
Typesetting Karnaugh Maps with LATEX and
TikZ

Luis Paulo Laus
e-mail: laus@utfpr.edu.br

Version 1.1 of 10 January 2018

1 Abstract
Karnaugh maps are used to simplify logic equations leading to the most compact
expression of two levels for a given truth table. The drawing of them used to be
a boring, annoying and error-prone task. This set of macros intend to simplify
the task. They can typeset Karnaugh maps with up to twelve variables1, which
is more than you might likely need. You only have to provide a list of variable
identifiers plus the truth table of your logic function. The macros also allow to
highlight the simplifications of your logic function directly within a Karnaugh
map. This package is based on kvmacros.tex from karnaugh package referred
herein as “the original one”. The modifications carried out intended to use
TikZ instead of native LATEX commands allowing easier customisation, easier
extension when you need to draw other elements along with the map and leading
to higher graph quality.

2 Introduction
Karnaugh maps and Veitch charts are used to simplify logic equations. They are
map representations of logic functions, and in that they are equivalent. Veitch
charts are not supported by this package, but it should not be a big problem
to port Andreas W. Wieland’s veitch macro, available in karnaugh package,
if you need it. Please note that this package, including its documentation, is
based on Andreas W. Wieland’s previous work and the author wishes to register
his acknowledgment.

2.1 Comparison with Other Packages
If you ask yourself “why another Karnaugh map typesetting package?” the
answer is easy: because I was not completely happy with the packages available
I know and those are:

1The actual limit may be different for you.

1

1. karnaugh: it is a great package that uses native LATEX commands to draw
the map. It supports Karnaugh maps and Veitch charts. It employs a
recursive algorithm with no size limit2 which leads to an interesting kind
of symmetry. Remember, Karnaugh maps are all about symmetry. It is
not customisable, for instance, one cannot change the distance between
bars3 (the marks showing around the map with variable identifiers on
them) and if the variable identifier is long it will overlap another bar.
Also, I want to use TikZ to draw colourful semi-transparent figures on to
top of the map to highlight groups (prime implicants) and, although it
is possible, it is rather difficult and the result is not very good because
they always look a bit off. I have a long-time experience with this package
and I have also written a java program to draw the maps because, though
typesetting simple maps is easy, highlighting the prime implicants is not.

2. karnaughmap: it uses TikZ so you got a lot of options for customisation.
It is limited to eight variable which, to be honest, should be enough for
anyone. The problem is that it only draws bars (those marking mentioned
above) up to four variables. Also, the order in which the variable list is
inputted is different from the order employed by karnaugh.

3. askmaps: this package generates configurable American style Karnaugh
maps for 2, 3, 4 and 5 variables. In America, instead of bars denoting
the one value of variables, they use Gray coded binaries on the top and
left side of the map. This behaviour can be mimic with tikz-karnaugh
(see Section 7), though, in my twenty years of experience teaching the
subject, I have found out that bars are much more intuitive. The askmaps
contains four macros, one for each number of variables, and it can be used
to highlight the prime implicants in the very same way that karnaugh
does.

4. karnaugh-map: uses TikZ to draw up to four maps of four variables leading
to a 3D six variables map. It contains commands for drawing implicants
on top of the map. Like askmaps, this package uses Gray code instead of
bars.

With tikz-karnaugh you can typeset big (up to twelve variables or 4096
cells) good looking maps. Using a java software, you can do it automatically,
including highlighting the solution.

2.2 Introductory example
Let us start with an introduction on how to use these macros. The first thing you
have to do is to load TikZ. For this type \usepackage{tikz} in the preamble

2It works until you blow the memory out which will happen about ten to twelve variables.
3Those bars have been underappreciated along the history. Karnaugh (1953) himself called

them “simplified labels” and used them only to replace the Gray coded numbers showing
around the map. Their true strength is the ease way they point out which variable belong to
a prime implicant and which does not. An approach much easier than interpreting the Gray
coded numbers.

2

of you document. Then, if the package is somewhere TEX can find it, load
the library with the command \usetikzlibrary{karnaugh}. If it is not, you
can use something like \input tikzlibrarykarnaugh.code. You may need to
provide the full or relative path to file tikzlibrarykarnaugh.code.tex.

Suppose now you have a logic function f with the following truth table:

Index a b c d f
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 0

Index a b c d f
8 1 0 0 0 0
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 0
12 1 1 0 0 0
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 0

This logic function can easily be put into a Karnaugh map by using the
\karnaughmap macro in a TikZ environment (\begin{tikzpicture}) or inline
command (\tikz). The \karnaughmap macro has five mandatory parameters:

1. the number of variables in the map;

2. an identifier for the function;

3. a list of variable identifiers for the variables;

4. the list of values of f for each line in the truth table; and

5. a possibly empty set of TikZ commands that will be drown before the
function values so the values will appear on top of them.

The variable identifiers in the third parameter are ordered from highest
to lowest significance (the same way as in the truth table, with a having a
significance of 23 = 8 and d having a significance of 20 = 1). The list of values
of f was read from lowest to highest index. The fifth parameter remains empty
in this example, it will be discussed further on:

\tikz[karnaugh,enable indices]%
\karnaughmap{4}{f(a,b,c,d)}{abcd}{1110 0110 0110 0110}{};

This produces the following Karnaugh map, where the indices in the upper
left corner of each cell correspond to the indices in the truth table:4

4The indices can easily be calculated from the variable value in the truth table, e.g., row 11:
the index equals 23 a + 22 b + 21 c + 20 d = 8 a + 4 b + 2 c + 1 d = 8 + 2 + 1 = 11.

3

f(a,b,c,d)

a

b

c

d
0
1

1
1

2
1

3
0

4
0

5
1

6
1

7
0

8
0

9
1

10
1

11
0

12
0

13
1

14
1

15
0

The macros that read the variable list and the list of logic values (i.e., pa-
rameters #3 and #4) work recursively.

Each entry has to be one character long and spaces are allowed5, otherwise
– like a variable identifier enclosed in $s – you have to put it into curly brackets:

\begin{tikzpicture}[karnaugh]
\karnaughmap{4}{$f(a,b,c,d)$}{{a}{b}{c}{d}}%

{0110 0110 0110 0110}{}
\end{tikzpicture}

Here, a TikZ environment was used so there is no semicolon (;) in the
end of \karnaughmap macro. Also, the indices were omitted by removing
,enable indices from the options list. This produces the following Karnaugh
map (observe that the labels are all in math mode):

f(a, b, c, d)

a

b

c

d

0 1

1 0

01

10

0 1

1 0

01

10

3 Marking simplifications
The already mentioned fifth parameter can be used if you want to draw some-
thing inside the Karnaugh map. For example, this is useful if you want to show
how you simplified a logic function highlighting the prime implicants:

5White spaces are really usable to make the string more readable leading to fast verification.

4

\kmunitlength=2em
\begin{tikzpicture}[karnaugh,x=1\kmunitlength,y=1\kmunitlength,

thick,
grp/.style n args={3}{#1,fill=#1!30,

minimum width=#2\kmunitlength,
minimum height=#3\kmunitlength,
rounded corners=0.2\kmunitlength,
fill opacity=0.6,
rectangle,draw}]

\karnaughmap{4}{$f(a,b,c,d)$}{{a}{b}{c}{d}}%
{0110 0110 0110 0110}%
{

\node[grp={blue}{0.9}{1.9}](n000) at (0.5,2.0) {};
\node[grp={blue}{0.9}{1.9}](n001) at (3.5,2.0) {};
\draw[blue] (n000.north) to [bend left=25] (n001.north)

(n000.south) to [bend right=25] (n001.south);
\node[grp={red}{1.9}{0.9}](n100) at (2.0,3.5) {};
\node[grp={red}{1.9}{0.9}](n110) at (2.0,0.5) {};
\draw[red] (n100.west) to [bend right=25] (n110.west)

(n100.east) to [bend left=25] (n110.east);
}

\end{tikzpicture}

The corresponding Karnaugh map looks like this:

f(a, b, c, d)

a

b

c

d

0 1

1 0

01

10

0 1

1 0

01

10

and the corresponding expression is:

f(a, b, c, d) = c d̄ + c̄ d

where colours were used to relate the subexpression with the prime implicant
highlighted on the map.

Instead of LATEX’s graphics macros6 you can use TikZ for this purpose. In
this example, a new style grp was defined in order to draw semi-transparent rect-
angles with a specified colour, width and height (both given in \kmunitlength).

6As in the original package.

5

The Karnaugh map has its datum at the lower left point exactly. The centre
point coordinates of those rectangles are specified using the at command. The
length of a single cell within the Karnaugh map is equal to \kmunitlength.
Thus, the x and y units are set to 1\kmunitlength so the coordinates can be
written without the unit and the rectangles will fall in the precise position even
if one changes the map size by changing the \kmunitlength.

4 Adjusting the map size
Possibly the most important feature that you can change is the size of the
diagrams and it is done by changing the size of the cells within the map, simply
by typing:

\kmunitlength=15mm
\begin{tikzpicture}[karnaugh]

\karnaughmap{4}{f}{abcd}{0110 0110 0110 0110}{}
\end{tikzpicture}

This results in the following Karnaugh map. The setting of the
\kmunitlength remains active until you change it again;7 the default
\kmunitlength is 8mm:

f

a

b

c

d

0 1

1 0

01

10

0 1

1 0

01

10

7Or, of course, until you leave the group in which you redefined the value.

6

5 If you use the original version of the
macros. . .

. . . you certainly have noticed a number of changes. The most important one
is that now you control the appearance of cell, index, etc. by changing the style
and not through macros. Also, you need a TikZ picture environment or inline
command.

6 Dimensions, styles and switches
The appearance of the Karnaugh map is controlled by some styles, dimensions
and switches as follows:

kmbar/.style style used for the top and side bars related to the variables and
denoting the rows and columns for which the respective variable is 1. The
default value is black,|-|,thin meaning they all will be represented as
a black thin line with T chapped tips.

kmbar label/.style style used for the variable identifiers on the bars. The
default value is black.

kmvar/.style style used for the variable name (function) of the map. The
default value is black.

kmindex/.style style used for cell index. The default value is red,font=\tiny
meaning they all will typeset in red tiny font if enable (see
enable indices).

kmcell/.style style used for cell contents. The default value is black.

kmbox/.style style used for the box surrounding the map. The default value
is thin.

kmlines/.style style used for the lines separating adjacent rows and columns.
The default value is thin.

bar sep distance between the bar closer to the map and the map itself. It
depends mainly on the line tip used in kmlines/.style. The default
value is 0.2\kmunitlength.

kmbar top sep distance between two bars on top of map. It depends mainly
on the font height used in kmbar label/.style. The default value is
1\kmunitlength.

kmbar left sep distance between two bars at the left side of map. It de-
pends mainly on the variable identifier width and the font size used in
kmbar label/.style. The default value is 1\kmunitlength.

7

enable indices boolean switch that enables the typesetting of all indices. The
default is false meaning that the indices will not be typeset unless they
are enabled.

disable bars boolean switch that disables the typesetting of all bars and the
function identifier. Usable when you want an American style map. The
default is false meaning that the bars will be typeset unless they are
disabled.

For more on styles, have a look in the TikZ documentation.
One feature that you can switch on is the indices inside the map (like in the

first example) by typing:

\begin{tikzpicture}[karnaugh,enable indices]
\karnaughmap{3}{$f(a,b,c)$}{{a}{b}{c}}{0110 0110}{}

\end{tikzpicture}

f(a, b, c)

a

b

c

0
0

1
1

2
1

3
0

4
0

5
1

6
1

7
0

The font size of the map’s contents and indices should be set to suitable val-
ues (usually \tiny for kmindex/.style and \normalsize for kmcell/.style).
Those sizes, of course, can be adjusted as needed in agreement with the cell size
controlled by \kmunitlength.

Let us see a more interesting and colourful example:

\kmunitlength=2.5em
\begin{tikzpicture}[karnaugh,x=1\kmunitlength,y=1\kmunitlength,

thick,
grp/.style n args={3}{#1,fill=#1!30,

minimum width=#2\kmunitlength,
minimum height=#3\kmunitlength,
rounded corners=0.2\kmunitlength,
fill opacity=0.6,
rectangle,draw},

kmbar/.style={blue,<->,double=white,semithick},
bar left sep=1.2\kmunitlength,
bar sep=0.4\kmunitlength,
kmbar label/.style={red!70!black,font=\large},
kmindex/.style={orange,font=\tiny},
enable indices,
kmcell/.style={cyan!80!black},

8

kmbox/.style={brown,thick},
kmlines/.style={brown,thin},
kmvar/.style={green!70!black,font=\huge},
lbl/.style={left,align=right,text width=1.5\kmunitlength}]

\karnaughmap{6}{z_{0}}{%
{x_{5}}{x_{2}}{x_{4}}{x_{1}}%

{[yellow!70!black,name=Nv,|-|,double=red,very thick,
label={[font=\tiny,green!50!black]above:var.},
text=blue!60!red]x_{3}}%

{x_{0}}}%
{--1{}1{}1{}-11-1{}1{}1-{}1{}{}1-1-{}1-{}-1-1%
{[red,name=Nc,label={[name=Nl,orange!90!black,

label distance=1\kmunitlength]left:Special},
circle,inner sep=2pt,draw=green!70!blue]1}%

--{}1{}-11{}-{}1--1{}1{}{}111-{}1{}--1}%
{

\node[grp={blue}{1.9}{0.9}](n000) at (1.0,7.5) {};
\node[grp={blue}{1.9}{0.9}](n002) at (7.0,7.5) {};
\node[grp={blue}{1.9}{1.9}](n010) at (1.0,4.0) {};
\node[grp={blue}{1.9}{1.9}](n012) at (7.0,4.0) {};
\node[grp={blue}{1.9}{0.9}](n030) at (1.0,0.5) {};
\node[grp={blue}{1.9}{0.9}](n032) at (7.0,0.5) {};
\draw[blue] (n000.east) to [bend left=25] (n002.west)

(n010.east) to [bend left=25] (n012.west)
(n030.east) to [bend right=25] (n032.west)
(n000.south) to [bend right=25] (n010.north)
(n002.south) to [bend left=25] (n012.north)
(n010.south) to [bend right=25] (n030.north)
(n012.south) to [bend left=25] (n032.north);

\node[grp={red}{0.8}{7.8}](n100) at (0.5,4.0) {};
\node[grp={red}{0.8}{7.8}](n101) at (3.5,4.0) {};
\draw[red] (n100.north) to [bend left=25] (n101.north)

(n100.south) to [bend right=25] (n101.south);
\node[grp={orange}{1.9}{1.9}](n200) at (5.0,6.0) {};
\node[grp={orange}{1.9}{1.9}](n220) at (5.0,2.0) {};
\draw[orange] (n200.west) to [bend right=25] (n220.west)

(n200.east) to [bend left=25] (n220.east);
\node[grp={teal}{1.8}{1.8}](n300) at (6.0,6.0) {};
\node[grp={teal}{1.8}{1.8}](n320) at (6.0,2.0) {};
\draw[teal] (n300.west) to [bend right=25] (n320.west)

(n300.east) to [bend left=25] (n320.east);
}
\draw[<-] (Nv) -- +(-1,1) node[lbl]{variable on its bar};
\draw[<-] (Nc) -- +(-1,-1) node[lbl]{special cell};
\draw[<-] (Nl.120) -- +(-1.1,3.5) node[lbl]{label for special cell};

\end{tikzpicture}

9

The corresponding Karnaugh map looks like this:

z0

x5

x2

x4

x1

x3

var.

x3

var.

x0 x0

0
-

1
-

2

1
3

4

1
5

6

1
7

8
-

9

1

10

1
11
-

12

1
13

14

1
15

16

1
17
-

1819

1

20 21

22

1
23
-

24

1
25
-

2627

1
28
-

29

30
-

31

1

32
-

33

1

34

1Special
35
-

36
-

37

38

1
39

40
-

41

1
42

1
43

44
-

45

46

1
47
-

48
-

49

1

5051

1
52 53

54

1
55

1

56

1
57
-

5859

1

60 61
-

62
-

63

1

variable
on its

bar

special
cell

label
for spe-
cial cell

end the logic expression8 is

z = x̄3 x̄1 + x̄2 x̄0 + x3 x2 x1 + x3 x2 x0.

You may notice that the zeros were omitted (replaced by {}
in the list). Also, the cell 34 is special beause {[red,name=Nc,
label={[name=Nl,orange!90!black, label distance=1\kmunitlength
]left: Special}, circle, inner sep=2pt, draw=green!70!blue]1}. You
can put almost anything inside a cell using curly brackets and you can customize
the cell style using square brackets. The format is: {[opt]string} where opt
is an optional set of styles (among other TikZ parameters) which will be passed
as the last option of TikZ command \node and string will be written inside
de cell by that command. To use this syntax, it is imperative that the very first
character after the opening curly brackets ({) be the opening square brackets
([). Matching pairs of square brackets are allowed inside the optional sequence
provided that they are protected inside a pair of curly brackets. In this case,
the proper content of cell 34 is just the number 1 near the end, all the rest is

8This is not of any importance here, but I couldn’t hold myself back. By the way, if you
are curious, there are another two minimal solutions.

10

the style applied to this single 1, therefore coded between square brackets. The
style uses TikZ syntax in order to change colour, font size, add a label, add
figure, add decoration and name it for future reference. In this case, two nodes
are named Nc and Nl for future reference. Near the TikZ environment end,
those names are used to place arrows pointing to the nodes with a description.
The \draw command that draws those arrows cannot be placed inside the fifth
argument of macro \karnaughmap because the fifth argument is typeset before
the cells contents (the fourth argument), therefore no name would be created
at the time the fifth argument is typeset.

The variables identifiers (the third argument) can also be formatted
individually using style, but note that the custom style will be applied to
both the bar line and the node for the variable identifier. If a bar gets
segmented, just like x3 bar, the named node will be the top most if the bar
is vertical or the right most if the bar is horizontal. The x3 bar is different
from the other bars because [yellow!70!black,name=Nv,|-|,double=red
,very thick,label={[font=\tiny,green!50!black]above:var.}, text=
blue!60!red] changes its appearance. The node name Nv is also not available
at the time the fifth argument is typeset. So any command that makes use of
it will need to be placed after the end of macro \karnaughmap.

The distance between bars on the left side was set to 1.2\kmunitlength
to prevent overlapping between x3 (the label) and x4 bar and x4 and x5 bar,
but the distance between the bars on top was left unchanged. The distance
between the map and the bars closest to it was set to 0.4\kmunitlength to
prevent overlapping between the bar tip () and the map itself. If you want
an American style map you can use bar sep to leave space for the Gray coded
numbers.

The indices can be computed by

32 x5 + 8 x4 + 2 x3 + 16 x2 + 4 x1 + 1 x0

which is a bit bizarre. The truth table values ought to be arranged according
to this index order. This bizarreness is the price we pay to have the variables
placed in positions which are more intuitive. See Section 9 for a java software
that can help on this matter.

7 American style
If you really want an American style map and you are not afraid of admitting
it publicly, you can still use this package to typeset it. The first thing to do is
to disable the bars and the function identifiers. Therefore, this option has to be
included in the TikZ environment: disable bars.

Then you will need rows and columns labels in Gray code and a caption for
the map and variables identifiers. In the last example, these can be achieved by
appending the following code in the fifth argument of the karnaughmap macro:

\draw[kmbox] (0,8) --

11

node[below left,magenta]{x_5,x_4,x_3}
node[above right,violet]{x_2,x_1,x_0} +(-1,1)
node[above left,green!70!black] {z_0};

\foreach \x/\l in %
{0/000,1/001,2/011,3/010,4/110,5/111,6/101,7/100} {
\node[violet] at (\x+0.5,8.2) {\l};
\node[magenta] at (-0.4,7.5-\x) {\l};

}

The result should be:

x5, x4, x3

x2, x1, x0

z0

000

000

001

001

011

011

010

010

110

110

111

111

101

101

100

100

0
-

1
-

2

1
3

4

1
5

6

1
7

8
-

9

1

10

1
11
-

12

1
13

14

1
15

16

1
17
-

1819

1

20 21

22

1
23
-

24

1
25
-

2627

1
28
-

29

30
-

31

1

32
-

33

1

34

1
35
-

36
-

37

38

1
39

40
-

41

1
42

1
43

44
-

45

46

1
47
-

48
-

49

1

5051

1
52 53

54

1
55

1

56

1
57
-

5859

1

60 61
-

62
-

63

1

Note, however, that the index inside a cell does not match the Gray code
value of the respective row and column9. The indices can still be computed by

32 x5 + 8 x4 + 2 x3 + 16 x2 + 4 x1 + 1 x0.

8 Vertical mode
For an odd number of variables, the Karnaugh map is rectangular and macro
karnaughmap will typeset it twice as wide as it is high (not taking into account
the bars). Like this single variable map:

9Do not use a Gray code table to compute the index.

12

f(a) a

0
1

1
0

This layout is good for presentations because the projection area is usually
wider than higher. Paper sheets, on the other hand, are usually higher than
wider, so for a big map you may need something like10:

f(a)

a

0
1

1
0

This is called, for lack of a better name, vertical mode11 and it is done
by the karnaughmapvert macro. Note that karnaughmapvert macro arranges
the variables in a different order. Compare the two square (four variables)
maps below in the normal (on the left) and vertical mode (on the right) paying
attention to the indices and variables identifier.

f(a, b, c, d)

a

b

c

d

0
0

1
1

2
0

3
1

4
1

5
0

6
1

7
1

8
1

9
0

10
1

11
1

12
1

13
1

14
0

15
1

f(a, b, c, d)

a

b

c

d

0
0

1
1

2
0

3
1

4
1

5
0

6
1

7
1

8
1

9
0

10
1

11
1

12
1

13
1

14
0

15
1

Normal (horizontal) mode Vertical mode

The indices are calculated in the same way, but their position inside the map
are different because the variables positions are different. It is like one map is
mirrored and then rotated 90o (mirrored horizontally and rotated clockwise or
mirrored vertically and rotated counterclockwise.) Exactly like a matrix been
transposed.

One interesting application of vertical mode is when you want to keep con-
sistency in variable identifier position among maps with odd and even number of
variables. For example, if you want the most significant variable a appearing on
top of the maps you can use normal (horizontal) mode for maps of odd number
of variables and vertical mode for even amounts, like this:

10Or you can use landscape.
11Not to be confused with TEX vertical mode.

13

f(a, b, c)

a

b

c

0
0

1
1

2
0

3
1

4
1

5
0

6
1

7
1

g(a, b, c, d)

a

b

c

d

0
0

1
1

2
0

3
1

4
1

5
0

6
1

7
1

8
1

9
0

10
1

11
1

12
1

13
1

14
0

15
1

Normal (horizontal) mode Vertical mode

A more general approach is to use the java software described in Section 9
to create maps with arbitrary variables positioning. Suppose that you desire
the most significant variable a to appear at the left side of the map. You can
do the opposite of what was done in the last example, but you will end up with
a vertical map of three variables and maybe it is not what you want. Using
the software described in Section 9 allows a to be placed at the left in a normal
(horizontal) mode map, but it changes the indices because it reorder the truth
tablet such that a will no longer be the most significant variable, but without
changing the logic function.

9 Final remarks
This is not even nearly all you need to know about the usage of these macros,
but it is a good start. In case you find a bug, or if you have comments or
suggestions, please send me an e-mail.

The maximum size map I could produce was a Karnaugh map with 12 vari-
ables; with bigger maps I only exceeded TEX’s main memory. This is due to the
macros’ recursive algorithm. Quite likely you will exceed TEX’s capacity with
even smaller maps if they occur in large documents.

If you need help to typeset Karnaugh maps with or without the prime im-
plicants highlighted, you can try JQM - Java Quine McCluskey for minimiza-
tion of Boolean functions available on https://sourceforge.net/projects/
jqm-java-quine-mccluskey/. It can generate the solution and create the cor-
responding map based on a given truth table. One very useful feature of this
software is that you can reorder de variables on the map to suite your particular
application instead of rely exclusively on the macro to scatter your variables
around.

14

