The tikz-cd package

Florêncio Neves*
Version 0.2 b , of March 18, 2012

The general-purpose drawing package TikZ can be used to typeset commutative diagrams and other kinds of mathematical pictures, generating high-quality results (see for example [2] or [3]). This package facilitates the creation of such diagrams by providing a convenient set of macros and reasonable default settings. Familiarity with TikZ is helpful, but not necessary, as the examples contained here cover the most often encountered situations.

This package also includes an arrow tip library that match closely the arrows present in the Computer Modern typeface.

PGF version 2.10 is required.

Contents

1 Basic usage 1
1.1 Inserting arrows 1
1.2 Changing arrow tips 2
2 Controlling the appearance of diagrams 3
2.1 General options 4
2.2 Options for arrows 5
2.3 Options for labels 6
3 Further topics 7
3.1 Internals of tikzcd and the arrow commands 7
3.2 Tweaking to paths 7
3.3 The asymmetrical rectangle shape 8
3.4 Drawing diagrams directly with TikZ 8
4 Computer Modern arrow tips 9
5 Change history 10

1 Basic usage

Commutative diagrams are created with the tikzcd environment. Its content describes a matrix, like the \backslash matrix command in TikZ or the align environment in $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$. Everything is typeset in math mode, but you will probably want use tikzcd inside an equation environment or inside $\backslash[\ldots \backslash]$, so that the diagram is placed on a new line and centered.

1.1 Inserting arrows

Inside the tikzcd environment, the command \arrow is provided to produce arrows. In its simplest form, it takes one argument, a string containing the characters r, l, u or d, standing for right, left, up and down, that determine the arrow target. A label can be placed on an arrow by providing a second argument.

[^0]$$
A \xrightarrow{\searrow_{C}} B
$$

```
\begin{tikzcd}
    A \arrow{rd} \arrow{r}{\phi} & B \\
    & C
\end{tikzcd}
```

You can control the appearance of the arrow by placing an argument inside square braces before the direction parameter. It may contain any option that can be passed to TikZ's \path command. Similarly, a label can be modified by an argument in square braces right before it. It may contain anything that can be passed to TikZ's node operator.

An arrow can actually have an arbitrary number of labels, each one specified by juxtaposing $\{\langle$ text $\rangle\}$ or $[\langle o p t i o n s\rangle]\{\langle$ text $\rangle\}$ to the \arrow command.

To save some typing, the command \ar is provided as a shorthand to \arrow. There are also commands \rar, \lar, \uar, \dar, \urar, \ular, \drar and \dlar that act like \arrow\{r\}, \arrow\{l\}, ..., \arrow\{ur\}, and so forth. They can take an optional argument in square braces to modify the arrow, followed by label specifiers of the form $\{\langle$ text $\rangle\}$ or $[\langle$ options $\rangle]\{\langle$ text $\rangle\}$. Thus, the diagram above can be rewritten as follows.


```
\begin{tikzcd}
    A \rar{\psi} \dar[color=red]
        & B \dar[][color=red]{\psi} \\
    C \rar[color=red][color=blue]{\eta}
        & D
\end{tikzcd}
```

We provide one more example, reproduced from XY-pic user's guide.

1.2 Changing arrow tips

For each arrow-producing command present in $\mathcal{A} \mathcal{M} \mathcal{S}$ - $\mathrm{ET} \mathrm{T}_{\mathrm{E}}$, there is a corresponding option (without a " \backslash ") that can be passed to \arrow to produce that kind of arrow. Notice the use of hookrightarrow and dashrightarrow in the example below.


```
\begin{tikzcd}
    X \arrow[hookrightarrow] {r} \arrow[dashrightarrow]{rd}
        & \bar{X} \arrow{d}\\\
        & Y
    \end{tikzcd}
```

Of course, a similar effect could be achieved by directly using TikZ's arrow tip selection scheme (e.g., using the option right hook->). However, the method more above is more appropriate, as it abstracts the choice of an actual arrow tip design (see also the key commutative diagrams/arrow style below), and is probably also better from the mnemonic standpoint.

The following list shows all arrow styles available.

```
rightarrow
Rightarrow
leftarrow
Leftarrow
leftrightarrow
Leftrightarrow
equals
mapsto (or maps to)
hookrightarrow (or hook)
hookleftarrow
rightharpoonup
rightharpoondown
leftharpoonup
leftharpoondown
dashrightarrow (or dashed)
dashleftarrow
rightarrowtail (or tail)
leftarrowtail
twoheadrightarrow (or two heads)
twoheadleftarrow
rightsquigarrow (or squiggly)
leftsquigarrow
leftrightsquigarrow
```


Some of the styles above have two names. In these cases, the second one behaves a little differently from the first, in that it can be superimposed with other arrow styles.

```
A\succ--->}B\quad\\mathrm{ begin{tikzcd}
    A \arrow[tail, two heads, dashed]{r} & B
    \end{tikzcd}
```


2 Controlling the appearance of diagrams

This section lists all customization keys defined by this package. Options can be made take effect in different scopes:

1. Globally, using the command \tikzset. This can be done in the document preamble, or in the body, to affect all diagrams appearing thereafter.
2. For the current diagram, by placing options in the optional argument to the tikzcd environment. Such options are applied to the tikzpicture environment generated by tikzcd (cf. §3.1). Thus you can, for instance, use the execute at end picuture option in this situation to have arbitrary TikZ code executed after a diagram is drawn.
3. For the current arrow or label, by placing options in one of the optional arguments of \arrow.

Of course, not all options make sense in all contexts. For example, setting row sep=1cm globally with \tikzset will have no effect on diagrams, since the row sep option is re-set at the beginning of each diagram. To make all diagrams have row sep set to 1 cm , you can use

```
\tikzset{commutative diagrams/row sep/normal=1cm},
```

as detailed below.
All keys provided by this package are located in the path /tikz/commutative diagrams. Methods 2 and 3 above will search in this path by default. If a key is not found there, an attempt is made to find it in /tikz. When using method 1 , it is convenient to change the default search path by using
\tikzset\{commutative diagrams/.cd, \langle options $\rangle\}$.

2．1 General options

／tikz／commutative diagrams／every diagram
This style is applied to every tikzcd environment．Initially，it contains the following：

```
/tikz/commutative diagrams/.cd,
/tikz/cells={nodes={shape={asymmetrical rectangle}}},
row sep=normal,
column sep=normal,
/tikz/baseline=0pt
```

The baseline $=0$ pt setting is used to make equation numbers be placed correctly．The asymmetrical rectangle shape，used in the matrix nodes，is described in §3．3．
／tikz／commutative diagrams／diagrams＝〈options \rangle
（no default）
This key appends $\langle o p t i o n s\rangle$ to the style／tikz／commutative diagrams／every diagram．
／tikz／commutative diagrams／row sep＝〈size〉
（no default，initially normal）
This key acts as a＂frontend＂to TikZ＇s／tikz／row sep key．If the key

```
/tikz/commutative diagrams/row sep/\langlesize\rangle
```

stores a $\langle v a l u e\rangle$ ，then it is read and $/ \mathrm{tikz} / \mathrm{row}$ sep $=\langle v a l u e\rangle$ is set．If the key above is not initialized， then $\langle s i z e\rangle$ is presumably a dimension，and／tikz／row sep＝$=\langle s i z e\rangle$ is set．
The values of $\langle s i z e\rangle$ initially available，and their values，are the following：

$$
\begin{array}{cccccc}
\text { tiny } & \text { small } & \text { scriptsize } & \text { normal } & \text { large } & \text { huge } \\
1.25 \mathrm{ex} & 2.5 \mathrm{ex} & 3.75 \mathrm{ex} & 5 \mathrm{ex} & 7.5 \mathrm{ex} & 10 \mathrm{ex}
\end{array}
$$

To change，say，the normal size（which is applied by default）to 1 cm ，you can use the code
\tikzset\｛commutative diagrams／row sep／normal＝1cm\}.
You can also create new sizes，but pgfkeys requires new keys to be explicitly initialized．For example，to create a size my size，meaning 1 cm ，you should use
\tikzset\｛commutative diagrams／row sep／my size／．initial＝1cm\}.
／tikz／commutative diagrams／column sep＝〈size \rangle（no default，initially normal）
This works analogously to the row sep key above．The sizes available initially are the following：

tiny	small	scriptsize	normal	large	huge
1.5 ex	3 ex	4.5 ex	6 ex	9 ex	12 ex

In the examples below，the triangular diagrams would look too wide or too tall if the column or row separation were not set appropriately．

\begin\｛tikzcd\}[row sep=tiny]
\＆B \arrow\｛dd\}
A \arrow\｛ur\}\arrow\{dr\} \&

\＆C
／tikz／commutative diagrams／math mode＝〈boolean \rangle
（no default，initially true）
This keys determines whether the contents of a diagram is typeset in math mode or not．If set globally or diagram－wise，it affects both the diagram entries and arrow labels．If used with \arrow，it affect only its labels．
／tikz／commutative diagrams／background color＝\langle color \rangle
（no default，initially white）
This key stores the name of a color，and is read by styles that fill the background，such as description and crossing over．It does not cause the background of diagrams to be filled．

2．2 Options for arrows

Besides the options and styles provided by this package，there are several options defined by TikZ that are useful for arrows，such as dashed，dotted and its relatives，line width＝〈dimension \rangle ，color＝\langle color \rangle ， bend right，bend left，in＝〈angle \rangle ，out＝$=\langle$ angle \rangle ，loop，etc．See the PGF manual［4］．
／tikz／commutative diagrams／every arrow
（style，no value）
This style is applied to every \arrow．Initially，it contains the following：

```
/tikz/commutative diagrams/.cd,
/tikz/draw,
/tikz/commutative diagrams/default arrow
```

The style default arrow is similar to rightarrow，but performs some additional initialization，such as setting the line width．
／tikz／commutative diagrams／arrows＝＜options \rangle
（no default）
This key appends 〈options〉 to the style／tikz／commutative diagrams／every arrow．
／tikz／commutative diagrams／arrow style＝$=\langle$ style $\rangle \quad$（no default，initially computer modern）
Setting this key causes the several arrow－tip－specifying styles listed in $\S 1.2$ to be（re）defined．In particu－ lar，it makes the style／tikz／commutative diagrams／default arrow，which is automatically applied to every arrow，to be defined．Currently，$\langle s t y l e\rangle$ can be one of computer modern or tikz．The tikz style uses the arrow tips defined in TikZ＇s arrows library，and it honors the option／tikz／＞．
The computer modern style sets the parameter／tikz／line width in accordance to the current font size．The tikz arrow style，however，does not change it，allowing you to directly control the thickness of arrows．

If you are using a font different from Computer Modern，you may find better results by selecting the tikz arrow style，setting／tikz／＞to the value that best matches your font，and adjusting／tikz／line width if necessary．The following example，if not particularly elegant，should be instructive．


```
\tikzset{
    commutative diagrams/.cd,
    arrow style=tikz,
    diagrams={>=open triangle 45, line width=1pt}}
\begin{tikzcd}
    A \arrow{r} \arrow{d} & B \arrow{d}\\
    C \arrow{r} & D
\end{tikzcd}
```


／tikz／commutative diagrams／start anchor＝〈anchor〉

（default empty）
This style specifies at which anchor of the current node an arrow should start．The default behavior is not to specify an anchor，causing the arrow to start at the point in the boundary of the current node closest to the destination，as explained in PGF manual［4］．
／tikz／commutative diagrams／end anchor＝\langle anchor \rangle
（default empty）
This style works analogously，but refers to the target node of the arrow．
See the picture on $\S 3.3$ for some of the possible values for \langle anchor \rangle ．The picture below illustrates the use of end anchor and start anchor．


```
\begin{tikzcd}
    A \rar[start anchor=north east, end anchor=north west]{\psi}
        \rar[start anchor=south east, end anchor=south west, swap]{\phi}
    & B
\end{tikzcd}
```

／tikz／commutative diagrams／crossing over
This style makes a thicker line，with color／tikz／commutative diagrams／background color，to be drawn under the current arrow，simulating the effect of its passing over other arrows．


```
\begin{tikzcd}
    A \arrow{dr} & B \arrow[crossing over]{dl} \\
    \end{tikzcd}
```

Note that，since arrows are drawn in the order they are read，some arrows may need to run＂backwards＂ to achieve the desired result．The following picture，from［2］，illustrates this．

／tikz／commutative diagram／crossing over clearance＝〈dimension \rangle （no default，initially 6 pt ）
This key specifies the width of the background－colored line drawn under a crossing over arrow．

2．3 Options for labels

Besides the options provided by this package and listed below，there are many options provided by $\mathrm{Ti} k \mathrm{Z}$ that are useful for labels，such as above，below，left，right，swap（which makes the label be placed in the opposite side to the default），sloped，pos＝〈fraction \rangle ，near start，near end，inner sep＝$=\langle$ dimension \rangle ， font $=\langle$ font command \rangle ，text width＝$=\langle$ dimension \rangle ，etc．See PGF manual［4］．
／tikz／commutative diagrams／every label
（style，no value）
This style works as if it were applied to the optional argument corresponding to each label attached to an arrow．Initially is set to the following：

```
/tikz/commutative diagrams/.cd,
/tikz/auto,
/tikz/font=\scriptsize,
/tikz/inner sep=0.5ex
```

The style auto makes the label be placed to the left of the arrow，understanding＂front＂as the direction the arrow points at．The dimension inner sep controls the distance between the arrow and the label．
／tikz／commutative diagrams／labels＝〈options \rangle
This key appends \langle options \rangle to the style／tikz／commutative diagrams／every label．
／tikz／commutative diagrams／description
This style causes the label to be placed on the arrow，with the background filled．

$$
\begin{array}{cc}
A-\phi \rightarrow B \quad \begin{array}{l}
\text { \begin\{tikzcd\} } } \\
{\text { A \arrow\{r\}[description] }\{\backslash \text { phi\} \& B }} \\
{\text { \end\{tikzcd\} } }
\end{array}}
\end{array}
\end{array}
$$

／tikz／commutative diagrams／description clearance＝〈dimension \rangle
（no default，initially 1.5 pt ）
This key determines the size of the border around a label when the description style above is applied． Its value is used to set the key／tikz／inner sep．

3 Further topics

This sections provides further details on the functioning of this package，with the aim of showing how a more or less arbitrary use of $\operatorname{Ti} k \mathrm{Z}$ features can be made inside it．

3．1 Internals of tikzcd and the arrow commands

The tikzcd environment works by substituting code of the form

```
\begin{tikzcd}[\langleoptions\rangle] {contents\rangle\end{tikzcd}
```

with roughly the following：

```
\begin{tikzpicture}[commutative diagrams/every diagram, \langleoptions\rangle]
    \matrix[matrix of [math] nodes] {
        <contents\rangle\\
    };
    <paths\rangle
\end{tikzpicture}
```

Note that the next－row command $\backslash \backslash$ for the last row is inserted by tikzcd，and therefore does not need to be present in \langle contents \rangle ．The \matrix is supplied the option matrix of nodes or matrix of math nodes as specified by the option commutative diagrams／math mode．Also，not shown above are a number of initialization procedures，such as defining the commands \arrow，\ar，\rar，\lar，\dar，\uar，\urar， \ular，\drar，\dlar．

Initially，\langle paths \rangle is empty．The command $\backslash \operatorname{arrow}[\langle$ options $\rangle]\{\langle$ direction $\rangle\}$ does nothing at the point it is inserted，and causes the following code to be added to \langle paths \rangle ：

```
\path[commutative diagrams/every arrow, \langleoptions\rangle] (\langlecurrent node\rangle) to \langlelabels\rangle (\langletarget node\rangle);
```

Here，\langle current node〉 is the node corresponding to the matrix cell where the command \arrow is present， and \langle target node \rangle is determined by \langle direction \rangle as explained in $\S 1.1$ ．The abbreviated commands \backslash rar，\backslash dar， etc．，generate the same kind of code．

Initially，\langle labels \rangle is the empty string．A label specifier of the form $\{\langle$ label text $\rangle\}$ or［ \langle label options $\rangle]\{\langle$ label $t e x t\rangle\}$ immediately following the \langle direction \rangle argument or a previous label specifier causes the string
node［commutative diagrams／every label，〈label options \rangle ］$\{[\$]\langle$ label text $\rangle[\$]\}$
to be appended to 〈labels〉．Dollars signs surround 〈label text〉 depending on the setting commutative diagrams／math mode．For the abbreviated form \rar（and similarly for \dar，\lar，etc．），the following are valid usages：
\backslash rar $\{\langle$ label text $\rangle\}\langle$ more labels \rangle ，
$\backslash \operatorname{rar}[\langle$ options $\rangle]\{\langle$ label text $\rangle\}\langle$ more labels \rangle ，or
\backslash rar $[\langle$ options $\rangle][\langle$ label options $\rangle]\{\langle$ label text $\rangle\}\langle$ more labels \rangle ．
Their effects are entirely analogous．

3．2 Tweaking to paths

Recall that the to path operation used in the paths created by \arrow can take a number of options，as described in $\S 14.14$ and $\S 51$ of the PGF manual［4］．In particular，the option／tikz／to path determines the path that is actually drawn，and can be used to do all sorts of tweaking．

$$
\begin{tikzcd}
\begin{tikzcd}
 A \arrow[dashed, to path=|- (\tikztotarget)]{dr}
 A \arrow[dashed, to path=|- (\tikztotarget)]{dr}
 \arrow[to path={..controls +(1.5,0.5) and +(-1,0.8).. (\tikztotarget)}]{dr}
 \arrow[to path={..controls +(1.5,0.5) and +(-1,0.8).. (\tikztotarget)}]{dr}
 & \\
 & \\
 & B \arrow[loop right]{}
 & B \arrow[loop right]{}
\end{tikzcd}
\end{tikzcd}
$$

In the next example，empty labels are used to create nodes for later reference，and in the third \arrow command the to path key is used in a way that，in the terminology of the previous section，〈current node〉 and \langle target node \rangle are completely ignored．


```
\begin{tikzcd}
    A \arrow[bend left=50]{r}[name=U,below]{}
        \arrow[bend right=50]{r}[name=D] {} &
    B \arrow[Rightarrow,to path=(U) -- (D)]{}
\end{tikzcd}
```


3.3 The asymmetrical rectangle shape

The shape asymmetrical rectangle, defined by this package, is very similar to the rectangle shape, except that its center anchor is not located at the geometric center of the shape, but rather right above the base anchor, at a distance that can be specified by the following key:

```
/tikz/commutative diagrams/center shift=\langledimension\rangle (no default, initially 0.575ex)
```

The picture below shows some of the available anchors. All anchors provided by rectangle are available and behave exactly the same, except for center, west, east, and the numerical anchors. The anchors real center, real west and real east agree with rectangle's center, west and east.

This shape is used in the matrix cells inside the tikzcd environment to ensure arrows between nodes in the same row are drawn horizontally. Roughly speaking, when TikZ draws a path between two nodes, it chooses endpoints lying on their borders in such a way that the path points towards the center of those nodes. With the rectangle shape, the anchor center lies halfway between two nonadjacent vertices and therefore its position depends on the height and depth of the text.

3.4 Drawing diagrams directly with TikZ

If the tools provided by this package prove not flexible enough for some application, you can use the methods described in [2] and [3] to draw diagrams directly with TikZ. In this case, you can still use the styles provided here in order to achieve uniformity with diagrams drawn with tikzcd. The pictures below show how this can be done (the second one is adapted from [3]).


```
\begin{tikzpicture}[commutative diagrams/every diagram]
    \matrix[matrix of math nodes, name=m] {
        X & \bar X \\
            & Y \\};
    \path[commutative diagrams/.cd, every arrow, every label]
        (m-1-1) edge[commutative diagrams/hook] (m-1-2)
                        edge[commutative diagrams/dashed] (m-2-2)
                (m-1-2) edge (m-2-2);
\end{tikzpicture}
```



```
\begin{tikzpicture}[commutative diagrams/every diagram]
    \node (PO) at (90:2.8cm) {$X\otimes (Y\otimes (Z\otimes T))$};
    \node (P1) at (90+72:2.5cm) {$X\otimes ((Y\otimes Z)\otimes T))$} ;
    \node (P2) at (90+2*72:2.5cm) {\makebox[5ex][r]{$(X\otimes (Y\otimes Z))\otimes T$}};
    \node (P3) at (90+3*72:2.5cm) {\makebox[5ex][l]{$((X\otimes Y)\otimes Z)\otimes T$}};
    \node (P4) at (90+4*72:2.5cm) {$(X\otimes Y)\otimes (Z\otimes T)$};
    \path[commutative diagrams/.cd, every arrow, every label]
        (PO) edge node[swap] {$1\otimes\phi$} (P1)
        (P1) edge node[swap] {$\phi$} (P2)
        (P2) edge node {$\phi\otimes 1$} (P3)
        (P4) edge node {$\phi$} (P3)
        (PO) edge node {$\phi$} (P4);
\end{tikzpicture}
```


4 Computer Modern arrow tips

The naming scheme of the Computer Modern-like arrow tips provided by this package parallels that of PGF's arrows library, documented in $\S 23$ of PGF manual [4]. To match the Computer Modern typeface at size 10 pt , line width should be set to 0.4 pt ; for larger font sizes, scale this parameter accordingly, or use the esoteric figure 0.0929 ex.

Notice that by using the mechanism explained in $\S 1.2$, it is not necessary, and in fact not advisable, to directly use the arrow tips listed in this section when creating diagrams with tikzcd.

Incidentally, TikZ's original to arrow tip seems to be based on the pre-1992 version of Computer Modern which, in spite of the author's wish [1], can still be found in many systems. TEXLive, for instance, distributed the old version up until 2007 or 2008 . Therefore, an up-to-date $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ distribution may be necessary to get matching arrows in formulas and diagrams.

Basic arrow tips

cm to	yelds \longleftrightarrow
cm to reversed	yelds \longmapsto
cm bold to	yelds \longleftrightarrow (with a line 50\% thicker)
cm \|	yelds \longmapsto
cm o	yelds \bigcirc
cm *	yelds \bullet -
cm cap	yelds

Arrow tips for double lines

cm implies	yelds \Longleftrightarrow
cm implies cap	yelds \rightleftharpoons

Hooks

```
cm left hook yelds
```

\qquad

```
cm right hook yelds
\(\square\)
```


Double arrow tips

```
cm double to
cm double to reversed yelds }><<
    yelds }\longleftrightarrow
```


Partial arrow tips

cm left to	yelds \longleftarrow
cm left to reversed	yelds \quad
cm right to	yelds
cm right to reversed	yelds

5 Change history

Version 0.2b (March 2012) Added asymetrical rectangle shape.
Version 0.2a (December 2011)

- Option /tikz/commutative diagrams/path operation removed in favor of direct use of /tikz/to path.
- Double lines with tikz arrow style now use double equal sign distance.

Version 0.2 (October 2011) Several changes.
Version 0.1 (September 2011) Preliminary release.

References

[1] Donald Knuth, Important message to all users of $T_{E} X$. Available at http://www-cs-staff.stanford. edu/~uno/cm.html
[2] Felix Lenders, Commutative diagrams using TikZ. Available at http://www.felixl.de/commu.pdf.
[3] James Milne, Guide to commutative diagrams. Available at http://www.jmilne.org/not/CDGuide. html.
[4] Till Tantau, The TikZ and PGF packages: Manual for version 2.10. Available at http://sourceforge. net/projects/pgf.

[^0]: *E-mail: florencioneves@gmail.com

