
The tikzmark package
Andrew Stacey

loopspace@mathforge.org

v1.10 from 2021/02/16

1 Introduction
The \tikzmark macro burst onto the scene in a blaze of glory on TeX-SX. Since
then, it has proved embarrassingly (to its original author) popular. The idea
behind it is extremely simple: that the machinery underneath TikZ provides a
way to “mark” a point on a page for further use. This functionality is already
provided by several other packages. The point of this one is that as TikZ can
provide this feature, if already loading TikZ then it makes sense to use the TikZ
version than another version. Moreover, if the goal is to use these marks with
some TikZ code then this version is already set up for that purpose (not that it
would be exactly difficult to add this to any of the other implementations).

2 Use
Using the \tikzmark is extremely simple. You need to load the tikz package and
then load tikzmark as a tikzlibrary. Thus in your preamble you should have
something like:
\usepackage{tikz}
\usetikzlibrary{tikzmark}

In your document, you can now type \tikzmark{<name>} at a point that you
want to remember. This will save a mark with name <name> for use later (or
earlier). To use it in a \tikz or tikzpicture, simply use the pic coordinate
system:
\tikz[remember picture] \draw[overlay] (0,0) -- (pic cs:<name>);

There are two important points to note:

1. The enveloping \tikz or tikzpicture must have the key remember picture
set.
This is because of how TikZ coordinates work. The coordinates inside a
TikZ picture are relative to its origin, so that origin can move around on
the page and not affect the internals of the picture. To use a point outside

1

loopspace@mathforge.org
http://tex.stackexchange.com

the picture, therefore, the current picture not only has to know where that
point is on the page it also has to know where it itself is on the page. Hence
the remember picture key must be set.

2. The drawing command must have the overlay key set (or be in a scope or
picture where it is set).
This is to keep the bounding box of the current picture under control. Oth-
erwise, it would grow to encompass the remembered point as well as the
current picture. (This isn’t necessary if the remembered point is inside the
current picture.)

3 History
I wrote the original \tikzmark macro in 2009 for use in lecture slides prepared
with the beamer package. Its original definition was:
\newcommand{\tikzmark}[1]{\tikz[overlay,remember picture] \node (#1) {};}

Its first use was in the (inelegant) code:
\begin{frame}
\frametitle{Structure of Continuous Functions}

\begin{tikzpicture}[overlay, remember picture]
\useasboundingbox (0,0);
\draw<2-|trans: 0|handout: 0>[red,->] (bsp) .. controls +(-1,-1) and

($(cnvs.north)+(1,1)$) .. ($(cnvs.north)+(0,1)$) .. controls
($(cnvs.north)+(-1,1)$) and +(-1,0) .. (cnvs.north);

\draw<3-|trans: 0|handout: 0>[green!50!black,->] (cplt) .. controls
+(-1,-1) and +(-1,0) .. (mcplt.north);

\draw<4-|trans: 0|handout: 0>[blue,->] (norm) .. controls +(-1,-.5) and
($(nvs.north)+(0,1.5)$) .. ($(nvs.north)+(0,1.5)$) .. controls
($(nvs.north)+(-1.5,1.5)$) and +(-1.5,0) .. (nvs.north);

\draw<5-|trans: 0|handout: 0>[purple,->] (vector) .. controls +(-1,-1) and
($(vsp.north)+(2,2)$) .. ($(vsp.north)+(0,2)$) .. controls
($(vsp.north)+(-2,2)$) and +(-2,0) .. (vsp.north);

\end{tikzpicture}

\begin{theorem}
\centering
\(\big(C([0,1],\R),d_\infty\big)\) \\
is a \\
\alert{Banach\tikzmark{bsp} space}
\end{theorem}

\pause
\bigskip

\begin{itemize}

2

Structure of Continuous Functions

Theorem (
C([0,1],R),d∞

)
is a

Banach space

Complete normed vector space.

Cauchy sequences converge.

Metric from a norm.

Functions behave like vectors.

Figure 1: First use of tikzmark

\item[\tikzmark{cnvs}]
{\color<.(2)->{green!50!black}Comp\tikzmark{cplt}lete}
{\color<.(3)->{blue}nor\tikzmark{norm}med}
{\color<.(4)->{purple}vector\tikzmark{vector} space}.

\bigskip
\bigskip
\pause

\begin{itemize}[<+->]
\item[\tikzmark{mcplt}] {\color{green!50!black}Cauchy sequences converge.}
\medskip
\item[\tikzmark{nvs}] {\color{blue}Metric from a norm.}
\medskip
\item[\tikzmark{vsp}] {\color{purple}Functions behave like vectors.}
\end{itemize}
\end{itemize}

\end{frame}

This produced, on the final slide, Figure 1.

3

Its first appearance on TeX-SX was in an answer to a question about how
to put overlapping braces on a mathematical text. This was in July 2010. The
opening statement of the answer was not overly encouraging: “This may not be the
best solution. . . ”. And for a macro that would go on to become quite ubiquitous,
its initial appearance only garnered it 2 votes.

However, it started out in life as a useful macro for me and as such I found
more uses for it in my own code and thus more opportunity for using it to answer
questions on TeX-SX. The one that seems to have been where it got noticed came
in August 2010, again about putting braces in text but in a more complicated
fashion. From this answer, it got picked up, picked over, and picked apart. A
common use was in highlighting or adding marks to text.

Gradually, as it got used, it developed. A major revision dates from an answer
given in March 2012 where the question was actually about \tikzmark. This
version added two important features: a TikZ coordinate system for referencing
saved marks directly and the ability to refer to marks earlier in the document
than they are defined (the mechanism for remembering points uses the aux file
anyway so this was more about exposing the information earlier than anything
complicated). Then in October 2012 there was a question where it would have been
useful to remember which page the mark was on and a question where for some
reason using the \tikz macro didn’t work so the \pgfmark macro was introduced.

By this point, the \tikzmark command had morphed considerably from its
original definition. Experience has shown that on the TeX-SX site it has con-
tinued to be used in its original form as well as its current form. I’ve there-
fore taken the decision to reintroduce a form of the original command, now
called \tikzmarknode. It goes beyond the original version in that it uses some
\mathchoice trickery (inspired by this answer from Heiko Oberdiek) to hopefully
correctly choose the correct math style.

The original reason for not using nodes inside \tikzmark was to be able to
use the information from a \tikzmark before the point where it was defined (via
information saved into the aux file). Thanks to a question on TeX-SX about saving
node information, I’ve developed code that solves that issue with nodes. As it fits
in the general concept of this package, I’ve added that code to the \tikzmark
package.

4 Usage
This package defines the following commands and usable stuff.

1. \tikzmark[〈drawing command〉]{〈name〉}
The mandatory argument is the name of the mark to be used to refer back
to this point later.
The \tikzmark command can take an optional parameter which is some
drawing command that can be put in a \tikz ... ; command. This draw-
ing command can be used to place a node or something similar at the marked
point, or to set some \tikzset keys. Sometimes this can be useful. Note,

4

http://tex.stackexchange.com
http://tex.stackexchange.com/a/316/86
http://tex.stackexchange.com/a/1570/86
http://tex.stackexchange.com/a/50054/86
http://tex.stackexchange.com/q/79121/86
http://tex.stackexchange.com/q/79762/86
https://tex.stackexchange.com/a/122419/86
https://tex.stackexchange.com/a/415862/86

though, that if this is used to define an offset coordinate then this will only
be available in the document after the \tikzmark command, even on later
runs.
If the beamer class is loaded then this command is made overlay-aware.

2. \tikzmark{〈name〉}{〈coordinate〉}
v1.2 of the tikzmark package introduced a new variant of \tikzmark which
works inside a tikzpicture. One feature of \tikzmark which isn’t part
of TikZ’s normal coordinate remembering system is the ability to use a
\tikzmark coordinate before it is defined (due to the use of the aux file).
This is potentially useful to have inside a tikzpicture and so it is now
possible to use \tikzmark inside a tikzpicture. The syntax is slightly
different as we need to specify the coordinates of a point to remember.
This was inspired by the question Refer to a node in tikz that will be defined
“in the future” (two passes)? on TeX-SX.

3. \pgfmark{〈name〉}
This is a more basic form of the \tikzmark which doesn’t use any of the
\tikz overhead. One advantage of this command is that it doesn’t create
an hbox. It does, however, insert a whatsit into the stream so it will, for
example, stop two vertical spaces either side of it being merged. This can’t
be avoided.
If the beamer class is loaded then this command is made overlay-aware.

4. \iftikzmark{〈name〉}{〈true code〉}{〈false code〉}
This is a conditional to test if a particular mark is available. It executes
true code if it is and false code if not.

5. \iftikzmarkexists{〈name〉}
This is a conditional to test if a particular mark is available which works
with the lower level TEX \else and \fi.

6. \iftikzmarkoncurrentpage{〈name〉}
This is a conditional to test if a particular mark is on the current page; it
works with the lower level TEX \else and \fi.

7. \iftikzmarkonpage{〈name〉}{〈page〉}
This is a conditional to test if a particular mark is on a given page; it works
with the lower level TEX \else and \fi.

8. \tikzmarknode[〈options〉]{〈name〉}{〈contents〉}
This is a reincarnation of the original \tikzmark command which places its
contents inside a \tikz node. It also defines a tikzmark with the same name.
Using a sneaky trick with \mathchoice, it works inside a math environment.

5

http://tex.stackexchange.com/q/295903/86
http://tex.stackexchange.com/q/295903/86

The spacing either side might not be quite right as although it detects the
math style it doesn’t got beyond that. The options are passed to the node.
Two styles are attempted, one on the surrounding picture and one on the
node, which are:

• every tikzmarknode picture

• every tikzmarknode

To refer to the node, use usual TikZ coordinates. To refer to the underlying
tikzmark, use the special tikzmark coordinates (see below).

9. (pic cs:<name>) or (pic cs:<name>,<coordinate>)

This is the method for referring to a position remembered by \tikzmark
(or \pgfmark) as a coordinate in a tikzpicture environment (or \tikz
command). If the extra coordinate is specified then this is used in case
the mark name has not yet been defined (this can be useful for defining code
that does something sensible on the first run).

10. /tikz/save picture id=<name>

This is the TikZ key that is used by \tikzmark to actually save the con-
nection between the name and the picture coordinate. It can be used on an
arbitrary picture to save its origin as a tikzmark.

11. /tikz/check picture id

There are circumstances where, behind the scenes, a tikzpicture is ac-
tually placed in a box and processed several times (often this involves
\mathchoice). In such a situation, when defining nodes then the last one
“wins” in that each node remembers the id of the last processed picture.
However, only the one that is actually used has its location remembered on
the page (since the others don’t have a position). This can lead to the sit-
uation whereby a node becomes disassociated from its picture and so using
it for later reference fails. This key tries to get around that situation by
checking the aux file to see if the current picture was actually typeset last
time (by checking for the presence of the remembered location) and if it find
that it wasn’t, it quietly appends the string discard- to each node name.
The idea being that the version of the picture that is actually typeset will
not have this happen and so its nodes “survive”.

12. /tikz/maybe define node=#1

The previous key can lead to undefined nodes on the first time that the
picture is processed. Using this key will ensure that the specified node is
aliased to its discard- version providing it doesn’t already exist. This is
purely to get rid of pointless error messages, and also should only be used
in conjunction with check picture id.
Note that due to the order in which code gets executed, check picture id
should be before any maybe define node keys.

6

13. /tikz/if picture id=#1#2#3

This is a key equivalent of the \iftikzmark command.

14. /tikz/if tikzmark on current page=#1#2#3

This is a key equivalent of the \iftikzmarkoncurrentpage command. If
true, the keys in #2 are executed, otherwise the keys in #3.

15. /tikz/if tikzmark on page=#1#2#3#4

This is a key equivalent of the \iftikzmarkonpage command.

16. /tikz/next page, /tikz/next page vector

It is possible to refer to a mark on a different page to the current page.
When this is done, the mark is offset by a vector stored in the key
/tikz/next page vector. The key /tikz/next page can be used to set
this to certain standard vectors by specifying where the “next page” is con-
sidered as lying corresponding to the current page. Possible values are (by
default) above, below, left, right, and ignore. (The last one sets the
vector to the zero vector.)
Previous versions of tikzmark tried to make this work correctly with the
mark being on, say, 5 pages further on but this got too fiddly so this version
just pretends that the mark is on the next or previous page and points to it
as appropriate.

17. /tikz/tikzmark prefix=<prefix> and /tikz/tikzmark suffix=<suffix>

These keys allow for the automatic addition of a prefix and/or suffix to each
\tikzmark name. The prefix and suffix are added both at time of definition
and of use, so providing one is in the same scope there is no difference in
at the user level when using prefixes and suffixes. What it can be useful for
is to make the \tikzmark names unique. In particular, if the beamer class
is loaded then an automatic suffix is added corresponding to the overlay.
This means that if a slide consists of several overlays with \tikzmarks on
them, and the positions of the \tikzmarks move then the resulting pictures
should look right. Without the automatic suffix, only the final positions of
the marks would be used throughout.
This was inspired by the question using tikzmark subnode with overlays
beamer on TeX-SX.

18. \subnode[options]{name}{content}

This produces a pseudo-node named name around the content. The design
purpose of this is to create a “subnode” inside a TikZ node. As far as TikZ
is concerned, the contents of a node is just a box. It therefore does not know
anything about it beyond its external size and so cannot easily determine the
coordinates of pieces inside. The \subnode command boxes its contents and
saves the position of that box and its dimensions. This information is stored
in the same way that PGF stores the necessary information about a node. It

7

http://tex.stackexchange.com/q/302517/86
http://tex.stackexchange.com/q/302517/86

is therefore possible to use ordinary node syntax (within a tikzpicture) to
access this information. Thus after \node {a \subnode{a}{sub} node};
it is possible to use a as a node. The options are passed to the node
construction mechanism, but note that the only sensible options are those
that affect the size and shape of the node: drawing options are ignored
(except in so far as they affect the size – as an example, line width affects
the node size).
There are two important points to make about this. The first is that, as
with all the tikzmark macros, the information is always one compilation
old. The second is that the pseudo-node is purely about coordinates: the
path information is not used and the contents are not moved. This is partly
for reasons of implementation: the pseudo-node is constructed when TikZ
is not in “picture mode”. But also interleaving the background path of the
pseudo-node and any containing node would be problematic and so is best
left to the user.
The simplest way to turn a pseudo-node into a more normal node is to use the
fit library. Using the above example, \node[fit=(a),draw,inner sep=0pt] {};
would draw a rectangle around the word sub of exactly the same size as would
appear had a normal node been created.
Using a sneaky trick with \mathchoice, subnode works inside a math en-
vironment. The spacing either side might not be quite right as although it
detects the math style it doesn’t got beyond that.

19. Node saving
The node saving system takes the information stored about a node and saves
it for later use. That later use can be in the same document, in which case
it should be saved just to the memory of the current TeX process, or it
can be used earlier in the same document or another document altogether
(in particular, if the nodes are defined in a tikzpicture that has been
externalised, this can be used to import the node information into the main
file) in which cases the node data is saved to a file.
When working with files, nodes are saved and restored in bulk. When work-
ing in memory, nodes are saved and restored in named lists. Nodes are not
actually saved until the end of the tikzpicture in which they are defined,
meaning that if saving to memory then all the nodes in a tikzpicture will
belong to the same list.
The keys for working with saving and restoring nodes are as follows.

• save node
This is the key to put on a node that is to be saved.

• set node group=<name>
Nodes are grouped together into a list that can be saved either to a file
or for use later on in the document. This sets the name for the current
group.

8

• restore nodes from list=<name>
This restores the node information from the named list to the current
tikzpicture. This is required both for when the node information
comes from a file or from earlier in the same document.

• save nodes to file
This is a true/false key which determines whether to save the node
information to a file.

• set saved nodes file name=<name>
This sets the file name for the saved nodes (the extension will be .nodes.
The default is to use the current TEX filename. This is set globally, and
once the file is opened then changing the name will have no effect. (The
file is not opened until it is actually needed to avoid creating empty files
unnecessarily.)

• restore nodes from file=<name>
This loads the node information from the file into the current document.
The <name> can have the syntax [options]{name}, where options
can be used to influence how the nodes are restored. The key
transform saved nodes (see below) can be given here. Another useful
key is the name prefix key which is applied to all restored nodes.

• transform saved nodes
A particular use-case for restoring saved nodes is to safely include one
tikzpicture inside another by creating an image out of the inner pic-
ture and including it back in as a picture inside a node. In that situa-
tion, restoring the nodes from the inner picture can make it possible to
refer to coordinates from the inner picture to the outer one. If there is
a transformation in place on the containing node, this key applies that
transformation to all the nodes in the inner picture.

5 Examples and Extras
The \tikzmark command has been used in numerous answers on TeX-SX. The
plan is to gather some of these into extra libraries which can be loaded via
\usetikzmarklibrary.

At present, this is the code listings library (which works with the listings
package). One that is in development (as it has featured much on the TeX-SX
website) is highlighting, however this is not so straightforward to implement so is
still under development.

5.1 Basic Examples
A simple example of the \tikzmark macro is the following.

9

http://tex.stackexchange.com

\[
\tikzmark{a} e^{i \pi/2} = i

\]

This\tikz[remember picture,overlay,baseline=0pt] \draw[->] (0,1em)
to[bend left] ([shift={(-1ex,1ex)}]pic cs:a); is an important
equation.

eiπ/2 = i

This is an important equation.

\begin{itemize}
\item A first item,\tikzmark{b}
\item A second item,\tikzmark{c}
\item A third item.\tikzmark{d}
\end{itemize}
\begin{tikzpicture}[remember picture,overlay]
\draw[decorate,decoration={brace}] ({pic cs:c} |- {pic cs:b})

+(0,1em) -- node[right,inner sep=1em] {some items} ({pic cs:c}
|- {pic cs:d});

\end{tikzpicture}

• A first item,

• A second item,

• A third item.

some items

\begin{tikzpicture}[remember picture]
\node (a) at (0,0) {This has a \subnode{sub}{subnode} in it};
\draw[->] (0,-1) to[bend right] (sub);
\end{tikzpicture}

This has a subnode in it

An example using \tikzmark inside a tikzpicture

10

\tikzset{tikzmark prefix=ex3-}
\begin{tikzpicture}[remember picture,overlay]
\draw[->,line width=1mm,cyan] (pic cs:a) to[bend left] (pic cs:b);
\end{tikzpicture}

By placing the \tikzmark{a}code before the marks, the arrow goes
under the subsequent text and picture.

\begin{tikzpicture}
\filldraw[fill=gray] (0,0) circle[radius=1cm];
\tikzmark{b}{(-1,-1)}
\end{tikzpicture}

By placing the code before the marks, the arrow goes under the subsequent
text and picture.

The \tikmarknode puts a node around some text, which can be referred to
later, and adds a \tikzmark at its origin.

Putting a node around \tikzmarknode{txt}{some text} means we can
connect text together, including in maths:

\[
\tikzmarknode{a}{\sum_{k=1}^n} k^{\tikzmarknode{b}{2}}
\]

\begin{tikzpicture}[remember picture,overlay]
\draw[->] (txt) -- (a);
\draw[->] (a.south) to[out=-90,in=-45] (b.south east);
\end{tikzpicture}

Putting a node around some text means we can connect text together,
including in maths:

n∑
k=1

k2

The syntax for saving node data is illustrated by the following example.
File firstpicture.tex:

11

\documentclass[tikz,border=10pt]{standalone}
\usetikzlibrary{tikzmark,shapes.geometric}
\begin{document}
\begin{tikzpicture}[save nodes to file]
\node[draw,rotate=-30,save node](1) at (-2,0) {1};
\draw[->] (0,0) -- (1);
\node[draw,ellipse,save node] (c) at (current bounding box.center)

{};
\end{tikzpicture}
\end{document}

File secondpicture.tex:

\documentclass[tikz,border=10pt]{standalone}
\usetikzlibrary{tikzmark,shapes.geometric}
\begin{document}
\begin{tikzpicture}[save nodes to file]
\node[draw,rotate=-70,save node] (2) at (2,0) {2};
\draw[->] (0,0) -- (2);
\node[draw,ellipse,save node] (c) at (current bounding box.center)

{};
\end{tikzpicture}
\end{document}

Main file:

12

\documentclass{article}
\usepackage{tikz}
\usetikzlibrary{tikzmark}

\begin{document}
\begin{tikzpicture}

\node[draw,
rotate=30,
restore nodes from file={[transform saved nodes,name

prefix=pic-1-]{firstpicture}}
] (a-1) at (-2,-3) {\includegraphics{firstpicture.pdf}};

\node[draw,
rotate=70,
restore nodes from file={[transform saved nodes,name

prefix=pic-2-]{secondpicture}}
] (a-2) at (+2,+2) {\includegraphics{secondpicture.pdf}};

\draw[red] (pic-1-1.north west) -- (pic-1-1.north east) --
(pic-1-1.south east) -- (pic-1-1.south west) -- cycle;

\draw[red] (pic-2-2.north west) -- (pic-2-2.north east) --
(pic-2-2.south east) -- (pic-2-2.south west) -- cycle;

\node[red] at (pic-1-1) {1};
\node[red] at (pic-2-2) {2};

\draw (a-1) circle[radius=5pt];
\draw (a-2) circle[radius=5pt];

\draw (pic-1-1) -- (pic-2-2);
\end{tikzpicture}
\end{document}

This produces:

13

1

2

1

2

5.2 Code Listings
If the listings package has been loaded then issuing

\usetikzmarklibrary{listings}
will load in some code to add marks to lstlisting environments. This code
places a mark at three places on a line of code in a listings environment. The
marks are placed at the start of the line, the first non-whitespace character, and
the end of the line (if the line is blank the latter two are not placed). (This has not
been extensively tested, it works by adding code to various “hooks” that are made
available by the listings package; it is quite possible that the hooks chosen are
both wrong and insufficient to cover all desired cases.)

These are inspired by questions such as Marking lines in listings and Macros
for code annotations.

In more detail, the listings library places lots of marks around the code. The
marks are:

• line-<name>-<number>-start at the start of each line.

• line-<name>-<number>-end at the end of each line.

• line-<name>-<number>-first at the first non-space character of the line
(assuming it exists).

The line numbers should match up with the line numbers in the code in that
any initial offset is also applied.

14

http://tex.stackexchange.com/q/79762/86
http://tex.stackexchange.com/q/86309/86
http://tex.stackexchange.com/q/86309/86

Not every mark is available on every line. If a line is blank, in particular, it
will only have a start mark. The following example shows this, where the red
dots are the start, the blue are end, and the green are first.

\begin{tikzpicture}[remember picture]
\foreach \k in {0,...,7} {
\iftikzmark{line-code-\k-start}{\fill[red,overlay] (pic

cs:line-code-\k-start) circle[radius=4pt];}{\message{No start
for \k}}

\iftikzmark{line-code-\k-end}{\fill[blue,overlay] (pic
cs:line-code-\k-end) circle[radius=2pt];}{\message{No end for
\k}}

\iftikzmark{line-code-\k-first}{\fill[green,overlay] (pic
cs:line-code-\k-first) circle[radius=2pt];}{\message{No first
for \k}}

}
\draw[->,overlay] (0,0) -- (pic cs:line-code-5-first);
\draw[->,overlay] (0,0) -- (pic cs:line-code-5-start);
\draw[->,overlay] (0,0) -- (pic cs:line-code-5-end);
\node[above] at (0,0) {Line 5};
\end{tikzpicture}

\begin{lstlisting}[language=c,name=code,numbers=left]
#include <stdio.h>

int main(void)
{

printf("hello, world\n");
return 0;

}
\end{lstlisting}

Line 5

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("hello,␣world\n");
6 return 0;
7 }

This example puts a fancy node behind certain lines of the code, computing
the necessary extents.

15

\balloon{comment}{more code}{3}{3}
\balloon{comment}{more code}{7}{8}
\begin{lstlisting}[language=c,name=more

code,numbers=left,firstnumber=3]
#include <stdio.h>

int main(void)
{

printf("hello, world\n");
return 0;

}
\end{lstlisting}

3 #include <stdio.h>
4
5 int main(void)
6 {
7 printf("hello,␣world\n");
8 return 0;
9 }

6 Acknowledgements
The \tikzmark macro has been used and abused by many users of TeX-SX. Of
particular note (but in no particular order) are Peter Grill, Gonzalo Medina, Clau-
dio Fiandrino, percusse, and marmot. I would also like to mention David Carlisle
whose knowledge of TikZ continues to astound us all.

7 Implementation
7.1 Main Code
The save nodes code uses LATEX3.

1 \ProvidesFile{tikzlibrarytikzmark.code.tex}[%
2 2021/02/16
3 v1.10
4 TikZ library for marking positions in a document]
5 \RequirePackage{expl3, l3keys2e, xparse}

6 \tikzset{%
7 remember picture with id/.style={%
8 remember picture,
9 overlay,

10 save picture id=#1,
11 },

16

http://tex.stackexchange.com
https://tex.stackexchange.com/users/4301/peter-grill
https://tex.stackexchange.com/users/3954/gonzalo-medina
https://tex.stackexchange.com/users/13304/claudio-fiandrino
https://tex.stackexchange.com/users/13304/claudio-fiandrino
https://tex.stackexchange.com/users/3235/percusse
https://tex.stackexchange.com/users/121799/marmot
https://tex.stackexchange.com/users/1090/david-carlisle

Not totally happy with using every picture here as it’s too easily overwritten
by the user. Maybe it would be better to patch endtikzpicture directly.
12 every picture/.append style={%
13 execute at end picture={%
14 \ifpgfrememberpicturepositiononpage%
15 \edef\pgf@temp{%
16 \noexpand\write\noexpand\pgfutil@auxout{%
17 \string\savepicturepage%
18 {\pgfpictureid}{\noexpand\arabic{page}}%
19 }%
20 }%
21 \pgf@temp
22 \fi%
23 },
24 },

There are times when some code is executed and then discarded, such as in
\mathchoice. This can seriously mess with how TikZ pictures are remembered as
the last pgfpictureid to be processed is the one that is used, but it is the one that
is used that is recorded in the aux file. This isn’t particularly a tikzmark issue,
but does come up from time to time with tikzmark as it’s all about remembering
locations.

In actual fact, it only occurs with \tikzmarknode since the issue is about how
nodes are associated with pictures.

The solution is to check to see if the pgfpictureid has been recorded in the
aux file and if it hasn’t, quietly prefix the node names with a discard term. This
needs to be used after remember picture has been invoked. It probably messes
with some other stuff so should only be used under controlled conditions, such as
\tikzmarknode.
25 check picture id/.code={
26 \ifpgfrememberpicturepositiononpage
27 \@ifundefined{pgf@sys@pdf@mark@pos@\pgfpictureid}{%
28 \tikzset{%
29 name prefix/.get=\tzmk@name@prefix,
30 name prefix/.prefix=discard-,
31 execute at end picture={%
32 \tikzset{name prefix/.expand once=\tzmk@name@prefix}%
33 },
34 }%
35 }{}%
36 \fi
37 },

We also want a failsafe that quietly handles the case where the document hasn’t
been compiled enough times (once) to get the information into the aux file. There
will already be messages about needing reruns so we don’t need to add to that.
We simply ensure that the node exists.
38 maybe define node/.style={%
39 execute at end picture={%

17

40 \ifpgfrememberpicturepositiononpage
41 \@ifundefined{pgf@sh@pi@\tikz@pp@name{#1}}{%
42 \pgfnodealias{\tikz@pp@name{#1}}{discard-\tikz@pp@name{#1}}%
43 }{}%
44 \fi
45 }%
46 },

The positions are already recorded in the aux file, all we really need to do is
provide them with better names.
47 save picture id/.code={%
48 \protected@write\pgfutil@auxout{}{%
49 \string\savepointas%
50 {\tikzmark@pp@name{#1}}{\pgfpictureid}{0pt}{0pt}}%
51 },

Provides a way to test if a picture has already been saved (in particular, can avoid
errors on first runs)
52 if picture id/.code args={#1#2#3}{%
53 \@ifundefined{save@pt@\tikzmark@pp@name{#1}}{%
54 \pgfkeysalso{#3}%
55 }{
56 \pgfkeysalso{#2}%
57 }
58 },

Page handling
59 next page/.is choice,
60 next page vector/.initial={\pgfqpoint{0pt}{0pt}},
61 next page/below/.style={%
62 next page vector={\pgfqpoint{0pt}{-\the\paperheight}}%
63 },
64 next page/above/.style={%
65 next page vector={\pgfqpoint{0pt}{\the\paperheight}}%
66 },
67 next page/left/.style={%
68 next page vector={\pgfqpoint{-\the\paperwidth}{0pt}}%
69 },
70 next page/right/.style={%
71 next page vector={\pgfqpoint{\the\paperwidth}{0pt}}%
72 },
73 next page/ignore/.style={%
74 next page vector={\pgfqpoint{0pt}{0pt}}%
75 },
76 if tikzmark on current page/.code n args={3}{%
77 \@ifundefined{save@pt@\tikzmark@pp@name{#1}}{%
78 \pgfkeysalso{#3}%
79 }{%
80 \@ifundefined{%
81 save@pg@\csname save@pt@\tikzmark@pp@name{#1}\endcsname
82 }{%

18

83 \pgfkeysalso{#3}%
84 }{%
85 \ifnum\csname save@pg@%
86 \csname save@pt@\tikzmark@pp@name{#1}\endcsname%
87 \endcsname=\the\value{page}\relax%
88 \pgfkeysalso{#2}%
89 \else
90 \pgfkeysalso{#3}%
91 \fi
92 }%
93 }%
94 },
95 if tikzmark on page/.code n args={4}{%
96 \@ifundefined{save@pt@\tikzmark@pp@name{#1}}{%
97 \pgfkeysalso{#4}%
98 }{%
99 \@ifundefined{%

100 save@pg@\csname save@pt@\tikzmark@pp@name{#1}@label\endcsname%
101 }{%
102 \pgfkeysalso{#4}%
103 }{%
104 \ifnum\csname save@pg@%
105 \csname save@pt@\tikzmark@pp@name{#1}\endcsname%
106 \endcsname=#2\relax%
107 \pgfkeysalso{#3}%
108 \else
109 \pgfkeysalso{#4}%
110 \fi
111 }%
112 }%
113 },

Prefix and suffix for tikzmark names, shamelessly borrowed from the main tikz
code

114 tikzmark prefix/.initial=,%
115 tikzmark suffix/.initial=,%
116 }

\tikzmark@pp@name

117 \def\tikzmark@pp@name#1{%
118 \csname pgfk@/tikz/tikzmark prefix\endcsname%
119 #1%
120 \csname pgfk@/tikz/tikzmark suffix\endcsname%
121 }%

\savepointas This is what gets written to the aux file.
122 \def\savepointas#1#2#3#4{%
123 \expandafter\gdef\csname save@pt@#1\endcsname{#2}%
124 \expandafter\gdef\csname save@pt@#1@offset\endcsname%
125 {\pgfqpoint{#3}{#4}}%

19

126 }
127 \def\savepicturepage#1#2{%
128 \expandafter\gdef\csname save@pg@#1\endcsname{#2}%
129 }

\tikzmarkalias Alias a tikzmark to another name (used in tikzmarknode)
130 \def\tikzmarkalias#1#2{%
131 \pgf@node@gnamelet{save@pt@#1}{save@pt@#2}%
132 \pgf@node@gnamelet{save@pt@#1@offset}{save@pt@#2@offset}%
133 }

\tmk@labeldef Auxiliary command for the coordinate system.
134 \def\tmk@labeldef#1,#2\@nil{%
135 \edef\tmk@label{\tikzmark@pp@name{#1}}%
136 \def\tmk@def{#2}%
137 }

pic This defines the new coordinate system.
138 \tikzdeclarecoordinatesystem{pic}{%
139 \pgfutil@in@,{#1}%
140 \ifpgfutil@in@%
141 \tmk@labeldef#1\@nil
142 \else
143 \tmk@labeldef#1,(0pt,0pt)\@nil
144 \fi
145 \@ifundefined{save@pt@\tmk@label}{%
146 \tikz@scan@one@point\pgfutil@firstofone\tmk@def
147 }{%
148 \pgfsys@getposition{\csname save@pt@\tmk@label\endcsname}%
149 \save@orig@pic%
150 \pgfsys@getposition{\pgfpictureid}\save@this@pic%
151 \pgf@process{\pgfpointorigin\save@this@pic}%
152 \pgf@xa=\pgf@x
153 \pgf@ya=\pgf@y
154 \pgf@process{\pgfpointorigin\save@orig@pic}%
155 \advance\pgf@x by -\pgf@xa
156 \advance\pgf@y by -\pgf@ya
157 \pgf@xa=\pgf@x
158 \pgf@ya=\pgf@y
159 \pgf@process%
160 {\pgfpointorigin\csname save@pt@\tmk@label @offset\endcsname}%
161 \advance\pgf@xa by \pgf@x
162 \advance\pgf@ya by \pgf@y
163 \@ifundefined{save@pg@\csname save@pt@\tmk@label\endcsname}{}{%
164 \@ifundefined{save@pg@\pgfpictureid}{}{%
165 \pgfkeysvalueof{/tikz/next page vector}%
166 \edef\tmk@pg{%
167 \the\numexpr \csname save@pg@%
168 \csname save@pt@\tmk@label\endcsname\endcsname%

20

169 -
170 \csname save@pg@\pgfpictureid\endcsname\relax%
171 }%
172 \ifnum \tmk@pg > 0 \relax
173 \advance \pgf@xa by \pgf@x\relax
174 \advance \pgf@ya by \pgf@y\relax
175 \fi
176 \ifnum \tmk@pg < 0 \relax
177 \advance \pgf@xa by -\pgf@x\relax
178 \advance \pgf@ya by -\pgf@y\relax
179 \fi
180 }%
181 }%
182 \pgf@x=\pgf@xa
183 \pgf@y=\pgf@ya
184 \pgftransforminvert
185 \pgf@pos@transform{\pgf@x}{\pgf@y}%
186 }%
187 }

\tikzmark The active/non-active semi-colon is proving somewhat hazardous to \tikzmark
(see Tikzmark and french seem to conflict and Clash between tikzmark, babel
package (french) and babel tikzlibrary) so \tikzmark now uses the brace-delimited
version of the \tikz command.

This version is for when we’re outside a tikzpicture environment
188 \newcommand\tikzmark@outside[2][]{%
189 \tikzset{external/export next/.try=false}%
190 \tikz[remember picture with id=#2]{#1}%
191 }

This is for when we’re inside a tikzpicture environment
192 \def\tikzmark@inside#1#2{%
193 \tikzset{remember picture}%
194 \tikz@scan@one@point\pgfutil@firstofone#2\relax
195 \protected@write\pgfutil@auxout{}{%
196 \string\savepointas%
197 {\tikzmark@pp@name{#1}}{\pgfpictureid}{\the\pgf@x}{\the\pgf@y}}%
198 }

And finally, the ultimate invoker:
199 \def\tikzmark{%
200 \ifx\pgfpictureid\@undefined
201 \let\tikzmark@next=\tikzmark@outside
202 \else
203 \relax
204 \ifx\scope\tikz@origscope\relax
205 \let\tikzmark@next=\tikzmark@outside
206 \else
207 \let\tikzmark@next=\tikzmark@inside
208 \fi

21

http://tex.stackexchange.com/q/110014/86
http://tex.stackexchange.com/q/335485/86
http://tex.stackexchange.com/q/335485/86

209 \fi
210 \tikzmark@next%
211 }

\pgfmark

212 \newcommand\pgfmark[1]{%
213 \bgroup
214 \global\advance\pgf@picture@serial@count by1\relax%
215 \edef\pgfpictureid{pgfid\the\pgf@picture@serial@count}%
216 \pgfsys@markposition{\pgfpictureid}%
217 \edef\pgf@temp{%
218 \noexpand\write\noexpand\pgfutil@auxout{%
219 \string\savepicturepage{\pgfpictureid}{\noexpand\arabic{page}}}}%
220 \pgf@temp
221 \protected@write\pgfutil@auxout{}{%
222 \string\savepointas{\tikzmark@pp@name{#1}}{\pgfpictureid}{0pt}{0pt}}%
223 \egroup
224 }

If the beamer class is used, make the commands overlay aware.

\tikzmark<>

225 \@ifclassloaded{beamer}{
226 \renewcommand<>{\tikzmark@outside}[2][]{%
227 \only#3{\beameroriginal{\tikzmark@outside}[{#1}]{#2}}%
228 }
229 \renewcommand<>{\tikzmark@inside}[2]{%
230 \only#3{\beameroriginal{\tikzmark@inside}{#1}{#2}}%
231 }
232 }{}

\pgfmark<>

233 \@ifclassloaded{beamer}{
234 \renewcommand<>{\pgfmark}[1]{\only#2{\beameroriginal{\pgfmark}{#1}}}
235 }{}

If beamer is loaded, add a suffix based on the frame number
236 \@ifclassloaded{beamer}{
237 \tikzset{
238 tikzmark suffix=-\the\beamer@slideinframe
239 }
240 }{}

\iftikzmark

241 \newif\iftikzmark@
242 \newcommand\iftikzmark[3]{%
243 \@ifundefined{save@pt@\tikzmark@pp@name{#1}}{%
244 #3%
245 }{%

22

246 #2%
247 }%
248 }%

A version suitable for \if ... \else ... \fi.
249 \newcommand\iftikzmarkexists[1]{%
250 \@ifundefined{save@pt@\tikzmark@pp@name{#1}}{%
251 \tikzmark@false%
252 }{%
253 \tikzmark@true%
254 }%
255 \iftikzmark@
256 }%

\iftikzmarkonpage

257 \newcommand\iftikzmarkonpage[2]{%
258 \@ifundefined{save@pt@\tikzmark@pp@name{#1}}{%
259 \tikzmark@false
260 }{%
261 \@ifundefined{save@pg@\csname save@pt@\tikzmark@pp@name{#1}\endcsname}{%
262 \tikzmark@false
263 }{%
264 \ifnum\csname save@pg@%
265 \csname save@pt@\tikzmark@pp@name{#1}\endcsname%
266 \endcsname=#2\relax%
267 \tikzmark@true
268 \else
269 \tikzmark@false
270 \fi
271 }%
272 }%
273 \iftikzmark@
274 }

\iftikzmarkoncurrentpage

275 \newcommand\iftikzmarkoncurrentpage[1]{%
276 \@ifundefined{save@pt@\tikzmark@pp@name{#1}}{%
277 \tikzmark@false
278 }{%
279 \@ifundefined{save@pg@\csname save@pt@\tikzmark@pp@name{#1}\endcsname}{%
280 \tikzmark@false
281 }{%
282 \ifnum\csname save@pg@%
283 \csname save@pt@\tikzmark@pp@name{#1}\endcsname%
284 \endcsname=\the\value{page}\relax%
285 \tikzmark@true
286 \else
287 \tikzmark@false
288 \fi
289 }%

23

290 }%
291 \iftikzmark@
292 }

\subnode Note: much of this code was inevitably adapted from the node defining code in
the TikZ/PGF sources.

293 \def\subnode@#1#2#3{%
294 \begingroup
295 \pgfmark{#2}%
296 \setbox\pgfnodeparttextbox=\hbox\bgroup #3\egroup
297 \def\tikz@fig@name{#2}%
298 \tikzset{every subnode/.try,#1}%
299 \pgfpointorigin
300 \tikz@scan@one@point\pgfutil@firstofone(pic cs:#2)\relax
301 \advance\pgf@x by .5\wd\pgfnodeparttextbox
302 \advance\pgf@y by .5\ht\pgfnodeparttextbox
303 \advance\pgf@y by -.5\dp\pgfnodeparttextbox
304 \pgftransformshift{}%
305 \setbox\@tempboxa=\hbox\bgroup
306 {%
307 \let\pgf@sh@savedmacros=\pgfutil@empty% MW
308 \let\pgf@sh@savedpoints=\pgfutil@empty%
309 \def\pgf@sm@shape@name{rectangle}% CJ % TT added prefix!
310 \pgf@sh@s@rectangle%
311 \pgf@sh@savedpoints%
312 \pgf@sh@savedmacros% MW
313 \pgftransformshift{%
314 \pgf@sh@reanchor{rectangle}{center}%
315 \pgf@x=-\pgf@x%
316 \pgf@y=-\pgf@y%
317 }%
318 \expandafter\pgfsavepgf@process\csname pgf@sh@sa@\tikz@fig@name\endcsname{%
319 \pgf@sh@reanchor{rectangle}{center}% FIXME : this is double work!
320 }%
321 % Save the saved points and the transformation matrix
322 \edef\pgf@node@name{\tikz@fig@name}%
323 \ifx\pgf@node@name\pgfutil@empty%
324 \else%
325 \expandafter\xdef\csname pgf@sh@ns@\pgf@node@name\endcsname{rectangle}%
326 \edef\pgf@sh@@temp{%
327 \noexpand\gdef\expandafter\noexpand\csname pgf@sh@np@\pgf@node@name\endcsname}%
328 \expandafter\pgf@sh@@temp\expandafter{%
329 \pgf@sh@savedpoints}%
330 \edef\pgf@sh@@temp{%
331 \noexpand\gdef\expandafter\noexpand\csname pgf@sh@ma@\pgf@node@name\endcsname}% MW
332 \expandafter\pgf@sh@@temp\expandafter{\pgf@sh@savedmacros}% MW
333 \pgfgettransform\pgf@temp
334 \expandafter\xdef\csname pgf@sh@nt@\pgf@node@name\endcsname{\pgf@temp}%
335 \expandafter\xdef\csname pgf@sh@pi@\pgf@node@name\endcsname{\pgfpictureid}%
336 \fi%

24

337 }%
338 \egroup
339 \box\pgfnodeparttextbox
340 \endgroup
341 }
342
343 \newcommand\subnode[3][]{%
344 \ifmmode
345 \mathchoice{%
346 \subnode@{#1}{#2-d}{\(\displaystyle #3\)}%
347 }{%
348 \subnode@{#1}{#2-t}{\(\textstyle #3\)}%
349 }{%
350 \subnode@{#1}{#2-s}{\(\scriptstyle #3\)}%
351 }{%
352 \subnode@{#1}{#2-ss}{\(\scriptscriptstyle #3\)}%
353 }%
354 \let\pgf@nodecallback\pgfutil@gobble
355 \def\tzmk@prfx{pgf@sys@pdf@mark@pos@pgfid}%
356 \edef\tzmk@pic{\tzmk@prfx\the\pgf@picture@serial@count}
357 \expandafter\ifx\csname\tzmk@pic\endcsname\relax
358 \edef\tzmk@pic{\tzmk@prfx\the\numexpr\the\pgf@picture@serial@count-1\relax}%
359 \expandafter\ifx\csname\tzmk@pic\endcsname\relax
360 \edef\tzmk@pic{\tzmk@prfx\the\numexpr\the\pgf@picture@serial@count-2\relax}%
361 \expandafter\ifx\csname\tzmk@pic\endcsname\relax
362 \edef\tzmk@pic{\tzmk@prfx\the\numexpr\the\pgf@picture@serial@count-3\relax}%
363 \expandafter\ifx\csname\tzmk@pic\endcsname\relax
364 \pgfutil@ifundefined{pgf@sh@ns@#2}{%
365 \pgfnodealias{#2}{#2-t}%
366 \tikzmarkalias{#2}{#2-t}%
367 }{}%
368 \else
369 \pgfnodealias{#2}{#2-d}%
370 \tikzmarkalias{#2}{#2-d}%
371 \fi
372 \else
373 \pgfnodealias{#2}{#2-t}%
374 \tikzmarkalias{#2}{#2-t}%
375 \fi
376 \else
377 \pgfnodealias{#2}{#2-s}%
378 \tikzmarkalias{#2}{#2-s}%
379 \fi
380 \else
381 \pgfnodealias{#2}{#2-ss}%
382 \tikzmarkalias{#2}{#2-ss}%
383 \fi
384 \else
385 \subnode@{#1}{#2}{#3}%
386 \fi

25

387 }
388

\tikzmarknode The \tikzmark macro has changed considerably since its first inception, but there
does still seem to be a use for the original version which put stuff inside a node.
This command reintroduces that command.

It does its best to work inside a math environment by a sneaky trick involving
\mathchoice: the remember picture key means that only the picture id of the
typeset box is saved to the aux file. So comparing the possible picture ids of the
four options with the one read from the aux file, we can figure out which box was
actually used.

389 \def\tikzmarknode@#1#2#3{%
390 \tikzset{external/export next/.try=false}%
391 \tikz[%
392 remember picture,
393 save picture id={#2},
394 check picture id,
395 maybe define node={#2},
396 baseline=(#2.base),
397 every tikzmarknode picture/.try
398] {
399 \node[
400 anchor=base,
401 inner sep=0pt,
402 minimum width=0pt,
403 name={#2},
404 node contents={#3},
405 every tikzmarknode/.try,
406 #1
407]}%
408 }
409
410 \newcommand\tikzmarknode[3][]{%
411 \ifmmode
412 \mathchoice{%
413 \tikzmarknode@{#1}{#2-d}{\(\displaystyle #3\)}%
414 }{%
415 \tikzmarknode@{#1}{#2-t}{\(\textstyle #3\)}%
416 }{%
417 \tikzmarknode@{#1}{#2-s}{\(\scriptstyle #3\)}%
418 }{%
419 \tikzmarknode@{#1}{#2-ss}{\(\scriptscriptstyle #3\)}%
420 }%
421 \let\pgf@nodecallback\pgfutil@gobble
422 \def\tzmk@prfx{pgf@sys@pdf@mark@pos@pgfid}%
423 \edef\tzmk@pic{\tzmk@prfx\the\pgf@picture@serial@count}%
424 \expandafter\ifx\csname\tzmk@pic\endcsname\relax
425 \edef\tzmk@pic{\tzmk@prfx\the\numexpr\the\pgf@picture@serial@count-1\relax}%
426 \expandafter\ifx\csname\tzmk@pic\endcsname\relax

26

427 \edef\tzmk@pic{\tzmk@prfx\the\numexpr\the\pgf@picture@serial@count-2\relax}%
428 \expandafter\ifx\csname\tzmk@pic\endcsname\relax
429 \edef\tzmk@pic{\tzmk@prfx\the\numexpr\the\pgf@picture@serial@count-3\relax}%
430 \expandafter\ifx\csname\tzmk@pic\endcsname\relax
431 \pgfutil@ifundefined{pgf@sh@ns@\tikz@pp@name{#2}}{%
432 \pgfnodealias{\tikz@pp@name{#2}}{\tikz@pp@name{#2-t}}%
433 \tikzmarkalias{\tikzmark@pp@name{#2}}{\tikzmark@pp@name{#2-t}}%
434 }{}%
435 \else
436 \pgfnodealias{\tikz@pp@name{#2}}{\tikz@pp@name{#2-d}}%
437 \tikzmarkalias{\tikzmark@pp@name{#2}}{\tikzmark@pp@name{#2-d}}%
438 \fi
439 \else
440 \pgfnodealias{\tikz@pp@name{#2}}{\tikz@pp@name{#2-t}}%
441 \tikzmarkalias{\tikzmark@pp@name{#2}}{\tikzmark@pp@name{#2-t}}%
442 \fi
443 \else
444 \pgfnodealias{\tikz@pp@name{#2}}{\tikz@pp@name{#2-s}}%
445 \tikzmarkalias{\tikzmark@pp@name{#2}}{\tikzmark@pp@name{#2-s}}%
446 \fi
447 \else
448 \pgfnodealias{\tikz@pp@name{#2}}{\tikz@pp@name{#2-ss}}%
449 \tikzmarkalias{\tikzmark@pp@name{#2}}{\tikzmark@pp@name{#2-ss}}%
450 \fi
451 \else
452 \tikzmarknode@{#1}{#2}{#3}%
453 \fi
454 }

\usetikzmarklibrary

455 \def\usetikzmarklibrary{%
456 \pgfutil@ifnextchar[{\use@tikzmarklibrary}{\use@@tikzmarklibrary}%
457 }%}
458 \def\use@tikzmarklibrary[#1]{\use@@tikzmarklibrary{#1}}
459 \def\use@@tikzmarklibrary#1{%
460 \edef\pgf@list{#1}%
461 \pgfutil@for\pgf@temp:=\pgf@list\do{%
462 \expandafter\pgfkeys@spdef\expandafter\pgf@temp\expandafter{\pgf@temp}%
463 \ifx\pgf@temp\pgfutil@empty
464 \else
465 \expandafter\ifx\csname tikzmark@library@\pgf@temp @loaded\endcsname\relax%
466 \expandafter\global\expandafter\let%
467 \csname tikzmark@library@\pgf@temp @loaded\endcsname=\pgfutil@empty%
468 \expandafter\edef\csname tikzmark@library@#1@atcode\endcsname{\the\catcode‘\@}
469 \expandafter\edef\csname tikzmark@library@#1@barcode\endcsname{\the\catcode‘\|}
470 \catcode‘\@=11
471 \catcode‘\|=12
472 \pgfutil@InputIfFileExists{tikzmarklibrary\pgf@temp.code.tex}{}{
473 \PackageError{tikzmark}{I did not find the tikzmark extras library ’\pgf@temp’.}{}
474 }%

27

475 \catcode‘\@=\csname tikzmark@library@#1@atcode\endcsname
476 \catcode‘\|=\csname tikzmark@library@#1@barcode\endcsname
477 \fi%
478 \fi
479 }%
480 }
481

The save node code is written in LATEX3.
482 \ExplSyntaxOn

We save our information in a “property list”, which is L3’s version of an asso-
ciative array or dictionary. They keys will give the ability to store several groups
of nodes and restore them at will.

483 \prop_new:N \g__sn_prop

We’ll need a couple of spare token lists
484 \tl_new:N \l__sn_tmpa_tl
485 \tl_new:N \l__sn_tmpb_tl

Another useful token list
486 \tl_new:N \l__open_bracket_tl
487 \tl_set:Nn \l__open_bracket_tl {[} %]

This token list is used for our current node group name
488 \tl_new:N \l__sn_group_tl

We store up the nodes in a list and save them at the end of a given tikzpicture.
489 \clist_new:N \l__sn_nodes_clist

This boolean is for whether we save to a file or not.
490 \bool_new:N \l__sn_file_bool

This boolean is for whether we are in the preamble or not.
491 \bool_new:N \g__sn_preamble_bool
492 \bool_set_true:N \g__sn_preamble_bool

493 \msg_new:nnn {tikzmark} {no file} {File~ "#1"~ doesn’t~ exist.}
494 \msg_new:nnn {tikzmark} {loading nodes} {Loading~ nodes~ from~ "#1".}

Dimensions and token lists for shifting
495 \dim_new:N \l__sn_x_dim
496 \dim_new:N \l__sn_y_dim
497 \dim_new:N \l__sn_xa_dim
498 \dim_new:N \l__sn_ya_dim
499 \tl_new:N \l__sn_centre_tl
500
501 \tl_new:N \l__sn_transformation_tl
502 \tl_set:Nn \l__sn_transformation_tl {{1}{0}{0}{1}{0pt}{0pt}}

Set up a stream for saving the nodes data to a file
503 \iow_new:N \g__sn_stream
504 \bool_new:N \g__sn_stream_bool

28

505 \tl_new:N \g__sn_filename_tl
506 \tl_gset:Nx \g__sn_filename_tl {\c_sys_jobname_str}
507
508 \cs_new_nopar:Npn \sn_open_stream:
509 {
510 \bool_if:NF \g__sn_stream_bool
511 {
512 \iow_open:Nn \g__sn_stream {\tl_use:N \g__sn_filename_tl .nodes}
513 \bool_gset_true:N \g__sn_stream_bool
514 }
515 }
516
517 \AtEndDocument
518 {
519 \ExplSyntaxOn
520 \bool_if:NT \g__sn_stream_bool
521 {
522 \iow_close:N \g__sn_stream
523 }
524 \ExplSyntaxOff
525 }

LaTeX3 wrappers around some PGF functions (to avoid @-catcode issues)
526 \makeatletter
527 \cs_set_eq:NN \tikz_set_node_name:n \tikz@pp@name
528 \cs_set_eq:NN \tikz_fig_must_be_named: \tikz@fig@mustbenamed
529
530 \cs_new_nopar:Npn \tikz_scan_point:n #1
531 {
532 \tikz@scan@one@point\pgfutil@firstofone#1\relax
533 }
534
535 \cs_new_nopar:Npn \tikz_scan_point:NNn #1#2#3
536 {
537 \tikz@scan@one@point\pgfutil@firstofone#3\relax
538 \dim_set_eq:NN #1 \pgf@x
539 \dim_set_eq:NN #2 \pgf@y
540 }
541
542 \makeatother
543 \cs_generate_variant:Nn \tikz_scan_point:n {V}
544 \cs_generate_variant:Nn \tikz_scan_point:NNn {NNV}

\save_nodes:Nn This is the command that actually does the work. It constructs a token list
which contains the code that will restore the node data when invoked. The two
arguments are the token list to store this in and a comma separated list of the
node names to be saved.

545 \cs_new_nopar:Npn \save_nodes:Nn #1#2
546 {

29

Clear our token lists
547 \tl_clear:N \l__sn_tmpa_tl

Set the centre of the picture
548 \tikz_scan_point:NNn \l__sn_x_dim \l__sn_y_dim {(current~ bounding~ box.center)}
549 \dim_set:Nn \l__sn_x_dim {-\l__sn_x_dim}
550 \dim_set:Nn \l__sn_y_dim {-\l__sn_y_dim}
551 \tl_set:Nx \l__sn_centre_tl {
552 {1}{0}{0}{1}{\dim_use:N \l__sn_x_dim}{\dim_use:N \l__sn_y_dim}
553 }

Iterate over the list of node names
554 \clist_map_inline:nn {#2}
555 {

Test to see if the node has been defined
556 \tl_if_exist:cT {pgf@sh@ns@##1}
557 {

The node information is stored in a series of macros of the form \pgf@sh@XX@nodename
where XX is one of the following.

558 \clist_map_inline:nn {ns,np,ma,pi}
559 {

Our token list will look like:
\tl_set:cn {pgf@sh@XX@nodename} <current contents of that macro>
This will restore \pgf@sh@XX@nodename to its current value when this list is

invoked.
This part puts the \tl_set:cn {pgf@sh@XX@nodename} in place

560 \tl_put_right:Nn \l__sn_tmpa_tl
561 {
562 \tl_gset:cn {pgf@sh@####1@ \tikz_set_node_name:n{##1} }
563 }

Now we put the current contents in place. We’re doing this in an expansive
context to get at the contents. The \exp_not:v part takes the current value of
\pgf@sh@XX@nodename and puts it in place, preventing further expansion.

564 \tl_if_exist:cTF {pgf@sh@####1@##1}
565 {
566 \tl_put_right:Nx \l__sn_tmpa_tl {
567 {\exp_not:v {pgf@sh@####1@ \tikz_set_node_name:n {##1}}}
568 }
569 }
570 {
571 \tl_put_right:Nx \l__sn_tmpa_tl {{}}
572 }
573 }
574 \tl_put_right:Nn \l__sn_tmpa_tl
575 {
576 \tl_gset:cn {pgf@sh@nt@ \tikz_set_node_name:n{##1} }
577 }

30

578 \compose_transformations:NVv \l__sn_tmpb_tl \l__sn_centre_tl {pgf@sh@nt@##1}
579 \tl_put_right:Nx \l__sn_tmpa_tl {{\exp_not:V \l__sn_tmpb_tl}}
580 \tl_put_right:Nn \l__sn_tmpa_tl {
581 \transform_node:Nn \l__sn_transformation_tl {
582 \tikz_set_node_name:n{##1}
583 }
584 }
585 }
586 }

Once we’ve assembled our token list, we store it in the given token list
587 \tl_set_eq:NN #1 \l__sn_tmpa_tl
588 }

\save_nodes_to_list:nn Save the nodes to a list, given a key
589 \cs_new_nopar:Npn \save_nodes_to_list:nn #1#2
590 {
591 \save_nodes:Nn \l__sn_tmpa_tl {#2}
592 \prop_gput:NnV \g__sn_prop {#1} \l__sn_tmpa_tl
593 }

\save_nodes_to_file:n Save the nodes to a file
594 \cs_new_nopar:Npn \save_nodes_to_file:n #1
595 {
596 \save_nodes:Nn \l__sn_tmpa_tl {#1}

Save the token list to the nodes file so that on reading it back in, we restore the
node definitions

597 \sn_open_stream:
598 \iow_now:Nx \g__sn_stream
599 {
600 \iow_newline:
601 \exp_not:V \l__sn_tmpa_tl
602 \iow_newline:
603 }
604 }

605 \cs_generate_variant:Nn \save_nodes_to_list:nn {VV}
606 \cs_generate_variant:Nn \save_nodes_to_file:n {V}

\restore_nodes_from_list:n

607 \cs_new_nopar:Npn \restore_nodes_from_list:n #1
608 {

Restoring nodes is simple: look in the property list for the key and if it exists,
invoke the macro stored there.

609 \prop_get:NnNT \g__sn_prop {#1} \l__sn_tmpa_tl
610 {
611 \tl_use:N \l__sn_tmpa_tl
612 }
613 }

31

\restore_nodes_from_file:n

614 \cs_new_nopar:Npn \restore_nodes_from_file:n #1
615 {
616 \file_if_exist:nTF {#1.nodes}
617 {
618 \msg_log:nnn {tikzmark} {loading nodes} {#1}
619 \ExplSyntaxOn
620 \file_input:n {#1.nodes}
621 \ExplSyntaxOff
622 }
623 {
624 \msg_warning:nnn {tikzmark} {no file} {#1}
625 }
626 }
627 \AtBeginDocument{\bool_gset_false:N \g__sn_preamble_bool}

\compose_transformations:Nnn Compose PGF transformations #2 * #3, storing the result in #1
I think the PGF Manual might be incorrect. It implies that the matrix is

stored row-major, but experimentation implies column-major.
That is, {a}{b}{c}{d}{s}{t} is: [

a c
b d

]
628 \cs_new_nopar:Npn \compose_transformations:Nnn #1#2#3
629 {
630 \tl_gset:Nx #1
631 {
632 {\fp_eval:n {
633 \tl_item:nn {#2} {1}
634 * \tl_item:nn {#3} {1}
635 +
636 \tl_item:nn {#2} {3}
637 * \tl_item:nn {#3} {2}
638 }
639 }
640 {\fp_eval:n {
641 \tl_item:nn {#2} {2}
642 * \tl_item:nn {#3} {1}
643 +
644 \tl_item:nn {#2} {4}
645 * \tl_item:nn {#3} {2}
646 }
647 }
648 {\fp_eval:n {
649 \tl_item:nn {#2} {1}
650 * \tl_item:nn {#3} {3}
651 +
652 \tl_item:nn {#2} {3}
653 * \tl_item:nn {#3} {4}

32

654 }
655 }
656 {\fp_eval:n {
657 \tl_item:nn {#2} {2}
658 * \tl_item:nn {#3} {3}
659 +
660 \tl_item:nn {#2} {4}
661 * \tl_item:nn {#3} {4}
662 }
663 }
664 {\fp_to_dim:n {
665 \tl_item:nn {#2} {1}
666 * \tl_item:nn {#3} {5}
667 +
668 \tl_item:nn {#2} {3}
669 * \tl_item:nn {#3} {6}
670 +
671 \tl_item:nn {#2} {5}
672 }
673 }
674 {\fp_to_dim:n {
675 \tl_item:nn {#2} {2}
676 * \tl_item:nn {#3} {5}
677 +
678 \tl_item:nn {#2} {4}
679 * \tl_item:nn {#3} {6}
680 +
681 \tl_item:nn {#2} {6}
682 }
683 }
684 }
685 }

686 \cs_generate_variant:Nn \compose_transformations:Nnn {cVv,NVv,NVn,NvV,NnV}

\transform_node:Nn

687 \cs_new_nopar:Npn \transform_node:Nn #1#2
688 {
689 \compose_transformations:cVv {pgf@sh@nt@#2} #1 {pgf@sh@nt@#2}
690 }

\set_transform_from_node:n

691 \cs_new_nopar:Npn \set_transform_from_node:n #1
692 {
693 \tl_set_eq:Nc \l__sn_transformation_tl {pgf@sh@nt@#1}
694 \tikz_scan_point:NNn \l__sn_x_dim \l__sn_y_dim {(#1.center)}
695
696 \dim_set:Nn \l__sn_x_dim {\l__sn_x_dim - \tl_item:cn {pgf@sh@nt@#1}{5}}
697 \dim_set:Nn \l__sn_y_dim {\l__sn_y_dim - \tl_item:cn {pgf@sh@nt@#1}{6}}
698

33

699 \compose_transformations:NnV \l__sn_transformation_tl {
700 {1}{0}{0}{1}{\dim_use:N \l__sn_x_dim}{\dim_use:N \l__sn_y_dim}
701 } \l__sn_transformation_tl
702 }

703 \cs_generate_variant:Nn \set_transform_from_node:n {v}

Set the TikZ keys for access to the above commands.
704 \tikzset{
705 set~ saved~ nodes~ file~ name/.code={
706 \tl_gset:Nx \g__sn_filename_tl {#1}
707 },
708 transform~ saved~ nodes/.code={
709 \set_transform_from_node:v {tikz@last@fig@name}
710 },
711 set~ node~ group/.code={
712 \tl_set:Nn \l__sn_group_tl {#1}
713 \pgfkeysalso{
714 execute~ at~ end~ scope={
715 \maybe_save_nodes:
716 }
717 }
718 },

Are we saving to a file?
719 save~ nodes~ to~ file/.code={
720 \tl_if_eq:nnTF {#1}{false}
721 {
722 \bool_set_false:N \l__sn_file_bool
723 }
724 {
725 \bool_set_true:N \l__sn_file_bool
726 }
727 \pgfkeysalso{
728 execute~ at~ end~ scope={
729 \maybe_save_nodes:
730 }
731 }
732 },

Append current node to the list of nodes to be saved
733 save~ node/.code={
734 \tikz_fig_must_be_named:
735 \pgfkeysalso{append~ after~ command={
736 \pgfextra{
737 \clist_gput_right:Nv \l__sn_nodes_clist {tikz@last@fig@name}
738 }
739 }
740 }
741 },

34

Restore nodes from file
742 restore~ nodes~ from~ file/.code={
743 \bool_if:NTF \g__sn_preamble_bool
744 {
745 \restore_nodes_from_file:n {#1}
746 }
747 {
748 \tikz_fig_must_be_named:
749 \pgfkeysalso{append~ after~ command={
750 \pgfextra{
751 \scope
752 \split_argument:NNn \tikzset \restore_nodes_from_file:n {#1}
753 \endscope
754 }
755 }
756 }
757 }
758 },
759 restore~ nodes~ from~ file/.default = \g__sn_filename_tl,

Restore nodes from list
760 restore~ nodes~ from~ list/.code={
761 \tikz_fig_must_be_named:
762 \pgfkeysalso{append~ after~ command={
763 \pgfextra{
764 \scope
765 \split_argument:NNn \tikzset \restore_nodes_from_list:n {#1}
766 \endscope
767 }
768 }
769 }
770 }
771 }
772 \cs_generate_variant:Nn \clist_gput_right:Nn {Nv}

\split_argument:NNn

773 \cs_new_nopar:Npn \split_argument:NNn #1#2#3
774 {
775 \tl_set:Nx \l__sn_tmpa_tl {\tl_head:n {#3}}
776 \tl_if_eq:NNTF \l__sn_tmpa_tl \l__open_bracket_tl
777 {
778 \split_argument_aux:NNp #1#2#3
779 }
780 {
781 #2 {#3}
782 }
783 }

\split_argument_aux:NNp

784 \cs_new_nopar:Npn \split_argument_aux:NNp #1#2[#3]#4

35

785 {
786 #1 {#3}
787 #2 {#4}
788 }

\maybe_save_nodes:

789 \cs_new_nopar:Npn \maybe_save_nodes:
790 {
791 \clist_if_empty:NF \l__sn_nodes_clist
792 {
793 \bool_if:NTF \l__sn_file_bool
794 {
795 \save_nodes_to_file:V \l__sn_nodes_clist
796 }
797 {
798 \tl_if_empty:NF \l__sn_group_tl
799 {
800 \save_nodes_to_list:VV \l__sn_group_tl \l__sn_nodes_clist
801 }
802 }
803 \clist_gclear:N \l__sn_nodes_clist
804 }
805 }

806 \ExplSyntaxOff

7.2 Listings
From http://tex.stackexchange.com/q/79762/86

807 \@ifpackageloaded{listings}{%

\iflst@linemark A conditional to help with placing the mark at the first non-whitespace character.
Should be set to true so that we notice the first line of the code.

808 \newif\iflst@linemark
809 \lst@linemarktrue

EveryLine This hook places the mark at the start of the line.
810 \lst@AddToHook{EveryLine}{%
811 \begingroup
812 \advance\c@lstnumber by 1\relax
813 \pgfmark{line-\lst@name-\the\c@lstnumber-start}%
814 \endgroup
815 }

EOL This hook places the mark at the end of the line and resets the conditional for
placing the first mark.

816 \lst@AddToHook{EOL}{\pgfmark{line-\lst@name-\the\c@lstnumber-end}%
817 \global\lst@linemarktrue
818 }

36

http://tex.stackexchange.com/q/79762/86

OutputBox Experimenting shows that this is the right place to set the mark at the first non-
whitespace character. But we only want to do this once per line.

819 \lst@AddToHook{OutputBox}{%
820 \iflst@linemark
821 \pgfmark{line-\lst@name-\the\c@lstnumber-first}%
822 \global\lst@linemarkfalse
823 \fi
824 }

\tikzmk@lst@fnum An auxiliary macro to figure out if the firstnumber key was set. If so, it has the
form <number>\relax. If not, it expands to a single token.

825 \def\tkzmk@lst@fnum#1\relax#2\@STOP{%
826 \def\@test{#2}%
827 \ifx\@test\@empty
828 \def\tkzmk@lst@start{0}%
829 \else
830 \@tempcnta=#1\relax
831 \advance\@tempcnta by -1\relax
832 \def\tkzmk@lst@start{\the\@tempcnta}%
833 \fi
834 }

Init Adds a mark at the start of the listings environment.
835 \lst@AddToHook{Init}{%
836 \expandafter\tkzmk@lst@fnum\lst@firstnumber\relax\@STOP
837 \pgfmark{line-\lst@name-\tkzmk@lst@start-start}%
838 }

839 }{%
840 \PackageError{tikzmark listings}{The listings package has not been loaded.}{}
841 }

37

	Introduction
	Use
	History
	Usage
	Examples and Extras
	Basic Examples
	Code Listings

	Acknowledgements
	Implementation
	Main Code
	Listings

