
The tikzquests package

A parametric questions’ repository

Version 1.1

Alceu Frigeri*

January 2024

Abstract

This is a framework for building parametric questions’ repositories, which can be further used to

construct parametric questions for exams. Unlike other packages (for instance exam, exam-n or exam-lite)

this doesn’t try to enforce any pre-defined presentation format, focusing only on how to set a repository

and use it.

Contents

1 Introduction 1

2 Package Options 2

3 Repositories 2

4 Questions 2
4.1 Defining a Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
4.2 Using a Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5 Parameters as pgfkeys and auxiliary macros. 3
5.1 Assigning a new value to pre-defined keys . . . . . . . . . . . . . . . . . . . . . . . 4
5.2 Assigning a value to new keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5.3 Using a parameter key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

6 Examples of Use 5
6.1 Package Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
6.2 A More Complete Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
6.3 Creating a Questions’ List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Introduction

One recurring problem when typesetting exams, specially in Engineering fields, is the need to have
parameterized questions, specially parameterized schematics used in exam’s questions. The intent
of this is to allow the creation of repositories (one or more) with ’easily’ parameterized text and/or
graphic (tikz) questions, but not enforcing any style/format whatsoever, leaving it to the end user.

The package offers

� A set of commands to create and use repositories,

� A set of commands to create and use ’questions’ (code snippets) in a repository,

� Question’s customization, parametrization, based on pgfkeys and a set of associated macros.

*https://github.com/alceu-frigeri/tikzquests

1



2 Package Options

This allows to expand the set of pre-defined (pgfkeys) keys. See 5.xtrakeys

This allows to expand the set of pre-defined (pgfkeys) indexes per key. See 5.xtraidx

(default: false). This changes the parametrization strategy suppressing the creation of “keys
commands”.

no defs

(default: false). This suppress the creation of Question’s aliases (see 4.1), handy when one wants
to reduce the ’noise’ when listing all currently known Questions.

no alias

(default: false). When using a question (see 4.2), the question’s associated remarks and annotations
will be printed as well, if any.

in review

(default: red). This sets the color used to indicated the use of a non defined parameter. See 5.undef color

3 Repositories

Questions are stored in a set of repositories. Per default there is one such repository, named
default. A repository can have an “unlimited” set of questions.

\defNewRepository* {⟨new-repository⟩}
\SelectRepository {⟨repository⟩}

\defNewRepository

\selectRepository

\defNewRepository creates a new Repository, ⟨new-repository⟩. The starred version also switches
to it, making it the “current default”. \SelectRepository activates ⟨repository⟩ as the “current
default” one.

Note: About repository’s names: It can be almost anything, the name can contain
strings normally not allowed in a macro name, like spaces, dots, two-dots and so
on. an important exception the backslash is still an active character, meaning that if
someone typesets \XYZ as a repository, the value stored in \XYZ will be used (if \XYZ
isn’t defined this might raise a rather cryptic LATEX2ε error).

Note: When creating a new repository, a warning is raised in case ⟨new-repository⟩
already exists. When Selecting a repository, an error is raised if ⟨repository⟩ doesn’t
exists.

4 Questions

There are two kind of questions (“code snippets”): Text ones (which can include LATEX2ε com-
mands) and Graphical ones (which are assumed to be used inside a tikz environment). All questions
can be parameterized (see 5 below) with a set of predefined commands, viz-à-viz, pgfkeys.

4.1 Defining a Question

\defQuestion* [⟨repository⟩] {⟨quest-name⟩} {⟨code⟩} [⟨remarks⟩]\defQuestion

\defQuestion creates a new Question in ⟨repository⟩ (per default using the “current active” one).
⟨quest-name⟩ will be the associated question key, for later reference. ⟨code⟩ will be the correspond-
ing Question’s code. ⟨remarks⟩ is just a small note associated with the Question. It won’t be
normally used/typeset, except if the in review option is being used, or when using the command
\QuestionsList.
The starred version \defQuestion* will create a “text code” one, whilst the non starred one
\defQuestion will create a non starred question. The real main difference between the two is
regarding their later use (see 4.2 bellow). Please note that there are two sets of questions per
repository. The “starred” (text ones) and the “non-starred” (graphical ones). They are fully
distinct.

Note: About question’s names: It can be almost anything, the name can contain
strings normally not allowed in a macro name, like spaces, dots, two-dots and so on,
including backslashes, meaning that if someone typesets \XYZ as a question name,
\XYZ will be it’s name: a backslash isn’t an active character anymore and one can’t
use macros when defining a question’s name.

2



Note: An error is raised if ⟨repository⟩ doesn’t exist. In case the ⟨quest-name⟩
already exists, it’s code is silently replaced by the new one.

\defQuestionAlias* [⟨repository⟩] {⟨quest-alias⟩} {⟨quest-name⟩}\defQuestionAlias

\defQuestionAlias creates an alias, ⟨quest-alias⟩ for a given question, ⟨quest-name⟩. As for
\defQuestion, the “starred one” regards text code ones and the “non starred one” regards the
graphical ones.

Note: An error is raised if ⟨repository⟩ or ⟨quest-name⟩ doesn’t exist.

4.2 Using a Question

\ftikzQuestion (⟨scale⟩) [⟨repository⟩] {⟨quest-name⟩} [⟨key=value list⟩] <⟨annotation⟩>
\tikzQuestion (⟨scale⟩) [⟨repository⟩] {⟨quest-name⟩} [⟨key=value list⟩] <⟨annotation⟩>
\rawtikzQuestion [⟨repository⟩] {⟨quest-name⟩} [⟨key=value list⟩] <⟨annotation⟩>

\ftikzQuestion

\tikzQuestion

\rawtikzQuestion

Those are the main commands to use a “non starred” (graphical) question. The \tikzQuestion will
display the Question’s code inside a tikzpicture environment. \ftikzQuestion will further nest the
code inside a center environment (preparing it to be used inside a floating environment), whilst
\rawtikzQuestion will just display the code in a local group (in case one wants to use a different
graphical environment, like SVG. The ⟨annotation⟩ will only be added if, and only if, the in review

option is being used. The ⟨scale⟩ factor, when present, is related to the current \textwidth, so a
factor of 0.25 will scale the width of the question to 1/4th of the text width. The ⟨key=value list⟩
is a set of pgfkeys, see 5 below.

Note: An error is raised if ⟨repository⟩ or ⟨quest-name⟩ doesn’t exist.

\textQuestion [⟨repository⟩] {⟨quest-name⟩} [⟨key=value list⟩] <⟨annotation⟩>\textQuestion

This is the command to use a “starred” (text) question. The \textQuestion will just use the code
in a local group. The ⟨annotation⟩ will only be added if, and only if, the in review option is being
used. The ⟨key=value list⟩ is a set of pgfkeys, see 5 below.

Note: An error is raised if ⟨repository⟩ or ⟨quest-name⟩ doesn’t exist.

\QuestionsList [⟨repositories list⟩]\QuestionsList

⟨repositories list⟩ is a comma separated list of repositories. For each repository, all Questions
will be typeset in a describe environment. If no ⟨repositories list⟩ is supplied, all repositories
will be listed.

Note: An error is raised if a repository in ⟨repositories list⟩ doesn’t exist. To
reduce the clutter (and number of questions listed) one should consider the use of the
option no alias.

5 Parameters as pgfkeys and auxiliary macros.

By default a set of pgfkeys and macros is defined as follow: ⟨ID⟩⟨idx⟩. The predefined range of
⟨IDs⟩ being R, L, C, X, Y, Z, K, T, Q, EQ, V and I. The predefined range of ⟨idx⟩ spans from a, b, c up
to z, aa, ab, ac up to az and, finally, ba, bb, bc up to bz.

Note: That means, one gets to use pgfkeys as, for example, Ra=200, Lca=500,
Kbe=230 and so on. For each of the key’s ⟨ID⟩ there is (per default) a set of 3x26
keys. If one adds some 3 other ⟨idx⟩ then one gets 6x26 keys per ⟨ID⟩.

3



Note: The ⟨ID⟩ can be extended with the xtrakeys option. For example with
xtrakeys={NN , B}, each extra key will add 3x26 keys (per default).

Note: The ⟨idx⟩ can be extended with the xtraidx option. For instance with
xtraidx={f , g} one gets fa, fb, fc up to fz, ga, gb, gc up to gz as well, a x26
set per extra idx.

Unless the no defs option is defined, a corresponding macro (with the same name) will also be
defined. For example, there is a macro \Ra associated with the key Ra. All those macros/keys are
initialized as follow (math mode) \ensuremath {<ID>_{<idx>}}, resulting in IDidx. So, for example,
the key Rab, which can be accessed with the macro \Rab, will be predefined as Rab, Lca (\Lca) will
be predefined as Lca, and so on.

The idea is that, when using the commands in 4.2, if one doesn’t specify a ⟨key=value list⟩,
the default values will be “en force”, and all one has to do (to change those values) is to set said
list, which doesn’t have to be complete, non assigned keys will keep their default value.

Besides those default keys, one can set and use any key at will (in ⟨key=value list⟩) non-existing
keys will be created “on the fly” with the given name as the default value.

5.1 Assigning a new value to pre-defined keys

In fact, with each and every predefined key there are 3 ways to assign a value to it ⟨key⟩=value,
⟨key*⟩=value and ⟨key raw⟩=value. The difference being that ⟨key raw⟩ will assign whatever
code/value to the key (and associated macro), ⟨key*⟩ will assign the code/value inside a math
environment.

warning: ⟨key⟩=value (without any specifier) will be the same as ⟨key*⟩ (default).
But, if the option no defs is used, it will be equivalent to ⟨key raw⟩.

5.2 Assigning a value to new keys

When using ⟨key⟩=value, if the ⟨key⟩ isn’t one of the pre-defined ones, then value will be assigned
“as is” to ⟨key⟩.

warning: Note that, in this case there are no ⟨key*⟩ or ⟨key raw⟩ equivalents.

5.3 Using a parameter key

When defining the ⟨code⟩ of a question (see 4.1) one has two options to recover a key’s value:

� A macro named after the key itself (in case of the default keys, see above) and, or

� the \QuestVal command which allows to recover the value of both the default keys, as well as
the ones defined on the fly.

Warning: If the option no defs is defined, the only option to recover a key’s value
is \QuestVal. One better choose which style fits better, and keep it.

\QuestVal {⟨IDidx⟩}
\QuestVal {⟨key⟩}

\QuestVal

This will always recover the value of a key, regardless if the key is one of the pre-defined ones (in
the form ⟨IDidx⟩ or a “on the fly” one, ⟨key⟩. If the key didn’t got (re)defined with the ⟨key=value
list⟩, this will return the key/parameter default value. In the case of a “on the fly” key, it will be
the key’s name in red (or the color set up with the undef color option, see 2).
This should be safe in most situations where \pgfkeys command can be used. Though, the safest,
and most robust, way to use a parameter/key is using it’s related macro.

4



6 Examples of Use

6.1 Package Options

Package Options

\usepackage{tikzquests}

This is the default case, in which both \QuestVal and (for default keys) associated macro name
can be used to retrieve a key/parameter value.

Package Options

\usepackage[xtrakeys={EX,N},xtraidx={f,h},undef color={blue},no defs]{tikzquests}

In this case, one will get the following set of keys
� Ra, Rb ... Rz, Rab, Rab ... Raz .... Rfa, Rfb ... Rfz, Rha, Rhb ... Rhz
� .... all other default sets of keys, plus
� EXa, EXb ... EXz, EXab, EXab ... EXaz .... EXfa, EXfb ... EXfz, EXha, EXhb ... EXhz
� Na, Nb ... Nz, Nab, Nab ... Naz .... Nfa, Nfb ... Nfz, Nha, Nhb ... Nhz
Besides that, the undefined color will be blue and no additional macro will be defined, in which

case on has to use \QuestVal to recover the value of a key/parameter.

Package Options

\usepackage[no alias, in review]{tikzquests}

In this case, no alias will be defined (the command \defQuestionAlias will be ignored), and
when using \tikzQuestion (and similar) the question’s remarks (defined by \defQuestion) and
annotations (from \tikzQuestion) will be printed. The no alias is specially useful when using the
command \QuestionsList.

6.2 A More Complete Example

In the following code, an extra repository will be set (besides the default one) and two questions
(a starred, text, and non starred, graphics) will be defined for each repository.

5



Questions Definitions
% A repository name can be just about anything.
% the star makes sure 'Repo 2' is now the active/default one.
\defNewRepository*{Repo 2}

% quest names are even more flexible than a repository one
% the star implies this is a text one.
\defQuestion*{Quest A:1}{
In the following circuit, assuming $\beta \approx \QuestVal{Beta}$ and that $V_{be} \approx 0.65V$, find the

value of $R_c$ such that the small signal gain is \QuestVal{Gain}.
}[That would be a question enunciate.]

%% Note the use of the macros \Ra, \Rb, \Rc, \Rd, \Vi, \Vbc and \Vo
\defQuestion[Repo 2]{Elect. 1a}{

\draw
(0,0) coordinate(A) to[V,invert,l=\Vi] ++(0,3) coordinate(V)

to[R=\Ra] ++(2,0)
to[C] ++(2,0) coordinate(B)
-- ++(1,0) node[npn,anchor=B] (T1){}

(A) -- (A -| B) coordinate(Ba) to[R=\Rb] (B) to[R=\Rg] ++(0,3) coordinate(C)
(B) node[circ]{}
(T1.E) to[R,l=\Rc] (T1.E |- A) -- (A)
(T1.C) to[R,l_=\Rd] (T1.C |- C) -- (C -| A) -- ++(-2,0) coordinate(X) to[V,l=\Vbc] (X |- A) -- (A)
(T1.C) -- ++(1.5,0) node[ocirc]{} coordinate(k) to[open,v=\Vo] (k |- A) node[ocirc]{} -- (A)
;

}[this is a CircuiTikZ example]

%switching repositories
\SelectRepository{default}

% Note that, since it is a different repository, there is no name crashing.
\defQuestion*{Quest A:1}{
In the following circuit, assuming $\beta \approx \QuestVal{Beta}$ and that $V_{be} \approx 0.65V$, find the

value of \Rg \ such that the DC level of \Vo \ is equal to \QuestVal{DC level}.
}[Just for the sake of it.]

%% Note the use of the macros \Ra, \Rb, \Rc, \Rd, \Vi, \Vbc and \Vo
\defQuestion{Elect. 1b}{

\draw
(0,0) coordinate(A) to[V,invert,l=\Vi] ++(0,3) coordinate(V)

to[R=\Ra] ++(2,0)
to[C] ++(2,0) coordinate(B)
-- ++(1,0) node[pnp,anchor=B] (T1){}

(A) -- (A -| B) coordinate(Ba) to[R=\Rb] (B) to[R=\Rg] ++(0,3) coordinate(C)
(B) node[circ]{}
(T1.C) to[R,l=\Rc] (T1.C |- A) -- (A)
(T1.E) to[R,l_=\Rd] (T1.E |- C) -- (C -| A) -- ++(-2,0) coordinate(X) to[V,l=\Vbc] (X |- A) -- (A)
(T1.C) -- ++(1.5,0) node[ocirc]{} coordinate(k) to[open,v=\Vo] (k |- A) node[ocirc]{} -- (A)
;

}[this is a CircuiTikZ example]

Once Questions are defined one can use them, for instance, using just the default parameter’s
values.

Questions Defaults
Choose one of the following two questions:

\begin{enumerate}
\item \textQuestion[Repo 2]{Quest A:1}<just a last minute note about this>\par
\ftikzQuestion(0.4)[Repo 2]{Elect. 1a}

\item \textQuestion[default]{Quest A:1}<just for the sake of it...>\par
\ftikzQuestion(0.4)[default]{Elect. 1b}

\end{enumerate}

Choose one of the following two questions:

1. In the following circuit, assuming β ≈ Beta and that Vbe ≈ 0.65V , find the value of Rc such
that the small signal gain is Gain.

−
+Vfi

Ra

Rb

Rg

Rc

Rd

−
+ Vfbc

+

−

Vfo

2. In the following circuit, assuming β ≈ Beta and that Vbe ≈ 0.65V , find the value of Rg such
that the DC level of Vfo is equal to DC level.

6



−
+Vfi

Ra

Rb

Rg

Rc

Rd

−
+ Vfbc

+

−

Vfo

Finally, one can use these same questions, setting it’s parameters:

Questions Using Parameters
Choose one of the following two questions:

\begin{enumerate}
\item \textQuestion[Repo 2]{Quest A:1}[Beta=200,Gain=4,Ra=50\Omega]<just a last minute note about this>\par
\ftikzQuestion(0.4)[Repo 2]{Elect. 1a}[Ra=50\Omega,Rb*=100\Omega,Rg raw=$100\Omega$,Rc=100\Omega,Rd=R_c,Vbc=18V,

Vi=v_i(t),Vo=v_o(t)]

\item \textQuestion[default]{Quest A:1}[Beta=200,DC level=8V,Rg=R_{b1},Vo=v_o(t)]<just for the sake of it...>
\par

\ftikzQuestion(0.4)[default]{Elect. 1b}[Ra=50\Omega,Rb*=100\Omega,Rg=R_{b1},Rc=100\Omega,Rd=200\Omega,Vbc=18V,Vi
=v_i(t),Vo=v_o(t)]

\end{enumerate}

Choose one of the following two questions:

1. In the following circuit, assuming β ≈ 200 and that Vbe ≈ 0.65V , find the value of Rc such
that the small signal gain is 4.

−
+vi(t)

50Ω

100Ω

100Ω

100Ω

Rc

−
+ 18V

+

−

vo(t)

2. In the following circuit, assuming β ≈ 200 and that Vbe ≈ 0.65V , find the value of Rb1 such
that the DC level of vo(t) is equal to 8V.

−
+vi(t)

50Ω

100Ω

Rb1

100Ω

200Ω

−
+ 18V

+

−

vo(t)

6.3 Creating a Questions’ List

To round it up, using the \QuestionsList (see 4.2):

LATEX Code:

\QuestionsList

One get’s:

Repository Name: Repo 2

non starred ones - TikZ graphics

7



Elect. 1a

−
+Vfi

Ra

Rb

Rg

Rc

Rd

−
+ Vfbc

+

−

Vfo

Remarks: this is a CircuiTikZ example

starred ones - text/TEX

Quest A:1 In the following circuit, assuming β ≈ Beta and that Vbe ≈ 0.65V , find the value of
Rc such that the small signal gain is Gain.

Remarks: That would be a question enunciate.

Repository Name: default

non starred ones - TikZ graphics

Elect. 1b

−
+Vfi

Ra

Rb

Rg

Rc

Rd

−
+ Vfbc

+

−

Vfo

Remarks: this is another CircuiTikZ example

starred ones - text/TEX

Quest A:1 In the following circuit, assuming β ≈ Beta and that Vbe ≈ 0.65V , find the value of
Rg such that the DC level of Vfo is equal to DC level.

Remarks: Just for the sake of it.

8


	Introduction
	Package Options
	Repositories
	Questions
	Defining a Question
	Using a Question

	Parameters as pgfkeys and auxiliary macros.
	Assigning a new value to pre-defined keys
	Assigning a value to new keys
	Using a parameter key

	Examples of Use
	Package Options
	A More Complete Example
	Creating a Questions' List


