
The tikzmark package
Andrew Stacey

stacey@math.ntnu.no

v1.0 from 2013/04/12

1 Introduction
The \tikzmark macro burst onto the scene in a blaze of glory on TeX-SX. Since
then, it has proved embarrassingly (to its original author) popular. The idea
behind it is extremely simple: that the machinery underneath TikZ provides a
way to “mark” a point on a page for further use. This functionality is already
provided by several other packages. The point of this one is that as TikZ can
provide this feature, if already loading TikZ then it makes sense to use the TikZ
version than another version. Moreover, if the goal is to use these marks with
some TikZ code then this version is already set up for that purpose (not that it
would be exactly difficult to add this to any of the other implementations).

2 Use
Using the \tikzmark is extremely simple. You need to load the tikz package and
then load tikzmark as a tikzlibrary. Thus in your preamble you should have
something like:

\ usepackage { t i k z }
\ u s e t i k z l i b r a r y { tikzmark }

In your document, you can now type \tikzmark{<name>} at a point that you
want to remember. This will save a mark with name <name> for use later (or
earlier). To use it in a \tikz or tikzpicture, simply use the pic coordinate
system:

\ t i k z [remember p i c tu r e] \draw [over lay] (0 , 0) −− (p i c
cs :<name>) ;

There are two important points to note:

1. The enveloping \tikz or tikzpicture must have the key remember picture
set.
This is because of how TikZ coordinates work. The coordinates inside a
TikZ picture are relative to its origin, so that origin can move around on

1

stacey@math.ntnu.no
http://tex.stackexchange.com

the page and not affect the internals of the picture. To use a point outside
the picture, therefore, the current picture not only has to know where that
point is on the page it also has to know where it itself is on the page. Hence
the remember picture key must be set.

2. The drawing command must have the overlay key set (or be in a scope or
picture where it is set).
This is to keep the bounding box of the current picture under control. Oth-
erwise, it would grow to encompass the remembered point as well as the
current picture. (This isn’t necessary if the remembered point is inside the
current picture.)

3 History
I wrote the original \tikzmark macro in 2009 for use in lecture slides prepared
with the beamer package. It’s original definition was:

\newcommand{\ tikzmark } [1] { \ t i k z [over lay , remember p i c tu r e]
\node (#1) {} ;}

Its first use was in the (inelegant) code:

\ begin { frame}
\ f r ame t i t l e { St ructure o f Continuous Functions }

\ begin { t i k z p i c t u r e } [over lay , remember p i c tu r e]
\ useasboundingbox (0 , 0) ;
\draw<2−| t rans : 0 | handout : 0>[red ,−>] (bsp) . . c o n t r o l s

+(−1,−1) and ($ (cnvs . north) +(1 ,1) $) . .
($ (cnvs . north) +(0 ,1) $) . . c o n t r o l s
($ (cnvs . north)+(−1 ,1) $) and +(−1 ,0) . . (cnvs . north) ;

\draw<3−| t rans : 0 | handout : 0>[green ! 5 0 ! black ,−>] (cp l t) . .
c o n t r o l s +(−1,−1) and +(−1 ,0) . . (mcplt . north) ;

\draw<4−| t rans : 0 | handout : 0>[blue ,−>] (norm) . . c on t r o l s
+(−1,−.5) and ($ (nvs . north) +(0 ,1 .5) $) . .
($ (nvs . north) +(0 ,1 .5) $) . . c o n t r o l s
($ (nvs . north) +(−1.5 ,1.5) $) and +(−1.5 ,0) . .
(nvs . north) ;

\draw<5−| t rans : 0 | handout : 0>[purple ,−>] (vec to r) . .
c on t r o l s +(−1,−1) and ($(vsp . north) +(2 ,2) $) . .
($ (vsp . north) +(0 ,2) $) . . c o n t r o l s
($ (vsp . north)+(−2 ,2) $) and +(−2 ,0) . . (vsp . north) ;

\end{ t i k z p i c t u r e }

\ begin {theorem}
\centering
\(\big (C([0 , 1] , \R) ,d_\infty \big) \) \\

2

i s a \\
\ a l e r t {Banach\ tikzmark{bsp} space }
\end{theorem}

\pause
\bigskip

\ begin { i t em i z e }
\item [\ t ikzmark { cnvs }]

{\ co lo r <.(2)−>{green ! 5 0 ! b lack }Comp\ tikzmark { cp l t } l e t e }
{\ co lo r <.(3)−>{blue }nor\ tikzmark {norm}med}
{\ co lo r <.(4)−>{purple } vec to r \ tikzmark { vec to r } space } .

\bigskip
\bigskip
\pause

\ begin { i t em i z e}[<+−>]
\item [\ t ikzmark {mcplt }] {\ c o l o r { green ! 5 0 ! b lack }Cauchy

sequences converge . }
\medskip
\item [\ t ikzmark {nvs }] {\ c o l o r { blue }Metric from a norm .}
\medskip
\item [\ t ikzmark {vsp }] {\ c o l o r { purple }Functions behave l i k e

v e c to r s . }
\end{ i t em i z e }
\end{ i t em i z e }

\end{ frame}

This produced, on the final slide, Figure 1.
Its first appearance on TeX-SX was in an answer to a question about how

to put overlapping braces on a mathematical text. This was in July 2010. The
opening statement of the answer was not overly encouraging: “This may not be the
best solution. . . ”. And for a macro that would go on to become quite ubiquitous,
its initial appearance only garnered it 2 votes.

However, it started out in life as a useful macro for me and as such I found
more uses for it in my own code and thus more opportunity for using it to answer
questions on TeX-SX. The one that seems to have been where it got noticed came
in August 2010, again about putting braces in text but in a more complicated
fashion. From this answer, it got picked up, picked over, and picked apart. A
common use was in highlighting or adding marks to text.

Gradually, as it got used, it developed. A major revision dates from an answer
given in March 2012 where the question was actually about \tikzmark. This
version added two important features: a TikZ coordinate system for referencing
saved marks directly and the ability to refer to marks earlier in the document

3

http://tex.stackexchange.com
http://tex.stackexchange.com/a/316/86
http://tex.stackexchange.com/a/1570/86
http://tex.stackexchange.com/a/50054/86

Structure of Continuous Functions

Theorem (
C([0,1],R),d∞

)

is a
Banach space

Complete normed vector space.

Cauchy sequences converge.

Metric from a norm.

Functions behave like vectors.

Figure 1: First use of tikzmark

4

than they are defined (the mechanism for remembering points uses the aux file
anyway so this was more about exposing the information earlier than anything
complicated). Then in October 2012 there was a question where it would have been
useful to remember which page the mark was on and a question where for some
reason using the \tikz macro didn’t work so the \pgfmark macro was introduced.

4 Usage
This package defines the following commands and usable stuff.

1. \tikzmark[〈drawing command〉]{〈name〉}
The mandatory argument is the name of the mark to be used to refer back
to this point later.
The \tikzmark command can take an optional parameter which is some
drawing command that can be put in a \tikz ... ; command. This draw-
ing command can be used to place a node or something similar at the marked
point, or to set some \tikzset keys. Sometimes this can be useful. Note,
though, that if this is used to define an offset coordinate then this will only
be available in the document after the \tikzmark command, even on later
runs.

2. \pgfmark{〈name〉}
This is a more basic form of the \tikzmark which doesn’t use any of the
\tikz overhead. One advantage of this command is that it doesn’t create
an hbox.

3. \iftikzmark{〈name〉}{〈true code〉}{〈false code〉}
This is a simple conditional to test if a particular mark is available. It
executes true code if it is and false code if not.

4. (pic cs:<name>) or (pic cs:<name>,<coordinate>)

This is the method for referring to a position remembered by \tikzmark
(or \pgfmark) as a coordinate in a tikzpicture environment (or \tikz
command). If the extra coordinate is specified then this is used in case
the mark name has not yet been defined (this can be useful for defining code
that does something sensible on the first run).

5. /tikz/save picture id=<name>

This is the TikZ key that is used by \tikzmark to actually save the con-
nection between the name and the picture coordinate. It can be used on an
arbitrary picture to save its origin.

6. /tikz/if picture id=#1#2#3

This is a key equivalent of the \iftikzmark command.

5

http://tex.stackexchange.com/q/79121/86
http://tex.stackexchange.com/q/79762/86

7. /tikz/next page, /tikz/next page vector

It is possible to refer to a mark on a different page to the current page.
When this is done, the mark is offset by a vector stored in the key
/tikz/next page vector. The key /tikz/next page can be used to set
this to certain standard vectors by specifying where the “next page” is con-
sidered as lying corresponding to the current page. Possible values are (by
default) above, below, left, right, and ignore. (The last one sets the
vector to the zero vector.)

8. \subnode[options]{name}{content}

This produces a pseudo-node named name around the content. The design
purpose of this is to create a “subnode” inside a TikZ node. As far as TikZ
is concerned, the contents of a node is just a box. It therefore does not know
anything about it beyond its external size and so cannot easily determine the
coordinates of pieces inside. The \subnode command boxes its contents and
saves the position of that box and its dimensions. This information is stored
in the same way that PGF stores the necessary information about a node. It
is therefore possible to use ordinary node syntax (within a tikzpicture) to
access this information. Thus after \node {a \subnode{a}{sub} node};
it is possible to use a as a node. The options are passed to the node
construction mechanism, but note that the only sensible options are those
that affect the size and shape of the node: drawing options are ignored
(except in so far as they affect the size – as an example, line width affects
the node size).
There are two important points to make about this. The first is that, as
with all the tikzmark macros, the information is always one compilation
old. The second is that the pseudo-node is purely about coordinates: the
path information is not used and the contents are not moved. This is partly
for reasons of implementation: the pseudo-node is constructed when TikZ
is not in “picture mode”. But also interleaving the background path of the
pseudo-node and any containing node would be problematic and so is best
left to the user.
The simplest way to turn a pseudo-node into a more normal node is to use the
fit library. Using the above example, \node[fit=(a),draw,inner sep=0pt] {};
would draw a rectangle around the word sub of exactly the same size as would
appear had a normal node been created.

5 Examples and Extras
The \tikzmark command has been used in numerous answers on TeX-SX. The
plan is to gather some of these into extra libraries which can be loaded via
\usetikzmarklibrary.

At present, this is the code listings library (which works with the listings
package). One that is in development (as it has featured much on the TeX-SX

6

http://tex.stackexchange.com

website) is highlighting, however this is not so straightforward to implement so is
still under development.

5.1 Basic Examples
A simple example of the \tikzmark macro is the following.

\ [
\ tikzmark {a} e^{ i \pi /2} = i

\]

This \ t i k z [remember p i c ture , over lay , b a s e l i n e=0pt]
\draw[−>] (0 ,1em) to [bend l e f t]
([s h i f t ={(−1ex , 1 ex) }] p i c cs : a) ; i s an important
equat ion .

eiπ/2 = i

This is an important equation.

\ begin { i t em i z e }
\item A f i r s t item , \ tikzmark {b}
\item A second item , \ tikzmark {c}
\item A t h i r d item . \ tikzmark {d}
\end{ i t emi z e }
\ begin { t i k z p i c t u r e } [remember p i c ture , ove r l ay]
\draw [decorate , deco ra t i on={brace }] ({ p i c cs : c} |− { p i c

cs : b}) +(0 ,1em) −− node [r i ght , inne r sep=1em] {some
items } ({ p i c cs : c} |− { p i c cs : d}) ;

\end{ t i k z p i c t u r e }

• A first item,

• A second item,

• A third item.

some items

\ begin { t i k z p i c t u r e } [remember p i c t u r e]
\node (a) at (0 , 0) { This has a \subnode{sub }{ subnode} in

i t } ;
\draw[−>] (0 , −1) to [bend r i g h t] (sub) ;
\end{ t i k z p i c t u r e }

7

This has a subnode in it

5.2 Code Listings
If the listings package has been loaded then issuing \usetikzmarklibrary{listings}
will load in some code to add marks to lstlisting environments. This code places
a mark at three places on a line of code in a listings environment. The marks
are placed at the start of the line, the first non-whitespace character, and the
end of the line (if the line is blank the latter two are not placed). (This has not
been extensively tested, it works by adding code to various “hooks” that are made
available by the listings package; it is quite possible that the hooks chosen are
both wrong and insufficient to cover all desired cases.)

These are inspired by questions such as Marking lines in listings and Macros
for code annotations.

In more detail, the listings library places lots of marks around the code. The
marks are:

• line-<name>-<number>-start at the start of each line.

• line-<name>-<number>-end at the end of each line.

• line-<name>-<number>-first at the first non-space character of the line
(assuming it exists).

The line numbers should match up with the line numbers in the code in that
any initial offset is also applied.

Not every mark is available on every line. If a line is blank, in particular, it
will only have a start mark. The following example shows this, where the red
dots are the start, the blue are end, and the green are first.

8

http://tex.stackexchange.com/q/79762/86
http://tex.stackexchange.com/q/86309/86
http://tex.stackexchange.com/q/86309/86

\ begin { t i k z p i c t u r e } [remember p i c t u r e]
\ f o r each \k in { 0 , . . . , 7 } {
\ i f t i k z m a r k { l i n e −code−\k−s t a r t }{\ f i l l [red , ove r l ay] (p i c

cs : l i n e −code−\k−s t a r t)
c i r c l e [r ad iu s=4pt] ; } { \ message{No s t a r t f o r \k}}

\ i f t i k z m a r k { l i n e −code−\k−end}{\ f i l l [blue , ove r l ay] (p i c
cs : l i n e −code−\k−end)
c i r c l e [r ad iu s=2pt] ; } { \ message{No end f o r \k}}

\ i f t i k z m a r k { l i n e −code−\k− f i r s t }{\ f i l l [green , ove r l ay]
(p i c cs : l i n e −code−\k− f i r s t)
c i r c l e [r ad iu s=2pt] ; } { \ message{No f i r s t f o r \k}}

}
\draw[−>, over l ay] (0 , 0) −− (p i c cs : l i n e −code−5− f i r s t) ;
\draw[−>, over l ay] (0 , 0) −− (p i c cs : l i n e −code−5−s t a r t) ;
\draw[−>, over l ay] (0 , 0) −− (p i c cs : l i n e −code−5−end) ;
\node [above] at (0 , 0) { Line 5} ;
\end{ t i k z p i c t u r e }

\ begin { l s t l i s t i n g } [language=c , name=code , numbers=l e f t]
#inc lude <s t d i o . h>

i n t main (void)
{

p r i n t f (" he l l o , world \n ") ;
r e turn 0 ;

}
\end{ l s t l i s t i n g }

Line 5

1 #include <s td i o . h>
2
3 int main (void)
4 {
5 p r i n t f (" he l l o , ␣world\n ") ;
6 return 0 ;
7 }

This example puts a fancy node behind certain lines of the code, computing
the necessary extents.

9

\ ba l l oon {comment}{more code }{3}{3}
\ ba l l oon {comment}{more code }{7}{8}
\ begin { l s t l i s t i n g } [language=c , name=more

code , numbers=l e f t , f i r s tnumber =3]
#inc lude <s t d i o . h>

i n t main (void)
{

p r i n t f (" he l l o , world \n ") ;
r e turn 0 ;

}
\end{ l s t l i s t i n g }

3 #include <s td i o . h>
4
5 int main (void)
6 {
7 p r i n t f (" he l l o , ␣world\n ") ;
8 return 0 ;
9 }

6 Acknowledgements
The \tikzmark macro has been used and abused by many users of TeX-SX. Of
particular note (but in no particular order) are Peter Grill, Gonzalo Medina, Clau-
dio Fiandrino, and percusse. I would also like to mention David Carlisle whose
knowledge of TikZ continues to astound us all.

7 Implementation
7.1 Main Code

1 \tikzset{%
2 remember picture with id/.style={%
3 remember picture,
4 overlay,
5 save picture id=#1,
6 },

Not totally happy with using every picture here as it’s too easily overwritten
by the user. Maybe it would be better to patch endtikzpicture directly.

7 every picture/.append style={%
8 execute at end picture={%
9 \ifpgfrememberpicturepositiononpage%

10 \edef\pgf@temp{%

10

http://tex.stackexchange.com

11 \noexpand\write\noexpand\pgfutil@auxout{%
12 \string\savepicturepage{\pgfpictureid}{\noexpand\thepage}}}%
13 \pgf@temp
14 \fi%
15 },
16 },

The positions are already recorded in the aux file, all we really need to do is
provide them with better names.

17 save picture id/.code={%
18 \immediate\write\pgfutil@auxout{%
19 \string\savepointas{#1}{\pgfpictureid}}%
20 },

Provides a way to test if a picture has already been saved (in particular, can avoid
errors on first runs)

21 if picture id/.code args={#1#2#3}{%
22 \@ifundefined{save@pt@#1}{%
23 \pgfkeysalso{#3}%
24 }{
25 \pgfkeysalso{#2}%
26 }
27 },

Page handling
28 next page/.is choice,
29 next page vector/.initial={\pgfqpoint{0pt}{0pt}},
30 next page/below/.style={%
31 next page vector={\pgfqpoint{0pt}{-\the\paperheight}}%
32 },
33 next page/above/.style={%
34 next page vector={\pgfqpoint{0pt}{\the\paperheight}}%
35 },
36 next page/left/.style={%
37 next page vector={\pgfqpoint{-\the\paperwidth}{0pt}}%
38 },
39 next page/right/.style={%
40 next page vector={\pgfqpoint{\the\paperwidth}{0pt}}%
41 },
42 next page/ignore/.style={%
43 next page vector={\pgfqpoint{0pt}{0pt}}%
44 },
45 }

\savepointas This is what gets written to the aux file.
46 \def\savepointas#1#2{%
47 \expandafter\gdef\csname save@pt@#1\endcsname{#2}%
48 }
49 \def\savepicturepage#1#2{%
50 \expandafter\gdef\csname save@pg@#1\endcsname{#2}%
51 }

11

\tmk@labeldef Auxiliary command for the coordinate system.
52 \def\tmk@labeldef#1,#2\@nil{%
53 \def\tmk@label{#1}%
54 \def\tmk@def{#2}%
55 }

pic This defines the new coordinate system.
56 \tikzdeclarecoordinatesystem{pic}{%
57 \pgfutil@in@,{#1}%
58 \ifpgfutil@in@%
59 \tmk@labeldef#1\@nil
60 \else
61 \tmk@labeldef#1,(0pt,0pt)\@nil
62 \fi
63 \@ifundefined{save@pt@\tmk@label}{%
64 \tikz@scan@one@point\pgfutil@firstofone\tmk@def
65 }{%
66 \pgfsys@getposition{\csname save@pt@\tmk@label\endcsname}\save@orig@pic%
67 \pgfsys@getposition{\pgfpictureid}\save@this@pic%
68 \pgf@process{\pgfpointorigin\save@this@pic}%
69 \pgf@xa=\pgf@x
70 \pgf@ya=\pgf@y
71 \pgf@process{\pgfpointorigin\save@orig@pic}%
72 \advance\pgf@x by -\pgf@xa
73 \advance\pgf@y by -\pgf@ya
74 \pgf@xa=\pgf@x
75 \pgf@ya=\pgf@y
76 \@ifundefined{save@pg@\csname save@pt@\tmk@label\endcsname}{}{%
77 \@ifundefined{save@pg@\pgfpictureid}{}{%
78 \pgfkeysvalueof{/tikz/next page vector}%
79 \advance \pgf@xa by \csname save@pg@\csname save@pt@\tmk@label\endcsname\endcsname\pgf@x\relax
80 \advance \pgf@ya by \csname save@pg@\csname save@pt@\tmk@label\endcsname\endcsname\pgf@y\relax
81 \advance \pgf@xa by -\csname save@pg@\pgfpictureid\endcsname\pgf@x\relax
82 \advance \pgf@ya by -\csname save@pg@\pgfpictureid\endcsname\pgf@y\relax
83 }%
84 }%
85 \pgf@x=\pgf@xa
86 \pgf@y=\pgf@ya
87 }%
88 }

\tikzmark

89 \newcommand\tikzmark[2][]{%
90 \tikz[remember picture with id=#2] #1;}

\pgfmark

91 \newcommand\pgfmark[1]{%
92 \bgroup
93 \global\advance\pgf@picture@serial@count by1\relax%

12

94 \edef\pgfpictureid{pgfid\the\pgf@picture@serial@count}%
95 \pgfsys@markposition{\pgfpictureid}%
96 \edef\pgf@temp{%
97 \noexpand\write\noexpand\pgfutil@auxout{%
98 \string\savepicturepage{\pgfpictureid}{\noexpand\thepage}}}%
99 \pgf@temp

100 \immediate\write\pgfutil@auxout{%
101 \string\savepointas{#1}{\pgfpictureid}}%
102 \egroup
103 }

\iftikzmark

104 \newcommand\iftikzmark[3]{%
105 \@ifundefined{save@pt@#1}{%
106 #3%
107 }{%
108 #2%
109 }%
110 }%

\subnode

111 \newcommand\subnode[3][]{%
112 \begingroup
113 \pgfmark{#2}%
114 \setbox\pgfnodeparttextbox=\hbox\bgroup #3\egroup
115 \def\tikz@shape{rectangle}%
116 \def\tikz@anchor{center}%
117 \def\tikz@fig@name{#2}%
118 \tikzset{every subnode/.try,#1}%
119 \pgfpointorigin
120 \tikz@scan@one@point\pgfutil@firstofone(pic cs:#2)\relax
121 \advance\pgf@x by .5\wd\pgfnodeparttextbox
122 \advance\pgf@y by .5\ht\pgfnodeparttextbox
123 \advance\pgf@y by -.5\dp\pgfnodeparttextbox
124 \pgftransformshift{}%
125 \setbox\@tempboxa=\hbox\bgroup
126 \pgfutil@ifundefined{pgf@sh@s@\tikz@shape}%
127 {\PackageError{pgf}{Unknown shape ‘‘\tikz@shape’’}{}}%
128 {%
129 {%
130 \let\pgf@sh@savedmacros=\pgfutil@empty% MW
131 \let\pgf@sh@savedpoints=\pgfutil@empty%
132 \def\pgf@sm@shape@name{\tikz@shape}% CJ % TT added prefix!
133 \csname pgf@sh@s@\tikz@shape\endcsname%
134 \pgf@sh@savedpoints%
135 \pgf@sh@savedmacros% MW
136 \pgftransformshift{%
137 \pgf@sh@reanchor{\tikz@shape}{\tikz@anchor}%
138 \pgf@x=-\pgf@x%
139 \pgf@y=-\pgf@y%

13

140 }%
141 \expandafter\pgfsavepgf@process\csname pgf@sh@sa@\tikz@fig@name\endcsname{%
142 \pgf@sh@reanchor{\tikz@shape}{\tikz@anchor}% FIXME : this is double work!
143 }%
144 % Save the saved points and the transformation matrix
145 \edef\pgf@node@name{\tikz@fig@name}%
146 \ifx\pgf@node@name\pgfutil@empty%
147 \else%
148 \expandafter\xdef\csname pgf@sh@ns@\pgf@node@name\endcsname{\tikz@shape}%
149 \edef\pgf@sh@@temp{\noexpand\gdef\expandafter\noexpand\csname pgf@sh@np@\pgf@node@name\endcsname}%
150 \expandafter\pgf@sh@@temp\expandafter{\pgf@sh@savedpoints}%
151 \edef\pgf@sh@@temp{\noexpand\gdef\expandafter\noexpand\csname pgf@sh@ma@\pgf@node@name\endcsname}% MW
152 \expandafter\pgf@sh@@temp\expandafter{\pgf@sh@savedmacros}% MW
153 \pgfgettransform\pgf@temp
154 \expandafter\xdef\csname pgf@sh@nt@\pgf@node@name\endcsname{\pgf@temp}%
155 \expandafter\xdef\csname pgf@sh@pi@\pgf@node@name\endcsname{\pgfpictureid}%
156 \fi%
157 }%
158 }%
159 \egroup
160 \box\pgfnodeparttextbox
161 \endgroup
162 }

\usetikzmarklibrary

163 \def\usetikzmarklibrary{\pgfutil@ifnextchar[{\use@tikzmarklibrary}{\use@@tikzmarklibrary}}%}
164 \def\use@tikzmarklibrary[#1]{\use@@tikzmarklibrary{#1}}
165 \def\use@@tikzmarklibrary#1{%
166 \edef\pgf@list{#1}%
167 \pgfutil@for\pgf@temp:=\pgf@list\do{%
168 \expandafter\pgfkeys@spdef\expandafter\pgf@temp\expandafter{\pgf@temp}%
169 \ifx\pgf@temp\pgfutil@empty
170 \else
171 \expandafter\ifx\csname tikzmark@library@\pgf@temp @loaded\endcsname\relax%
172 \expandafter\global\expandafter\let\csname tikzmark@library@\pgf@temp @loaded\endcsname=\pgfutil@empty%
173 \expandafter\edef\csname tikzmark@library@#1@atcode\endcsname{\the\catcode‘\@}
174 \expandafter\edef\csname tikzmark@library@#1@barcode\endcsname{\the\catcode‘\|}
175 \catcode‘\@=11
176 \catcode‘\|=12
177 \pgfutil@InputIfFileExists{tikzmarklibrary\pgf@temp.code.tex}{}{
178 \PackageError{tikzmark}{I did not find the tikzmark extras library ’\pgf@temp’.}{}
179 }%
180 \catcode‘\@=\csname tikzmark@library@#1@atcode\endcsname
181 \catcode‘\|=\csname tikzmark@library@#1@barcode\endcsname
182 \fi%
183 \fi
184 }%
185 }
186

14

7.2 Listings
From http://tex.stackexchange.com/q/79762/86

187 \@ifpackageloaded{listings}{%

\iflst@linemark A conditional to help with placing the mark at the first non-whitespace character.
188 \newif\iflst@linemark

EveryLine This hook places the mark at the start of the line.
189 \lst@AddToHook{EveryLine}{%
190 \begingroup
191 \advance\c@lstnumber by 1\relax
192 \pgfmark{line-\lst@name-\the\c@lstnumber-start}%
193 \endgroup
194 }

EOL This hook places the mark at the end of the line and resets the conditional for
placing the first mark.
195 \lst@AddToHook{EOL}{\pgfmark{line-\lst@name-\the\c@lstnumber-end}%
196 \global\lst@linemarktrue
197 }

OutputBox Experimenting shows that this is the right place to set the mark at the first non-
whitespace character. But we only want to do this once per line.
198 \lst@AddToHook{OutputBox}{%
199 \iflst@linemark
200 \pgfmark{line-\lst@name-\the\c@lstnumber-first}%
201 \global\lst@linemarkfalse
202 \fi
203 }

\tikzmk@lst@fnum An auxiliary macro to figure out if the firstnumber key was set. If so, it has the
form <number>\relax. If not, it expands to a single token.
204 \def\tkzmk@lst@fnum#1\relax#2\@STOP{%
205 \def\@test{#2}%
206 \ifx\@test\@empty
207 \def\tkzmk@lst@start{0}%
208 \else
209 \@tempcnta=#1\relax
210 \advance\@tempcnta by -1\relax
211 \def\tkzmk@lst@start{\the\@tempcnta}%
212 \fi
213 }

Init Adds a mark at the start of the listings environment.
214 \lst@AddToHook{Init}{%
215 \expandafter\tkzmk@lst@fnum\lst@firstnumber\relax\@STOP
216 \pgfmark{line-\lst@name-\tkzmk@lst@start-start}%
217 }

15

http://tex.stackexchange.com/q/79762/86

218 }{%
219 \PackageError{tikzmark listings}{The listings package has not been loaded.}{}
220 }

16

	1 Introduction
	2 Use
	3 History
	4 Usage
	5 Examples and Extras
	5.1 Basic Examples
	5.2 Code Listings

	6 Acknowledgements
	7 Implementation
	7.1 Main Code
	7.2 Listings

