
tikzscale — Absolute resizing of TikZ pictures and
PGF plots without scaling text∗

Patrick Häcker†

Released 2013/03/30

1 Introduction
When dealing with graphics, there are different scaling demands. For absolute
scaling, a width and/or height is given. Opposed to that, for relativ scaling, a
horizontal and/or vertical scaling factor is needed. This package only is about ab-
solute scaling of tikzpicture environments. The different absolute scaling demands
and their solutions are shown in table 1.

The tikzscale package adds and improves certain forms of absolute scaling for
TikZ and PGFPlots, respectively. These scaling methods are the ones which are
most useful, maybe even the only ones which are needed. During the scaling, the
text sizes and line widths are left unscaled, which avoids inconsistency and visual
distraction. PGFPlots itself can scale absolutely, but an approximation is used to
achieve that. The tikzscale package uses optimization algorithms and warns if the
scaling is not exact.

Using tikzscale all relevant scaling methods share the same user interface with
the well known \includegraphics command, enabling some of its features like
automatic file extension detection for TikZ and PGFPlots, too. Furthermore, the
\includegraphics command is improved to look-up relative paths in the correct
subdirectory, if a LATEX project is organized in subdirectories.

Relative scaling methods are mostly useless, as the sizes of the used images are
often arbitrary, either determined by some resolution for rastered images or some
arbitrary unit vector size for vector images, TikZ and PGFPlots. For traditional
images and TikZ pictures, only proportional scaling methods giving either a width
or a height make sense, as otherwise they get heavily distorted if the original aspect
ratio is changed. As PGFPlots can handle different aspect ratios and aspect ratios
are normally not predefined for plots, its requirement is the opposite: Both width
and height are needed to avoid getting arbitrary sizes. For some special plots, the
axis ratio can be given, as well. These requirements lead to the marked blue colors
in table 1.
∗This file describes version v0.2.5, last revised 2013/03/30.
†E-mail: pat_h@web.de

1

Table 1: Absolute graphic scaling methods. If multiple methods are available, the
most native one is shown. Methods which approximate the scaling are shown in
orange text color. Recommended methods are shown in blue textcolor.

(a) Scaling with scaled text and line widths.

scale Images TikZ/PGFPlots
to width

proportionally
\includegraphics
[width=unit]

\resizebox
{width }{!}

to width
keeping height

\resizebox
{width }{\height}

\resizebox
{width }{\height}

to height
proportionally

\includegraphics
[height=unit]

\resizebox
{!}{height }

to height
keeping width

\resizebox
{\width}{height }

\resizebox
{\width}{height }

to width
and height

\includegraphics
[width=unit,height=unit]

\resizebox
{width }{height }

(b) Scaling with unscaled text and line widths without tikzscale.

scale Images TikZ PGFPlots
to width

proportionally – – [width=unit]

to width
keeping height – – –

to height
proportionally – – [height=unit]

to height
keeping width – – –

to width
and height – – [width=unit,height=unit]

(c) Scaling with unscaled text and line widths with tikzscale.

scale Images TikZ PGFPlots
to width

proportionally – \includegraphics
[width=unit]

\includegraphics
[width=unit]

to width
keeping height – – –

to height
proportionally – \includegraphics

[height=unit]
\includegraphics
[height=unit]

to height
keeping width – – –

to width
and height – – \includegraphics

[width=unit,height=unit]

2

2 Usage and Examples
Loading the tikzscale package without loading other packages, does not do any-
thing useful.

2.1 TikZ
If the tikzscale and the tikz packages are loaded, the \includegraphics command
can be used to input and scale a tikzpicture environment located in a separate file.

As an example create the following .tex-file.
\documentclass{minimal}
\usepackage{tikz}
\usepackage{tikzscale}
\begin{document}

\includegraphics[width=0.5\linewidth]{linewidth.tikz}
\end{document}

Furthermore create the following .tikz-file and save it as linewidth.tikz in the
same directory as the above .tex-file.
\begin{tikzpicture}

\draw (0,0) – node {center} (\linewidth,1);
\end{tikzpicture}

The result of the complied .tex-file should look like this.
center

So although the original tikzpicture itself has the width of a complete line,
it gets proportionally scaled down to half the width while being loaded from the
\includegraphics command. Neither the line’s thickness nor the text center
are scaled. Compare the output to

\input{linewidth.tikz}

center

and
\resizebox{0.5\linewidth}{!}{\input{linewidth.tikz}}

center

to see tikzscale’s benefit.

2.2 PGFPlots
2.2.1 Scaling of width and height

If the pgfplots package is loaded together with the tikzscale package, the user
interface is the same. Instead of giving either a width or a height, both have to be
given for pgfplots. Otherwise a default axis ratio is assumed (see section 2.2.2).

3

−20 0 20

−2,000

0

2,000

Figure 1: Using options width=0.4\linewidth and height=0.4\linewidth re-
sults in an overall quadratic graphic with overall width and height set to 40% of
the linewidth.

So,
\input{pgfplots-test.tikz}

\begin{tikzpicture}\begin{axis}[width=3cm,height=2cm] ...

becomes
\includegraphics[width=3cm,height=2cm]{pgfplots-test.tikz}

\begin{tikzpicture}\begin{axis}
The benefit is a more accurate scaling algorithm, as the scaling with PGFPlots

can be quite coarse. Another win is the unified interface, which simplifies the
sharing of plots between projects enormously, as one file and thus one plot can be
included in different projects with different sizes.

2.2.2 Scaling using axis ratio

The scaling described in the previous section scales the whole plot including all axis
descriptions and legends to the given width and height. It can thus happen, that
the plotted figure has a different size ratio than expected, if the x and y descriptions
have different sizes as shown in figure 1. Sometimes, the x-axis and the y-axis
should have a specific ratio, e.g. being equal, ignoring the axis description and
other things. This is normally achieved by using PGFPlots’ option scale only
axis. Unfortunately, if this option would be used, a plot might be unsharable
between two projects, if they have different requirements for the axis ratio. Thus,
this option should not be used in such a case.

Instead, in \includegraphics there is a new option axisratio which must
be used together with either width or height. It scales the whole plot including
the axis description to the given width or height as in figure 2 while keeping the
graphical part at a given axis ratio, where the ratio is defined by width divided

4

−20 0 20

−2,000

0

2,000

Figure 2: Using options width=0.4\linewidth and axisratio=1 results in an
quadratic graphic area with overall width set to 40% of the linewidth. The height
follows from these constraints, so that the overall plot is not quadratic in general.

by height. The graphical part is thus not quadratic in general. If axisratio is
omitted, i.e. only either height or width are given, it is assumed to be 1.

2.3 Hints for TikZ and PGFPlots
The whole tikzpicture environment must be in a separate file. This allows shar-
ing of graphics between different TEX projects and a unified user interface via
\includegraphics. Having tikzpicture environments directly in a .tex-file is not
supported, i.e. they do not benefit from the tikzscale package. Multiple tikzpicture
environments in one .tikz-file are not supported, either. Put things which always
belong together in a shared tikzpicture environment and things which might be
used separately in the future in separate files for code sharing across projects. The
file ending may be ommited in the \includegraphics command, if it is one of
.tikz, .TIKZ, .TikZ, .pgf or .PGF. At the moment, use only either width or height
for normal (i.e. non-PGFPlots) tikzpicture environments and use width and height
or one of both optionally together with axisratio for tikzpicture environments con-
taining a PGFPlots’ axis environment.

2.4 currfile
If the tikzpicture package is loaded together with the currfile package, another
feature is activated. Suppose you have your project organized in the following
directory tree with directories shown in blue color:
projectDirectory

main.tex
firstChapter

firstChapter.tex
firstGraphicOfFirstChapter.jpeg
secondGraphicOfFirstChapter.tikz

secondChapter

5

http://www.ctan.org/pkg/currfile

secondChapter.tex
firstGraphicOfSecondChapter.tikz
secondGraphicOfSecondChapter.jpeg

Further suppose the chapter.tex files are \inputted in main.tex. Calling
\includegraphics{firstGraphicOfFirstChapter.jpeg}
in firstChapter.tex normally does not work. The reason is that the
\input{firstChapter.tex}
command in main.tex copies the content of firstChapter.tex into main.tex, so
when the \includegraphics command is called, it is called from within project-
Directory, thus the relative path lookup of firstGraphicOfFirstChapter.jpeg fails.
Instead the command
\includegraphics{firstChapter/firstGraphicOfFirstChapter.jpeg}
can be used (example for a Unix system), but this is tedious and counter-intuitive.

If both tikzscale and currfile are loaded, the limitation is fixed, so that both
\includegraphics commands succeed. Note, that this functionality supports the
traditional graphic formats, too, and is also available without loading the TikZ or
PGFPlots packages, although the package’s name might imply otherwise.

3 Compatibility
3.1 Load Order
There is no constraint regarding the load order known, yet. TikZ, PGFPlots and
currfile might all be loaded or not in all possible combinations and orders before
or after tikzscale.

Using both the externalization library and tikzscale seems to have a race condi-
tion when a makefile is used with multiple jobs (-jX with X > 1). The probability
of getting errors increases with the number of jobs. For X = 1, obviously, no race
condition could be observed. You should either avoid using mode list and make
or have only one job if you want to be on the safe side.

Using \tikzexternalenable or \tikzexternaldisable inside of a tikzpicture
leads to undefined behaviour when using tikzscale. It’s not clear, what the correct
behaviour should be and what the externalization library does withouth tikzscale.

Note, that there was a bug in the externalization library, which has been fixed
on 25th of December in 2012, so you might want to use a more recent version of
TikZ or PGFPlots.

3.2 Externalization library
TikZ’ externalization library is supported. Its use is highly recommended, as
tikzscale renders some graphics multiple times to get the correct size. The savings
by using the externalization library can thus be huge.

6

http://tex.stackexchange.com/a/88158/7323

3.3 Fitting library
Due to a known bug in the fitting library, nodes with a fit option also need a
transform shape option in order to be scalable. If they are not scalable, they
normally do not contain the nodes as specified when tikzscale is used.

4 Further Ideas
• It might be a good idea to use the file names as figure names, but probably
only if the name was not already set by the user. Additionally, there must
be taken care to not try to write into a directory where there is no write
access (e.g. reading a graphic from a system wide TeX installation)

• if graphic files are located in a subdirectory, the externalized files should also
be in that subdirectory.

• allow in-file graphics by redefining the tikzpicture environment and accepting
tikzscale and tikz options. The tikzscale options are evaluated using key
filtering (tikz library) and the tikz options are forwarded.

• the package can test if a pgfplot is used (needed if normal TikZ graphics
should be stretchable) by changing \tikzscale@width and or \tikzscale@height
and measuring. If nothing changes, it must be a normal tikzpicture (the ar-
gument does not hold the other way round).

• it may be better to use the depth as well

• The final sizing parameters should be saved per figure in the aux file. The
first rendering each run should be performed with the aux file’s parameters
into an sbox. The scaling algorithms should only be called, if the sizing
requirements are not met. The purpose is similar to the externalization
library.

• Using something like [x=5pt] as an argument to the axis environment, e.g.
to scale the units in bar plots, is problematic, as tikzscale changes the be-
haviour, i.e. stops the scaling.

5 Contributions
• Jake

– Encouraged the author to create this package.

• Dr. Christian Feuersänger

– Encouraged the author to create this package and created PGFPlots.
– Answered many questions and had a lot of good ideas regarding the

externalization and beyond.

7

http://sourceforge.net/tracker/index.php?func=detail&aid=2991312&group_id=142562&atid=752792
http://tex.stackexchange.com/a/22957

– Fixed problems in the externalization library when used with tikzscale.

• David Carlisle

– Created the \xcmd macro for this package, which is used in the docu-
mentation.

• Prof. Kai Arzheimer

– Reported a bug when not using TikZ without PGFPlots, which lead to
a fix.

– Reported a bug that a non-existent macro is used, which lead to a fix.

• devendra

– Reported bugs when using the externalization library together with
tikzscale, which lead to a fix.

– Reported a problem when using data files, which lead to a fix regarding
\endlinechar.

• Mohammad Reza Keshtkaran

– Reported a bug when using plain old LATEXwith an eps file, which lead
to a fix.

– Reported another bug when using plain old LATEX, which lead to some
rework to fully support LATEXwithout additional code.

– Reported a bug when using \graphicspath, which lead to a fix.
– Reported the bug when using \graphicspath again, which lead to a

correct fix even if currfile is not used.

• Andreas Tharang

– Reported that the beamer class is incompatible with tikzscale, which
lead to a change in tikzscale to fix this incompatibility.

– Reported that the fitting library is incompatible with tikzscale due to
a bug in the fitting library, which lead to a note in the documentation.

– Created tests to improve the compatibility between beamer and tikzs-
cale, which lead to support of Beamer’s \pause command.

• Klaus Pribil

– Reported an incompatibility with the pdfpages package, which lead to
a fix in tikzscale.

• Christoph Schmidpeter

– Reported a problem when accidently adding a superfluous space into
the graphics path, which lead to a detection and fix of that case in
tikzscale.

8

• Jose Hissa Ferreira

– Reported a bug when using a graphics path with multiple path entries,
which lead to a fix.

6 Implementation
The basic idea is to first get the correct file name (i.e. find the path and the
file extension), then determine the graphic type (i.e. TikZ or something else)
and call either the original includegraphics command or the tikzscale command.
Tikzpictures are then plotted into an invisible box and their size is measured.
If their measured size differs from the requested size, they are replotted with
corrected parameters to get the requested size. The correctly sized plots are then
really plotted.

This command draws the plot’s border at the right text border, so that thick
points or label descriptions can reach into the margin. This should be limited to
PGFPlots only if activated.

With the option below, the labels can be moved a bit to the left so that they
reach to the text margin. yticklabel style=align=right,inner sep=0pt,xshift=-
0.1cm

\pgfmathsetglobalmacro This is a general command, which might be useful for inclusion into the tikz
package. It works similar to \pgfmathsetglobalmacro but has global scope.

1 \def\pgfmathsetglobalmacro#1#2{%
2 \pgfmathparse{#2}%
3 \global\let#1\pgfmathresult%
4 }

\ifTikzLibraryLoaded This is a general command, which might be useful for inclusion into the tikz
package. This is taken from stackexchange and simplified.

5 \def\ifTikzLibraryLoaded#1#2#3{%
6 \ifcsdef{tikz@library@#1@loaded}{%
7 #2%
8 }{%
9 #3%

10 }%
11 }

\ifExternalizationLoaded

12 \def\ifExternalizationLoaded#1#2{%
13 \ifTikzLibraryLoaded{external}{#1}{#2}%
14 }

\edocsvlist This is a general command, which might be useful for inclusion into the etoolbox
package. It works similar to \docsvlist but expands its argument similar to \def
vs. \edef, which is useful if the list is stored in a macro/variable.

15 \def\edocsvlist#1{%

9

http://tex.stackexchange.com/a/48472

16 \edef\tikzscale@edocsvlist{#1}%
17 \expandafter\docsvlist\expandafter{\tikzscale@edocsvlist}%
18 }

\eforcsvlist This is a general command, which might be useful for inclusion into the etoolbox
package. It works similar to \forcsvlist but expands its argument similar to
\def vs. \edef, which is useful if the list is stored in a macro/variable.

19 \def\eforcsvlist#1#2{%
20 \edef\tikzscale@eforcsvlist{#2}%
21 \expandafter\forcsvlist\expandafter{\expandafter#1\expandafter}\expandafter{\tikzscale@eforcsvlist}%
22 }

\forgrouplist This is a general command, which might be useful for inclusion into the etool-
box package. It works similar to \forcsvlist but uses TeX groups to separate
elements instead of a comma separated list.

23 \def\forgrouplist#1#2{%

Use \grouplistbreak instead of \forcsvlist’s \listbreak, because the func-
tion given in the first argument can contain a call to .In this case \listbreak
is executed, although no break has been called, which lead to an error in the
program, if \listbreak were used.

24 \def\grouplistbreak{\def\breakFor{}}%
25 \tikzscale@forGroupListElement{#1}#2\tikzscale@endList%

Delete \breakFor in case it has been set.
26 \undef\breakFor
27 }

\tikzscale@forGroupListElement

28 \NewDocumentCommand{\tikzscale@forGroupListElement}{mgu{\tikzscale@endList}}{%

Only do list processing if \listbreak has not been called.
29 \ifundef{\breakFor}{%
30 \IfValueTF{#2}{%
31 #1{#2}%
32 \tikzscale@forGroupListElement{#1}#3\tikzscale@endList%
33 }{%
34 #1{#3}%
35 }%
36 }{}%
37 }

\eforgrouplist This is a general command, which might be useful for inclusion into the etoolbox
package. It works similar to \forgrouplist but expands its argument similar to
\def vs. \edef, which is useful if the list is stored in a macro/variable.

38 \def\eforgrouplist#1#2{%
39 \edef\tikzscale@grouplist{#2}%
40 \expandafter\forgrouplist\expandafter{\expandafter#1\expandafter}\expandafter{\tikzscale@grouplist}%
41 }

10

\tikzscale@trim These is a general command to trim leading and trailing spaces, which might be
useful for inclusion into another package taken from the following homepage.

42 \def\tikzscale@trim#1{%
43 \ignorespaces#1\unskip
44 }%

\tikzscale@trimMacro A possible present leading or trailing space in the macro’s content is removed from
the macro.

45 \def\tikzscale@trimMacro#1{%
46 \expandafter\IfBeginWith\expandafter{#1}{ }{%
47 \expandafter\StrGobbleLeft\expandafter{#1}{1}[#1]%
48 }{}%
49 \expandafter\IfEndWith\expandafter{#1}{ }{%
50 \expandafter\StrGobbleRight\expandafter{#1}{1}[#1]%
51 }{}%
52 }

\elseif This macro provides a conditional which supports an if with an arbitrary amount
of elseif (none is also ok) and an optional else. With a simplified syntax (remove
the tests and the grouping) this would be worth a separate package.

53 \NewDocumentCommand{\elseif}{mm}{%
54 \ifboolexpr{#1}{%
55 #2%
56 \elseif@absorb
57 }{%
58 \elseif@optional
59 }%
60 }
61 \NewDocumentCommand{\elseif@optional}{gg}{%
62 \IfValueTF{#1}{%
63 \IfValueTF{#2}{%
64 \ifboolexpr{#1}{%
65 #2%
66 \elseif@absorb
67 }{%
68 \elseif@optional
69 }%
70 }{%
71 #1%
72 }%
73 }{}%
74 }
75 \NewDocumentCommand{\elseif@absorb}{g}{%
76 \IfValueTF{#1}{%
77 \elseif@absorb
78 }{}%
79 }

T his command is from Bruno Le Floch.

11

http://www.matijs.net/blog/2006/07/20/how-to-trim-spaces-in-tex
http://tex.stackexchange.com/a/63248/7323

80 \ExplSyntaxOn
81 \NewDocumentCommand{\IfNoValueOrSplitEmptyTF}{mmm}{
82 \ifboolexpr{test {\IfNoValueTF{#1}} or test {\tl_if_eq:nnTF{#1}{{}}}}{
83 #2
84 }{
85 #3
86 }
87 }
88 \ExplSyntaxOff
89 %\end{macro}
90 %
91 %\begin{macro}
92 % The check \cmd{\tikzifexternalizehasbeencalled} from file tikzexternalshared.code.tex is not exactly what is needed in tikzscale, as it always stays true after it has been set by \cmd{\tikzexternalize}. Instead, add a check whether externalization is active and set it to false if externalization has not been loaded for simplification. Thus, whether externalization is active can be checked without checking if it has been loaded at all. The initial state of \cmd{\tikzscale@externalizationActive} is not trivially known, as an arbitrary combination and order of \cmd{\tikzexternaldisable} and \cmd{\tikzexternalenable} commands could have been used before the end of the preamble. In the long run, tikzexternalshared.code.tex should offer that check. Until then, we can check whether \cmd{\tikz}=\cmd{\tikzexternal@origtikz} (i.e. externalization disabled) or \cmd{\tikz}=\cmd{\tikzexternal@tikz@replacement} (i.e. externalization enabled) holds (if neither of both holds, this indicates a problem, e.g. another package redefining the command). This is, of course, only needed if the externalization library has been loaded at all. Please note, the implementation of this check as a macro is possible, because tikzscale redefines tikzpicture, whereas the externalization library redefines tikz, so there is no conflict.
93 % \begin{macrocode}
94 \def\tikzscale@ifExternalizationActive#1#2{%
95 \ifExternalizationLoaded{%
96 \ifdefequal{\tikz}{\tikzexternal@tikz@replacement}{%
97 #1%
98 }{%
99 \ifdefequal{\tikz}{\tikzexternal@origtikz}{%

100 }{%
101 \PackageWarning{tikzscale}{Status of externalization is unknown, thus I assume it is deactivated.}%
102 }%

It’s important, that this code is below the above code, as the below code can
change the meaning of \tikz through side effects.
103 #2%
104 }%
105 }{%
106 #2%
107 }%
108 }%

\activatetikzscale

109 \AtEndPreamble{%

Add the TikZ file extensions to the graphicx file extensions.
110 \def\tikzscale@tikzFileExtensions{.tikz,.TIKZ,.TikZ,.pgf,.PGF}%
111 % \def\tikzscale@tikzFileExtensions{.tikz,.TIKZ,.TikZ,.pgf,.PGF,.tex,.TEX}%
112 \DeclareGraphicsExtensions{\tikzscale@tikzFileExtensions,\Gin@extensions}%

Save the \includegraphics command.
113 \LetLtxMacro{\tikzscale@oldincludegraphics}{\includegraphics}%

Activate the enhanced includegraphics command at end of preamble, so that no
other package is interfering (besides on purpose).
114 \tikzscale@useEnhancedIncludegraphics

Also patch tikzpicture environment to temporarily deactivate the enhanced in-
cludegraphics command inside the tikzpicture environment in case the tikzpicture

12

http://tex.stackexchange.com/a/45502
ftp://ftp.tu-chemnitz.de/pub/tex/macros/latex/required/graphics/grfguide.pdf

environment is called directly (without includegraphics being called) and loading
another graphic (like a PNG file inside of a pgfplot).
115 \tikzscale@patchTikzpictureIncludegraphics

As \endtikzpicture does not seem to be redefined, patch it here (once) to ac-
tivate tikzscale’s \includegraphics again. This is probably not necessary, but
might be handy if there are two tikzpicture environments in one includegraphics
environment.
116 \tikzscale@patchEndtikzpictureIncludegraphics

117 }

\tikzexternal

118 \AtEndPreamble{%

Activate the output of the graphics sizes into the dpth files (one file per graphic) if
externalization might be used (known at the end of preamble). This key is used if
the externalization library is activated to check if the scaling is correct, otherwise
the code is not needed.
119 \ifExternalizationLoaded{%
120 \pgfkeys{/pgf/images/external info}%
121 }{}%

Provide dummy commands, if the externalization library has not been loaded
during the preamble.
122 % \ProvideDocumentCommand{\tikzsetnextfilename}{m}{}%
123 % \ProvideDocumentCommand{\tikzsetexternalprefix}{m}{}%

124 \@ifpackageloaded{tikz}{%

Set a minimum accuracy tikzscale tries to achieve. TeX’s accuracy is limited, thus,
e.g. 0.04 pt, cannot always be achieved independent of the number of iterations.
Use the value (0.1 pt in an experiment) which is used for overfull paragraph
warnings, too.
125 \newlength{\tikzscale@accuracy}%
126 \setlength{\tikzscale@accuracy}{\hfuzz}%

This is needed in normal TikZ pictures and in PGFPlots, but as the pgfplots
package loads the tikz package, it is fine to define it here.
127 \def\maxTestIterations{10}%
128 }{}%

If the externalization library has been loaded, prepare it for use together with
tikzscale.
129 \ifExternalizationLoaded{%

\tikzexternaldisable and \tikzexternalenable normally unintentionally de-
activate the tikzscale commands (as they restore the original TikZ commands),
so let them restore the tikzscale commands instead. The idea is to get the tikzs-
cale’s includegraphics command being called and then redefine tikzpicture and do
the rest of the work there. Do the patching always when \tikzexternaldisable

13

http://en.wikibooks.org/wiki/TeX/hfuzz

or \tikzexternalenable is called, as the patching should also be done when
\includegraphics is not used, but \tikzpicture is called directly.
130 \apptocmd{\tikzexternaldisable}{%
131 \tikzscale@useEnhancedIncludegraphics
132 \tikzscale@patchTikzpictureIncludegraphics
133 }{}{\PackageError{tikzscale}{Patching tikzexternaldisable failed}}%
134 %
135 \apptocmd{\tikzexternalenable}{%
136 \tikzscale@useEnhancedIncludegraphics
137 \tikzscale@patchTikzpictureIncludegraphics
138 }{}{\PackageError{tikzscale}{Patching tikzexternalenable failed}}%
139 % \end{macrodode}
140 % Patch the externalization command to also save the axis ratio if given. Unfortunately, \cmd{\apptocmd} cannot be used, as patching fails due to "nested patching command and parameters in patch", thus, manual patching is in order.
141 % \begin{macrocode}
142 \LetLtxMacro{\tikzscale@externalend@storeshifts}{\pgf@externalend@storeshifts}%
143 \def\pgf@externalend@storeshifts#1{%
144 \tikzscale@externalend@storeshifts{#1}%
145 \ifpgfexternal@info

The axis ratio can only be saved, if it has been specified. Thus, the existence of
the variable in the dpth file indicates if the axis ratio has been given in the last
run.
146 \ifdef{\requestedAxisRatio}{%

Write the axis ratio into the dpth file into variable \tikzscale@oldAxisRatio as
in the macro \pgf@externalend@storeshifts from file pgfcoreexternal.code.tex.
147 \immediate\write#1{\noexpand\pgfexternal@restore{\noexpand\def\noexpand\tikzscale@oldAxisRatio{\requestedAxisRatio}}}%
148 }{}%
149 \fi
150 }%
151 }{}%

152 }

\includegraphics

153 \NewDocumentCommand{\tikzscale@includegraphics}{O{}m}{%

This command uses an empty optional argument for compatibility with the tra-
ditional graphicx command. Start a group, so that changed variables during pro-
cessing the current tikzpicture due not influence other tikzpictures. This is much
more convienient, than resetting every single variable. Use \begingroup instead
of \bgroup to simplify finding unmatched braces.
154 \begingroup

It happened at least once together with externalization, that the deactivation of
the new includegraphics command did not work, so do it again to be safe (maybe
reentrance problem with multiple tikzpicture calls?).
155 \LetLtxMacro{\includegraphics}{\tikzscale@oldincludegraphics}%

Do the patching of endlinechar and tikzpicture here, as tikzpicture should not be
changed if not called via the new \includegraphics command.
156 \tikzscale@FixEndLine

14

Find the exact file name, as the ending and the path could be omitted.
157 \tikzscale@findExactFileName{tikzscale@fileName}{#2}%

Check if the found file is a TikZ file.
158 \tikzscale@isTikzFile{tikzscale@testTikzFile}{\tikzscale@fileName}%
159 \ifcsdef{tikzscale@testTikzFile}{%
160 \tikzscale@includetikz[#1]{\tikzscale@fileName}%
161 }{%

Restore \endlinechar before calling code from other packages. This is not only
cleaner, but really avoids an error when using the plain old latex (with dvi output)
with an eps graphic.
162 \tikzscale@restoreEndLineChar
163 \tikzscale@oldincludegraphics[#1]{\tikzscale@fileName}%
164 }%
165 \endgroup
166 }%

\tikzscale@useEnhancedIncludegraphics Replace the \includegraphics command by tikzscale’s more generic command,
to provide a consistent user interface.
167 \def\tikzscale@useEnhancedIncludegraphics{%
168 \LetLtxMacro{\includegraphics}{\tikzscale@includegraphics}%
169 }

\tikzscale@FixEndLine tikzpicture environment gets redefined: - without external library: only inside
tikzscale (once) - with external library: additionally, whenever \externalenable
or \externaldisable is called (\tikzpiture and \endtikzpicture) Use cases
to patch tikzpicture: - to use tikzscale’s includegraphics - to restore end of line
character Constraints: - The patches have to be applied at the beginning of
\tikzpicture and the end of \endtikzpicture, as \tikzpicture might not
be executed completely when using external, as then the content of the tizkpic-
ture environment is not executed at all. - The patches should not accumulate - A
group might make sense to have a local scope
170 \def\tikzscale@FixEndLine{%

There is a leading space character introduced by the externalization library, if the
file is input directly. Thus use a trick to avoid that space. Furthermore, TikZ
introduces with a specific version a trailing space character. To get rid of all
space character issues, just solve the problem here once an for all. Note, that the
redefinition of \endlinechar is local to the current group, so it does not have to
be restored at the end of the group.
171 \edef\tikzscale@restoreEndLineChar{\endlinechar=\the\endlinechar\relax}%
172 \endlinechar=-1%

Restore the \endlinechar during the execution of the tikzpicture environment.
This is necessary, for example, if data is read from a table and the data entries are
separated by newline characters. Not restoring the \endlinechar would distort
the data. Use \apptocmd to call the command inside the group opened by tikzpic-
ture. Thus, nothing has to be done in \endtikzpicture regarding \endlinechar.

15

http://tex.stackexchange.com/q/89053/7323
http://tex.stackexchange.com/q/89053/7323

173 \tikzscale@addRestoreEndLineCharToTikzpicture
174 %
175 \apptocmd{\endtikzpicture}{%
176 \endlinechar=-1%
177 }{}{\PackageError{tikzscale}{Patching endtikzpicture failed}}%
178 }%

\tikzscale@addRestoreEndLineCharToTikzpicture

179 \def\tikzscale@addRestoreEndLineCharToTikzpicture{%
180 \pretocmd{\tikzpicture}{%
181 \tikzscale@restoreEndLineChar
182 }{}{\PackageError{tikzscale}{Patching tikzpicture failed}}%
183 }

\tikzscale@patchTikzpictureIncludegraphics

184 \def\tikzscale@patchTikzpictureIncludegraphics{%
185 % Deactivate the new includegraphics command inside of tikzpictures, as a tikzpicture might load a PNG graphic or something and this should not be scaled by tikzscale but by TikZ or PGFPlots. Besides, the current implementation is not reentrant, so its not a good idea to call the macro recursively. The deactivation must be inside of tikzpicture, as a tikzpicture can be loaded without using includegraphics, thus it cannot be done there. Using \cmd{\apptocmd} to do a local definition inside of the group started by \cmd{\tikzpicture} does not work. The \cmd{\includegraphics} command really has to be deactivated here, as a tikzpicture including a PNG file might be called directly without calling includegraphics.
186 % \begin{macrocode}
187 \pretocmd{\tikzpicture}{%
188 \LetLtxMacro{\includegraphics}{\tikzscale@oldincludegraphics}%
189 }{}{\PackageError{tikzscale}{Patching tikzpicture failed}}%
190 %
191 }

\tikzscale@patchEndtikzpictureIncludegraphics

192 \def\tikzscale@patchEndtikzpictureIncludegraphics{%
193 \apptocmd{\endtikzpicture}{%
194 \LetLtxMacro{\includegraphics}{\tikzscale@includegraphics}%
195 }{}{\PackageError{tikzscale}{Patching endtikzpicture failed}}%
196 }

\tikzscale@findExactFileName Find the exact file name of a graphic file by testing several paths and file endings
if there are degrees of freedom. The file name is saved in the command sequence
name given by the first argument.
197 \NewDocumentCommand{\tikzscale@findExactFileName}{mm}{%

Delete the return variable if it already exists to allow checking if a file has been
found.
198 \csundef{#1}%

Create a helper function used inside the file ending evaluation.
199 \def\tikzscale@checkDirectory##1{%
200 \def\tikzscale@checkExtension####1{%
201 \IfFileExists{##1#2####1}{%

Use \csedef instead of \csdef here, to be completely sure to only have a string
left. This avoids problems when using tikzscale together with the pdfpages package
and should generally be the right thing.
202 \csedef{#1}{##1#2####1}%

16

Break the inner (\forcsvlist) loop over file extensions.
203 \listbreak
204 }{}%
205 }%

Test all possible file extensions and do not forget that the extension might already
be given. \Gin@extensions returns the current content set by \DeclareGraphicsExtensions.
206 \eforcsvlist{\tikzscale@checkExtension}{{},\Gin@extensions}%
207 \ifcsdef{#1}{%

Break the outer (\forgrouplist) loop over directories.
208 \grouplistbreak
209 }{}%
210 }%

Set the graphics path, to also find graphics in the last (current) input directory
or in completely separate paths. Set it here to get updates if the user uses the
\raphicspath command inside of the document body.
211 \tikzscale@setGraphicsPath
212 \eforgrouplist{\tikzscale@checkDirectory}{\tikzscale@graphicspath}%

If no file has been found, return the given file name, as includegraphics should try
its best.
213 \ifcsundef{#1}{%
214 \csdef{#1}{#2}%
215 }{}%
216 }

\tikzscale@setGraphicsPath The \graphicspath command is used to set additional directories, which are
searched for graphics. \Ginput@path is used to get the current content.
217 \NewDocumentCommand{\tikzscale@setGraphicsPath}{}{%

Remove possible leading or trailing spaces in the graphics path, as they lead to ugly
string output before printing the graphic. Inserting such a space in the graphics
path is a user’s error, but it can happen easily as not all users are aware of TeX’s
newline issues. Fix the original path variable and not only tikzscale’s variable, as
this seems to be a general problem.
218 \ifdef{\Ginput@path}{%
219 \tikzscale@trimMacro{\Ginput@path}%
220 }{}%
221 \ifdef{\currfiledir}{%
222 \ifdef{\Ginput@path}{%
223 \def\tikzscale@graphicspath{{\currfiledir}\Ginput@path{}}%
224 }{%
225 \def\tikzscale@graphicspath{{\currfiledir}{}}%
226 }%
227 }{%
228 \ifdef{\Ginput@path}{%
229 \def\tikzscale@graphicspath{\Ginput@path{}}%
230 }{%

17

http://tex.stackexchange.com/a/45502
http://tex.stackexchange.com/a/58404

231 \def\tikzscale@graphicspath{{}}%
232 }%
233 }%
234 }%

\tikzscale@isTikzFile The first argument is the macro name (without backslash), which gets defined if
the file is a tikzfile. The second argument is the file name.
235 \NewDocumentCommand{\tikzscale@isTikzFile}{mm}{%

Create a helper function used inside the evaluation.
236 \def\do##1{%
237 \IfEndWith{#2}{##1}{%
238 \csdef{#1}{}%
239 \listbreak
240 }{}%
241 }%

Delete macro so that defining it is really indicating something.
242 \csundef{#1}%
243 \edocsvlist{\tikzscale@tikzFileExtensions}%
244 }

\pgfkeys This is similarly done.
245 \pgfkeys{
246 /tikzscale/.is family, /tikzscale,
247 width/.code = {\pgfmathsetmacro{\requestedWidth}{#1}},
248 width/.value required,
249 height/.code = {\pgfmathsetmacro{\requestedHeight}{#1}},
250 height/.value required,
251 axisratio/.code = {\pgfmathsetmacro{\requestedAxisRatio}{#1}},
252 axisratio/.value required
253 }

\tikzscale@includetikz \tikzscale@includetikz{〈filename〉}
\tikzscale@includetikz[〈width=1cm〉]{〈filename〉}
\tikzscale@includetikz[〈height=1cm〉]{〈filename〉}
\tikzscale@includetikz[〈height=1cm,width=1cm〉]{〈filename〉}
\tikzscale@includetikz[〈width=1cm,height=1cm〉]{〈filename〉}
This command allows the inclusion of a tikz file like a graphics file. Thus in-
stead of writing \includegraphics[width=\linewidth]fileWithoutEnding write
\tikzscale@includetikz[width=\linewidth]fileWithoutEnding If only one of
width or height are given, scale proportionally to fulfill the requirement. If both
are given, scale non-proportionally to required width and height. Therefore, for
normal tikzpictures only give either width or height, as the aspect ratio is already
determined by the coordinate limits in the tikzpicture, but give width and height
for PGFPlots, as the aspect ratio is unknown for these plots. \NewEnviron could
be used to handle something like verbose in a tikzpicture, but at the moment, this
is unsupported. The used code is the same as the uncommented code, but also
compatible with class beamer.

18

http://tex.stackexchange.com/a/34318
http://tex.stackexchange.com/q/94781/7323

254 % \NewDocumentCommand{\tikzscale@includetikz}{O{}m}{%
255 \newcommand{\tikzscale@includetikz}[2][]{%

Check the keys here already, as they are needed both to see if already externalized
files fulfill their requirements and to handle unexternalized files.
256 \pgfkeys{/tikzscale, #1}%

Check if the current graphic should be either drawn and scaled or simply included.
As externalization can get activated or deactivated at any time (if the library has
been loaded in the preamble), check in every call what to do.
257 \tikzscale@ifExternalizationActive{%

If externalization library has been loaded and is active, draw and scale the graphic
if it is to be externalized.
258 \tikzifexternalizingnext{%
259 \tikzscale@includetikzUnexternalized[#1]{#2}%
260 }{%
261 \tikzscale@includetikzWithExternalization{#2}%
262 }%
263 }{%

Always draw and scale the graphic if externalization library has not been loaded
or is deactivated.
264 \tikzscale@includetikzUnexternalized[#1]{#2}%
265 }%
266 }

\tikzscale@includetikzUnexternalized

267 \NewDocumentCommand{\tikzscale@includetikzUnexternalized}{O{}m}{%
268 \elseif{test {\ifundef{\requestedWidth}} and test {\ifundef{\requestedHeight}} and test {\ifundef{\requestedAxisRatio}}}{%
269 % \PackageWarning{tikzscale}{no option given}

If no option is given, directly load the content, as nothing should get scaled.
270 \tikzscale@trim{\input{#2}}%
271 }{test {\ifdef{\requestedWidth}} and test {\ifdef{\requestedHeight}}}{%
272 % \PackageWarning{tikzscale}{width and height given}

If width and height are given, the content must be a pgfplot, so scale it. The
plot currently only had approximately the given size without calling the resizeTo
macro, due to a (known) bug in PGFPlots.
273 \tikzscale@resizePlotTo{#2}%
274 }{test {\ifdef{\requestedAxisRatio}}}{%
275 % \PackageWarning{tikzscale}{axis ratio given}
276 \tikzscale@includeAxisRatio{#2}%
277 }{test {\ifundef{\requestedAxisRatio}}}{%
278 % \PackageWarning{tikzscale}{width or height given}

Use this test as a check if PGFPlots has been loaded.
279 \ifdef{\pgfplotsset}{%

If only either width or height is given it can be a normal tikzpicture or a plot
with axisratio=1. Let’s guess that it is a plot with default axisratio. If the guess

19

is wrong, the called function detects that scaling the plot does not work and
automatically calls \tikzscale@includeNormalTikzpicture.
280 \def\requestedAxisRatio{1}%
281 \tikzscale@includeAxisRatio{#2}%
282 }{%
283 % \PackageWarning{tikzscale}{no pgfplots loaded}

If PGFPlots has not been loaded, it can only be a TikZPicture.
284 \tikzscale@includeNormalTikzpicture{#2}%
285 }%
286 }{%
287 % Everything else results in an error.
288 \tikzscale@invalidKeyError{#2}%
289 }%
290 }

\tikzscale@includetikzWithExternalization This macro includes a tikzpicture file using the externalization library. As a pre-
condition, the externalization must be loaded and active.
291 \NewDocumentCommand{\tikzscale@includetikzWithExternalization}{m}{%

Try to load a dpth file to get the sizes pgfexternalwidth and pgfexternalheight as
well as tikzscale@oldAxisRatio of the externalized graphic.
292 \tikzexternalgetnextfilename{\tikzscale@externalizationName}%
293 \pgfexternalreaddpth{\tikzscale@externalizationName}%

Check if the next figure has to be remade. If no dpth file exist, it need not and
must not be remade, as otherwise no md5-file is generated and thus one extra
compilation run is necessary.
294 \IfFileExists{\tikzscale@externalizationName.dpth}{%
295 \tikzscale@checkRequestedSizeChanges
296 }{}%
297 \tikzscale@trim{\input{#1}}%
298 }

\tikzscale@checkRequestedSizeChanges

299 \NewDocumentCommand{\tikzscale@checkRequestedSizeChanges}{}{%

Check if the sizes are still correct, i.e. agree with the sizes of the externalized PDF
graphic. The saved axis ratio from the last run is checked, too, as it might have
been changed by the user between the last run and the current run.
300 \ifdef{\requestedWidth}{%
301 \ifdef{\pgfexternalwidth}{%
302 \tikzscale@ifSizeDifference{\requestedWidth - \pgfexternalwidth}{%
303 \tikzset{external/remake next}%
304 % \PackageWarning{tikzscale}{Regenerate \tikzscale@externalizationName \MessageBreak because of width difference \MessageBreak (requestedWidth: \requestedWidth, pgfexternalwidth: \pgfexternalwidth)}%
305 % \tikzscale@warnIfSizeDifference{\requestedWidth}{\pgfexternalwidth}{current file}%
306 }{}%
307 }{%
308 \tikzset{external/remake next}%
309 % \PackageWarning{tikzscale}{Regenerate \tikzscale@externalizationName \MessageBreak because of no external width}%

20

310 }%
311 }{}%
312 \ifdef{\requestedHeight}{%
313 \ifdef{\pgfexternalheight}{%
314 \tikzscale@ifSizeDifference{\requestedHeight - \pgfexternalheight}{%
315 \tikzset{external/remake next}%
316 % \PackageWarning{tikzscale}{Regenerate \tikzscale@externalizationName \MessageBreak because of height difference \MessageBreak (requestedHeight: \requestedHeight, pgfexternalheight: \pgfexternalheight)}%
317 }{}%
318 }{%
319 \tikzset{external/remake next}%
320 % \PackageWarning{tikzscale}{Regenerate \tikzscale@externalizationName \MessageBreak because of no external height}%
321 }%
322 }{}%
323 \ifdef{\requestedAxisRatio}{%
324 \ifdef{\tikzscale@oldAxisRatio}{%
325 \tikzscale@ifSizeDifference{\requestedAxisRatio - \tikzscale@oldAxisRatio}{%
326 \tikzset{external/remake next}%
327 % \PackageWarning{tikzscale}{Regenerate \tikzscale@externalizationName \MessageBreak because of axis ratio difference \MessageBreak (requestedAxisRatio: \requestedAxisRatio, oldAxisRatio: \tikzscale@oldAxisRatio)}%
328 }{}%
329 \undef{\tikzscale@oldAxisRatio}%
330 }{%
331 \tikzset{external/remake next}%
332 \PackageWarning{tikzscale}{Regenerate \tikzscale@externalizationName \MessageBreak because of no external axis ratio}%
333 }%
334 }{}%
335 }

\tikzscale@preparePlot

336 \NewDocumentCommand{\tikzscale@preparePlot}{}{%

Set a scaling factor or a width and height for the plot, which will be loaded. The
\tikzset and \pgfplotsset commands have local scope. The internal redefini-
tion of the style is correct, because if one tikzpicture includes another one, the
scaling factor is reset so that it does not get squared in the inner one. Note that
if a user-defined style thus is ignored in this special case. The styles are defined
here, so that files which are inputted without the \ncludegraphics command are
not affected.
337 \pgfplotsset{every axis/.append style={width=\tikzscale@width,height=\tikzscale@height,every axis/.style={}}}%
338 }
339 \NewDocumentCommand{\tikzscale@prepareTikzpicture}{}{%
340 \tikzset{every picture/.style={scale=\tikzscale@scale,every picture/.style={}}}%
341 }

\tikzscale@includeNormalTikzpicture \tikzscale@includeNormalTikzpicture{〈file name〉}
342 \NewDocumentCommand{\tikzscale@includeNormalTikzpicture}{m}{%
343 \tikzscale@prepareTikzpicture
344 \elseif{test {\ifdef{\requestedWidth}} and test {\ifundef{\requestedHeight}}}{%
345 \def\requestedSize{\requestedWidth}%
346 \tikzscale@scaleTikzpictureTo{\wd}{\tikzscale@trim{\input{#1}}}{#1}%

21

http://tex.stackexchange.com/questions/38605/scaling-a-tikz-figure-from-an-external-file

347 }{test {\ifundef{\requestedWidth}} and test {\ifdef{\requestedHeight}}}{%
348 \def\requestedSize{\requestedHeight}%
349 \tikzscale@scaleTikzpictureTo{\ht}{\tikzscale@trim{\input{#1}}}{#1}%
350 }{%
351 \tikzscale@invalidKeyError{#1}%
352 }%
353 }

\tikzscale@invalidKeyError

354 \NewDocumentCommand{\tikzscale@invalidKeyError}{m}{%
355 \PackageError{tikzscale}{Invalid key for TikZ graphic}{Change key #1 into a valid key.}%
356 }

\tikzscale@includeAxisRatio \tikzscale@includeAxisRatio{〈file name〉}
357 \NewDocumentCommand{\tikzscale@includeAxisRatio}{m}{%

Try to set initial sizes close to the requested sizes, to improve the optimization’s
speed.
358 \pgfplotsset{every axis/.append style={scale only axis,every axis/.style={}}}%
359 \elseif{test {\ifdef{\requestedWidth}} and test {\ifundef{\requestedHeight}}}{%
360 \let\requestedSize\requestedWidth
361 \def\tikzscale@width{\requestedWidth}%
362 \pgfmathsetmacro{\tikzscale@height}{\requestedWidth / \requestedAxisRatio}%
363 \tikzscale@resizePlotWithAxesRatioTo{\wd}{\tikzscale@width}{\tikzscale@trim{\input{#1}}}{#1}%
364 }{test {\ifundef{\requestedWidth}} and test {\ifdef{\requestedHeight}}}{%
365 \let\requestedSize\requestedHeight
366 \def\tikzscale@height{\requestedHeight}%
367 \pgfmathsetmacro{\tikzscale@width}{\requestedHeight * \requestedAxisRatio}%
368 \tikzscale@resizePlotWithAxesRatioTo{\ht}{\tikzscale@height}{\tikzscale@trim{\input{#1}}}{#1}%
369 }{%
370 \tikzscale@invalidKeyError{#1}%
371 }%
372 }

\tikzscale@scaleTikzpictureTo \scalteTo{〈\wd or \ht 〉}{〈to-be-scaled content〉}{〈file name〉} The first argu-
ment determines if a specific width or a specific height should be achieved by
scaling.
373 \NewDocumentCommand{\tikzscale@scaleTikzpictureTo}{mmm}{%

Deactivate the externalization, as the measurements to determine the correct size
should not be externalized.
374 \tikzscale@conditionalDisableExternalization

When scaling a tikzpicture, only the drawings are scaled, but nodes are not scaled.
So in general, there are horizontal or vertical areas, where the picture contains only
unscaled nodes, and areas where the picture contains scalable drawings. Mathe-
matically all scaled and all unscaled areas can be combined, so that there is one
are area of fixed size and one variable sized area. Thus scaling only by multi-
plication of a factor is incorrect in general. To do the correct scaling, the fixed
area size must be known. As there are two unknown parameters, i.e. fixed area

22

size and variable area size, the fixed area size can be calculated by measuring the
tikzpicture with two different scalings. A special scaling factor is used, to get the
size close to the final size minimizing numerical and logical errors.
375 \def\tikzscale@scale{1}%
376 \tikzscale@measureSize{\measuredFirst}{#1}{#2}%
377 \pgfmathsetmacro{\tikzscale@scale}{\requestedSize/\measuredFirst}%
378 \tikzscale@measureSize{\measuredSecond}{#1}{#2}%

It can happen, that there are no variable areas. Furthermore, the original size
could already fit. Avoid numerical problems in both cases by directly drawing
the picture. Do not compare the float values directly, as TeX’s precision is quite
limited.
379 \tikzscale@ifSizeDifference{\measuredSecond - \requestedSize}{%

If a plot is not scalable (e.g. consisting of a node only), but is not correctly scaled,
exit with an error.
380 \tikzscale@ifSizeDifference{\measuredFirst - \measuredSecond}{%
381 }{%
382 \PackageError{tikzscale}{Requested to scale unscalable graphic}{Do not set width or height for graphic in\MessageBreak #3}%
383 }%

We know, that the variable sized area scales with the scaling factor, thus it
holds \scale * \variableFirst = \variableSecond, with \variableFirst
= \measuredFirst - \fixedSize and \variableSecond = \measuredSecond -
\fixedSize, which can be solved by substituttion and results in
384 \pgfmathsetmacro{\fixedSize}{(\tikzscale@scale*\measuredFirst - \measuredSecond) / (\tikzscale@scale - 1)}%

Now, to get the correct scaling factor, only take the variable areas into account,
as it holds \scaleFinal = \variableSizeFinal / \variableSizeOriginal with
\variableSizeFinal= \requestedSize - \fixedSize and \variableSizeOriginal
= \measuredFirst - \fixedSize, which results in
385 \pgfmathsetmacro{\tikzscale@scale}{(\requestedSize - \fixedSize) / (\measuredFirst - \fixedSize)}%

Additionally or alternatively the brute force approach to iteratively improve the
solution can be used.
386 \foreach \l in {1,...,\maxTestIterations}{%
387 \tikzscale@measureSize{\measuredIntermediate}{#1}{#2}%

Optimize until the absolute difference is small enough, although the (relative) size
ratios are used to calculate a new scaling factor.
388 \tikzscale@ifSizeDifference{\measuredIntermediate-\requestedSize}{%

First divide before multiply to avoid overflowing (at 16384).
389 \pgfmathsetmacro{\errorRatio}{\measuredIntermediate/\requestedSize}%
390 % \PackageWarning{tikzscale}{errorRatio \errorRatio\MessageBreak for #3}%
391 \pgfmathsetglobalmacro{\tikzscale@scale}{\tikzscale@scale/\errorRatio}%
392 }{%
393 \breakforeach%
394 }%
395 }%

23

Externalize the graphic with the final size.
396 \tikzscale@conditionalEnableExternalization{#3}%

Finally, include the picture. Do it via a new measurement to be able to warn if it
does not fit good enough.
397 \tikzscale@measureSize{\measuredFinal}{#1}{#2}%
398 \usebox{\tikzscale@measuredSize}%
399 \tikzscale@warnIfSizeDifference{\measuredFinal}{\requestedSize}{#3}%
400 }{%

Externalize the graphic with the final size.
401 \tikzscale@conditionalEnableExternalization{#3}%
402 #2%
403 }%
404 }

\tikzscale@resizePlotTo \tikzscale@resizePlotTo{〈file name〉}
405 \NewDocumentCommand{\tikzscale@resizePlotTo}{m}{%
406 \def\fileName{#1}%
407 \def\content{\tikzscale@trim{\input{#1}}}%
408 \tikzscale@preparePlot
409 \def\tikzscale@width{\requestedWidth}%
410 \def\tikzscale@height{\requestedHeight}%

Deactivate the externalization, as the measurements to determine the correct size
should not be externalized.
411 \tikzscale@conditionalDisableExternalization

Improve the solution iteratively until it is good enough.
412 \foreach \l in {1,...,\maxTestIterations}{%

Using the box allows measuring the width and height with one rendering run.
413 \sbox{\tikzscale@measuredSize}{\content}%

Determine the remaining error and check if it is larger than a threshold.
414 \pgfmathsetmacro{\widthDifference}{\wd\tikzscale@measuredSize - \requestedWidth}%
415 \pgfmathsetmacro{\heightDifference}{\ht\tikzscale@measuredSize - \requestedHeight}%

Output error in current iterion for debugging.
416 % widthDifference: \widthDifference, heightDifference: \heightDifference\\% Debugging

Check if the remaining error is larger than a threshold.
417 \ifboolexpr{test {\tikzscale@ifSizeDifference{\widthDifference}} or test {\tikzscale@ifSizeDifference{\heightDifference}}}{%

Correct the dimension by the error. Use a global assignment, as each iteration in
the loop is put into a separate group.
418 \pgfmathsetglobalmacro{\tikzscale@width}{\tikzscale@width - \widthDifference}%
419 \pgfmathsetglobalmacro{\tikzscale@height}{\tikzscale@height - \heightDifference}%
420 }{%
421 \breakforeach
422 }%
423 }%

24

Externalize the graphic with the final size.
424 \tikzscale@conditionalEnableExternalization{\fileName}%

Finally, include the picture. Do it via a new measurement to be able to warn if it
does not fit good enough.
425 \sbox{\tikzscale@measuredSize}{\content}%
426 \usebox{\tikzscale@measuredSize}%
427 \tikzscale@warnIfSizeDifference{\requestedWidth}{\wd\tikzscale@measuredSize}{\fileName’s width}%
428 \tikzscale@warnIfSizeDifference{\requestedHeight}{\ht\tikzscale@measuredSize}{\fileName’s height}%
429 }

\tikzscale@resizePlotWithAxesRatioTo \tikzscale@resizePlotWithAxesRatioTo{〈\wd or \ht〉}{〈\tikzscale@width or
\tikzscale@height〉}{〈to-be-scaled content〉}{〈file name〉} The first argument de-
termines if a specific width or a specific height should be achieved by resizing.
430 \NewDocumentCommand{\tikzscale@resizePlotWithAxesRatioTo}{mmmm}{%
431 \def\dimension{#1}%
432 \def\variable{#2}%
433 \def\content{#3}%
434 \def\fileName{#4}%
435 \gdef\tikzscale@oldSizeDifference{0pt}%
436 \tikzscale@preparePlot

Deactivate the externalization, as the measurements to determine the correct size
should not be externalized.
437 \tikzscale@conditionalDisableExternalization

Improve the solution iteratively until it is good enough.
438 \foreach \l in {1,...,\maxTestIterations}{%
439 \tikzscale@measureSize{\measuredSize}{\dimension}{\content}%

Determine the remaining error and check if it is larger than a threshold.
440 \pgfmathsetmacro{\sizeDifference}{\measuredSize - \requestedSize}%

Output error in current iterion for debugging.
441 % sizeDifference: \sizeDifference\\% Debugging

Optimize if the absolute difference is too large.
442 \tikzscale@ifSizeDifference{\sizeDifference}{%
443 \ifdefstring{\dimension}{\wd}{%
444 \pgfmathsetglobalmacro{\tikzscale@width}{\tikzscale@width - \sizeDifference}%
445 \pgfmathsetglobalmacro{\tikzscale@height}{\tikzscale@width / \requestedAxisRatio}%
446 }{%
447 \pgfmathsetglobalmacro{\tikzscale@height}{\tikzscale@height - \sizeDifference}%
448 \pgfmathsetglobalmacro{\tikzscale@width}{\tikzscale@height * \requestedAxisRatio}%
449 }%
450 \tikzscale@ifSizeDifference{\sizeDifference-\tikzscale@oldSizeDifference}{%
451 }{%

Restore the externalization state in order to have strict enable-disable-call-pairing.
452 \tikzscale@conditionalEnableExternalization{\fileName}%
453 \tikzscale@includeNormalTikzpicture{#4}%
454 \gdef\tikzscale@alreadyIncluded{true}%

25

455 \breakforeach
456 }%
457 \pgfmathsetglobalmacro{\tikzscale@oldSizeDifference}{\sizeDifference}%
458 }{%
459 \breakforeach
460 }%
461 }%
462 \ifdef{\tikzscale@alreadyIncluded}{%
463 \global\undef\tikzscale@alreadyIncluded%
464 }{%

Externalize the graphic with the final size.
465 \tikzscale@conditionalEnableExternalization{\fileName}%

Finally, include the picture. Do it via a new measurement to be able to warn if it
does not fit good enough.
466 \tikzscale@measureSize{\measuredFinal}{\dimension}{\content}%
467 \usebox{\tikzscale@measuredSize}%
468 \tikzscale@warnIfSizeDifference{\measuredFinal}{\requestedSize}{\fileName}%
469 }%
470 }

\tikzscale@measuredSize

471 \newsavebox{\tikzscale@measuredSize}

\measureSize{〈result variable name〉}{〈\wd or \ht 〉}{〈to-be-measured content〉}
472 \def\tikzscale@measureSize#1#2#3{%
473 \sbox{\tikzscale@measuredSize}{#3}%
474 \pgfmathsetmacro{#1}{#2\tikzscale@measuredSize}%
475 }

\tikzscale@ifSizeDifference \tikzscale@ifSizeDifference{〈size〉}{〈executed if true〉}{〈executed if false〉}
476 \def\tikzscale@ifSizeDifference#1#2#3{%
477 \pgfmathparse{abs(#1)}%
478 \ifdimgreater{\pgfmathresult pt}{\tikzscale@accuracy}{%
479 #2%
480 }{%
481 #3%
482 }%
483 }%

\tikzscale@measuredSize \tikzscale@warnIfSizeDifference{〈firstSize〉}{〈secondSize〉}{〈file name〉}
484 \def\tikzscale@warnIfSizeDifference#1#2#3{%
485 \tikzscale@ifSizeDifference{#1-#2}{%
486 \PackageWarning{tikzscale}{Scaling of #3 was only\MessageBreak accurate to \pgfmathresult pt}%
487 }{}%
488 }

\tikzscale@conditionalDisableExternalization

489 \NewDocumentCommand{\tikzscale@conditionalDisableExternalization}{}{%

26

490 \tikzscale@ifExternalizationActive{%
491 \tikzexternaldisable
492 \def\tikzscale@externalizationWasDisabled{}%
493 }{}

Restore the endlinechar here and not in the general \tikzexternaldisable code,
as it should only be restored if \includegraphics had been called and not if
a tikzpicture was called directly without using \includegraphics. If the exter-
nalization has not been loaded, the endlinechar would be redefined twice (which
would probably also do not much harm).
494 \ifExternalizationLoaded{%
495 \tikzscale@addRestoreEndLineCharToTikzpicture
496 }{}%

The pause command defined by the Beamer class creates additional slides when
called multiple times due to tikzscale’s scaling. Thus, deactivate it during the
scaling tests, if it is defined.
497 \ifdef{\pause}{%
498 \LetLtxMacro{\tikzscale@oldpause}{\pause}%
499 \RenewDocumentCommand{\pause}{o}{}%
500 }{}%
501 }

\tikzscale@conditionalEnableExternalization Activate externalization of TikZ graphics iff it had been active before definitely
disabling it for measurement purposes. The argument contains the file name.
502 \NewDocumentCommand{\tikzscale@conditionalEnableExternalization}{m}{%

For the externalization, set correct file name and only externalize the graphic with
the final size. This produces a known bug
503 % \tikzsetnextfilename{#1}%

Get the current directory as a string and use it as an prefix, so that the graphic’s
PDF is generated in a subdirectory if the tikz file is located in a subdirectory, too.
This is necessary, as the PDF file is searched for in the subdirectory in this case.
This might be unnecessary due to the newly created path lookup logic.
504 % \expandafter\tikzsetexternalprefix\expandafter{\tikzscale@pwd}%
505 % \expandnext{\tikzsetexternalprefix}{\tikzscale@pwd}%
506 \ifdef{\tikzscale@externalizationWasDisabled}{%
507 \tikzexternalenable
508 \undef\tikzscale@externalizationWasDisabled
509 }{}%

Restore the endlinechar here and not in the general \tikzexternalenable code,
as it should only be restored if \includegraphics had been called and not if
a tikzpicture was called directly without using \includegraphics. If the exter-
nalization has not been loaded, the endlinechar would be redefined twice (which
would probably also do not much harm).
510 \ifExternalizationLoaded{%
511 \tikzscale@addRestoreEndLineCharToTikzpicture
512 }{}%

27

http://old.nabble.com/minor-comment-about-TikZ-external-library-usage-tt31042245.html#a31042245

Reactivate Beamer’s pause command if defined.
513 \ifdef{\pause}{%
514 \LetLtxMacro{\pause}{\tikzscale@oldpause}%
515 }{}%
516 }

28

	1 Introduction
	2 Usage and Examples
	2.1 TikZ
	2.2 PGFPlots
	2.2.1 Scaling of width and height
	2.2.2 Scaling using axis ratio

	2.3 Hints for TikZ and PGFPlots
	2.4 currfile

	3 Compatibility
	3.1 Load Order
	3.2 Externalization library
	3.3 Fitting library

	4 Further Ideas
	5 Contributions
	6 Implementation

