.5}*\maxof{2*\real{1.6}}{2-1}}

will assign min(13.5pt, 4.5\parskip) to \parindent

3

3 Formal syntax
The syntax is described by the following set of rules. Note that the definitions of
〈number〉, 〈dimen〉, 〈glue〉, 〈decimal constant〉, and 〈plus or minus〉 are as in Chap-
ter 24 of The TEXbook [1]; and 〈text〉 is LR-mode material, as in the manual [2].
We use type as a meta-variable, standing for ‘integer’, ‘dimen’, and ‘glue’.3

〈type expression〉 −→ 〈type term〉
| 〈type expression〉〈plus or minus〉〈type term〉

〈type term〉 −→ 〈type term〉〈type scan stop〉 | 〈type factor〉
| 〈type term〉〈multiply or divide〉〈integer〉
| 〈type term〉〈multiply or divide〉〈real number〉
| 〈type term〉〈multiply or divide〉〈max or min integer〉

〈type scan stop〉 −→ 〈empty〉 | 〈optional space〉 | \relax

〈type factor〉 −→ 〈type〉 | 〈text dimen factor〉 | 〈max or min type〉
| (12〈type expression〉)12

〈integer〉 −→ 〈number〉

〈max or min type〉
−→ 〈max or min command〉{〈type expression〉}{〈type expression〉}

〈max or min command〉 −→ \maxof | \minof

〈text dimen factor〉 −→ 〈text dimen command〉{〈text〉}

〈text dimen command〉 −→ \widthof | \heightof | \depthof
| \totalheightof

〈multiply or divide〉 −→ *12 | /12
〈real number〉 −→ \ratio{〈dimen expression〉}{〈dimen expression〉}

| \real{〈optional signs〉〈decimal constant〉}

〈plus or minus〉 −→ +12 | -12
〈decimal constant〉 −→ .12 | ,12 | 〈digit〉〈decimal constant〉

| 〈decimal constant〉〈digit〉

〈digit〉 −→ 012 | 112 | 212 | 312 | 412 | 512 | 612 | 712 | 812 | 912
〈optional signs〉 −→ 〈optional spaces〉

| 〈optional signs〉〈plus or minus〉〈optional spaces〉

Relying heavily on TEX to do the underlying assignments, it is only natural
for calc to simulate TEX’s parsing machinery for these quantities. Therefore it
a) imposes the same restrictions on the catcode of syntax characters as TEX and
b) tries to expand its argument fully. a) means that implicit characters for the
tokens *12, /12, (12, and)12 will not work4 but because of b), the expansion should
allow you to use macros that expand to explicit syntax characters.

4 The evaluation scheme
In this section, we shall for simplicity consider only expressions containing ‘+’
(addition) and ‘∗’ (multiplication) operators. It is trivial to add subtraction and
division.

An expression E is a sum of terms: T1 + · · · + Tn; a term is a product of
factors: F1 ∗ · · · ∗Fm; a factor is either a simple numeric quantity f (like 〈number〉
as described in the TEXbook), or a parenthesized expression (E′).

3This version of the calc package doesn’t support evaluation of muglue expressions.
4eTEX also assumes these catcodes when parsing a \numexpr, \dimexpr, \glueexpr, or

\muglueexpr and does not allow implicit characters.

4

Since the TEX engine can only execute arithmetic operations in a machine-
code like manner, we have to find a way to translate the infix notation into this
‘instruction set’.

Our goal is to design a translation scheme that translates X (an expression,
a term, or a factor) into a sequence of TEX instructions that does the following
[Invariance Property]: correctly evaluates X, leaves the result in a global regis-
ter A (using a global assignment), and does not perform global assignments to the
scratch register B; moreover, the code sequence must be balanced with respect to
TEX groups. We shall denote the code sequence corresponding to X by [[X]].

In the replacement code specified below, we use the following conventions:

• A and B denote registers; all assignments to A will be global, and all assign-
ments to B will be local.

• “⇐” means global assignment to the register on the lhs.

• “←” means local assignment to the register on the lhs.

• “↪→[C]” means “save the code C until the current group (scope) ends, then
execute it.” This corresponds to the TEX-primitive \aftergroup.

• “{” denotes the start of a new group, and “}” denotes the end of a group.

Let us consider an expression T1+T2+· · ·+Tn. Assuming that [[Tk]] (1 ≤ k ≤ n)
attains the stated goal, the following code clearly attains the stated goal for their
sum:

[[T1 + T2 + · · ·+ Tn]] =⇒ { [[T1]] } B ← A { [[T2]] } B ← B +A

. . . { [[Tn]] } B ← B +A A⇐ B

Note the extra level of grouping enclosing each of [[T1]], [[T2]], …, [[Tn]]. This will
ensure that register B, used to compute the sum of the terms, is not clobbered
by the intermediate computations of the individual terms. Actually, the group
enclosing [[T1]] is unnecessary, but it turns out to be simpler if all terms are treated
the same way.

The code sequence “{ [[T2]] } B ← B + A” can be translated into the following
equivalent code sequence: “{↪→[B←B+A] [[T2]] }”. This observation turns out to
be the key to the implementation: The “↪→[B←B+A]” is generated before T2 is
translated, at the same time as the ‘+’ operator between T1 and T2 is seen.

Now, the specification of the translation scheme is straightforward:

[[f]] =⇒ A⇐ f

[[(E′)]] =⇒ [[E′]]

[[T1 + T2 + · · ·+ Tn]] =⇒ {↪→[B←A] [[T1]] } {↪→[B←B+A] [[T2]] }
. . . {↪→[B←B+A] [[Tn]] } A⇐ B

[[F1 ∗ F2 ∗ · · · ∗ Fm]] =⇒ {↪→[B←A] [[F1]] } {↪→[B←B∗A] [[F2]] }
. . . {↪→[B←B∗A] [[Fm]] } A⇐ B

By structural induction, it is easily seen that the stated property is attained.
By inspection of this translation scheme, we see that we have to generate the

following code:

• we must generate “{↪→[B←A]{↪→[B←A]” at the left border of an expression
(i.e., for each left parenthesis and the implicit left parenthesis at the begin-
ning of the whole expression);

• we must generate “}A ⇐ B}A ⇐ B” at the right border of an expression
(i.e., each right parenthesis and the implicit right parenthesis at the end of
the full expression);

5

• ‘*’ is replaced by “}{↪→[B←B∗A]”;

• ‘+’ is replaced by “}A⇐ B}{↪→[B←B+A]{↪→[B←A]”;

• when we see (expect) a numeric quantity, we insert the assignment code
“A⇐” in front of the quantity and let TEX parse it.

5 Implementation
For brevity define

〈numeric〉 −→ 〈number〉 | 〈dimen〉 | 〈glue〉 | 〈muglue〉

So far we have ignored the question of how to determine the type of register
to be used in the code. However, it is easy to see that (1) ‘∗’ always initiates
an 〈integer factor〉, (2) all 〈numeric〉s in an expression, except those which are
part of an 〈integer factor〉, are of the same type as the whole expression, and all
〈numeric〉s in an 〈integer factor〉 are 〈number〉s.

We have to ensure that A and B always have an appropriate type for the
〈numeric〉s they manipulate. We can achieve this by having an instance of A
and B for each type. Initially, A and B refer to registers of the proper type for the
whole expression. When an 〈integer factor〉 is expected, we must change A and B
to refer to integer type registers. We can accomplish this by including instructions
to change the type of A and B to integer type as part of the replacement code
for ‘∗; if we append such instructions to the replacement code described above,
we also ensure that the type-change is local (provided that the type-changing
instructions only have local effect). However, note that the instance of A referred
to in ↪→[B←B∗A] is the integer instance of A.

We shall use \begingroup and \endgroup for the open-group and close-group
characters. This avoids problems with spacing in math (as pointed out to us by
Frank Mittelbach).

5.1 Getting started
Now we have enough insight to do the actual implementation in TEX. First, we
announce the macro package.5

1 〈*package〉
2 %\NeedsTeXFormat{LaTeX2e}
3 %\ProvidesPackage{calc}[\filedate\space\fileversion]

5.2 Assignment macros
\calc@assign@generic The \calc@assign@generic macro takes four arguments: (1 and 2) the registers

to be used for global and local manipulations, respectively; (3) the lvalue part;
(4) the expression to be evaluated.

The third argument (the lvalue) will be used as a prefix to a register that
contains the value of the specified expression (the fourth argument).

In general, an lvalue is anything that may be followed by a variable of the appro-
priate type. As an example, \linepenalty and \global\advance\linepenalty
may both be followed by an 〈integer variable〉.

The macros described below refer to the registers by the names \calc@A and
\calc@B; this is accomplished by \let-assignments.

As discovered in Section 4, we have to generate code as if the expression is
parenthesized. As described below, \calc@open is the macro that replaces a left
parenthesis by its corresponding TEX code sequence. When the scanning process
sees the exclamation point, it generates an \endgroup and stops. As we recall
from Section 4, the correct expansion of a right parenthesis is “}A ⇐ B}A ⇐

5Code moved to top of file

6

B”. The remaining tokens of this expansion are inserted explicitly, except that
the last assignment has been replaced by the lvalue part (i.e., argument #3 of
\calc@assign@generic) followed by \calc@B.

4 \def\calc@assign@generic#1#2#3#4{\let\calc@A#1\let\calc@B#2%
5 \calc@open(#4!%
6 \global\calc@A\calc@B\endgroup#3\calc@B}

\calc@assign@count
\calc@assign@dimen
\calc@assign@skip

We need three instances of the \calc@assign@generic macro, corresponding to
the types 〈integer〉, 〈dimen〉, and 〈glue〉.

7 \def\calc@assign@count{\calc@assign@generic\calc@Acount\calc@Bcount}
8 \def\calc@assign@dimen{\calc@assign@generic\calc@Adimen\calc@Bdimen}
9 \def\calc@assign@skip{\calc@assign@generic\calc@Askip\calc@Bskip}

These macros each refer to two registers, one to be used globally and one to be
used locally. We must allocate these registers.

10 \newcount\calc@Acount \newcount\calc@Bcount
11 \newdimen\calc@Adimen \newdimen\calc@Bdimen
12 \newskip\calc@Askip \newskip\calc@Bskip

5.3 The LATEX interface
\setcounter

\addtocounter
\steptocounter

\setlength
\addtolength

As promised, we redefine the following standard LATEX commands: \setcounter,
\addtocounter, \setlength, and \addtolength.

13 \def\setcounter#1#2{\@ifundefined{c@#1}{\@nocounterr{#1}}%
14 {\calc@assign@count{\global\csname c@#1\endcsname}{#2}}}

15 \def\addtocounter#1#2{\@ifundefined{c@#1}{\@nocounterr{#1}}%
16 {\calc@assign@count{\global\advance\csname c@#1\endcsname}{#2}}}%

We also fix \stepcounter to not go through the whole calc process.
17 \def\stepcounter#1{\@ifundefined {c@#1}%
18 {\@nocounterr {#1}}%
19 {\global\advance\csname c@#1\endcsname \@ne
20 \begingroup
21 \let\@elt\@stpelt \csname cl@#1\endcsname
22 \endgroup}}%

If the amstext package is loaded we must add the \iffirstchoice@ switch as
well. We patch the commands this way since it’s good practice when we know
how many arguments they take.

23 \@ifpackageloaded{amstext}{%
24 \expandafter\def\expandafter\stepcounter
25 \expandafter#\expandafter1\expandafter{%
26 \expandafter\iffirstchoice@\stepcounter{#1}\fi
27 }
28 \expandafter\def\expandafter\addtocounter
29 \expandafter#\expandafter1\expandafter#\expandafter2\expandafter{%
30 \expandafter\iffirstchoice@\addtocounter{#1}{#2}\fi
31 }
32 }{}

33 \DeclareRobustCommand\setlength{\calc@assign@skip}
34 \DeclareRobustCommand\addtolength[1]{\calc@assign@skip{\advance#1}}

(\setlength and \addtolength are robust according to [2].)

5.4 The scanner
We evaluate expressions by explicit scanning of characters. We do not rely on
active characters for this.

The scanner consists of two parts, \calc@pre@scan and \calc@post@scan;
\calc@pre@scan consumes left parentheses, and \calc@post@scan consumes bi-
nary operator, \real, \ratio, and right parenthesis tokens.

7

\calc@pre@scan
\@calc@pre@scan

Note that this is called at least once on every use of calc processing, even when
none of the extended syntax is present; it therefore needs to be made very efficient.

It reads the initial part of expressions, until some 〈text dimen factor〉 or 〈nu-
meric〉 is seen; in fact, anything not explicitly recognized here is taken to be a
〈numeric〉 of some sort as this allows unary ‘+’ and unary ‘-’ to be treated easily
and correctly6 but means that anything illegal will simply generate a TEX-level
error, often a reasonably comprehensible one!

The \romannumeral-`\a part is a little trick which forces expansion in case #1
is a normal macro, something that occurs from time to time. A conditional test
inside will possibly leave a trailing \fi but this remnant is removed later when
\calc@post@scan performs the same trick.

The many \expandafters are needed to efficiently end the nested conditionals
so that \calc@textsize and \calc@maxmin@addsub can process their argument.

35 \def\calc@pre@scan#1{%
36 \expandafter\@calc@pre@scan\romannumeral-`\a#1}
37 \def\@calc@pre@scan#1{%
38 \ifx(#1%
39 \expandafter\calc@open
40 \else
41 \ifx\widthof#1%
42 \expandafter\expandafter\expandafter\calc@textsize
43 \else
44 \ifx\maxof#1%
45 \expandafter\expandafter\expandafter\expandafter
46 \expandafter\expandafter\expandafter\calc@maxmin@addsub
47 \else
48 \calc@numeric% no \expandafter needed for this one.
49 \fi
50 \fi
51 \fi
52 #1}

\calc@open
\calc@initB

\calc@open is used when there is a left parenthesis right ahead. This parenthesis
is replaced by TEX code corresponding to the code sequence “{↪→[B←A]{↪→[B←A]”
derived in Section 4. Finally, \calc@pre@scan is called again.

53 \def\calc@open({\begingroup\aftergroup\calc@initB
54 \begingroup\aftergroup\calc@initB
55 \calc@pre@scan}
56 \def\calc@initB{\calc@B\calc@A}

\calc@numeric \calc@numeric assigns the following value to \calc@A and then transfers control
to \calc@post@scan.

57 \def\calc@numeric{\afterassignment\calc@post@scan \global\calc@A}

\widthof
\heightof
\depthof

\totalheightof

These do not need any particular definition when they are scanned so, for effi-
ciency and robustness, we make them all equivalent to the same harmless (I hope)
unexpandable command.7 Thus the test in \@calc@pre@scan finds any of them.

As we have to check for these commands explicitly we must ensure that our
definition wins. Using \newcommand gives an error when loading calc and may
be mildly surprising. This should be a little more informative.

58 \@for\reserved@a:=widthof,heightof,depthof,totalheightof,maxof,minof\do
59 {\@ifundefined{\reserved@a}{}{%
60 \PackageError{calc}{%
61 The\space calc\space package\space reserves\space the\space
62 command\space name\space `\@backslashchar\reserved@a'\MessageBreak
63 but\space it\space has\space already\space been\space defined\space
64 with\space the\space meaning\MessageBreak

6In the few contexts where signs are allowed: this could, I think, be extended (CAR).
7If this level of safety is not needed then the code can be speeded up: CAR.

8

65 `\expandafter\meaning\csname\reserved@a\endcsname'.\MessageBreak
66 This\space original\space definition\space will\space be\space lost}%
67 {If\space you\space need\space a\space command\space with\space
68 this\space definition,\space you\space must\space use\space a\space
69 different\space name.}}%
70 }
71 \let\widthof\ignorespaces
72 \let\heightof\ignorespaces
73 \let\depthof\ignorespaces
74 \let\totalheightof\ignorespaces

\calc@textsize The presence of the above four commands invokes this code, where we must dis-
tinguish them from each other. This implementation is somewhat optimized by
using low-level code from the commands \settowidth, etc.8

Within the text argument we must restore the normal meanings of the four
user-level commands since arbitrary material can appear in here, including further
uses of calc.

75 \def\calc@textsize #1#2{%
76 \begingroup
77 \let\widthof\wd
78 \let\heightof\ht
79 \let\depthof\dp
80 \def\totalheightof{\ht\dp}%

We must expand the argument one level if it’s \totalheightof and it doesn’t
hurt the other three.

81 \expandafter\@settodim\expandafter{#1}%
82 {\global\calc@A}%
83 {%
84 \let\widthof\ignorespaces
85 \let\heightof\ignorespaces
86 \let\depthof\ignorespaces
87 \let\totalheightof\ignorespaces
88 #2}%
89 \endgroup
90 \calc@post@scan}

\calc@post@scan
\@calc@post@scan

The macro \calc@post@scan is called right after a value has been read. At this
point, a binary operator, a sequence of right parentheses, an optional \relax,
and the end-of-expression mark (‘!’) is allowed.9 Depending on our findings, we
call a suitable macro to generate the corresponding TEX code (except when we
detect the end-of-expression marker: then scanning ends, and control is returned
to \calc@assign@generic).

This macro may be optimized by selecting a different order of \ifx-tests. The
test for ‘!’ (end-of-expression) is placed first as it will always be performed: this
is the only test to be performed if the expression consists of a single 〈numeric〉.
This ensures that documents that do not use the extra expressive power provided
by the calc package only suffer a minimum slowdown in processing time.

91 \def\calc@post@scan#1{%
92 \expandafter\@calc@post@scan\romannumeral-`\a#1}
93 \def\@calc@post@scan#1{%
94 \ifx#1!\let\calc@next\endgroup \else
95 \ifx#1+\let\calc@next\calc@add \else
96 \ifx#1-\let\calc@next\calc@subtract \else
97 \ifx#1*\let\calc@next\calc@multiplyx \else
98 \ifx#1/\let\calc@next\calc@dividex \else
99 \ifx#1)\let\calc@next\calc@close \else

100 \ifx#1\relax\let\calc@next\calc@post@scan \else
101 \def\calc@next{\calc@error#1}%

8It is based on suggestions by Donald Arseneau and David Carlisle.
9Is ! a good choice, CAR?

9

102 \fi
103 \fi
104 \fi
105 \fi
106 \fi
107 \fi
108 \fi
109 \calc@next}

\calc@add
\calc@subtract

\calc@generic@add
\calc@addAtoB

\calc@subtractAfromB

The replacement code for the binary operators ‘+’ and ‘-’ follow a common pattern;
the only difference is the token that is stored away by \aftergroup. After this
replacement code, control is transferred to \calc@pre@scan.
110 \def\calc@add{\calc@generic@add\calc@addAtoB}
111 \def\calc@subtract{\calc@generic@add\calc@subtractAfromB}
112 \def\calc@generic@add#1{\endgroup\global\calc@A\calc@B\endgroup
113 \begingroup\aftergroup#1\begingroup\aftergroup\calc@initB
114 \calc@pre@scan}
115 \def\calc@addAtoB{\advance\calc@B\calc@A}
116 \def\calc@subtractAfromB{\advance\calc@B-\calc@A}

\real
\ratio

\calc@ratio@x
\calc@real@x

The multiplicative operators, ‘*’ and ‘/’, may be followed by a \real, \ratio,
\minof, or \maxof token. The last two of these control sequences are defined
by calc as they are needed by the scanner for addition or subtraction while the
first two are not defined (at least not by the calc package); this, unfortunately,
leaves them highly non-robust. We therefore equate them to \relax but only
if they have not already been defined10 (by some other package: dangerous but
possible!); this will also make them appear to be undefined to a LATEX user (also
possibly dangerous).
117 \ifx\real\@undefined\let\real\relax\fi
118 \ifx\ratio\@undefined\let\ratio\relax\fi

In order to test for \real or \ratio, we define these two.11

119 \def\calc@ratio@x{\ratio}
120 \def\calc@real@x{\real}

\calc@multiplyx
\calc@dividex

Test which operator followed * or /. If none followed it’s just a standard multi-
plication or division.
121 \def\calc@multiplyx#1{\def\calc@tmp{#1}%
122 \ifx\calc@tmp\calc@ratio@x \let\calc@next\calc@ratio@multiply \else
123 \ifx\calc@tmp\calc@real@x \let\calc@next\calc@real@multiply \else
124 \ifx\maxof#1\let\calc@next\calc@maxmin@multiply \else
125 \let\calc@next\calc@multiply
126 \fi
127 \fi
128 \fi
129 \calc@next#1}
130 \def\calc@dividex#1{\def\calc@tmp{#1}%
131 \ifx\calc@tmp\calc@ratio@x \let\calc@next\calc@ratio@divide \else
132 \ifx\calc@tmp\calc@real@x \let\calc@next\calc@real@divide \else
133 \ifx\maxof#1\let\calc@next\calc@maxmin@divide \else
134 \let\calc@next\calc@divide
135 \fi
136 \fi
137 \fi
138 \calc@next#1}

\calc@multiply
\calc@divide

\calc@generic@multiply
\calc@multiplyBbyA

\calc@divideBbyA

The binary operators ‘*’ and ‘/’ also insert code as determined above. Moreover,
the meaning of \calc@A and \calc@B is changed as factors following a multiplica-
tion and division operator always have integer type; the original meaning of these
macros will be restored when the factor has been read and evaluated.

10Suggested code from David Carlisle.
11May not need the extra names, CAR?

10

139 \def\calc@multiply{\calc@generic@multiply\calc@multiplyBbyA}
140 \def\calc@divide{\calc@generic@multiply\calc@divideBbyA}
141 \def\calc@generic@multiply#1{\endgroup\begingroup
142 \let\calc@A\calc@Acount \let\calc@B\calc@Bcount
143 \aftergroup#1\calc@pre@scan}
144 \def\calc@multiplyBbyA{\multiply\calc@B\calc@Acount}
145 \def\calc@divideBbyA{\divide\calc@B\calc@Acount}

Since the value to use in the multiplication/division operation is stored in the
\calc@Acount register, the \calc@multiplyBbyA and \calc@divideBbyA macros
use this register.

\calc@close \calc@close generates code for a right parenthesis (which was derived to be
“}A ⇐ B}A ⇐ B” in Section 4). After this code, the control is returned to
\calc@post@scan in order to look for another right parenthesis or a binary oper-
ator.
146 \def\calc@close
147 {\endgroup\global\calc@A\calc@B
148 \endgroup\global\calc@A\calc@B
149 \calc@post@scan}

5.5 Calculating a ratio
\calc@ratio@multiply
\calc@ratio@divide

When \calc@post@scan encounters a \ratio control sequence, it hands control
to one of the macros \calc@ratio@multiply or \calc@ratio@divide, depending
on the preceding character. Those macros both forward the control to the macro
\calc@ratio@evaluate, which performs two steps: (1) it calculates the ratio,
which is saved in the global macro token \calc@the@ratio; (2) it makes sure that
the value of \calc@B will be multiplied by the ratio as soon as the current group
ends.

The following macros call \calc@ratio@evaluate which multiplies \calc@B
by the ratio, but \calc@ratio@divide flips the arguments so that the ‘opposite’
fraction is actually evaluated.
150 \def\calc@ratio@multiply\ratio{\calc@ratio@evaluate}
151 \def\calc@ratio@divide\ratio#1#2{\calc@ratio@evaluate{#2}{#1}}

\calc@Ccount
\calc@numerator

\calc@denominator

We shall need two registers for temporary usage in the calculations. We can save
one register since we can reuse \calc@Bcount.
152 \newcount\calc@Ccount
153 \let\calc@numerator=\calc@Bcount
154 \let\calc@denominator=\calc@Ccount

\calc@ratio@evaluate Here is the macro that handles the actual evaluation of ratios. The procedure is
this: First, the two expressions are evaluated and coerced to integers. The whole
procedure is enclosed in a group to be able to use the registers \calc@numerator
and \calc@denominator for temporary manipulations.
155 \def\calc@ratio@evaluate#1#2{%
156 \endgroup\begingroup
157 \calc@assign@dimen\calc@numerator{#1}%
158 \calc@assign@dimen\calc@denominator{#2}%

Here we calculate the ratio. First, we check for negative numerator and/or denom-
inator; note that TEX interprets two minus signs the same as a plus sign. Then,
we calculate the integer part. The minus sign(s), the integer part, and a decimal
point, form the initial expansion of the \calc@the@ratio macro.
159 \gdef\calc@the@ratio{}%
160 \ifnum\calc@numerator<0 \calc@numerator-\calc@numerator
161 \gdef\calc@the@ratio{-}%
162 \fi
163 \ifnum\calc@denominator<0 \calc@denominator-\calc@denominator
164 \xdef\calc@the@ratio{\calc@the@ratio-}%

11

165 \fi
166 \calc@Acount\calc@numerator
167 \divide\calc@Acount\calc@denominator
168 \xdef\calc@the@ratio{\calc@the@ratio\number\calc@Acount.}%

Now we generate the digits after the decimal point, one at a time. When TEX
scans these digits (in the actual multiplication operation), it forms a fixed-point
number with 16 bits for the fractional part. We hope that six digits is sufficient,
even though the last digit may not be rounded correctly.
169 \calc@next@digit \calc@next@digit \calc@next@digit
170 \calc@next@digit \calc@next@digit \calc@next@digit
171 \endgroup

Now we have the ratio represented (as the expansion of the global macro
\calc@the@ratio) in the syntax 〈decimal constant〉 [1, page 270]. This is fed
to \calc@multiply@by@real that will perform the actual multiplication. It is
important that the multiplication takes place at the correct grouping level so that
the correct instance of the B register will be used. Also note that we do not need
the \aftergroup mechanism in this case.
172 \calc@multiply@by@real\calc@the@ratio
173 \begingroup
174 \calc@post@scan}

The \begingroup inserted before the \calc@post@scan will be matched by the
\endgroup generated as part of the replacement of a subsequent binary operator
or right parenthesis.

\calc@next@digit

175 \def\calc@next@digit{%
176 \multiply\calc@Acount\calc@denominator
177 \advance\calc@numerator -\calc@Acount
178 \multiply\calc@numerator 10
179 \calc@Acount\calc@numerator
180 \divide\calc@Acount\calc@denominator
181 \xdef\calc@the@ratio{\calc@the@ratio\number\calc@Acount}}

\calc@multiply@by@real In the following code, it is important that we first assign the result to a dimen
register. Otherwise, TEX won’t allow us to multiply with a real number.
182 \def\calc@multiply@by@real#1{\calc@Bdimen #1\calc@B \calc@B\calc@Bdimen}

(Note that this code wouldn’t work if \calc@B were a muglue register. This is
the real reason why the calc package doesn’t support muglue expressions. To
support muglue expressions in full, the \calc@multiply@by@real macro must
use a muglue register instead of \calc@Bdimen when \calc@B is a muglue register;
otherwise, a dimen register should be used. Since integer expressions can appear
as part of a muglue expression, it would be necessary to determine the correct
register to use each time a multiplication is made.)

5.6 Multiplication by real numbers
\calc@real@multiply

\calc@real@divide
This is similar to the \calc@ratio@evaluate macro above, except that it is con-
siderably simplified since we don’t need to calculate the factor explicitly.
183 \def\calc@real@multiply\real#1{\endgroup
184 \calc@multiply@by@real{#1}\begingroup
185 \calc@post@scan}
186 \def\calc@real@divide\real#1{\calc@ratio@evaluate{1pt}{#1pt}}

5.7 max and min operations
\maxof
\minof

With version 4.2, the max and min operators were added to calc. The user func-
tions for them are \maxof and \minof respectively. These macros are internally

12

similar to \widthof etc. in that they are unexpandable and easily recognizable by
the scanner.
187 \let\maxof\@@italiccorr
188 \let\minof\@@italiccorr

\calc@Cskip
\ifcalc@count@

The max and min operations take two arguments so we need an extra 〈skip〉
register. We also add a switch for determining when to perform a 〈skip〉 or a
〈count〉 assignment.
189 \newskip\calc@Cskip
190 \newif\ifcalc@count@

\calc@maxmin@addsub
\calc@maxmin@generic

When doing addition or subtraction with a max or min operator, we first check
if \calc@A is a 〈count〉 register or not and then set the switch. Then call the
real function which sets \calc@A to the desired value and continue as usual with
\calc@post@scan.
191 \def\calc@maxmin@addsub#1#2#3{\begingroup
192 \ifx\calc@A\calc@Acount%
193 \calc@count@true
194 \else
195 \calc@count@false
196 \fi
197 \calc@maxmin@generic#1{#2}{#3}%
198 \endgroup
199 \calc@post@scan
200 }

Check the switch and do either 〈count〉 or 〈skip〉 assignments. Note that \maxof
and \minof are not set to > and < until after the assignments, which ensures we
can nest them without problems. Then set \calc@A to the correct one.
201 \def\calc@maxmin@generic#1#2#3{%
202 \begingroup
203 \ifcalc@count@
204 \calc@assign@count\calc@Ccount{#2}%
205 \calc@assign@count\calc@Bcount{#3}%
206 \def\minof{<}\def\maxof{>}%
207 \global\calc@A\ifnum\calc@Ccount#1\calc@Bcount
208 \calc@Ccount\else\calc@Bcount\fi
209 \else
210 \calc@assign@skip\calc@Cskip{#2}%
211 \calc@assign@skip\calc@Bskip{#3}%
212 \def\minof{<}\def\maxof{>}%
213 \global\calc@A\ifdim\calc@Cskip#1\calc@Bskip
214 \calc@Cskip\else\calc@Bskip\fi
215 \fi
216 \endgroup
217 }

\calc@maxmin@divmul
\calc@maxmin@multiply

\calc@maxmin@divide

When doing division or multiplication we must be using 〈count〉 registers so we
set the switch. Other than that it is almost business as usual when multiplying or
dividing. #1 is the instruction to either multiply or divide \calc@B by \calc@A,
#2 is either \maxof or \minof which is waiting in the input stream and #3 and #4
are the calc expressions. We end it all as usual by calling \calc@post@scan.
218 \def\calc@maxmin@divmul#1#2#3#4{%
219 \endgroup\begingroup
220 \calc@count@true
221 \aftergroup#1%
222 \calc@maxmin@generic#2{#3}{#4}%
223 \endgroup\begingroup
224 \calc@post@scan
225 }

13

The two functions called when seeing a * or a /.
226 \def\calc@maxmin@multiply{\calc@maxmin@divmul\calc@multiplyBbyA}
227 \def\calc@maxmin@divide {\calc@maxmin@divmul\calc@divideBbyA}

6 Reporting errors
\calc@error If \calc@post@scan reads a character that is not one of ‘+’, ‘-’, ‘*’, ‘/’, or ‘)’, an

error has occurred, and this is reported to the user. Violations in the syntax of
〈numeric〉s will be detected and reported by TEX.
228 \def\calc@error#1{%
229 \PackageError{calc}%
230 {`#1' invalid at this point}%
231 {I expected to see one of: + - * /)}}

7 Other additions
\@settodim

\settototalheight
The kernel macro \@settodim is changed so that it runs through a list containing
\ht, \wd, and \dp and than advance the length one step at a time. We just have
to use a scratch register in case the user decides to put in a \global prefix on the
length register. A search on the internet confirmed that some people do that kind
of thing.
232 \def\@settodim#1#2#3{%
233 \setbox\@tempboxa\hbox{{#3}}%
234 \dimen@ii=\z@
235 \@tf@r\reserved@a #1\do{%
236 \advance\dimen@ii\reserved@a\@tempboxa}%
237 #2=\dimen@ii
238 \setbox\@tempboxa\box\voidb@x}

Now the user level macro is straightforward.
239 \def\settototalheight{\@settodim{\ht\dp}}

That’s the end of the package.
240 〈/package〉

References
[1] D. E. Knuth. The TEXbook (Computers & Typesetting Volume A). Addison-

Wesley, Reading, Massachusetts, 1986.

[2] L. Lamport. LATEX, A Document Preparation System. Addison-Wesley, Read-
ing, Massachusetts, Second edition 1994/1985.

Change History

v4.0d
General: Contributed to tools dis-

tribution 1
\calc@error: Use \PackageError

for error messages (DPC) 14
v4.0e

\calc@error: typo fixed 14
v4.1a

\@calc@pre@scan: Added code for
text sizes: CAR 8

General: Added text sizes: CAR . . 1
Attempt to make user-syntax ro-
bust: CAR 1

\calc@error: Improved, I hope, er-
ror message: CAR 14

\calc@real@x: Added macro set-
ups to make them robust but
undefined: CAR 10

\calc@textsize: Added macro:
CAR 9

14

\depthof: Added macros: CAR . . 8
v4.1b

\@calc@pre@scan: Correction to ifx
true case 8

v4.2
\@calc@post@scan: Added macro

and force expansion 9
\@calc@pre@scan: Added \maxof

and \minof operations 8
Added macro and force expan-
sion . 8

\@settodim: Changed kernel macro 14
\addtocounter: Fix to make

\addtocounter work with
amstext 7

\calc@assign@generic: Re-
moved a few redundant
\expandafters 6

\calc@dividex: Added max and
min operations 10

\calc@maxmin@divide: Macros
added 13

\calc@maxmin@generic: Macros
added 13

\calc@multiplyx: Added max and
min operations 10

\calc@textsize: Extended macro
with \totalheightof 9

\minof: Added macros 12
\settototalheight: Added macro 14
\steptocounter: Avoid redundant

processing. PR/3795 7
\totalheightof: Added infor-

mative message for reserved
macros 8

Added macro 8
v4.3

\@calc@post@scan: Discard ter-
minating \relax tokens and
avoid extra error message from
\calc@next 9

15

	1 Introduction
	2 Informal description
	3 Formal syntax
	4 The evaluation scheme
	5 Implementation
	5.1 Getting started
	5.2 Assignment macros
	5.3 The LaTeX interface
	5.4 The scanner
	5.5 Calculating a ratio
	5.6 Multiplication by real numbers
	5.7 max and min operations

	6 Reporting errors
	7 Other additions
	References
	Change History

