
The titlecaps Package
Routines for setting rich-text input into Titling Caps

Steven B. Segletes
steven.b.segletes.civ@mail.mil

April 11, 2013
v1.0

1 Description and Commands

The titlecaps package is intended to be used to convert lower-cased text into
titling caps, wherein the first letter of every word is capitalized, except for
words designated to remain in lower case, for example prepositions and con-
junctions. While this function has been performed elsewhere, for example in
the stringstrings package, it is here significantly enhanced. The stringstrings im-
plementation of titling caps is particularly limited because of its slow speed
(I criticize stringstrings because I wrote it). Furthermore, that implementation
only works on textual expressions, which do not contain any font-modification
commands.

In contrast, the titlecaps package is set up to work in conjunction with font-
modification commands that change the family, series, or shape of the font. Like-
wise, it will work with the fontsize changing commands (\tiny, \scriptsize. . .
\Huge) embedded in the argument. It is also, unlike the stringstrings version,
able to screen out most punctuation when deciding whether a word is predes-
ignated as lower case. Furthermore, it looks for symbols that might signify the
beginning of a new text “group”, such as (, [, {, ‘, and -, and thereafter titles
the word that follows, even though the first alphabetic letter is not technically
at the lead of the “word.”

The primary commands that have been implemented in this package are the
following:
\titlecap[option]{rich text}
\Addlcwords{designated lower-case space-separated word list}
\Resetlcwords

In addition, the following auxiliary commands are also available:
\textnc{text}
\def\converttilde{T or F}
\noatinsidetc

\usestringstringsnames

1

The \titlecap command is the primary contribution of this package. It will\titlecap

(within constraints) capitalize the first letter of each word in the argument.
The primary constraint under which it operates is the existence of a predefined
lower-cased word list that is set by the user, using the \Addlcwords command.\Addlcwords

These predefined lower-cased words are passed as an argument to \Addlcwords

in a space-separated list. Subsequent invocations add to the existing list of
predefined lower-cased words. The user may clear the list of predefined lower-
cased words through the issuance of the \Resetlcwords command.\Resetlcwords

When \titlecap is invoked, it first breaks the argument into individual pieces
that constitute “words.” Note, however, that these “words” may include punc-
tuation and text formatting commands interspersed with the actual text. This
is an essential challenge to overcome.

After breaking the argument into words, \titlecap will attempt to match each
word of the argument to the list of predesignated lower-cased words. In order
to assist this process, the command (temporarily) screens out text-formatting
commands and punctuation marks from the argument, so that their presence
does not inhibit a word match with the lower-cased word list (see Quirks, Tricks
and Limitations for exceptions). It flags matches, so that these matching words
will not later be titled.

The command will then reconstitute the “words” of the argument with their
punctuation and font-changing commands intact. In the default invocation,
\titlecap will capitalize the first word of the argument, even if that word is on
the lower-cased word list. This default may be overridden with the command’s
optional argument. Employing anything other than a capital “P” will treat the
first word of the argument like any other word, meaning it will be title-capped
only if it does not appear on the predesignated lower-cased word list.

The algorithm that searches the “words” of the argument character by charac-
ter, in order to titlecap the first letter of a word, is, generally speaking, able
to process only textual content. However, special provisions have been en-
acted to handle the following text-formatting commands within the argument
of \titlecap:

\textup \upshape \tiny \Huge

\textit \itshape \scriptsize \textnca

\textsc \scshape \footnotesize

\textsl \slshape \small

\textmd \mdseries \normalsize

\textbf \bfseries \large

\textrm \rmfamily \Large

\textsf \sffamily \LARGE

\texttt \ttfamily \huge

aThis command is introduced by this package.

2

Other macros can generally be handled in the argument to \titlecap only if
they expand to textual content.

Once the first word of the argument has been titled “by force” (or not, with
the use of the optional arguement), the command proceeds through each word,
deciding whether or not to title the word, based on the lower-cased word flag
that has previously been set. The titlecaps package can notably handle the
titling of strings containing both diacritical marks found in various languages
(such as ò, ó, ô, ö, õ, ō, ȯ, ŏ, ǒ, ő, �oo, o̧, o. , and o

¯
), as well as national symbols

(such as œ, æ, and ø [see Quirks, Tricks and Limitations]).

While punctuation had been earlier screened out in order to search for prede-
fined lower-cased words, that is a slightly different problem from that of figuring
out how to titlecap a punctuated word not on the lower-cased list. While many
punctuation marks trail a word and are, therefore, not a problem, several punc-
tuation marks lead a word, or indicate a group separator, even in the absence of
whitespace. \titlecap must make sure that these sorts of punctuation marks
do not inhibit the capitalization of the subsequent letter. To this end, \titlecap
looks for instances of the following five characters: -, (, [, {, and ‘, and flags the
next character for possible capitalization (unless the word had been previously
identified as predefined lower-cased [see Quirks, Tricks and Limitations]).

2 Quirks, Tricks and Limitations

While titlecaps has been set up to run with certain embedded size and font-
changing commands, it will not, in general, work with macros in the argument,
unless the macros expand directly to a text string.

The titlecaps package is designed to work with diacritical marks (for example,
umlauts) as well as national symbols (symbols like æ, œ, etc.). There remain,
however, two national symbols which are not handled properly by this package.
They are å and l. They will not be capitalized, even if found at the beginning
of a word.

The titlecaps package is designed to screen out punctuation when searching for
words that are pre-designated as lower-cased. So, for example, the word (if)
or “if” or [if or if, will all be found to match if when it is predesignated as
lower cased. However, titlecaps cannot screen out the curly braces \{ and \}

from the punctuation list. Thus, {if} will be capitalized as {If} by titlecaps. A
workaround is detailed in each of the next two paragraphs.

To prevent a word from being titled (to force it into lower case), it can be imme-
diately preceded by a \relax. In this way, the \relax is titled, rather than the
following word. This method can be used to for one-time exceptions to titling,

3

or to overcome the curly-brace problem described above, as in \{\relax if\}.

The package introduces a command, \textnc (standing for “text no-change”),\textnc

which forces its argument to be independently considered as text, regardless of
any surrounding punctuation or other characters. Thus, this approach may also
be used to address the curly-brace issue as \{\textnc{it}\}. In this case, “if”
would be titled if it is not on the lower-cased word list, but left in lower case if it
were on the lower-cased word list. The \textnc command is useful in a number
of ways inside the argument to \titlecap, but always to signify its argument is
to be treated as a block of text, independently evaluated for its predesignated
lower-cased content.

If a separator like, let’s say, a left paren, is used without whitespace, in the fash-
ion of “a(b),” then neither a nor b could possibly be detected as lower-cased
words, since the “word” without punctuation would be ab, which is neither a

nor is it b. For individual instances or exceptions, the insertion of a \relax

prior to “a” or “b” would prevent titling of these terms. Alternately, the word
“ab” could be added to the predesignated lower-cased words list, in which case,
“a(b)” would be preserved in lower case. A third (and perhaps preferred)
method is the use of the \textnc{} construct, which is introduced solely for
the purpose of designating embedded text as a separate word grouping. Thus,
\textnc{a}(\textnc{b}) as an argument to \titlecap would guarantee that
both “a” and “b” would be independently examined for their presence in the
lower-cased word list, irrespective of any surrounding punctuation. In this para-
graph, the letters “a” and “b” have been used for simplicity, but could actually
represent words or groups of words.

By LATEX convention, the construct “very \large big” will associate the \large
as the first letter of big, rather than as the last letter of very. Unfortunately,
leaving it that way will screw up the titling of big. Thus, when adapting the
use of fontsize changes to the titlecaps package, the prior space is unskipped,
and a space is added after the fontsize change invocation, so that the fontsize
change command is at the end of the prior word, rather than at the beginning
of the next word. The one adverse side effect to this approach is that a space
will appear after a fontsize command, even if one is not desired (for example,
changing font size just prior to punctuation). One can either issue a \unskip

following the fontsize change to back-gobble the newly introduced space, or else
place the fontsize change following the punctuation.

While \uppercase will not work within the argument of a \titlecap, it was
found that enclosing part of the argument in double braces will produce upper{{ }}

case for that double-enclosed text. Thus,
\titlecap{This is a {{v\"ery}} big test}

will produce This is a VËRY Big Test.

The implementation to make the fontsize change commands work within the

4

arguments of \titlecap required the use of \makeatletter within \titlecap

itself (which is revoked with a \makeatother upon exit from \titlecap). If
that is not considered a “good practice” for your situation, then you can disable
this feature with the command \noatintc. However, it is likely, at that point,\noatintc

that the fontsize changing commands as arguments will break the \titlecap

command.

Except in the case of the various \textxx{} commands, for which special pro-
vision has been made, and for the double-brace quirk mentioned above, the
argument of \titlecap should not contain braces used as group delimiters, for
example, in the fashion of:
\titlecap{this is a {\itshape test of

the} emergency broadcast system}

It may not break the code, but will likely not produce a desired result. If
groupings must be placed in the argument, using \textnc{} to condition the
argument is recommended. Thus,
\titlecap{this is a \textnc{\itshape test of

the} emergency broadcast system}

will result in “This is a Test of the Emergency Broadcast System” (of course,
in this case, a \textit{} would have worked directly, without a problem).

There should be no direct use or need to nest \titlecap commands. However,
if it is absolutely necessary, the embedded invocation of \titlecap should be
expressed as
\titlecap{...\titlecap\textnc{...}...}.

3 Auxiliary Commands

In addition to the primary commands offered by this package, there are several
auxiliary commands.

As described in the section Quirks, Tricks and Limitations, the \textnc com-\textnc

mand was introduced when additional grouping must occur inside the argument
of a \titlecap command. The argument of \textnc will itself make no changes
to its argument, but will force \titlecap to independtly evaluate the \textnc

argument for its lower-cased content, regardless of any surrounding punctuation
or text. The command may only be needed within an argument to \titlecap.
However, if your application requires its invocation outside of a \titlecap ar-
gument, it will merely output the argument without any modification.

By default, the titlecaps package treats hardspaces (∼) as characters and not
white space. This default treatment can be changed by setting the following
parameter: \def\converttilde{T}. Following that invocation, hardspaces in\converttilde

the argument of \titlecap should be indistinguishable from white space.

5

The command \noatinsidetc was briefly described in Quirks, Tricks and Lim-\noatinsidetc

itations. Its invocation will prevent the \titlecap command from employing
the \makeatletter command, if this is considered bad practice for your setting.
However, its invocation will likely make the titlecaps package unable to process
fontsize command changes.

The last of these auxiliary commands is \usestringstringsnames. This com-\usestringstringsnames

mand will redefine certain command names previously defined by the stringstrings
package to instead use the corresponding commands of the titlecaps package,
in essence redirecting the stringstrings invocation to the current package. The
redirected commands include the following (note: see the stringstrings package
documentation for command arguments and options):
\addlcwords

\resetlcwords

\addlcword

\getargs

\capitalizetitle

If this command is invoked without the prior loading of the stringstrings package,
these commands will still be enabled for subsequent use. Because the titlecaps
package produces output which can include font changes and other material
that cannot be placed into an \edef, the output of the quiet version of the
newly redirected \capitalizetitle[q] produces a \def\thestring{} rather
than an \edef\thestring{}.

4 Acknowledgements

I would like to acknowledge the assistance of David Carlisle who, through the
tex.stackexchange website, assisted with both the string parsing and punctuation
screening techniques of this package:

http://tex.stackexchange.com/questions/101604/parsing-strings

-containing-diacritical-marks-macros

http://tex.stackexchange.com/questions/105735/ignoring

-punctuation-during-comparison

6

5 A \titlecap Demonstration for Beginners,
Expressed in \titlecap

To Know That None of the Words Typed in This Paragraph Were Initially
Upper Cased Might Be of Interest to You. It is Done to Demonstrate the Be-
havioral Features of This Package. First, You Should Know the Words That I
Have Pre-Designated as Lower Case. They Are: “for a is but and with of in as
the etc on to if.” You Can Define Your Own List. Note That Punctuation, Like
the Period Following the Word “if” Did Not Mess Up the Search for Lower Case
(Nor Did the Quotation Marks Just Now). Punctuation Which is Screened Out
of the Lower-Cased Word Search Pattern Include . , : ; () [] ? ! ‘ ’ However,
I Cannot Screen Text Braces; {For Example In} is Titled, Versus (for Example
in), Since the Braces Are Not Screened Out in the Search for Pre-Designated
Lower-Case Words Like for and in. However, \textnc Provides a Workaround:
{for Example in}. Titlecap Will Consider Capitalizing Following a (, [, {, Or -
Symbol, Such as (Abc-Def). You Can Use Your Textxx Commands, Like I Just
Did Here with the Prior Xx, but if You Want the Argument of That Command
to Not Be Titled, You Either Need, in This Example, to Add Xx to the Low-
ercase Word List, Which You Can See I Did Not. Instead, I Put ‘‘\relax xx”
as the Argument, So That, in Essence, the \relax Was Capitalized, Not the X.
Or You Could Use \textnc . Here I Demonstrate That Text Boldface, as in
the \textbf Command, Also Works Fine, as Do Texttt, Textsl, Textsc,
Textsf, etc. Titlecap Will Work on Diacritical Marks, Such as Äpfel, Çacao etc.,

Fontsize Changing Commands, as Well as National Symbols Such
as Ølaf, Ægis, and Œdipus. Unfortunately, I Could Not Get It to Work on the
å nor the l symbols. the Method Will Work with Some Things in Math Mode,
Capitalizing Symbols if There is a Leading Space, x2 Can Become X2, and It
Can Process but It Will Not Capitalize the Greek Symbols, Such as α, and Will
Choke on Most Macros, if They Are Not Direct Character Expansions. Addi-
tionally, Titlecaps Also Works with Font Changing Declarations, for Example,
\itshape\sffamily. You Can See That It Works Fine. Likewise, Any Subsequent
\textxx Command Will, Upon Completion, Return the Font to Its Prior State, Such
as This Textbf of Some Text. You Can See That I Have Returned to the Prior Font,
Which Was Italic Sans-Serif. Now I Will Return to Upright Roman. a Condition
That Will Not Behave Well is Inner Braces, Such as \titlecap{Blah {Inner
Brace Material} Blah-Blah}. See the Section on Quirks and Limitations
for a Workaround Involving \textnc. Titlecap Will Always Capitalize the First
Word of the Argument (Even if It is on the Lower-Case Word List), Un-
less \titlecap is Invoked with An Optional Argument That is Anything Other
Than a Capital P. in That Case, the First Word Will Be Titled Unless It is on
the Lowercase Word List. for Example, I Will Do a \titlecap[s]{a big man} and
Get ‘‘a Big Man” with the “a” Not Titled. I Hope This Package is Useful to
You, but as Far as Using Titlecaps on Such Large Paragraphs. . .Do Not Try
This At Home!

7

6 Code Listing

\ProvidesPackage{titlecaps}

[2013/04/11 V1.0

Routines for setting rich-text input into Titling Caps]

%% Copyright 2013 Steven B. Segletes

%

% This work may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3

% of this license or (at your option) any later version.

% The latest version of this license is in

% http://www.latex-project.org/lppl.txt

% and version 1.3c or later is part of all distributions of LaTeX

% version 2005/12/01 or later.

%

% This work has the LPPL maintenance status ‘maintained’.

%

% The Current Maintainer of this work is Steven B. Segletes.

%

\usepackage{ifnextok}

\usepackage{ifthen}

\newcounter{lcword@index}

\newcounter{word@count}

\newcounter{lc@words}

\let\SaveHardspace~

\def\SoftSpace{ }

\catcode‘\^^00=12

\def\cmd@flag{^^00} % FLAGS END-OF-COMMAND; NEXT CHAR CAPPED

\let\sv@textup\textup

\let\sv@textit\textit

\let\sv@textsc\textsc

\let\sv@textsl\textsl

\let\sv@textmd\textmd

\let\sv@textbf\textbf

\let\sv@textrm\textrm

\let\sv@textsf\textsf

\let\sv@texttt\texttt

\let\sv@itshape\itshape

\let\sv@upshape\upshape

\let\sv@scshape\scshape

\let\sv@slshape\slshape

\let\sv@bfseries\bfseries

\let\sv@mdseries\mdseries

\let\sv@sffamily\sffamily

8

\let\sv@rmfamily\rmfamily

\let\sv@ttfamily\ttfamily

% THESE ARE THE PUNCTUATION MARKS SCREENED OUT FOR

% LOWER CASE WORD SEARCH

\newcommand\kill@punct{%

\catcode‘.=9%

\catcode‘,=9%

\catcode‘:=9%

\catcode‘;=9%

\catcode‘(=9%

\catcode‘)=9%

\catcode‘[=9%

\catcode‘]=9%

\catcode‘?=9%

\catcode‘!=9%

\catcode‘‘=9%

\catcode‘’=9%

}

\newcommand\restore@punct{%

\catcode‘.=12%

\catcode‘,=12%

\catcode‘:=12%

\catcode‘;=12%

\catcode‘(=12%

\catcode‘)=12%

\catcode‘[=12%

\catcode‘]=12%

\catcode‘?=12%

\catcode‘!=12%

\catcode‘‘=12%

\catcode‘’=12%

}

\def\add@space{\protected@edef\@thestring{\@thestring\SoftSpace}}

% PRIMUS IS FOR BEGINNING-OF-STRING TITLE-CAPPING (1st WORD OVERRIDES

% PREDEFINED LOWER CASE)

\newcommand\redefine@primus{%

\def\textup##1{\relax\bgroup\sv@upshape\titlecap[s]{{\cmd@flag##1}}\egroup}%

\def\textit##1{\relax\bgroup\sv@itshape\titlecap[s]{{\cmd@flag##1}}\egroup}%

\def\textsc##1{\relax\bgroup\sv@scshape\titlecap[s]{{\cmd@flag##1}}\egroup}%

\def\textsl##1{\relax\bgroup\sv@slshape\titlecap[s]{{\cmd@flag##1}}\egroup}%

\def\textmd##1{\relax\bgroup\sv@mdseries\titlecap[s]{{\cmd@flag##1}}\egroup}%

\def\textbf##1{\relax\bgroup\sv@bfseries\titlecap[s]{{\cmd@flag##1}}\egroup}%

9

\def\textrm##1{\relax\bgroup\sv@rmfamily\titlecap[s]{{\cmd@flag##1}}\egroup}%

\def\textsf##1{\relax\bgroup\sv@sffamily\titlecap[s]{{\cmd@flag##1}}\egroup}%

\def\texttt##1{\relax\bgroup\sv@ttfamily\titlecap[s]{{\cmd@flag##1}}\egroup}%

\def\textnc##1{\relax\bgroup\titlecap[s]{{\cmd@flag##1}}\egroup}%

\def\itshape{\relax\sv@itshape\cmd@flag}%

\def\upshape{\relax\sv@upshape\cmd@flag}%

\def\scshape{\relax\sv@scshape\cmd@flag}%

\def\slshape{\relax\sv@slshape\cmd@flag}%

\def\bfseries{\relax\sv@bfseries\cmd@flag}%

\def\mdseries{\relax\sv@mdseries\cmd@flag}%

\def\sffamily{\relax\sv@sffamily\cmd@flag}%

\def\rmfamily{\relax\sv@rmfamily\cmd@flag}%

\def\ttfamily{\relax\sv@ttfamily\cmd@flag}%

}

% SECONDUS IS FOR MIDSTRING TITLE-CAPPING (WHERE PREDEFINED LOWER

% CASE CAN PREVAIL)

\newcommand\redefine@secundus{%

\def\textup##1{\relax\bgroup\sv@upshape\titlecap[s]{{##1}}\egroup}%

\def\textit##1{\relax\bgroup\sv@itshape\titlecap[s]{{##1}}\egroup}%

\def\textsc##1{\relax\bgroup\sv@scshape\titlecap[s]{{##1}}\egroup}%

\def\textsl##1{\relax\bgroup\sv@slshape\titlecap[s]{{##1}}\egroup}%

\def\textmd##1{\relax\bgroup\sv@mdseries\titlecap[s]{{##1}}\egroup}%

\def\textbf##1{\relax\bgroup\sv@bfseries\titlecap[s]{{##1}}\egroup}%

\def\textrm##1{\relax\bgroup\sv@rmfamily\titlecap[s]{{##1}}\egroup}%

\def\textsf##1{\relax\bgroup\sv@sffamily\titlecap[s]{{##1}}\egroup}%

\def\texttt##1{\relax\bgroup\sv@ttfamily\titlecap[s]{{##1}}\egroup}%

\def\textnc##1{\relax\bgroup\titlecap[s]{{##1}}\egroup}%

\def\itshape{\relax\sv@itshape\cmd@flag}%

\def\upshape{\relax\sv@upshape\cmd@flag}%

\def\scshape{\relax\sv@scshape\cmd@flag}%

\def\slshape{\relax\sv@slshape\cmd@flag}%

\def\bfseries{\relax\sv@bfseries\cmd@flag}%

\def\mdseries{\relax\sv@mdseries\cmd@flag}%

\def\sffamily{\relax\sv@sffamily\cmd@flag}%

\def\rmfamily{\relax\sv@rmfamily\cmd@flag}%

\def\ttfamily{\relax\sv@ttfamily\cmd@flag}%

}

% TERTIUS IS USED FOR STRIPPING OUT MACROS, SO THAT LOWER-CASE

% WORDS CAN BE FOUND

\newcommand\redefine@tertius{%

\def\textup##1{\bgroup{##1}\egroup}%

\def\textit##1{\bgroup{##1}\egroup}%

\def\textsc##1{\bgroup{##1}\egroup}%

\def\textsl##1{\bgroup{##1}\egroup}%

\def\textmd##1{\bgroup{##1}\egroup}%

10

\def\textbf##1{\bgroup{##1}\egroup}%

\def\textrm##1{\bgroup{##1}\egroup}%

\def\textsf##1{\bgroup{##1}\egroup}%

\def\texttt##1{\bgroup{##1}\egroup}%

\def\textnc##1{\bgroup{##1}\egroup}%

\def\itshape{}%

\def\itshape{}%

\def\upshape{}%

\def\scshape{}%

\def\slshape{}%

\def\bfseries{}%

\def\mdseries{}%

\def\sffamily{}%

\def\rmfamily{}%

\def\ttfamily{}%

}

\newcommand\un@define{%

\let\textup\sv@textup%

\let\textit\sv@textit%

\let\textsc\sv@textsc%

\let\textsl\sv@textsl%

\let\textmd\sv@textmd%

\let\textbf\sv@textbf%

\let\textrm\sv@textrm%

\let\textsf\sv@textsf%

\let\texttt\sv@texttt%

\def\textnc##1{##1}%

\let\itshape\sv@itshape%

\let\upshape\sv@upshape%

\let\scshape\sv@scshape%

\let\slshape\sv@slshape%

\let\bfseries\sv@bfseries%

\let\mdseries\sv@mdseries%

\let\sffamily\sv@sffamily%

\let\rmfamily\sv@rmfamily%

\let\ttfamily\sv@ttfamily%

}

% USES EQUIVALENT NAMES FROM stringstrings PACKAGE

\newcommand\usestringstringsnames{%

\let\addlcwords\Addlcwords%

\let\resetlcwords\Resetlcwords%

\let\addlcword\add@lcword%

\let\getargs\get@argsC%

\newcommand\capitalizetitle[2][v]{%

11

\if v##1\titlecap[P]{##2}\else\titlecap@q[P]{##2}\fi%

}%

}

% STORE (DON’T EXECUTE) \titlecap COMMAND & ARGUMENT

\newcommand\titlecap@q[2][P]{%

\def\thestring{\titlecap[#1]{#2}}%

}%

% RESET PREDESIGNATED LOWERCASE WORD LIST

\setcounter{lc@words}{0}

\newcommand\Resetlcwords[0]{\setcounter{lc@words}{0}}

% ADD WORDS TO PREDESIGNATED LOWERCASE WORD LIST

\newcommand\Addlcwords[1]{%

\get@argsC{#1}%

\setcounter{lcword@index}{0}%

\whiledo{\value{lcword@index} < \narg}{%

\addtocounter{lcword@index}{1}%

\add@lcword{\csname arg\roman{lcword@index}\endcsname}%

}

}

\newcommand\add@lcword[1]{%

\addtocounter{lc@words}{1}%

\expandafter\edef\csname lcword\roman{lc@words}\endcsname{#1}

}

% SEARCH TERTIUS CONVERTED ARGUMENT FOR LOWERCASE WORDS, SET FLAG

% FOR EACH WORD (T = FOUND IN LIST, F= NOT FOUND IN LIST)

\newcommand\seek@lcwords[1]{%

\kill@punct%

\setcounter{word@count}{0}%

\whiledo{\value{word@count} < \narg}{%

\addtocounter{word@count}{1}%

\protected@edef\current@word{\csname arg\roman{word@count}\endcsname}%

\def\found@word{F}%

\setcounter{lcword@index}{0}%

\expandafter\def\csname%

found@word\roman{word@count}\endcsname{F}%

\whiledo{\value{lcword@index} < \value{lc@words}}{%

\addtocounter{lcword@index}{1}%

\protected@edef\current@lcword{%

\csname lcword\roman{lcword@index}\endcsname}%

%% THE FOLLOWING THREE LINES ARE FROM DAVID CARLISLE

\protected@edef\tmp{\noexpand\scantokens{\def\noexpand\tmp%

{\noexpand\ifthenelse{\noexpand\equal{\current@word}{\current@lcword}}}}}%

12

\tmp\ifhmode\unskip\fi\tmp

%%

{\expandafter\def\csname%

found@word\roman{word@count}\endcsname{T}%

\setcounter{lcword@index}{\value{lc@words}}}%

{}%

}%

}%

\if P#1\def\found@wordi{F}\fi%

\restore@punct%

}

% THE TITLECAP ROUTINE

\newcommand\titlecap[2][P]{%

\digest@sizes%

\if T\converttilde\def~{ }\fi%

\redefine@tertius%

\get@argsC{#2}%

\seek@lcwords{#1}%

\if P#1%

\redefine@primus%

\get@argsC{#2}%

\protected@edef\primus@argi{\argi}%

\else%

\fi%

\setcounter{word@count}{0}%

\redefine@secundus%

\def\@thestring{}%

\get@argsC{#2}%

\if P#1\protected@edef\argi{\primus@argi}\fi%

\whiledo{\value{word@count} < \narg}{%

\addtocounter{word@count}{1}%

\if F\csname found@word\roman{word@count}\endcsname%

\title@word{\csname arg\roman{word@count}\endcsname}%

\expandafter\protected@edef\csname%

arg\roman{word@count}\endcsname{\@thestring}%

\else

\notitle@word{\csname arg\roman{word@count}\endcsname}%

\expandafter\protected@edef\csname%

arg\roman{word@count}\endcsname{\@thestring}%

\fi%

}%

\def\@thestring{}%

\setcounter{word@count}{0}%

\whiledo{\value{word@count} < \narg}{%

\addtocounter{word@count}{1}%

13

\ifthenelse{\value{word@count} = 1}%

{}{\add@space}%

\protected@edef\@thestring{\@thestring%

\csname arg\roman{word@count}\endcsname}%

}%

\let~\SaveHardspace%

\@thestring%

\restore@sizes%

\un@define}

\newcommand\notitle@word[1]{%

\def\symbol@flag{F}%

\protected@edef\the@string{#1}%

\def\@thestring{}\def\make@cap{F}%

\expandafter\eat@noTitleWord\the@string\string@end%

}

\def\eat@noTitleWord{\def\make@cap{F}\IfNextToken\string@end%

{\@gobble}%

{\title@string{\eat@noTitleWord}}%

}

\newcommand\title@word[1]{%

\def\symbol@flag{F}%

\protected@edef\the@string{#1}%

\def\@thestring{}\def\make@cap{T}%

\expandafter\eat@TitleWord\the@string\string@end%

}

\def\eat@TitleWord{\IfNextToken\string@end%

{\@gobble}%

{\title@string{\eat@TitleWord}}%

}

\def\@symboli{\noexpand\‘}

\def\@symbolii{\noexpand\’}

\def\@symboliii{\noexpand\^}

\def\@symboliv{\noexpand\"}

\def\@symbolv{\noexpand\~}

\def\@symbolvi{\noexpand\=}

\def\@symbolvii{\noexpand\.}

\def\@symbolviii{\noexpand\u}

\def\@symbolix{\noexpand\v}

\def\@symbolx{\noexpand\H}

\def\@symbolxi{\noexpand\t}

\def\@symbolxii{\noexpand\c}

14

\def\@symbolxiii{\noexpand\d}

\def\@symbolxiv{\noexpand\b}

\def\@symbolxv{\oe}

\def\uc@symbolxv{\OE}

\def\@symbolxvi{\ae}

\def\uc@symbolxvi{\AE}

\def\@symbolxvii{\o}

\def\uc@symbolxvii{\O}

%\def\@symbolxviii{\aa}

% \def\uc@symbolxviii{\AA}

%\def\@symbolxix{\l}

% \def\uc@symbolxix{\L}

\newcounter{dia@count}

\def\title@string#1#2{%

\if T\make@cap%

\setcounter{dia@count}{1}%

\if F\symbol@flag%

\whiledo{\value{dia@count} < 18}{%

\ifthenelse{\equal{\csname @symbol\roman{dia@count}\endcsname}%

{#2}}{%

%BEGIN IFDIACRIT

\ifthenelse{\value{dia@count} < 15}{%

%IF = DIACRIT<15

\protected@edef\di@critic%

{\csname @symbol\roman{dia@count}\endcsname}%

\def\symbol@flag{D}%

\setcounter{dia@count}{99}% INDICATING DICRIT JUST FOUND

}{%

%IF = NATSYM

\protected@edef\di@critic%

{\csname uc@symbol\roman{dia@count}\endcsname}%

\setcounter{dia@count}{90}% >19 AND <99 MEANS NON-DIACRIT SYMBOL

\def\symbol@flag{N}

}%

}{%

%END IF = DIACRIT

%IFNOT = DIACRIT

\addtocounter{dia@count}{1}}%

}% END WHILEDO

\fi%

\ifthenelse{\value{dia@count} < 99}{%

\if D\symbol@flag% FOR DIACRIT, ONCE ARGUMENT IS IN #2, TO BE CAPPED

\def\next@char{\di@critic#2}%

\def\symbol@flag{F}%

\else%

15

\if N\symbol@flag% FOR NATSYM TO BE CAPITALIZED

\def\next@char{\di@critic}%

\def\symbol@flag{F}%

\else% FOR ANY OTHER CHARACTER TO BE CAPITALIZED

\def\next@char{#2}%

\fi%

\fi%

\ifthenelse{\equal{\cmd@flag}{#2}}{\def\make@cap{T}}{%

\protected@edef\@thestring{\@thestring\uppercase{\next@char}}%

\def\make@cap{F}%

\@checkfornewgroup{#2}%

}%

}{}%

\else% FOR CHARACTERS NOT TO BE CAPITALIZED

\ifthenelse{\equal{\cmd@flag}{#2}}{\def\make@cap{T}}{%

\protected@edef\@thestring{\@thestring#2}%

\@checkfornewgroup{#2}%

}%

\fi%

#1}

\def\@checkfornewgroup#1{%

\ifthenelse{\equal{-}{#1}}{\def\make@cap{T}}{%

\ifthenelse{\equal{(}{#1}}{\def\make@cap{T}}{%

\ifthenelse{\equal{[}{#1}}{\def\make@cap{T}}{%

\ifthenelse{\equal{\{}{#1}}{\def\make@cap{T}}{%

\ifthenelse{\equal{‘}{#1}}{\def\make@cap{T}}{}%

}%

}%

}%

}%

}

%%%%%%%%%%%%%%%%%%

% DAVID CARLISLE GREATLY ASSISTED WITH THE \get@argsC COMMAND LOGIC

\def\string@@@end{$\SaveHardspace}

\def\converttilde{F}

\newcounter{arg@@@index}

\let\SaveHardspace~%%%

\def\the@@@rule{\rule{.8ex}{1.6ex}}%

\def\get@argsC#1{%

\if T\converttilde\def~{ }\else\catcode‘~=12\fi

\protected@edef\the@@@string{#1}%

\setcounter{arg@@@index}{0}%

16

\lowercase{\expandafter\parse@@@Block\the@@@string} \string@@@end

\let~\SaveHardspace%

\catcode‘~=13%

}

\def\parse@@@Block#1 {%

\stepcounter{arg@@@index}%

\@namedef{arg\roman{arg@@@index}}{#1}%

\ifthenelse{\equal{\argi}{}}{\addtocounter{arg@@@index}{-1}}{}%

\futurelet\tmp\parse@@@Block@@@}

\def\parse@@@Block@@@{%

\ifx\tmp\string@@@end\edef\narg{\thearg@@@index}\expandafter\@gobble

\else\expandafter\parse@@@Block\fi}

%%%%%%%%%%%%

\let\sv@tiny\tiny

\let\sv@scriptsize\scriptsize

\let\sv@footnotesize\footnotesize

\let\sv@small\small

\let\sv@normalsize\normalsize

\let\sv@large\large

\let\sv@Large\Large

\let\sv@LARGE\LARGE

\let\sv@huge\huge

\let\sv@huge\Huge

\let\make@lttr\makeatletter%

\let\make@othr\makeatother%

\newcommand\noatinsidetc{%

\def\make@lttr{}

\def\make@othr{}

}

\def\restore@sizes{%

\let\tiny\sv@tiny%

\let\scriptsize\sv@scriptsize%

\let\footnotesize\sv@footnotesize%

\let\small\sv@small%

\let\normalsize\sv@normalsize%

\let\large\sv@large%

\let\Large\sv@Large%

\let\LARGE\sv@LARGE%

\let\huge\sv@huge%

17

\let\huge\sv@Huge%

\make@othr%

}

% THE \makeatletter IS REQUIRED FOR PROCESSING FONTSIZE CHANGES

\def\digest@sizes{%

\make@lttr%

\def\tiny{\unskip\noexpand\sz@tiny\SoftSpace}%

\def\sz@tiny{\noexpand\sv@tiny}%

%

\def\scriptsize{\unskip\noexpand\sz@scriptsize\SoftSpace}%

\def\sz@scriptsize{\noexpand\sv@scriptsize}%

%

\def\footnotesize{\unskip\noexpand\sz@footnotesize\SoftSpace}%

\def\sz@footnotesize{\noexpand\sv@footnotesize}%

%

\def\small{\unskip\noexpand\sz@small\SoftSpace}%

\def\sz@small{\noexpand\sv@small}%

%

\def\normalsize{\unskip\noexpand\sz@normalsize\SoftSpace}%

\def\sz@normalsize{\noexpand\sv@normalsize}%

%

\def\large{\unskip\noexpand\sz@large\SoftSpace}%

\def\sz@large{\noexpand\sv@large}%

%

\def\Large{\unskip\noexpand\sz@Large\SoftSpace}%

\def\sz@Large{\noexpand\sv@Large}%

%

\def\LARGE{\unskip\noexpand\sz@LARGE\SoftSpace}%

\def\sz@LARGE{\noexpand\sv@LARGE}%

%

\def\huge{\unskip\noexpand\sz@huge\SoftSpace}%

\def\sz@huge{\noexpand\sv@huge}%

%

\def\Huge{\unskip\noexpand\sz@Huge\SoftSpace}%

\def\sz@Huge{\noexpand\sv@Huge}%

}

\endinput

18

