\section{Miscellaneous tools} \subsection{Duplicate a segment} This involves constructing a segment on a given half-line of the same length as a given segment. \begin{NewMacroBox}{tkzDuplicateSegment}{\parg{pt1,pt2}\parg{pt3,pt4}\marg{pt5}}% This involves creating a segment on a given half-line of the same length as a given segment . It is in fact the definition of a point. \tkzcname{tkzDuplicateSegment} is the new name of \tkzcname{tkzDuplicateLen}. \medskip \begin{tabular}{lll}% \toprule arguments & example & explication \\ \midrule \TAline{(pt1,pt2)(pt3,pt4)\{pt5\}} {\tkzcname{tkzDuplicateSegment}(A,B)(E,F)\{C\}}{AC=EF and $C \in [AB)$} \\ \bottomrule \end{tabular} \medskip The macro \tkzcname{tkzDuplicateLength} is identical to this one. \end{NewMacroBox} \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(2,-3){B} \tkzDefPoint(2,5){C} \tkzDrawSegments[red](A,B A,C) \tkzDuplicateSegment(A,B)(A,C) \tkzGetPoint{D} \tkzDrawSegment[green](A,D) \tkzDrawPoints[color=red](A,B,C,D) \tkzLabelPoints[above right=3pt](A,B,C,D) \end{tikzpicture} \end{tkzexample} \subsubsection{Proportion of gold with \tkzcname{tkzDuplicateSegment}} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[rotate=-90,scale=.75] \tkzDefPoint(0,0){A} \tkzDefPoint(10,0){B} \tkzDefMidPoint(A,B) \tkzGetPoint{I} \tkzDefPointWith[orthogonal,K=-.75](B,A) \tkzGetPoint{C} \tkzInterLC(B,C)(B,I) \tkzGetSecondPoint{D} \tkzDuplicateSegment(B,D)(D,A) \tkzGetPoint{E} \tkzInterLC(A,B)(A,E) \tkzGetPoints{N}{M} \tkzDrawArc[orange,delta=10](D,E)(B) \tkzDrawArc[orange,delta=10](A,M)(E) \tkzDrawLines(A,B B,C A,D) \tkzDrawArc[orange,delta=10](B,D)(I) \tkzDrawPoints(A,B,D,C,M,I,N) \tkzLabelPoints(A,B,D,C,M,I,N) \end{tikzpicture} \end{tkzexample} \subsection{Segment length \tkzcname{tkzCalcLength}} There's an option in \TIKZ\ named \tkzname{veclen}. This option is used to calculate AB if A and B are two points. The only problem for me is that the version of \TIKZ\ is not accurate enough in some cases. My version uses the \tkzNamePack{xfp} package and is slower, but more accurate. \begin{NewMacroBox}{tkzCalcLength}{\oarg{local options}\parg{pt1,pt2}\marg{name of macro}}% The result is stored in a macro. \medskip \begin{tabular}{lll}% \toprule arguments & example & explication \\ \midrule \TAline{(pt1,pt2)\{name of macro\}} {\tkzcname{tkzCalcLength}(A,B)\{dAB\}}{\tkzcname{dAB} gives $AB$ in pt} \bottomrule \end{tabular} \medskip Only one option \begin{tabular}{lll}% \toprule options & default & example \\ \midrule \TOline{cm} {false}{\tkzcname{tkzCalcLength}[cm](A,B)\{dAB\} \tkzcname{dAB} gives $AB$ in cm} \end{tabular} \end{NewMacroBox} \subsubsection{Compass square construction} \begin{tkzexample}[latex=7cm,small] \begin{tikzpicture}[scale=1] \tkzDefPoint(0,0){A} \tkzDefPoint(4,0){B} \tkzDrawLine[add= .6 and .2](A,B) \tkzCalcLength[cm](A,B)\tkzGetLength{dAB} \tkzDefLine[perpendicular=through A](A,B) \tkzDrawLine(A,tkzPointResult) \tkzGetPoint{D} \tkzShowLine[orthogonal=through A,gap=2](A,B) \tkzMarkRightAngle(B,A,D) \tkzVecKOrth[-1](B,A)\tkzGetPoint{C} \tkzCompasss(A,D D,C) \tkzDrawArc[R](B,\dAB)(80,110) \tkzDrawPoints(A,B,C,D) \tkzDrawSegments[color=gray,style=dashed](B,C C,D) \tkzLabelPoints(A,B,C,D) \end{tikzpicture} \end{tkzexample} \subsection{Transformation from pt to cm} Not sure if this is necessary and it is only a division by 28.45274 and a multiplication by the same number. The macros are: \begin{NewMacroBox}{tkzpttocm}{\parg{nombre}\marg{name of macro}}% \begin{tabular}{lll}% arguments & example & explication \\ \midrule \TAline{(number){name of macro}} {\tkzcname{tkzpttocm}(120)\{len\}}{\tkzcname{len} gives a number of \tkzname{cm}} \bottomrule \end{tabular} \medskip You'll have to use \tkzcname{len} along with \tkzname{cm}. The result is stored in a macro. \end{NewMacroBox} \subsection{Transformation from cm to pt} \begin{NewMacroBox}{tkzcmtopt}{\parg{nombre}\marg{name of macro}}% \begin{tabular}{lll}% arguments & example & explication \\ \midrule \TAline{(nombre)\{name of macro\}}{\tkzcname{tkzcmtopt}(5)\{len\}}{\tkzcname{len} length in \tkzname{pt}} \bottomrule \end{tabular} \medskip The result is stored in a macro. The result can be used with \tkzcname{len} \tkzname{pt}. \end{NewMacroBox} \subsubsection{Example} The macro \tkzcname{tkzDefCircle[radius](A,B)} defines the radius that we retrieve with \tkzcname{tkzGetLength}, but this result is in \tkzname{pt}. \begin{tkzexample}[latex=6cm,small] \begin{tikzpicture}[scale=.5] \tkzDefPoint(0,0){A} \tkzDefPoint(3,-4){B} \tkzDefCircle[through](A,B) \tkzGetLength{rABpt} \tkzpttocm(\rABpt){rABcm} \tkzDrawCircle(A,B) \tkzDrawPoints(A,B) \tkzLabelPoints(A,B) \tkzDrawSegment[dashed](A,B) \tkzLabelSegment(A,B){$\pgfmathprintnumber{\rABcm}$} \end{tikzpicture} \end{tkzexample} \subsection{Get point coordinates} %<--------------------------------------------------------------------------–> % Coordonnées d'un point % result in #2x and #2y #1 is the point and we get its coordinates % use either $A$ one point \tkzGetPointCoord(A){V} then \Vx = xA and \Vy = yA % in cm % tkzGetPointCoord with [#1] cm or pt ?? todo %<--------------------------------------------------------------------------–> \begin{NewMacroBox}{tkzGetPointCoord}{\parg{$A$}\marg{name of macro}}% \begin{tabular}{lll}% arguments & example & explication \\ \midrule \TAline{(point)\{name of macro\}} {\tkzcname{tkzGetPointCoord}(A)\{A\}}{\tkzcname{Ax} and \tkzcname{Ay} give coordinates for $A$} \end{tabular} \medskip Stores in two macros the coordinates of a point. If the name of the macro is \tkzname{p}, then \tkzcname{px} and \tkzcname{py} give the coordinates of the chosen point with the cm as unit. \end{NewMacroBox} \subsubsection{Coordinate transfer with \tkzcname{tkzGetPointCoord}} \begin{tkzexample}[width=8cm,small] \begin{tikzpicture} \tkzInit[xmax=5,ymax=3] \tkzGrid[sub,orange] \tkzAxeXY \tkzDefPoint(1,0){A} \tkzDefPoint(4,2){B} \tkzGetPointCoord(A){a} \tkzGetPointCoord(B){b} \tkzDefPoint(\ax,\ay){C} \tkzDefPoint(\bx,\by){D} \tkzDrawPoints[color=red](C,D) \end{tikzpicture} \end{tkzexample} \subsubsection{Sum of vectors with \tkzcname{tkzGetPointCoord}} \begin{tkzexample}[width=6cm,small] \begin{tikzpicture}[>=latex] \tkzDefPoint(1,4){a} \tkzDefPoint(3,2){b} \tkzDefPoint(1,1){c} \tkzDrawSegment[->,red](a,b) \tkzGetPointCoord(c){c} \draw[color=blue,->](a) -- ([shift=(b)]\cx,\cy) ; \draw[color=purple,->](b) -- ([shift=(b)]\cx,\cy) ; \tkzDrawSegment[->,blue](a,c) \tkzDrawSegment[->,purple](b,c) \end{tikzpicture} \end{tkzexample} \endinput