\section{Quelques exemples} \subsection{Variante intermédiaire : \TIKZ\ + \tkzname{tkz-fct}} Les codes de \TIKZ\ et de \tkzname{tkz-fct} peuvent se compléter. Ainsi les axes et les textes sont gérés par \tkzname{tkz-fct} mais la courbe est laissée à \TIKZ\ et \tkzname{gnuplot}. \bigskip \begin{center} \begin{tkzexample}[] \begin{tikzpicture}[scale=3] \tkzInit[xmin=0,xmax=4,ymin=-1.5,ymax=1.5] \tkzAxeY[label=$f(x)$] \tkzDefPoint(1,0){x} \tkzDrawPoint[color=blue,size=0.6pt](x) \shade[top color=gray!80,bottom color=gray!20] (1,0)% plot[id=ln,domain=1:2.718] function{log(x)} |-(1,0); \draw[color=blue] plot[id=ln,domain=0.2:4,samples=200]function{log(x)}; \tkzAxeX \tkzText[draw,color= black,fill=brown!50](2,-1)% {$\mathcal{A} = \int_1^{\text{e}}\ln(x)\text{d}x =% \big[x\ln(x)\big]_{1}^{\text{e}} = \text{e}$} \tkzText[draw,color= black,fill=brown!50](2,0.3){$\mathcal{A}$} \end{tikzpicture} \end{tkzexample} \end{center} \newpage \subsection{Courbes de \tkzname{Lorentz}} $f(x)=\dfrac{\text{e}^x-1}{\text{e}-1}$ et $g(x)=x^3$ \begin{center} \begin{tkzexample}[vbox] \begin{tikzpicture}[scale=1] \tkzInit[xmax=1,ymax=1,xstep=0.1,ystep=0.1] \tkzGrid(0,0)(1,1) \tkzAxeXY \tkzFct[color = red,domain = 0:1]{(exp(\x)-1)/(exp(1)-1)} \tkzDrawTangentLine[kl=0,kr=0.4,color=red](0) \tkzDrawTangentLine[kl=0.2,kr=0,color=red](1) \tkzText[draw,color = red,fill = brown!30](0.4,0.6)% {$f(x)=\dfrac{\text{e}^x-1}{\text{e}-1}$} \tkzFct[color = blue,domain = 0:1]{\x*\x*\x} \tkzDrawTangentLine[kl=0,kr=0.4,color=blue](0) \tkzDrawTangentLine[kl=0.2,kr=0,color=blue](1) \tkzText[draw,color = blue,fill = brown!30](0.8,0.1){$g(x)=x^3$} \tkzFct[color = orange,style = dashed,domain = 0:1]{\x} \tkzDrawAreafg[between=c and b,color=blue!40,domain = 0:1] \tkzDrawAreafg[between=c and a,color=red!60,domain = 0:1] \end{tikzpicture} \end{tkzexample} \end{center} \newpage \subsection{Courbe exponentielle} $f(x) = (-x^2+x+2)\exp(x)$ \begin{center} \begin{tkzexample}[small] \begin{tikzpicture}[scale=1.25] \tkzInit[xmin=-6,xmax=4,ymin=-5,ymax=6] \tkzGrid \tkzAxeXY \tkzFct[color=red,thick,domain=-6:2.1785]{(-x*x+x+2)*exp(x)} \tkzSetUpPoint[size=6] \tkzDrawTangentLine[draw,kl=2](0) \tkzDefPoint(2,0){b} \tkzDrawPoint(b) \tkzDefPoint(-1,0){c} \tkzDrawPoint(c) \tkzText(2,4){($\mathcal{C}$)} \tkzText(-2,-3){($\mathcal{T}$)} \end{tikzpicture} \end{tkzexample} \end{center} \subsection{Axe logarithmique} \begin{tkzexample}[vbox] \begin{tikzpicture}[scale=0.8] \tkzInit[xmax=14,ymax=12] \draw[thin,->] (0,0) -- (14,0) node[below left] {}; \draw[thin,->] (0,0) -- (0,12) node[below left] {}; \foreach \x/\xtext in {0/0,2/10,4/20,6/30,8/40,10/50,12/60,14/70}% {\draw[shift={(\x,0)}] node[below] {$\xtext$ };} \foreach \y/\z in {0/0,3/1,6/2,9/3,12/4}% {\draw[shift={(0,\y)}] node[left] {$10^{\z}$};} \foreach \x in {1,2,...,14}{\tkzVLine[gray,thin]{\x}} \foreach \y in {3,6,...,12}{\tkzHLine[gray,thin]{\y}} \foreach \y in {0,3,...,9}{ \foreach \z in {0.903,1.431,1.806,2.097,2.334,2.535,2.709,2.863}% {\tkzHLine[thin,gray,shift={(0,\y)}] {\z}}} \tkzDefPoint(0,6.90){a} \tkzDefPoint(10,9.30){b} \tkzDrawPoints(a,b) \tkzLabelPoint(a){$M_{1}$} \tkzLabelPoint(b){$M_{11}$} \end{tikzpicture} \end{tkzexample} \subsection{Un peu de tout} \begin{tkzexample}[vbox] \begin{tikzpicture}[scale=.8] \tkzInit[xmin=5,xmax=40,ymin=0,ymax=350,xstep=2.5,ystep=25] \tkzDrawX[label=$q$] \tkzDrawY[label=$C(q)$] \tkzLabelXY \tkzGrid[color=orange] \tkzFct[domain=5:40]{0.1*\x**2+2*\x+60} \foreach \vv in {5,10,...,40}{% \tkzDefPointByFct(\vv) \tkzDrawPoint(tkzPointResult)} \tkzFct[domain=5:40]{(108*log(\x)-158)} \tkzText(37.5,285){$C$} \tkzText(37.5,220){$R$} \tkzDefSetOfPoints{% 5/15,10/90,15/135,20/170,25/190,30/200,35/230,40/240} \tkzDrawSetOfPoints[mark = x,mark size=3pt] \end{tikzpicture} \end{tkzexample} \endinput