
tikzscale — Absolute resizing of TikZ pictures and
PGF plots without scaling text∗

Patrick Häcker†

Released 2012/10/31

1 Introduction
When dealing with graphics, there are different scaling demands. For absolute
scaling, a width and/or height is given. Opposed to that, for relativ scaling, a
horizontal and/or vertical scaling factor is needed. This package only is about ab-
solute scaling of tikzpicture environments. The different absolute scaling demands
and their solutions are shown in table 1.

The tikzscale package adds and improves certain forms of absolute scaling for
TikZ and PGFPlots, respectively. These scaling methods are the ones which are
most useful, maybe even the only ones which are needed. During the scaling, the
text sizes and line widths are left unscaled, which avoids inconsistency and visual
distraction. PGFPlots itself can scale absolutely, but an approximation is used to
achieve that. The tikzscale package uses optimization algorithms and warns if the
scaling is not exact.

Using tikzscale all relevant scaling methods share the same user interface with
the well known \includegraphics command, enabling some of its features like
automatic file extension detection for TikZ and PGFPlots, too. Furthermore, the
\includegraphics is improved to look-up relative paths in the correct subdirec-
tory, if a LATEX project is organized in subdirectories.

Relative scaling methods are mostly useless, as the sizes of the used images are
often arbitrary, either determined by some resolution for rastered images or some
arbitrary unit vector size for vector images, TikZ and PGFPlots. For traditional
images and TikZ pictures, only proportional scaling methods giving either a width
or a height make sense, as otherwise they get heavily distorted if the original aspect
ratio is changed. As PGFPlots can handle different aspect ratios and aspect ratios
are normally not predefined for plots, its requirement is the opposite: A width and
a height are needed to avoid getting arbitrary sizes. For some special plots, the
axis ratio can be given, as well. These requirements lead to the marked blue colors
in table 1.
∗This file describes version v0.1, last revised 2012/10/31.
†E-mail: pat_h@web.de

1

Table 1: Absolute graphic scaling methods. If multiple methods are available, the
most native one is shown. Methods which approximate the scaling are shown in
orange text color. Recommended methods are shown in blue textcolor.

(a) Scaling with scaled text and line widths.

scale Images TikZ/PGFPlots
to width

proportionally
\includegraphics
[width=unit]

\resizebox
{width }{!}

to width
keeping height

\resizebox
{width }{\height}

\resizebox
{width }{\height}

to height
proportionally

\includegraphics
[height=unit]

\resizebox
{!}{height }

to height
keeping width

\resizebox
{\width}{height }

\resizebox
{\width}{height }

to width
and height

\includegraphics
[width=unit,height=unit]

\resizebox
{width }{height }

(b) Scaling with unscaled text and line widths without tikzscale.

scale Images TikZ PGFPlots
to width

proportionally – – [width=unit]

to width
keeping height – – –

to height
proportionally – – [height=unit]

to height
keeping width – – –

to width
and height – – [width=unit,height=unit]

(c) Scaling with unscaled text and line widths with tikzscale.

scale Images TikZ PGFPlots
to width

proportionally – \includegraphics
[width=unit]

\includegraphics
[width=unit]

to width
keeping height – – –

to height
proportionally – \includegraphics

[height=unit]
\includegraphics
[height=unit]

to height
keeping width – – –

to width
and height – – \includegraphics

[width=unit,height=unit]

2

2 Usage and Examples
Loading the tikzscale package without loading other packages, does not do any-
thing useful.

2.1 TikZ
If the tikzscale and the tikz packages are loaded, the \includegraphics command
can be used to input and scale a tikzpicture environment located in a separate file.

As an example create the following .tex-file.
\documentclass{minimal}
\usepackage{tikz}
\usepackage{tikzscale}
\begin{document}

\includegraphics[width=0.5\linewidth]{linewidth.tikz}
\end{document}

Furthermore create the following .tikz-file and save it as linewidth.tikz in the
same directory as the above .tex-file.
\begin{tikzpicture}

\draw (0,0) – node {center} (\linewidth,1);
\end{tikzpicture}

The result of the complied .tex-file should look like this.
center

So although the original tikzpicture itself has the width of a complete line,
it gets proportionally scaled down to half the width while being loaded from the
\includegraphics command. Neither the line’s thickness nor the text center
are scaled. Compare the output to

\input{linewidth.tikz}

center

and
\resizebox{0.5\linewidth}{!}{\input{linewidth.tikz}}

center

to see tikzscale’s benefit.

2.2 PGFPlots
2.2.1 Scaling of width and height

If the pgfplots package is loaded together with the tikzscale package, the user
interface is the same. Instead of giving either a width or a height, both have to
be given for pgfplots. So

\input{pgfplots-test.tikz}

3

−20 0 20

−2,000

0

2,000

Figure 1: Using options width=0.4\linewidth and height=0.4\linewidth re-
sults in an overall quadratic graphic with overall width and height set to 40% of
the linewidth.

\begin{tikzpicture}\begin{axis}[width=3cm,height=2cm] ...

becomes
\includegraphics[width=3cm,height=2cm]{pgfplots-test.tikz}

\begin{tikzpicture}\begin{axis} ...

The benefit is a more accurate scaling algorithm, as the scaling with PGFPlots
can be quite coarse. Another win is the unified interface, which simplifies the
sharing of plots between projects enormously, as one file and thus one plot can be
included in different projects with different sizes.

2.2.2 Scaling using axis ratio

The scaling described in the previous section scales the whole plot including all axis
descriptions and legends to the given width and height. It can thus happen, that
the plotted figure has a different size ratio than expected, if the x and y descriptions
have different sizes as shown in figure 1. Sometimes, the x-axis and the y-axis
should have a specific ratio, e.g. being equal, ignoring the axis description and
other things. This is normally achieved by using PGFPlots’ option scale only
axis. Unfortunately, if this option would be used, a plot might be unsharable
between two projects, if they have different requirements for the axis ratio. Thus,
this option should not be used in this case. Instead, in \includegraphics there is
a new option axisratio which must be used together with either width or height.
It scales the whole plot including the axis description to the given width or height
as in figure 2 while keeping the graphical part at a given axis ratio, where the ratio
is defined by width divided by height. The graphical part is thus not quadratic in
general.

4

−20 0 20

−2,000

0

2,000

Figure 2: Using options width=0.4\linewidth and axisratio=1 results in an
quadratic graphic area with overall width set to 40% of the linewidth. The height
follows from these constraints, so that the overall plot is not quadratic in general.

2.3 Hints for TikZ and PGFPlots
The whole tikzpicture environment must be in a separate file. This allows shar-
ing of graphics between different TEX projects and a unified user interface via
\includegraphics. Having tikzpicture environments directly in a .tex-file is not
supported, i.e. they do not benefit from the tikzscale package. Multiple tikzpicture
environments in one .tikz-file are not supported, either. Put things which always
belong together in a shared tikzpicture environment and things which might be
used separately in the future in separate files for code sharing across projects. The
file ending may be ommited in the \includegraphics command, if it is one of
.tikz, .TIKZ, .TikZ, .pgf or .PGF. At the moment, use only either width or height
for normal (i.e. non-PGFPlots) tikzpicture environments and use width and height
or one of both together with axisratio for tikzpicture environments containing a
PGFPlots’ axis environment.

2.4 currfile
If the tikzpicture package is loaded together with the currfile package, another
feature is activated. Suppose you have your project organized in the following
directory tree with directories shown in blue color:
projectDirectory

main.tex
firstChapter

firstChapter.tex
firstGraphicOfFirstChapter.jpeg
secondGraphicOfFirstChapter.tikz

secondChapter
secondChapter.tex
firstGraphicOfSecondChapter.tikz
secondGraphicOfSecondChapter.jpeg

5

http://www.ctan.org/pkg/currfile

Further suppose the chapter.tex files are \inputted in main.tex. Calling
\includegraphics{firstGraphicOfFirstChapter.jpeg}
in firstChapter.tex normally does not work. The reason is that the
\input{firstChapter.tex}
command in main.tex copies the content of firstChapter.tex into main.tex, so
when the \includegraphics command is called, it is called from within project-
Directory, thus the relative path lookup of firstGraphicOfFirstChapter.jpeg fails.
Instead the command
\includegraphics{firstChapter/firstGraphicOfFirstChapter.jpeg}
can be used (example for a Unix system), but this is tedious and counter-intuitive.

If both tikzscale and currfile are loaded, the limitation is fixed, so that both
\includegraphics commands succeed. Note, that this functionality supports the
traditional graphic formats, too, and is also available without loading the TikZ or
PGFPlots packages, although the package’s name might imply otherwise.

3 Compatibility
Using both the externalization library and tikzscale seems to have a race condition
when a make file is used with multiple jobs (-jX with X > 1). The probability
of getting errors increases with the number of jobs and for X = 1 and X = 2 no
race condition could be observed, yet. You should either avoid using mode list
and make or have only one job if you want to be on the safe side.

3.1 Load Order
There is no constraint regarding the load order known, yet. TikZ, PGFPlots and
currfile might all be loaded or not in all possible combinations and orders before
or after tikzscale.

3.2 Externalization library
TikZ’ externalization library is supported. Its use is highly recommended, as
tikzscale renders some graphics multiple times to get the correct size. The savings
by using the externalization library can thus be huge.

4 Further Ideas
• When the externalization library is used, the graphic files get regenerated
more often than necessary. This is, for example, because the axis ratio is
not saved, thus assumed unknown and the graphic is thus regenerated.

• if graphic files are located in a subdirectory, the externalized files should also
be in that subdirectory.

• the package can test if a pgfplot is used (needed if normal TikZ graphics
should be stretchable) by changing \tikzscale@width and or \tikzscale@height

6

and measuring. If nothing changes, it must be a normal tikzpicture (the ar-
gument does not hold the other way round).

• it may be better to use the depth as well

• The final sizing parameters should be saved per figure in the aux file. The
first rendering each run should be performed with the aux file’s parameters
into an sbox. The scaling algorithms should only be called, if the sizing
requirements are not met.

5 Contributions
• Jake

– Encouraged the author to create this package.

• Dr. Christian Feuersänger

– Encouraged the author to create this package and created PGFPlots.
– Answered many questions and had a lot of good ideas regarding the

externalization.

• David Carlisle

– Created the \xcmd macro for this package, which is used in the docu-
mentation.

6 Implementation
The basic idea is to first get the correct file name (i.e. find the path and the
file extension), then determine the graphic type (i.e. TikZ or something else)
and call either the original includegraphics command or the tikzscale command.
Tikzpictures are then plotted into an invisible box and their size is measured.
If their measured size differs from the requested size, they are replotted with
corrected parameters to get the requested size. The correctly sized plots are then
really plotted.

\tikzexternal

1 \AtEndPreamble{%

Activate the output of the graphics sizes into the dpth files (one file per graphic).
This key is used if the externalization library is activated to check if the scaling is
correct, otherwise the code is not needed

2 \ifdef{\tikzifexternalizing}{%
3 \pgfkeys{/pgf/images/external info}%
4 }{}%

7

http://tex.stackexchange.com/a/22957

Provide dummy commands, if the externalization library has not been loaded
during the preamble.

5 \ProvideDocumentCommand{\tikzsetnextfilename}{m}{}%
6 \ProvideDocumentCommand{\tikzsetexternalprefix}{m}{}%
7 \ProvideDocumentCommand{\tikzexternaldisable}{}{}%
8 \ProvideDocumentCommand{\tikzexternalenable}{}{}%
9 \ProvideDocumentCommand{\tikzifexternalizingnext}{mm}{#1}%

\tikzscale@scale

10 \@ifpackageloaded{tikz}{%

Set a minimum accuracy tikzscale tries to achieve. TeX’s accuracy is limited, thus
0.001 pt cannot always be achieved independent of the number of iterations. The
current value is chosen arbitrarily, but it might have to be increased in case a plot
is found where the given accuracy cannot be achieved.

11 \newlength{\tikzscale@accuracy}%
12 \setlength{\tikzscale@accuracy}{0.01pt}%

This is needed in normal TikZ pictures and in PGFPlots, but as the pgfplots
package loads the tikz package, it is fine to define it here.

13 \def\maxTestIterations{10}%
14 }{}%
15 }

This command draws the plot’s border at the right text border, so that thick
points or label descriptions can reach into the margin. This should be limited to
PGFPlots only if activated.

With the option below, the labels can be moved a bit to the left so that they
reach to the text margin. yticklabel style=align=right,inner sep=0pt,xshift=-
0.1cm

\pgfmathsetglobalmacro This is a general command, which might be useful for inclusion into the tikz
package. It works similar to \pgfmathsetglobalmacro but has global scope.

16 \def\pgfmathsetglobalmacro#1#2{%
17 \pgfmathparse{#2}%
18 \global\let#1\pgfmathresult%
19 }

\edocsvlist This is a general command, which might be useful for inclusion into the etoolbox
package. It works similar to \docsvlist but expands its argument similar to \def
vs. \edef, which is useful if the list is stored in a macro/variable.

20 \def\edocsvlist#1{%
21 \edef\tikzscale@edocsvlist{#1}%
22 \expandafter\docsvlist\expandafter{\tikzscale@edocsvlist}%
23 }

\eforcsvlist These is a general command, which might be useful for inclusion into the etoolbox
package. It works similar to \forcsvlist but expands its argument similar to
\def vs. \edef, which is useful if the list is stored in a macro/variable.

8

24 \def\eforcsvlist#1#2{%
25 \edef\tikzscale@eforcsvlist{#2}%
26 \expandafter\forcsvlist\expandafter{\expandafter#1\expandafter}\expandafter{\tikzscale@eforcsvlist}%
27 }

\elseif This macro provides a conditional which supports an if with an arbitrary amount
of elseif (none is also ok) and an optional else. With a simplified syntax (remove
the tests and the grouping) this would be worth a separate package.

28 \NewDocumentCommand{\elseif}{mm}{%
29 \ifboolexpr{#1}{%
30 #2%
31 \elseif@absorb
32 }{%
33 \elseif@optional
34 }%
35 }
36 \NewDocumentCommand{\elseif@optional}{gg}{%
37 \IfValueTF{#1}{%
38 \IfValueTF{#2}{%
39 \ifboolexpr{#1}{%
40 #2%
41 \elseif@absorb
42 }{%
43 \elseif@optional
44 }%
45 }{%
46 #1%
47 }%
48 }{}%
49 }
50 \NewDocumentCommand{\elseif@absorb}{g}{%
51 \IfValueTF{#1}{%
52 \elseif@absorb
53 }{}%
54 }

T his command is from Bruno Le Floch.
55 \ExplSyntaxOn
56 \NewDocumentCommand{\IfNoValueOrSplitEmptyTF}{mmm}{
57 \ifboolexpr{test {\IfNoValueTF{#1}} or test {\tl_if_eq:nnTF{#1}{{}}}}{
58 #2
59 }{
60 #3
61 }
62 }
63 \ExplSyntaxOff

\activatetikzscale

64 \AtEndPreamble{%

9

http://tex.stackexchange.com/a/63248/7323

Add the TikZ file extensions to the graphicx file extensions.
65 \def\tikzscale@tikzFileExtensions{.tikz,.TIKZ,.TikZ,.pgf,.PGF}%
66 % \def\tikzscale@tikzFileExtensions{.tikz,.TIKZ,.TikZ,.pgf,.PGF,.tex,.TEX}%
67 \DeclareGraphicsExtensions{\tikzscale@tikzFileExtensions,\Gin@extensions}%

The \raphicspath command is used to set additional directories, which are
searched for graphics. \Ginput@path is used to get the current content.

68 \ifdef{\currfiledir}{%
69 % \graphicspath{{\currfiledir}{}\Ginput@path}%
70 \def\tikzscale@graphicspath{\currfiledir,{}}%
71 }{%
72 \def\tikzscale@graphicspath{{}}%
73 }%

Save the \includegraphics command and replace it by a new more generic com-
mand, to have a consistent user interface.

74 \LetLtxMacro{\tikzscale@oldincludegraphics}{\includegraphics}%
75 \LetLtxMacro{\includegraphics}{\tikzscale@includegraphics}%
76 }

\includegraphics

77 \NewDocumentCommand{\tikzscale@includegraphics}{O{}m}{%

This command uses an empty optional argument for compatibility with the tra-
ditional graphicx command. Start a group, so that changed variables during pro-
cessing the current tikzpicture due not influence other tikzpictures. This is much
more convienient, than resetting every single variable. Use \begingroup instead
of \bgroup to simplify finding unmatched braces.

78 \begingroup

There is a leading space character introduced by the externalization library, if the
file is input directly. Thus use a trick to avoid that space. Furthermore, TikZ
introduces with a specific version an trailing space character. To get rid of all
space character issues, just solve the problem here once an for all.

79 \edef\tikzscale@restoreEndLineChar{\endlinechar=\the\endlinechar\relax}%
80 \endlinechar=-1%

Find the exact file name, as the ending and the path could be omitted.
81 \tikzscale@findExactFileName{tikzscale@fileName}{#2}%

Check if the found file is a TikZ file.
82 \tikzscale@isTikzFile{tikzscale@testTikzFile}{\tikzscale@fileName}%
83 \ifcsdef{tikzscale@testTikzFile}{%

Deactivate the new includegraphics command, as a tikzpicture might load a PNG
graphic or something and this should not be scaled by tikzscale but by TikZ or
PGFPlots.

84 \LetLtxMacro{\includegraphics}{\tikzscale@oldincludegraphics}%
85 \tikzscale@includetikz[#1]{\tikzscale@fileName}%
86 }{%
87 \tikzscale@oldincludegraphics[#1]{\tikzscale@fileName}%

10

http://tex.stackexchange.com/a/45502
http://tex.stackexchange.com/a/58404
ftp://ftp.tu-chemnitz.de/pub/tex/macros/latex/required/graphics/grfguide.pdf

88 }%
89 \tikzscale@restoreEndLineChar
90 \endgroup
91 }%

\tikzscale@findExactFileName Find the exact file name of a graphic file by testing several paths and file endings
if there are degrees of freedom. The file name is saved in the command sequence
name given by the first argument.

92 \NewDocumentCommand{\tikzscale@findExactFileName}{mm}{%

Delete the return variable if it already exists to allow checking if a file has been
found.

93 \csundef{#1}%

Create a helper function used inside the file ending evaluation.
94 \def\tikzscale@checkDirectory##1{%
95 \def\tikzscale@checkExtension####1{%
96 \IfFileExists{##1#2####1}{%
97 \csdef{#1}{##1#2####1}%
98 \listbreak
99 }{}%

100 }%

Test all possible file extensions and do not forget that the extension might already
be given. \Gin@extensions returns the current content set by \DeclareGraphicsExtensions.
101 \eforcsvlist{\tikzscale@checkExtension}{{},\Gin@extensions}%
102 }%
103 \eforcsvlist{\tikzscale@checkDirectory}{\tikzscale@graphicspath}%

If no file has been found, return the given file name, as includegraphics should try
its best.
104 \ifcsundef{#1}{%
105 \csdef{#1}{#2}%
106 }{}%
107 }

\tikzscale@findExactFileName The first argument is the macro name (without backslash), which gets defined if
the file is a tikzfile. The second argument is the file name.
108 \NewDocumentCommand{\tikzscale@isTikzFile}{mm}{%

Create a helper function used inside the evaluation.
109 \def\do##1{%
110 \IfEndWith{#2}{##1}{%
111 \csdef{#1}{}%
112 \listbreak
113 }{}%
114 }%

Delete macro so that defining it is really indicating something.
115 \csundef{#1}%
116 \edocsvlist{\tikzscale@tikzFileExtensions}%
117 }

11

http://tex.stackexchange.com/a/45502

\pgfkeys This is similarly done.
118 \pgfkeys{
119 /tikzscale/.is family, /tikzscale,
120 width/.code = {\pgfmathsetmacro{\requestedWidth}{#1}},
121 width/.value required,
122 height/.code = {\pgfmathsetmacro{\requestedHeight}{#1}},
123 height/.value required,
124 axisratio/.code = {\pgfmathsetmacro{\requestedAxisRatio}{#1}},
125 axisratio/.value required
126 }

\tikzscale@includetikz \tikzscale@includetikz{〈filename〉}
\tikzscale@includetikz[〈width=1cm〉]{〈filename〉}
\tikzscale@includetikz[〈height=1cm〉]{〈filename〉}
\tikzscale@includetikz[〈height=1cm,width=1cm〉]{〈filename〉}
\tikzscale@includetikz[〈width=1cm,height=1cm〉]{〈filename〉}
This command allows the inclusion of a tikz file like a graphics file. Thus in-
stead of writing \includegraphics[width=\linewidth]fileWithoutEnding write
\tikzscale@includetikz[width=\linewidth]fileWithoutEnding If only one of
width or height are given, scale proportionally to fulfill the requirement. If both
are given, scale non-proportionally to required width and height. Therefore, for
normal tikzpictures only give either width or height, as the aspect ratio is already
determined by the coordinate limits in the tikzpicture, but give width and height
for PGFPlots, as the aspect ratio is unknown for these plots. \NewEnviron could
be used to handle something like verbose in a tikzpicture, but at the moment, this
is unsupported.
127 \NewDocumentCommand{\tikzscale@includetikz}{O{}m}{%

TODO: Is it really necessary to execute this command here or can it be moved to
a more specialized code path?
128 \ifdef{\tikzexternalgetnextfilename}{%
129 \tikzexternalgetnextfilename{\tikzscale@externalizationName}%
130 }{}%

Check the keys here already, as they are needed both to see if already externalized
files fulfill their requirements and to handle unexternalized files.
131 \pgfkeys{/tikzscale, #1}%
132 \tikzifexternalizingnext{%
133 \tikzscale@includetikzUnexternalized[#1]{#2}%
134 }{%

Load this thing in an environment, where it does not get printed, as there is some
garbage in the file, too. As the sbox creates a new group, use a global variable to
get the content out of the group.
135 \sbox{\tikzscale@measuredSize}{%
136 \IfFileExists{\tikzscale@externalizationName.dpth}{%
137 \input{\tikzscale@externalizationName.dpth}%
138 \xdef\tikzscale@measuredWidth{\pgfexternalwidth}%
139 \xdef\tikzscale@measuredHeight{\pgfexternalheight}%

12

http://tex.stackexchange.com/a/34318

140 }{}%
141 }%

Check if the sizes are still correct, i.e. agree with the sizes of the externalized PDF
graphic. The axis ratio does not have to be checked, as is is always correct. This
is because if it gets changed, the width and the height get changed, too, and one
of these changes gets detected.
142 \ifdef{\requestedWidth}{%
143 \ifdef{\tikzscale@measuredWidth}{%
144 \tikzscale@ifSizeDifference{\requestedWidth - \tikzscale@measuredWidth}{%
145 \tikzset{external/remake next}%
146 }{}%
147 \global\undef{\tikzscale@measuredWidth}%
148 }{%
149 \tikzset{external/remake next}%
150 }%
151 }{}%
152 \ifdef{\requestedHeight}{%
153 \ifdef{\tikzscale@measuredHeight}{%
154 \tikzscale@ifSizeDifference{\requestedHeight - \tikzscale@measuredHeight}{%
155 \tikzset{external/remake next}%
156 }{}%
157 \global\undef{\tikzscale@measuredHeight}%
158 }{%
159 \tikzset{external/remake next}%
160 }%
161 }{}%
162 \ifdef{\requestedAxisRatio}{%
163 \ifdef{\tikzscale@oldAxisRatio}{%
164 \tikzscale@ifSizeDifference{\requestedAxisRatio - \tikzscale@oldAxisRatio}{%
165 \tikzset{external/remake next}%
166 }{}%
167 \global\undef{\tikzscale@oldAxisRatio}%
168 }{%
169 \tikzset{external/remake next}%
170 }%
171 }{}%
172 \input{#2}%
173 }%
174 }

\tikzscale@includetikzUnexternalized

175 \NewDocumentCommand{\tikzscale@includetikzUnexternalized}{O{}m}{%
176 \elseif{test {\ifundef{\requestedWidth}} and test {\ifundef{\requestedHeight}} and test {\ifundef{\requestedAxisRatio}}}{%

If no option is given, directly load the content, as nothing should get scaled.
177 \input{#2}%
178 }{test {\ifdef{\requestedWidth}} and test {\ifdef{\requestedHeight}}}{%

If width and height are given, the content must be a pgfplot, so scale it. The
plot currently only had approximately the given size without calling the resizeTo

13

macro, due to a (known) bug in PGFPlots.
179 \tikzscale@resizePlotTo{#2}%
180 }{test {\ifdef{\requestedAxisRatio}}}{%
181 \tikzscale@includeAxisRatio{#2}%
182 }{test {\ifundef{\requestedAxisRatio}}}{%

If only either width or height is given it can be a normal tikzpicture or a plot
with axisratio=1. Let’s guess that it is a plot with default axisratio. If the guess
is wrong, the called function detects that scaling the plot does not work and
automatically calls \tikzscale@includeNormalTikzpicture.
183 \def\requestedAxisRatio{1}%
184 \tikzscale@includeAxisRatio{#2}%
185 }{%
186 % Everything else results in an error.
187 \tikzscale@invalidKeyError{#2}%
188 }%
189 }

\tikzscale@preparePlot

190 \NewDocumentCommand{\tikzscale@preparePlot}{}{%

Set a scaling factor or a width and height for the plot, which will be loaded. The
\tikzset and \pgfplotsset commands have local scope. The internal redefini-
tion of the style is correct, because if one tikzpicture includes another one, the
scaling factor is reset so that it does not get squared in the inner one. Note that
if a user-defined style thus is ignored in this special case. The styles are defined
here, so that files which are inputted without the \ncludegraphics command are
not affected.
191 \pgfplotsset{every axis/.append style={width=\tikzscale@width,height=\tikzscale@height,every axis/.style={}}}%
192 }
193 \NewDocumentCommand{\tikzscale@prepareTikzpicture}{}{%
194 \tikzset{every picture/.style={scale=\tikzscale@scale,every picture/.style={}}}%
195 }

\tikzscale@includeNormalTikzpicture \tikzscale@includeNormalTikzpicture{〈file name〉}
196 \NewDocumentCommand{\tikzscale@includeNormalTikzpicture}{m}{%
197 \tikzscale@prepareTikzpicture
198 \elseif{test {\ifdef{\requestedWidth}} and test {\ifundef{\requestedHeight}}}{%
199 \def\requestedSize{\requestedWidth}%
200 \tikzscale@scaleTikzpictureTo{\wd}{\input{#1}}{#1}%
201 }{test {\ifundef{\requestedWidth}} and test {\ifdef{\requestedHeight}}}{%
202 \def\requestedSize{\requestedHeight}%
203 \tikzscale@scaleTikzpictureTo{\ht}{\input{#1}}{#1}%
204 }{%
205 \tikzscale@invalidKeyError{#1}%
206 }%
207 }

\tikzscale@invalidKeyError

14

http://tex.stackexchange.com/questions/38605/scaling-a-tikz-figure-from-an-external-file

208 \NewDocumentCommand{\tikzscale@invalidKeyError}{m}{%
209 \PackageError{tikzscale}{Invalid key for TikZ graphic}{Change key #1 into a valid key.}%
210 }

\tikzscale@includeAxisRatio \tikzscale@includeAxisRatio{〈file name〉}
211 \NewDocumentCommand{\tikzscale@includeAxisRatio}{m}{%

Try to set initial sizes close to the requested sizes, to improve the optimization’s
speed.
212 \pgfplotsset{every axis/.append style={scale only axis,every axis/.style={}}}%
213 \elseif{test {\ifdef{\requestedWidth}} and test {\ifundef{\requestedHeight}}}{%
214 \let\requestedSize\requestedWidth
215 \def\tikzscale@width{\requestedWidth}%
216 \pgfmathsetmacro{\tikzscale@height}{\requestedWidth / \requestedAxisRatio}%
217 \tikzscale@resizePlotWithAxesRatioTo{\wd}{\tikzscale@width}{\input{#1}}{#1}%
218 }{test {\ifundef{\requestedWidth}} and test {\ifdef{\requestedHeight}}}{%
219 \let\requestedSize\requestedHeight
220 \def\tikzscale@height{\requestedHeight}%
221 \pgfmathsetmacro{\tikzscale@width}{\requestedHeight * \requestedAxisRatio}%
222 \tikzscale@resizePlotWithAxesRatioTo{\ht}{\tikzscale@height}{\input{#1}}{#1}%
223 }{%
224 \tikzscale@invalidKeyError{#1}%
225 }%
226 }

\tikzscale@scaleTikzpictureTo \scalteTo{〈\wd or \ht 〉}{〈to-be-scaled content〉}{〈file name〉} The first argu-
ment determines if a specific width or a specific height should be achieved by
scaling.
227 \NewDocumentCommand{\tikzscale@scaleTikzpictureTo}{mmm}{%

Deactivate the externalization, as the measurements to determine the correct size
should not be externalized.
228 \tikzscale@conditionalDisableExternalization

When scaling a tikzpicture, only the drawings are scaled, but nodes are not scaled.
So in general, there are horizontal or vertical areas, where the picture contains only
unscaled nodes, and areas where the picture contains scalable drawings. Mathe-
matically all scaled and all unscaled areas can be combined, so that there is one
are area of fixed size and one variable sized area. Thus scaling only by multi-
plication of a factor is incorrect in general. To do the correct scaling, the fixed
area size must be known. As there are two unknown parameters, i.e. fixed area
size and variable area size, the fixed area size can be calculated by measuring the
tikzpicture with two different scalings. A special scaling factor is used, to get the
size close to the final size minimizing numerical and logical errors.
229 \def\tikzscale@scale{1}%
230 \tikzscale@measureSize{\measuredFirst}{#1}{#2}%
231 \pgfmathsetmacro{\tikzscale@scale}{\requestedSize/\measuredFirst}%
232 \tikzscale@measureSize{\measuredSecond}{#1}{#2}%

15

It can happen, that there are no variable areas. Furthermore, the original size
could already fit. Avoid numerical problems in both cases by directly drawing
the picture. Do not compare the float values directly, as TeX’s precision is quite
limited.
233 \tikzscale@ifSizeDifference{\measuredSecond - \requestedSize}{%

If a plot is not scalable (e.g. consisting of a node only), but is not correctly scaled,
exit with an error.
234 \tikzscale@ifSizeDifference{\measuredFirst - \measuredSecond}{%
235 }{%
236 \PackageError{tikzscale}{Requested to scale unscalable graphic}{Do not set width or height for graphic in\MessageBreak #3}%
237 }%

We know, that the variable sized area scales with the scaling factor, thus it
holds \scale * \variableFirst = \variableSecond, with \variableFirst
= \measuredFirst - \fixedSize and \variableSecond = \measuredSecond -
\fixedSize, which can be solved by substituttion and results in
238 \pgfmathsetmacro{\fixedSize}{(\tikzscale@scale*\measuredFirst - \measuredSecond) / (\tikzscale@scale - 1)}%

Now, to get the correct scaling factor, only take the variable areas into account,
as it holds \scaleFinal = \variableSizeFinal / \variableSizeOriginal with
\variableSizeFinal= \requestedSize - \fixedSize and \variableSizeOriginal
= \measuredFirst - \fixedSize, which results in
239 \pgfmathsetmacro{\tikzscale@scale}{(\requestedSize - \fixedSize) / (\measuredFirst - \fixedSize)}%

Additionally or alternatively the brute force approach to iteratively improve the
solution can be used.
240 \foreach \l in {1,...,\maxTestIterations}{%
241 \tikzscale@measureSize{\measuredIntermediate}{#1}{#2}%

Optimize until the absolute difference is small enough, although the (relative) size
ratios are used to calculate a new scaling factor.
242 \tikzscale@ifSizeDifference{\measuredIntermediate-\requestedSize}{%

First divide before multiply to avoid overflowing (at 16384).
243 \pgfmathparsemacro{\errorRatio}{\measuredIntermediate/\requestedSize}%
244 \pgfmathsetglobalmacro{\tikzscale@scale}{\tikzscale@scale/\errorRatio}%
245 }{%
246 \breakforeach%
247 }%
248 }%

Externalize the graphic with the final size.
249 \tikzscale@conditionalEnableExternalization{#3}%

Finally, include the picture. Do it via a new measurement to be able to warn if it
does not fit good enough.
250 \tikzscale@measureSize{\measuredFinal}{#1}{#2}%
251 \usebox{\tikzscale@measuredSize}%
252 \tikzscale@warnIfSizeDifference{\measuredFinal}{\requestedSize}{#3}%
253 }{%

16

Externalize the graphic with the final size.
254 \tikzscale@conditionalEnableExternalization{#3}%
255 #2%
256 }%
257 }

\tikzscale@resizePlotTo \tikzscale@resizePlotTo{〈file name〉}
258 \NewDocumentCommand{\tikzscale@resizePlotTo}{m}{%
259 \def\fileName{#1}%
260 \def\content{\input{#1}}%
261 \tikzscale@preparePlot
262 \def\tikzscale@width{\requestedWidth}%
263 \def\tikzscale@height{\requestedHeight}%

Deactivate the externalization, as the measurements to determine the correct size
should not be externalized.
264 \tikzscale@conditionalDisableExternalization

Improve the solution iteratively until it is good enough.
265 \foreach \l in {1,...,\maxTestIterations}{%

Using the box allows measuring the width and height with one rendering run.
266 \sbox{\tikzscale@measuredSize}{\content}%

Determine the remaining error and check if it is larger than a threshold.
267 \pgfmathsetmacro{\widthDifference}{\wd\tikzscale@measuredSize - \requestedWidth}%
268 \pgfmathsetmacro{\heightDifference}{\ht\tikzscale@measuredSize - \requestedHeight}%

Output error in current iterion for debugging.
269 % widthDifference: \widthDifference, heightDifference: \heightDifference\\% Debugging

Check if the remaining error is larger than a threshold.
270 \ifboolexpr{test {\tikzscale@ifSizeDifference{\widthDifference}} or test {\tikzscale@ifSizeDifference{\heightDifference}}}{%

Correct the dimension by the error. Use a global assignment, as each iteration in
the loop is put into a separate group.
271 \pgfmathsetglobalmacro{\tikzscale@width}{\tikzscale@width - \widthDifference}%
272 \pgfmathsetglobalmacro{\tikzscale@height}{\tikzscale@height - \heightDifference}%
273 }{%
274 \breakforeach
275 }%
276 }%

Externalize the graphic with the final size.
277 \tikzscale@conditionalEnableExternalization{\fileName}%

Finally, include the picture. Do it via a new measurement to be able to warn if it
does not fit good enough.
278 \sbox{\tikzscale@measuredSize}{\content}%
279 \usebox{\tikzscale@measuredSize}%
280 \tikzscale@warnIfSizeDifference{\requestedWidth}{\wd\tikzscale@measuredSize}{\fileName’s width}%
281 \tikzscale@warnIfSizeDifference{\requestedHeight}{\ht\tikzscale@measuredSize}{\fileName’s height}%
282 }

17

\tikzscale@resizePlotWithAxesRatioTo \tikzscale@resizePlotWithAxesRatioTo{〈\wd or \ht〉}{〈\tikzscale@width or
\tikzscale@height〉}{〈to-be-scaled content〉}{〈file name〉} The first argument de-
termines if a specific width or a specific height should be achieved by resizing.
283 \NewDocumentCommand{\tikzscale@resizePlotWithAxesRatioTo}{mmmm}{%
284 \def\dimension{#1}%
285 \def\variable{#2}%
286 \def\content{#3}%
287 \def\fileName{#4}%
288 \gdef\tikzscale@oldSizeDifference{0pt}%
289 \tikzscale@preparePlot

Deactivate the externalization, as the measurements to determine the correct size
should not be externalized.
290 \tikzscale@conditionalDisableExternalization

Improve the solution iteratively until it is good enough.
291 \foreach \l in {1,...,\maxTestIterations}{%
292 \tikzscale@measureSize{\measuredSize}{\dimension}{\content}%

Determine the remaining error and check if it is larger than a threshold.
293 \pgfmathsetmacro{\sizeDifference}{\measuredSize - \requestedSize}%

Output error in current iterion for debugging.
294 % sizeDifference: \sizeDifference\\% Debugging

Optimize if the absolute difference is too large.
295 \tikzscale@ifSizeDifference{\sizeDifference}{%
296 \ifdefstring{\dimension}{\wd}{%
297 \pgfmathsetglobalmacro{\tikzscale@width}{\tikzscale@width - \sizeDifference}%
298 \pgfmathsetglobalmacro{\tikzscale@height}{\tikzscale@width / \requestedAxisRatio}%
299 }{%
300 \pgfmathsetglobalmacro{\tikzscale@height}{\tikzscale@height - \sizeDifference}%
301 \pgfmathsetglobalmacro{\tikzscale@width}{\tikzscale@height * \requestedAxisRatio}%
302 }%
303 \tikzscale@ifSizeDifference{\sizeDifference-\tikzscale@oldSizeDifference}{%
304 }{%
305 \tikzscale@includeNormalTikzpicture{#4}%
306 \gdef\tikzscale@alreadyIncluded{true}%
307 \breakforeach
308 }%
309 \pgfmathsetglobalmacro{\tikzscale@oldSizeDifference}{\sizeDifference}%
310 }{%
311 \breakforeach
312 }%
313 }%
314 \ifdef{\tikzscale@alreadyIncluded}{%
315 \global\undef\tikzscale@alreadyIncluded%
316 }{%

Externalize the graphic with the final size.
317 \tikzscale@conditionalEnableExternalization{\fileName}%

18

Finally, include the picture. Do it via a new measurement to be able to warn if it
does not fit good enough.
318 \tikzscale@measureSize{\measuredFinal}{\dimension}{\content}%
319 \usebox{\tikzscale@measuredSize}%
320 \tikzscale@warnIfSizeDifference{\measuredFinal}{\requestedSize}{\fileName}%
321 }%
322 }

\tikzscale@measuredSize

323 \newsavebox{\tikzscale@measuredSize}

\measureSize{〈result variable name〉}{〈\wd or \ht 〉}{〈to-be-measured content〉}
324 \def\tikzscale@measureSize#1#2#3{%
325 \sbox{\tikzscale@measuredSize}{#3}%
326 \pgfmathsetmacro{#1}{#2\tikzscale@measuredSize}%
327 }

\tikzscale@ifSizeDifference \tikzscale@ifSizeDifference{〈size〉}{〈executed if true〉}{〈executed if false〉}
328 \def\tikzscale@ifSizeDifference#1#2#3{%
329 \pgfmathparse{abs(#1)}%
330 \ifdimgreater{\pgfmathresult pt}{\tikzscale@accuracy}{%
331 #2%
332 }{%
333 #3%
334 }%
335 }%

\tikzscale@measuredSize \tikzscale@warnIfSizeDifference{〈firstSize〉}{〈secondSize〉}{〈file name〉}
336 \def\tikzscale@warnIfSizeDifference#1#2#3{%
337 \tikzscale@ifSizeDifference{#1-#2}{%
338 \PackageWarning{tikzscale}{Scaling of #3 was only\MessageBreak accurate to \pgfmathresult pt}%
339 }{}%
340 }

\tikzscale@conditionalDisableExternalization

341 \NewDocumentCommand{\tikzscale@conditionalDisableExternalization}{}{%
342 \tikzexternaldisable
343 }

\tikzscale@conditionalEnableExternalization Activate externalization of TikZ graphics iff it had been active before definitely
disabling it for measurement purposes. The argument contains the file name.
344 \NewDocumentCommand{\tikzscale@conditionalEnableExternalization}{m}{%

For the externalization, set correct file name and only externalize the graphic with
the final size. This produces a known bug
345 % \tikzsetnextfilename{#1}%
346 % \edef\myprefix{\pwd}

19

http://old.nabble.com/minor-comment-about-TikZ-external-library-usage-tt31042245.html#a31042245

Get the current directory as a string and use it as an prefix, so that the graphic’s
PDF is generated in a subdirectory if the tikz file is located in a subdirectory, too.
This is necessary, as the PDF file is searched for in the subdirectory in this case.
This might be unnecessary due to the newly created path lookup logic.
347 % \expandafter\tikzsetexternalprefix\expandafter{\tikzscale@pwd}%
348 % \expandnext{\tikzsetexternalprefix}{\tikzscale@pwd}%
349 \tikzexternalenable
350 }

20

	1 Introduction
	2 Usage and Examples
	2.1 TikZ
	2.2 PGFPlots
	2.2.1 Scaling of width and height
	2.2.2 Scaling using axis ratio

	2.3 Hints for TikZ and PGFPlots
	2.4 currfile

	3 Compatibility
	3.1 Load Order
	3.2 Externalization library

	4 Further Ideas
	5 Contributions
	6 Implementation

