
The bm package∗†

David Carlisle with support by Frank Mittelbach

2016/07/07

This file is maintained by the LATEX Project team.
Bug reports can be opened (category tools) at
http://latex-project.org/bugs.html.

1 Introduction

This package defines commands to access bold math symbols. The basic command
is \bm which may be used to make the math expression in its argument be typeset
using bold fonts.

The syntax of \bm is:
\bm{〈math expression〉}
So $\alpha \not= \bm{\alpha}$ produces α 6= α.

\bm goes to some trouble to preserve the spacing, so that for instance \bm<

is a bold < but with the correct \mathrel spacing that TEX gives to <. The
calculations that TEX needs to do for \bm can be quite involved and so a definition
form is provided.

\DeclareBoldMathCommand[〈math version〉]{〈cmd〉}{〈math expression〉}
Defines \cmd to be the bold form of the math expression. The 〈math version〉

defaults to ‘bold’ (i.e., \boldmath).
For relatively simple expressions, the resulting definitions are very efficient, for

instance after:
\DeclareBoldMathCommand\balpha{\alpha}

\balpha is a single ‘mathchardef’ token producing a bold alpha, and so is just as
fast to execute as \alpha.

The above command is mainly intended for use in packages. For occasional
use in LATEX documents, and for compatibility with the plain TEX support for the
mathtime fonts, a ‘user-level’ version, \bmdefine is provided that is equivalent to:
\DeclareBoldMathCommand[bold].

If there is a ‘heavy’ math version defined (usually accessed by a user-command
\heavymath) then a similar command \hm is defined which access these ‘ultra bold’
fonts. Currently this is probably only useful with the ‘mathtime plus’ font collec-
tion. Definitions of commands that use these fonts may be made by specifying the
optional argument ‘heavy’ to \DeclareBoldMathCommand. Again an abbreviation,

∗This file has version number v1.2b, last revised 2016/07/07.
†Development of this package was commissioned by Y&Y.

1

http://latex-project.org/bugs.html


\hmdefine, is provided, equivalent to:
\DeclareBoldMathCommand[heavy].

The command names (but not the implementation) are taken from Michael
Spivak’s macros to support the mathtime fonts for plain TEX. In those original
macros, the syntax for \bmdefine was \bmdefine\balpha{\bm\alpha} (with a
nested \bm). This syntax also works with this package.

2 Font allocation

In order to access bold fonts in the simplest and quickest possible manner, the
package normally allocates symbol fonts for bold (and possibly heavy) fonts into
the ‘normal’ math version. By default it allocates at most four fonts for \bm and
at most three fonts for \hm. This means that if the mathtime plus font set is
being used, seven additional symbol fonts will be used, in addition to the basic
four that LATEX already declares. The mathtime package also declares an extra
symbol font, bringing the total to twelve. The maximum number of symbol and
math alphabet fonts that can be used in a math version is sixteen. So the above
allocation scheme does not leave room for many extra math symbols (such as the
AMS symbols) or math alphabets (such as \mathit).

Before loading the bm package you may define \bmmax and \hmmax to be suit-
able values, for instance you may want to set \newcommand\hmmax{0} if you will
not be using \hm much, but you do have a heavy math version defined.

Even if \bmmax is set to zero, \bm will still access the correct bold fonts (by
accessing the fonts via \boldmath) but this method is slower, and does not work
with delimiters. Delimiters can only be made bold if the bold font has been
allocated.

Conversely if you have a non standard font set that makes available extra math
delimiters and accents in bold and medium weights you may want to increase
\bmmax so that fonts are allocated for your font set.

3 Features

In most cases this package should work in a fairly self explanatory way, but there
are some things that might not be obvious.

3.1 Interaction with Math Alphabet Commands

As mentioned above, \bm goes to some trouble to try to make a command that is
just like its argument, but using a bold font. This does not always produce the
effect that you might expect.

$1 g \bm{g}$

$2 \mathrm{g \bm{g}}$

$3 {g} \bm{{g}}$

$4 \mathrm{{g} \bm{{g}}}$

$5 \mathrm{g} \bm{\mathrm{g}}$

produces the following:

1gg 2gg 3gg 4gg 5gg

2



In math mode ‘g’ is effectively a command that produces the letter ‘g’ from the
‘letters’ alphabet, unless a Math Alphabet command is in effect, in which case the
‘g’ comes from the specified alphabet. \bm{g} makes an equivalent command, but
which defaults to a bold letter alphabet. So in the first example \bm{g} is bold
math italic, but in the second example the \mathrm applies to both g and \bm{g}

in the same way, and so they are both roman.
\bm only inspects the ‘top level’ definition of a command, for more complicated

expressions, and anything inside a { } group, \bm forces bold fonts by essentially
the same (slow) technique used by the AMS \boldsymbol command (but \bm still
takes more care of the spacing). So the third example produces identical output
to the first (but TEX takes more time producing it).

In the fourth example the \mathrm{\bm{g}} is essentially equivalent to
\mathrm{\mbox{\boldmath$g$}}. Currently math alphabet settings are not
passed down to ‘nested’ math lists, and so in this example, the \mathrm has
no effect, and a bold math italic g is obtained.

Similarly the last example is equivalent to $\mbox{\boldmath$\mathrm{g}$}}

and so in this case, one obtains a bold roman g.

3.2 Delimiters

TEX can treat character tokens in two1 ways. If there is a preceding \left or
\right it can treat them as a delimiter, otherwise it can treat them as a standard
character. For example \left<\right> produces 〈〉, which is totally different from
<>, which produces <>.

TEX can only do this for character tokens. Commands such as \langle do not
act in this way. This means that \bm has to decide whether to treat a character as a
delimiter or not. The rule it uses is, it makes a delimiter command for a character
if the previous token in the argument was \left or \right. So \left\bm{<} does
not work, but \bm{\left<} does.

3.3 Command Arguments

Normally if a command takes arguments the full command, including any argu-
ments, should be included in \bm.

So \bm{\overbrace{abc}} (producing
︷︸︸︷
abc) not \bm{\overbrace}{abc}. If

you do not include all the arguments you will typically get the error message:
Runaway argument?

! Forbidden control sequence found while scanning use of ...

However commands defined in terms of the TEX accent and radical primitives
may be used without their arguments. So \bm{\hat}{a} produces â, a bold accent
over a non-bold a (compare â) whereas \bm{\hat{a}} makes both the a and the
accent bold, â. Similarly, although the LATEX command \sqrt must be used with
its arguments, \sqrtsign may be used as in \bm\sqrtsign{abc} to produce

√
abc

rather than
√
abc or

√
abc

If you really need to make a command with arguments use bold fonts without
making all of the arguments bold, you can explicitly reset the math version in the
argument, eg:
\sqrt{xyz} \bm{\sqrt{xyz}} \bm{\sqrt{\mbox{\unboldmath$xyz$}}}√

xyz
√
xyz

√
xyz

1Well more than two really.

3



3.4 Bold fonts

This package interrogates the font allocations of the bold and heavy math versions,
to determine which bold fonts are available. This means that it is best to load the
package after any packages that define new symbol fonts, or (like the mathtime
package) completely change the symbol font allocations.

If no bold font appears to be available for a particular symbol, \bm will use ‘poor
man’s bold’ that is, overprinting the same character in slightly offset positions to
give an appearance of boldness.

In the standard Computer Modern font set, there is no bold ‘large symbols’
font. In the ‘mathptm’ and (standard) mathtime font sets there are no bold math
fonts. In the ‘mathtime plus’ font set there are suitable fonts for bold and heavy
math setting, and so \bm and \hm work well. Similarly in the basic Lucida New
Math font set there are no bold math fonts, so \bm will use ‘poor man’s bold.
However if the Lucida Expert set is used, Then \bm will detect, and use the bold
math fonts that are available.

As discussed above, one may set \bmmax higher or lower than its default value
of four to control the font allocation system. Finer control may be gained by
explicitly declaring bold symbol fonts. Suppose you have a symbol font ‘xyz’ that
is available in medium and bold weights, then you would declare this to LATEX via:
\DeclareSymbolFont{extras} {OMS}{xyz}{m}{n}

\SetSymbolFont{extras}{bold}{OMS}{xyz}{bx}{n}

At this point the symbols will be available in the normal math version, and their
bold variants in \boldmath. If you also declare:
\DeclareSymbolFont{boldextras}{OMS}{xyz}{bx}{n}

That is, declare a symbol font whose name is formed by prefixing ‘bold’ (or ‘heavy’)
to an existing symbol font, then \bm (or \hm) will use this font directly, rather
then accessing the ‘extras’ symbol font via \boldmath.

3.5 Strange failures

In order to get the correct spacing, \bm has to ‘investigate’ the definition of the
commands in its argument. It is possible that some strange constructions could
‘confuse’ this investigation. If this happens then LATEX will almost certainly stop
with a strange error. This should not happen with any of the math symbols defined
in the base LATEX or AMS distributions, or any commands defined in terms of those
symbols using normal LATEX math constructs. However if some command does fail
to work inside \bm you should always be able to surround it with an extra set of
braces \bm{{\cmd}} rather than \bm{\cmd}. \bm will not then attempt to set the
correct spacing, so you may need to set it explicitly, for instance, for a relation,
\bm{\mathrel{\cmd}}.

3.6 AMS package amsbsy

The \bm command shares some functionality with the \boldsymbol command from
the AMS LATEX collection. To aid in moving documents between these two pack-
ages, this package defines \boldsymbol and \heavysymbol as alternative names
for \bm and \hm.

4



4 Implementation

The commands \bm and \hm work by defining a number of additional symbol fonts
corresponding to the standard ones ‘operators’, ‘letters’, ‘symbols’, and ‘largesym-
bols’. The names for these symbols fonts are produced by prefixing the usual name
with ‘bold’ or ‘heavy’.

For maximum flexibility we get the font definitions by looking in the corre-
sponding math versions, i.e., into \mv@bold and if defined into \mv@heavy.

1 〈*package〉

\bm@table

\bm@boldtable

\bm@heavytable

The table, \bm@table, (which is locally \let to either the bold or heavy version)
defines, for each 〈math group〉 (〈fam〉), the ‘offset’ to the bold version of the
specified symbol font. If there is no bold symbol font defined, the offset will be
set to zero if there is a bold font assigned to this slot in the bold math version, or
−1 if the font in the bold math version is the same as the one in the normal math
version. In this case a ‘poor man’s bold’ system of overprinting is used to achieve
boldness where this is possible.

The settings are made at the time this package is read, and so it is best to load
this package late, after any font loading packages have been loaded. Symbol fonts
loaded after this package will get the offset of zero, so they will still be made bold
by \bm as long as an appropriate font is declared for the bold math version.

\bm@boldtable and \bm@heavytable are set up using very similar code, which
is temporarily defined to \bm, to save wasting a csname. Similarly \bm@pmb. . .
(which will be defined later) are used as scratch macros.

The general plan. Run through the fonts allocated to the normal math version.
Ignore 〈math alphabet〉 allocations2 but for each math symbol font, look in the
math version specified by #1 (bold or heavy). If the font there is different, then
allocate a new symbol font in the normal math version to access that bold font and
place the numerical difference between the allocations of the bold and normal font
into the table being built (\bm@boldtable, if #1 is bold). If the symbol allocation
is already greater than \bmmax do not allocate a new symbol font, but rather set
the offset in the table to zero. \bm will detect this, and use \boldmath on its
argument in this case, so the bold font will be accessed but more slowly than
using a direct access to a bold font allocated into the normal math version. If
the font allocated in the bold math version is the same as the font in the normal
math version, set the offset to −1, which is a flag value that causes \bm to use
‘poor man’s bold’ overprinting three copies of the symbol, offset slightly to give
an appearance of boldness.

Fonts containing delimiters and math accents must be allocated into the normal
math version if they are to be used with \bm. (In these cases \bm will produce the
normal weight symbol, rather than using \boldmath or poor man’s bold.)

2 \def\bm#1#2{%

This code can not work inside a group, as that would affect any symbol font
allocations, so instead use some scratch macros to save and restore the definitions
of commands we need to change locally.

3 \let\bm@pmb\install@mathalphabet

4 \let\bm@pmb@\getanddefine@fonts

5 \let\bm@pmb@@\or

2For now?

5



6 \edef\bm@general{\f@encoding/\f@family/\f@series/\f@shape/\f@size}%

#2 specifies the maximum number of fonts to allocate (either \bmmax or
\hmmax). First check against \count18 that there are that many slots left, and if
not reduce accordingly. Put the resulting value in \@tempcnta.

7 \@tempcnta#2%

8 \count@-\count18%

9 \advance\count@-\@tempcnta

10 \advance\count@15\relax

11 \ifnum\count@<\z@

12 \advance\@tempcnta\count@

13 \fi

Make \or non-expandable, so we can build an \ifcase bit-by-bit in a sequence
of \edefs.

14 \let\or\relax

Initialise the table (to \@gobble to remove the first \or).

15 \expandafter\let\csname bm@#1table\endcsname\@gobble

Helper macro that adds the next entry to the table being built.

16 \def\bm@define##1{%

17 \expandafter\xdef\csname bm@#1table\endcsname{%

18 \csname bm@#1table\endcsname\or##1}}%

Each symbol font is recorded in the math version list by a sequence such as:
\getanddefine@fonts \symsymbols \OMS/cmsy/m/n

Where the first argument is a chardef token carrying the number allocated (to
symbols, in this example), and the second argument is a csname whose name
denotes the font used. So locally redefine \getanddefine@fonts to compare #2

with the name in the appropriate slot in the bold math version.

19 \def\getanddefine@fonts##1##2{%

20 \def\@tempa{##2}%

21 \def\@tempb####1##1####2####3\@nil{\def\@tempb{####2}}%

22 \expandafter\expandafter\expandafter

23 \@tempb\csname mv@#1\endcsname\@nil

Now \@tempa and \@tempb contain the names of the fonts allocated to this
slot in the two math versions.

24 \ifx\@tempa\@tempb

If they are the same, set this offset to −1, as a flag to use poor man’s bold.

25 \bm@define\m@ne

26 \else

Else make a new name by adjoining #1 to the name of the symbol font eg,
\symboldsymbols to match \symsymbols. If that font has already been allo-
cated, or if \@tempcnta is positive so we can allocate a new slot for this font, then
the table will be set with the offset between the two fonts. otherwise set the offset
to zero (so \boldmath will be used to access the font).

27 \edef\@tempa{sym#1\expandafter\@gobblefour\string##1}%

28 \ifnum\@tempcnta<%

29 \expandafter\ifx\csname\@tempa\endcsname\relax

30 \@ne

31 \else

6



32 \m@ne

33 \fi

34 \bm@define\z@

35 \else

If the font is not yet allocated, allocate it now, using an internal hack into
\DeclareMathSymbolFont.

However before allocating it look in the bold math version to see if it is the
same, and if so use that. For example with Mathtime the ‘operators’ font in the
‘heavy’ math version is different from that in ‘normal’, but it is the same as the
font in ‘bold’ (Times bold). So rather than allocate \symheavyoperators just set
it equal to \symboldoperators.

36 \expandafter\ifx\csname\@tempa\endcsname\relax

37 \begingroup

38 \escapechar\m@ne

39 \edef\@tempb{\endgroup

40 \noexpand\split@name

41 \expandafter\string\@tempb}%

42 \@tempb/\@nil

43 \expandafter\ifx

44 \csname symbold\expandafter\@gobblefour\string##1\endcsname

45 \relax

If no font has been allocated for \bm yet, then allocate it now.

46 \expandafter\new@mathgroup\csname\@tempa\endcsname

47 \expandafter\new@symbolfont\csname\@tempa\endcsname

48 \f@encoding\f@family\f@series\f@shape

Reduce by one the number of fonts we can still allocate.

49 \advance\@tempcnta\m@ne

50 \else

Else do a similar look into the bold mathgroup. Use \bm@expand as a scratch
macro to save on string space.

51 \def\bm@expand####1##1####2####3\@nil{\def\bm@expand{####2}}%

52 \expandafter\expandafter\expandafter

53 \bm@expand\csname mv@bold\endcsname\@nil

54 \ifx\bm@expand\@tempb

If the font just found (in heavy) is the same as the font in bold use the slot (in
normal) previously allocated for the bold font. (That clear?)

55 \expandafter\let\csname\@tempa\expandafter\endcsname

56 \csname symbold\expandafter

57 \@gobblefour\string##1\endcsname

58 \else

Otherwise allocate a new slot for it.

59 \expandafter\new@mathgroup\csname\@tempa\endcsname

60 \expandafter\new@symbolfont\csname\@tempa\endcsname

61 \f@encoding\f@family\f@series\f@shape

62 \advance\@tempcnta\m@ne

63 \fi

64 \fi

7



65 \else

If the font has been allocated already, use the existing allocation.

66 \PackageInfo{bm}%

67 {Symbol font \@tempa\space already defined.\MessageBreak

68 Not overwriting it}%

69 \fi

Whether the font has just been allocated, or whether it was previously allocated,
compute the offset and add it to the table.

70 \count@\csname\@tempa\endcsname

71 \advance\count@-##1%

72 \bm@define{\the\count@\relax}%

73 \fi

74 \fi}%

The math version list also contains information about math alphabet com-
mands, but we want to ignore those here, so . . .

75 \let\install@mathalphabet\@gobbletwo

Having set up the local definitions, execute the list for the normal math version.

76 \mv@normal

So now the offsets are all entered into the table, separated by \or. Finish off
the definition by making this an \ifcase. Add a default value of zero, so that any
symbol fonts declared later will also work, as long as a bold version is assigned to
the bold math version.

77 \expandafter\xdef\csname bm@#1table\endcsname{%

78 \noexpand\ifcase\@tempcnta

79 \csname bm@#1table\endcsname

80 \noexpand\else

81 \z@

82 \noexpand\fi}%

Put things back as they were.

83 \expandafter\split@name\bm@general\@nil

84 \let\install@mathalphabet\bm@pmb

85 \let\getanddefine@fonts\bm@pmb@

86 \let\or\bm@pmb@@}

\bmmax To save declaring too many symbol fonts, do not auto-declare any more than
\bmmax bold symbol fonts into the normal math version. Any bold fonts not so
allocated will be accessed via \boldmath which is slower and doesn’t work for
delimiters and accents. It may be set in the preamble with \newcommand but use
\chardef here for a slight efficiency gain.

If this is set to a higher value before this package is loaded, keep that value.

87 \ifx\bmmax\@undefined

88 \chardef\bmmax=4

89 \fi

If there is no bold math version, It is very easy to set up the table, no need to
use all the tricky code above. Also, at the end of the package redefine the internal
macro that \bm uses to call \boldmath, to use poor man’s bold instead.

90 \ifx\mv@bold\@undefined

91 \def\bm@boldtable{\m@ne}

8



92 \AtEndOfPackage{%

93 \def\bm@gr@up#1#2{%

94 \bm@pmb{#2}}}

95 \else

Otherwise use the definition of \bm above to set up \bm@boldtable by comparing
the fonts available in the normal and bold math versions.

96 \bm{bold}\bmmax

\mathbf As the bold font has been defined as a symbol font, make \mathbf access that
rather than have it allocate a new math group for the same font. (Just in case
there were no free slots wrap this in an extra test.)

97 \@ifundefined{symboldoperators}

98 {}

99 {\DeclareSymbolFontAlphabet\mathbf{boldoperators}}

100 \fi

\hmmax Same for heavy (but default to three this time (enough for mathtime plus, as no
heavy operators font).

101 \ifx\hmmax\@undefined

102 \chardef\hmmax=3

103 \fi

Similarly if there is a heavy math version, set up \bm@heavytable. (If there is
no heavy math version, do nothing here, as \hm will be set to \bm later, once that
is defined.)

104 \ifx\mv@heavy\@undefined

105 \else

106 \bm{heavy}\hmmax

107 \fi

\bm@general \bm is pretty much \bmdefine\bm@command followed by executing \bm@command.
It would in principle be possible to execute the emboldened tokens directly, rather
than building up a macro first, but (as I learned the hard way) it’s difficult to do
this in the midst of all these nested \if constructs. First extract the central bit
of code for \hm \bm \hmdefine and \bmdefine. Note that in the case of the inline
versions they take an argument and brace it, rather than relying on \bm@general

to pick up the argument. This makes the code robust with respect to premature
expansion.

108 \begingroup

109 \catcode‘\’=\active

110 \@firstofone{\endgroup

111 \def\bm@general#1#2#3#4#5{%

112 \begingroup

First locally disable \bm and \hm, as they would mess things up terribly, and the
original Spivak versions used the syntax \bmdefine\balpha{\bm\alpha}.

113 \let\bm\@firstofone

114 \let\hm\@firstofone

Now initialise the commands used to save the tokens constructed.

115 \global\let\bm@command\@empty

116 \let\@let@token\@empty

9



As we want to expand the macros to look at their definition turn off protection.
Otherwise the \protect will be carried over and apply to the wrong token, eg {.

117 \let\protect\@empty

118 \let\@typeset@protect\@empty

Set up either bold or heavy

119 \def\bm@mathchoice{\bm@m@thchoice#1}%

120 \def\bm@group{\bm@gr@up#1}%

121 \let\bm@table#2%

Make sure \left and \right are really non expandable, and not \ifx equal to
anything else.

122 \let\left\holdinginserts

These three save on the number of \ifx tests below.

123 \let\right\left

124 \let\mskip\mkern

125 \let\hskip\kern

Definition of ’ locally modified so as not to use \futurelet in the look ahead,
but to make the \prime available at the top level to be made bold, or heavy or
whatever. ’ is locally active for this definition.

126 \let\bm@prime\copy

127 \def’{\bm@prime\prime\relax}%

For optional argument commands. This expandable version of \@ifnextchar is
not 100% safe, but works for \sqrt unless you put something really strange in the
arguments.

128 \def\@ifnextchar##1##2##3##4{%

129 \if##1##4%

130 \expandafter\@firstoftwo

131 \else

132 \expandafter\@secondoftwo

133 \fi

134 {##2##4}{##3{##4}}}%

For Vladimir Volovich. . .

135 \def\GenericWarning##1##2{%

136 \unvcopy{\GenericWarning{##1}{##2}}}%

137 \def\GenericError##1##2##3##4{%

138 \unvcopy{\GenericError{##1}{##2}{##3}{##4}}}%

For AMS definitions.

139 \let\DN@\copy

140 \let\FN@\copy

141 \let\next@\copy

142 \global\let\bm@first\@empty

For AMS version of \sqrt: don’t expand just wrap in brace group so that it can
be made bold in a safe but slow way. Do the same for internal accent command

Code for AMS accent allows bm to be used (just) with accent but stops the
nested accents stacking correctly, this can be corrected by using an extra brace
group as usual. \bm{{\hat{\hat{F}}}}

143 \ifx\uproot@\undefined\else

144 \def\root##1\of##2{{\root##1\of{##2}}}%

145 \fi

146 \def\mathaccentV##1{\mathaccent"\accentclass@}%

10



For breqn definitions.

147 \let\@ifnext\@ifnextchar

148 \let\measure@lhs\copy

149 \let \rel@break\copy

150 \let \bin@break\copy

151 \let \after@open\copy

152 \let \after@close\copy

Make sure things like \pounds take the ‘math branch’ even in \bmdefine (which
is not executed in math mode).

153 \let\ifmmode\iftrue

We have to ensure that the math alphabets have definitions that correspond the
the “bold” math version we are going to switch to. As these definitions are glob-
ally assigned when a math version is changed it is likely that right now we have
those of the normal math version active. Argument #3 holds either \mv@bold

or \mv@heavy and we execute that after redefining \install@mathalphabet and
\getanddefine@fonts suitably. The definitions are reverted back to their original
the moment the scanning is done

154 \let\install@mathalphabet\def

155 \let\getanddefine@fonts\@gobbletwo

156 #3%

The last redefinition just makes \mathit type commands re-insert themselves
(more or less) as if they are allowed to expand they die horribly if the expansions
are put into \mathchoice and so executed more than once.

157 \def\select@group##1##2##3##4{{%

158 \protect##1{##4}}}%

159 \def\use@mathgroup##1##2##3{{%

160 \protect\use@mathgroup##1{##2}{##3}}}%

So now start looking at the argument.

161 \bm@expand#5\bm@end

162 \endgroup

Finally outside the group either execute \bm@command (for \bm) or save its
definition (for \bmdefine).

163 #4}

End of the \@firstofone above, and the scope of the active ’.

164 }

\bm Set up the bold (rather than heavy) version, and run \bm@command right at the
end, to execute the emboldened argument. The argument is grabbed by the top
level function, and explicitly braced, so that \bm works even if the braces are
omitted round its argument in a ‘moving argument’.

165 \DeclareRobustCommand\bm{%

166 \bm@general\boldmath\bm@boldtable\mv@bold\bm@command}

167 \protected@edef\bm#1{\bm{#1}}

\DeclareBoldMathCommand

\bm@declare

DeclareBoldMathCommand[〈mathversion〉]{〈command〉}{〈math expression〉}
looks like \bm except at the end the specified command is globally defined to be
\bm@command. The 〈mathversion〉 defaults to ‘bold’.

168 \def\DeclareBoldMathCommand{\@testopt\bm@declare{bold}}

11



169 \def\bm@declare[#1]#2{%

170 \expandafter\bm@general

171 \csname #1math\expandafter\endcsname

172 \csname bm@#1table\expandafter\endcsname

173 \csname mv@#1\endcsname

174 {\bm@define#2}}

\bmdefine \bmdefine Shorthand for \DeclareBoldMathCommand[bold].
\bm is empty within the definition, so that either

\bmdefine\balpha{\bm\alpha} or \bmdefine\balpha{\alpha}
may be used. (The former just for compatibility with the original version for plain
TEX).

175 \def\bmdefine{\DeclareBoldMathCommand[bold]}

\hm

\hmdefine

Same again for \hm.

176 \ifx\mv@heavy\@undefined

If there is no heavy math version defined, let \hm be defined as \bm. Currently
there is no warning given, perhaps there should be, or even an error?

177 \let\hm\bm

178 \let\heavymath\boldmath

179 \let\bm@heavytable\bm@boldtable

180 \else

Otherwise define \hm and \hmdefine in direct analogy with the above.

181 \DeclareRobustCommand\hm{%

182 \bm@general\heavymath\bm@heavytable\mv@heavy\bm@command}

183 \protected@edef\hm#1{\hm{#1}}

184 \def\hmdefine{\DeclareBoldMathCommand[heavy]}

185 \fi

\bm@end Normally speaking \outer declarations should be avoided at all costs. (LATEX
redefines all of plain TEX’s allocation macros to be non-outer.) However this is
one place where it seems like a good idea. If a command taking an argument is put
in \bm without its argument, then the \@@end terminating token would be taken
as the argument, and so the rest of the paragraph would be gobbled up and the
LATEX would die horribly. So make the internal terminating token \outer. (The
actual test for termination is made against \@@end not \bm@end as this macro will
be expanded by the look-ahead system.)

186 \outer\def\bm@end{\@@end}

\bm@expand

\bm@exp@nd

\afterassignment trick to fully expand the following tokens until the first non-
expandable token is revealed. This may discard a space token (which is what TEX
is looking for) but that doesn’t matter in math mode. The expansion lookahead
is done twice in case any stray space tokens have crept in.3

187 \def\bm@expand{\afterassignment\bm@exp@nd\count@‘\a}

188 \def\bm@exp@nd{\afterassignment\bm@test\count@‘\a}

3The need for this was noticed while testing \sqrt. The definition of \root inherited from
plain TEX has an anomalous space token, that is normally harmless (just wastes memory), but
which killed earlier versions of this package.

12



\bm@test Normally we will grab the non-expandable token as a macro argument but better
check it is not { first. Save the previous token so we can check later if it was \left,
in which case use the delcode rather than the mathcode if the current token is a
character.

189 \def\bm@test{%

190 \let\bm@previous\@let@token

191 \futurelet\@let@token\bm@test@}

\bm@test@ If looking at a single token, switch to \bm@test@token, else if looking at a { }

group, grab the whole group with \bm@group. A \bgroup token will take the
wrong branch here (currently not trapped).

192 \def\bm@test@{%

193 \ifx\@let@token\bgroup

194 \expandafter\bm@group

195 \else

196 \expandafter\bm@test@token

197 \fi}

\bm@gr@up If faced with a group, If we are in math mode, stick it in a \boldsymbol like con-
struct and then recurse on \bm@expand. Otherwise just use \bfseries\boldmath.
The actual test is deferred till ‘run time’. Here and elsewhere could deal with the
inner list with an inner call to \bm, but that doesn’t seem to gain very much, and
complicates the code quite a bit.

#1 is either \boldmath or \heavymath. Need to add an extra set of explicit
braces around #2 as otherwise the math style commands applied in \mathchoice

might only apply to the first half of an \over construction.

198 \def\bm@gr@up#1#2{%

199 \bm@add{{\bm@gr@@p#1{{#2}}}}}

\bm@gr@@p #1 is either \boldmath or \heavymath.

200 \def\bm@gr@@p#1#2{%

201 \ifmmode

202 \bm@mchoice#1{#2}{#2}{#2}{#2}%

203 \else

204 \bfseries#1#2%

205 \fi}

\bm@test@token If not facing a { } group then test to see what we have. Basic idea: Trap
\mathchardef tokens, character tokens, and calls to \mathchar, \mathaccent,
etc, and change the math-group (fam) to point at the bold version. Other things
just copy straight over to the command being built. (Anything inside a \mathop

or similar will end up being made bold as the \mathop will be copied over, but its
argument will be made bold by the group code above.

206 \def\bm@test@token#1{%

207 \let\bm@next\@empty

Stop here. Note that it is vital that the terminating token is non-expandable
and defined, rather than the usual LATEX terminators \@nil or \@@. (Worse still
would be a ‘quark’ like docstrip’s \qStop.)

208 \ifx#1\@@end

13



\bm@mathchoice uses macro arguments, so need to make the tail recursion
explicit here. All the other cases recurse by way of \afterassignment which
means all the trailing \fi are eaten while making the assignment.

209 \else\ifx#1\mathchoice

210 \let\bm@next\bm@mathchoice

The main point: Find these expressions, and change the mathgroup.

211 \else\ifx#1\mathchar

212 \afterassignment\bm@mathchar\count@

213 \else\ifx#1\mathaccent

214 \afterassignment\bm@mathaccent\count@

215 \else\ifx#1\delimiter

216 \afterassignment\bm@delimiter\count@

217 \else\ifx#1\radical

218 \afterassignment\bm@radical\count@

Need to trap spaces otherwise digits will get turned to bold mathchars.

219 \else\ifx#1\mkern

220 \bm@register#1{\muskip\z@}%

221 \else\ifx#1\kern

222 \bm@register#1\skip@

223 \else\ifx#1\penalty

224 \bm@register#1\count@

\vcopy is a flag to copy the next group unchanged to the result command.

225 \else\ifx#1\unvcopy

226 \let\bm@next\bm@add

227 \else\ifcat\noexpand#1\relax

Other command, look if it’s a mathchardef token (otherwise just add it).

228 \xdef\meaning@{\meaning#1}%

229 \expandafter\bm@mchar@test\meaning@""""\@nil#1%

Character token. If it is of catcode 11 or 12, get its mathcode. If that is "8000

replace the token by its active version, and then let bm expansion look again at
the character. Being really active this time, it will expand away (probably).

If the previous token was \left or \right, get the delcode instead of the
mathcode.

230 \else\ifcat.\ifcat a#1.\else#1\fi

231 \count@\mathcode‘#1\relax

232 \ifnum\count@=\mathcode‘\’%

233 \begingroup\uccode‘\~‘#1\uppercase{\endgroup

234 \def\bm@next{\bm@expand~}}%

235 \else

236 \ifx\bm@previous\left

237 \count@\delcode‘#1\relax

238 \bm@delimiter

239 \else

Here we need to check for LuaTeX merging mathchar values with Umathchar.

240 \ifnum\count@>"8000

241 \Umathcharnumdef\@tempa\count@

242 \xdef\meaning@{\meaning\@tempa}%

243 \expandafter\bm@mchar@test\meaning@""""\@nil\@tempa

244 \else

14



245 \bm@mathchar

246 \fi

247 \fi

248 \fi

249 \else

And final possibility: a character token of catcode other than 11 or 12.

250 \bm@add{#1}%

251 \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi

252 \bm@next}

\bm@define End code for \bmdefine. Define the given command name to the robust form of
the accumulated code.

If \bm@command is equal to \@gtempa then it is a macro whose expansion is a
single call to \mathchar, so that can be optimised with a \mathchardef.

253 \def\bm@define#1{%

254 \begingroup

255 \ifx\bm@command\@gtempa

256 \def\mathchar{\global\mathchardef#1}%

257 \bm@command

258 \else

Rather than simply \let#1\bm@command, make the defined command robust.
\bm@first is normally empty, but might be something like \DOTSI which needs
to be lifted to the top level, in front of any \protect because of the lookahead
mechanism used in the amsmath package.

259 \toks@\expandafter{\bm@command}%

260 \xdef#1{\bm@first\noexpand\bm@protect\noexpand#1{\the\toks@}}%

261 \fi

262 \endgroup}

\bm@protect Commands defined by \bmdefine re-insert themselves if protection is enabled.

263 \def\bm@protect#1{%

264 \ifx\protect\@typeset@protect

265 \expandafter\@firstofone

266 \else

267 \protect#1\expandafter\@gobble

268 \fi}

\bm@mchoice \boldsymbol, more or less. #1 is either \boldmath or \heavymath.

269 \def\bm@mchoice#1#2#3#4#5{%

270 \mathchoice{\hbox{#1$\displaystyle\m@th#2$}}%

271 {\hbox{#1$\textstyle\m@th#3$}}%

272 {\hbox{#1$\scriptstyle\m@th#4$}}%

273 {\hbox{#1$\scriptscriptstyle\m@th#5$}}}

\bm@m@thchoice Action if you find a \mathchoice. Add the bold version to \bm@command then
recurse.

#1 is either \boldmath or \heavymath.

274 \def\bm@m@thchoice#1#2#3#4#5{%

275 \bm@add{\bm@mchoice#1{#2}{#3}{#4}{#5}}}

15



\bm@register Combined code for setting up \bm@r@gister with the correct register type.

276 \def\bm@register#1#2{%

277 \def\@tempa{#1\the#2}%

278 \afterassignment\bm@r@gister#2}

\bm@r@gister \mkern itself would transfer to \bm@command without any special test, but any
explicit dimension following would be converted to \mathchar. So trap this and
grab the muskip as a muskip. This is used in \iiint. \penalty was needed for
the AMS version of \colon, and so do most of the others as well.

279 \def\bm@r@gister{%

280 \bm@xadd{\@tempa\space}}

\bm@mathchar Change the family (math group) of a mathcode and then use the modified code
with \mathchar. If there is no suitable bold font in the current math version,
use the original unmodified mathcode, but switch to \boldmath (if there is a bold
font there) or use ‘poor man’s bold’. Note that these other possibilities are only
possible here, not for the otherwise similar code for \delimiter or \mathaccent,
as those commands must work with fonts from the same math version.

Finally recurse down the list.

281 \def\bm@mathchar{%

282 \@tempcntb\count@

283 \let\@tempa\bm@group

\bm@changefam will isolate the math group from the mathcode and look up
the offset in the current table.

284 \bm@changefam{}%

If the mathcode has changed, then just add the new \mathchar (saving
\@gtempa allows \bmdefine to optimise this to a mathchardef if it turns out
to be the only symbol in the argument).

285 \ifnum\count@>\@tempcntb

286 \ifx\bm@command\@empty

287 \xdef\@gtempa{\mathchar\the\count@\space}%

288 \fi

289 \bm@xadd{\mathchar\the\count@\space}%

290 \else

Otherwise grab the math class from the math code and add that (locally zap-
ping \bm@expand as we don’t want to recurse at this point).

291 \begingroup

292 \divide\count@"1000

293 \let\bm@expand\relax

294 \bm@xadd\bm@class

295 \endgroup

\@tempa will be \bm@group (which applies \boldmath and \mathchoice) unless
it was changed by \bm@changefam to \bm@pmb (which applies a ‘poor man’s bold’
construction in a \mathchoice).

296 \edef\@tempb{%

297 \noexpand\@tempa{\mathchar\the\count@\space}}%

298 \@tempb

299 \fi}

16



\bm@umathchar Version of \bm@mathchar for \Umathchar, this is easier as no need to take apart
the number, the match class and fam are provided as distinct arguments.

300 \def\bm@umathchar#1#2#3{%

301 \@tempcnta#2\relax

302 \count@\bm@table

303 \ifx\count@=\m@ne

304 % no bold

305 \else

306 \advance\@tempcnta\count@

307 \fi

308 \bm@xadd{\Umathchar#1\space

309 \the\@tempcnta\space\space

310 #3\space}}

\bm@pmb Add a poor man’s bold construction to the list being built.

311 \def\bm@pmb#1{%

312 \bm@add{\bm@pmb@{#1}}}

\bm@pmb@ \pmb variant. (See TEXBook, or AMS amsbsy package). This one takes a bit more
care to use smaller offsets in subscripts.

313 \def\bm@pmb@#1{{%

314 \setbox\tw@\hbox{$\m@th\mkern.4mu$}%

315 \mathchoice

316 \bm@pmb@@\displaystyle\@empty{#1}%

317 \bm@pmb@@\textstyle\@empty{#1}%

318 \bm@pmb@@\scriptstyle\defaultscriptratio{#1}%

319 \bm@pmb@@\scriptscriptstyle\defaultscriptscriptratio{#1}}}

\bm@pmb@@ Helper macro. Box #3 and set it three times in the style #1, offset by an amount
reduced by the ratio specified in #2.

320 \def\bm@pmb@@#1#2#3{{%

321 \setbox\z@\hbox{$\m@th#1#3$}%

322 \dimen@#2\wd\tw@

323 \rlap{\copy\z@}%

324 \kern\dimen@

325 \raise1.5\dimen@\rlap{\copy\z@}%

326 \kern\dimen@

327 \box\z@}}%

\bm@class Convert a numeric math class back to a math class command. \mathord is omitted
in class 0 and 7 to save space and so things work out right in constructions such
as x^a where x^\mathord{a} would not work.

328 \def\bm@class{%

329 \ifcase\count@

330 \or

331 \mathop\or

332 \mathbin\or

333 \mathrel\or

334 \mathopen\or

335 \mathclose\or

336 \mathpunct\or

337 \fi}

17



\bm@add A version of \g@addto@macro that internally uses a \begingroup rather than a
brace group4, to save creating a mathord.

As need to redefine it anyway, save some tokens by making it specific to
\bm@command, and to execute \bm@expand to continue the loop.

338 \def\bm@add#1{%

339 \begingroup

340 \toks@\expandafter{\bm@command#1}%

341 \xdef\bm@command{\the\toks@}%

342 \endgroup

343 \bm@expand}

\bm@xadd An \xdef version of \bm@add.

344 \def\bm@xadd#1{%

345 \begingroup

346 \toks@\expandafter{\bm@command}%

347 \xdef\bm@command{\the\toks@#1}%

348 \endgroup

349 \bm@expand}

\bm@mathaccent \mathaccent version of \bm@mathchar.

350 \def\bm@mathaccent{%

351 \bm@changefam{}%

The next four lines were added a v1.0e. Without them \bm{\hat{A}} makes the
accent bold using \bm but the group {A} is made bold via a \mathchoice con-
struction as for any other group, as \bm does not attempt to parse inside brace
groups. While that produces something acceptable for lower case letters, it pro-
duces Â which is not too good. The braces may simply be omitted: \bm{\hat A}

would work, producing Â, however I did not want to document such a restriction,
so now modify bm so that such brace groups are handled gracefully.

It would be possible to locally make mathaccents take an argument during the
bm look-ahead, so the brace groups would then vanish during expansion, however
I would then need to explicitly skip past 〈filler〉 and also make sure that the end
of parse token was not gobbled in marginal cases like $\bm\hat$.

So instead do the following which gets rid of 〈filler〉 with a redefinition
of \relax, and just locally changes \bm@group so that instead of doing a
\mathchoice it simply adds \bgroup and \egroup around the tokens, and lets
bm modify the tokens of the ‘argument’. This means that \bm{\hat{A}} now
produces

\mathaccent 29790 \bgroup \mathchar 30017 \egroup

The inner math list is a single mathchar, and so TEX will not box it, and the math
accent will correctly position, taking into account the skewchar information.

As the normal bm lookahead is used, it is automatic that the parse will end
without trying to go past \bm@end.

One disadvantage is that the group will mean that \bm@previous will not be
correctly updated. However that is only used for delimiter checking, so can not
matter here.

352 \begingroup

353 \def\bm@group##1{\endgroup\bm@xadd{\bgroup}##1\egroup}%

4This bug is fixed in the LATEX kernel of 1996/12/01

18



354 \def\bm@test@token{\endgroup\bm@test@token}%

355 \let\relax\@empty

356 \bm@xadd{\mathaccent\the\count@\space}}

\bm@delimiter Change both families (math groups) of a delcode and then use the modified code
with \delimiter. Don’t change code ‘0’ as that denotes a null delimiter.

357 \def\bm@delimiter{%

358 \ifnum\count@>\z@

359 \bm@changefam{}%

360 \bm@changefam{000}%

361 \fi

362 \bm@xadd{\delimiter\the\count@\space}}%

\bm@radical Same for \radical.

363 \def\bm@radical{%

364 \bm@changefam{}%

365 \bm@changefam{000}%

366 \bm@xadd{\radical\the\count@\space}}%

\bm@mchar@ Catcode 12 \mathchar, for \ifx tests.

367 \edef\bm@mchar@{\meaning\mathchar}

\bm@umchar@ Catcode 12 \Umathchar, for \ifx tests.

368 \edef\bm@umchar@{\string\U\expandafter\@gobble\meaning\mathchar}

\bm@mchar@test Test if the \meaning starts with \mathchar. If it does, grab the value into \count@

and call \bm@mathchar, else just copy the command into the accumulated tokens.
#1, #2, #3 are all \meaning produced tokens, or ‘dummy tokens’ added at the time
this is called. #4 is the original token, in case decide not to use the \meaning.

369 \def\bm@mchar@test#1"#2"#3"#4"#5\@nil#6{%

370 \xdef\meaning@{#1}%

371 \ifx\meaning@\bm@mchar@

372 \count@"#2\relax

373 \bm@mathchar

374 \else

Test for \Umathchar.

375 \ifx\meaning@\bm@umchar@

376 \bm@umathchar{"#2}{"#3}{"#4}%

377 \else

Some other command: copy it straight over. If it is the first thing added, and it
is a \relax token, save it in \bm@first for use in \bm@define.

378 \ifx\bm@previous\@empty

379 \ifx\relax#6%

380 \gdef\bm@first{#6}%

381 \fi

382 \fi

383 \bm@add{#6}%

384 \fi

385 \fi}

19



\bm@changefam Pull out one specified hex digit and passes it to \bm@modify to change. argument
is empty normally but 000 to access the second math group in a delimiter code.

386 \def\bm@changefam#1{%

387 \@tempcnta\count@

388 \divide\@tempcnta"1000#1 %

389 \multiply\@tempcnta"1000#1 %

390 \advance\@tempcnta-\count@

391 \divide\@tempcnta-"100#1 %

Having isolated the required math group (fam), look up the offset in the current
table.

392 \@tempcnta\bm@table

If the offset is −1, keep \count@ unchanged, but set \@tempa to use poor man’s
bold. Otherwise increment \count@ to change the math group specified.

393 \ifnum\@tempcnta=\m@ne

394 \let\@tempa\bm@pmb

395 \else

396 \multiply\@tempcnta"100#1 %

397 \advance\count@\@tempcnta

398 \fi}

\bm@prime Support ’. Earlier versions did not make the prime bold in a’.
\bm{a’’} will now produce (with the normal encodings)

\mathchar 30049

\bm@prime \mathchar 1584 \relax

\bm@prime \mathchar 1584 \relax

So \bm@prime does essentially the same as the active definition of ’, which is
to start a superscript group then keep adding \prime for each ’ (or \bm@prime)
following. Here modified to grab a \relax delimited argument and use that instead
of \prime. \bm@prime is locally \let to ’ so the \ifx tests in \pr@m@s don’t need
changing.

399 \def\bm@prime{^\bgroup

400 \let\bm@prime’%

401 \def\prim@s##1\relax{##1\futurelet\@let@token\pr@m@s}%

402 \prim@s}

\boldsymbol

\heavysymbol

Finally, to ease conversion of documents between this package and the amsbsy
package:

403 \let\boldsymbol\bm

404 \let\heavysymbol\hm

405 〈/package〉

20


	1 Introduction
	2 Font allocation
	3 Features
	3.1 Interaction with Math Alphabet Commands
	3.2 Delimiters
	3.3 Command Arguments
	3.4 Bold fonts
	3.5 Strange failures
	3.6 AMS package amsbsy

	4 Implementation

