\documentclass{article} \usepackage{amsmath, amsthm} \usepackage{ thm-listof, thm-restate, thm-autoref, thm-kv, } \usepackage{hyperref} \declaretheorem[unnumbered, title={Zorn's Lemma}]{zl} %\newtheorem*{zl}{Zorn's Lemma} \declaretheorem[numberwithin=section]{theorem} %\newtheorem{theorem}{Theorem}[section] \declaretheorem[sibling=theorem]{lemma} %\newtheorem{lemma}[theorem]{Lemma} \declaretheorem[numberlike=lemma]{axiom} %\newtheorem{axiom}[lemma]{Axiom} \begin{document} \section{Introduction} In this dummy document, we will show important things. One very important insight is \begin{lemma}[Zorn] If every chain in $X$ is bounded, $X$ has a maximal element. (Here, $X$ is a set system.) \end{lemma} This lemma is so important that it's a fixed name: \begin{restatable}{zl}{zornslemma} If every chain in $X$ is bounded, $X$ has a maximal element. (Here, $X$ is a set system.) \end{restatable} We will conclude in important theorem from this: \begin{restatable}[Well-ordering]{theorem}{wohlordnung}\label{thm:order} Every set is well-ordered. \end{restatable} %\show\wohlordnung \section{Main} Here, we will prove \wohlordnung which first appeared as~\autoref{thm:order} on page~\pageref{thm:order} and is actually equivalent to \zornslemma Another equivalent formulation is \begin{axiom}[Axiom of Choice] If you have a non-empty set, you can take an element out of it. \end{axiom} \section{Conclusion} To remind you, these are the theorems that occur in this document, ignoring Lemmas: \ignoretheorems{lemma} \listoftheorems \end{document}