The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Shade package*
 Typesetting nucleotide and peptide alignments

Eric Beitz ${ }^{\dagger}$

v1.16; 2007/02/18

Abstract

Setting alignments of nucleotides and peptides for publication or presentation purposes is usually a time consuming two-step process. First, a scientific software is used for the calculation of the alignment. This is done in a few minutes. Then, in order to highlight special sequence relationships and to label positions and regions of interest a second software with high quality output capability is needed. Manipulating sequence alignments with standard word processing or graphics programs takes its time - often several hours - and simple layout changes such as re-breaking lines, say from 50 to 40 residues per line, elongate the working time considerably. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade is an alignment shading software written in $\mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{LA} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ which can process multiple sequence alignments in the MSF, ALN and FASTA file format. It provides in addition to common shading algorithms special shading modes featuring functional aspects, e.g. charge or hydropathy, and a plenitude of commands for handling shading colors, text styles, labels, legends and even allows the user to define completely new shading modes. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade combines highest flexibility and the habitual $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ output quality - with reasonable time expenditure.

[^0]
Contents

1 Package Overview 4
1.1 Version History 4
1.2 ETEX basics 10
1.2.1 Typesetting documents using $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ 10
1.2.2 Memory shortness when using $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade 10
1.3 System requirements 12
1.4 The texshade environment 12
1.5 Shading modes predefined in this package 13
1.5.1 Identity mode 13
1.5.2 Similarity mode 14
1.5.3 Diversity mode 15
1.5.4 Functionality modes 16
1.6 Bar graphs and color scales 22
1.7 Secondary structures 23
1.8 Sequence fingerprints 26
1.9 Sequence logos 28
1.10 Subfamily logos 29
1.11 Customization of the alignment output 30
2 Format of alignment input files 32
2.1 The MSF file format 32
2.2 The ALN file format 34
2.3 The FASTA file format 36
3 Use of a $\mathrm{T}_{\mathbf{E}} \mathrm{X}$ shade parameter file 37
4 texshade user commands 38
4.1 Using predefined shading modes 38
4.2 Creating new functional shading modes 43
4.3 Appearance of the consensus line 44
4.4 Display of logos 46
4.4.1 Sequence logos 46
4.4.2 Subfamily logos 48
4.5 Appearance of the sequence lines 49
4.5.1 Names, numbers and gaps 49
4.5.2 Hiding, killing, separating and ordering 52
4.5.3 Residues per line and further settings 53
4.5.4 Fingerprinting 54
4.6 Individual shading and labeling of sequence stretches 55
4.6.1 Manual shading of regions and blocks 55
4.6.2 Emphasizing and tinting regions and blocks 56
4.6.3 Hiding blocks of the alignment (still experimen- tal!) 57
4.6.4 Graphical labeling of sequence features 57
4.6.5 Including secondary structure information 65
4.7 Displaying and building legends 68
4.8 Adding captions to the alignment 69
4.9 Font handling 69
4.9.1 Changing font styles 69
4.9.2 Using PostScript fonts 71
4.10 Goodies - molweight and charge 71
5 The PostScript color selection scheme 73
6 Listing of the texshade default settings 76
6.1 Standard definitions 76
6.2 Colors used in the different shading modes 76
7 Quick Reference 80
8 References 87

1 Package Overview

After texshade.ins is run through $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ the following files should appear in the directory:

```
texshade.sty the style file with all T TX shade commands
texshade.def an example parameter file with the standard
parameter settings
AQPDNA.MSF an example nucleotide alignment (MSF-format)
AQPpro.MSF an example protein alignment (MSF-format)
AQP2spec.ALN a further protein alignment (minimal ALN-file)
AQP1.phd secondary structure information (PHD-format)
AQP1.top topology data extracted from AQP1.phd
AQP1_HMM.sgl topology information (single line, HMMTOP-format)
AQP1_HMM.ext topology information (extended, HMMTOP-format)
standard.cod standard genetic code definitions
ciliate.cod ciliate macronuclear genetic code
```

The alignment file examples as well as the topology data file are needed for $\mathrm{T}_{\mathrm{E}} \mathrm{Xing}$ this documentation and can serve as illustrations for the MSF and ALN file format.
The following subsections give an overview on the capabilities of the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade package. All commands are described in detail later on.

1.1 Version History

v1.16 2007/02/18
Correction: $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade crashed when calculating conservation using sequences with untypical residue characters, such as "X". Fixed. The reference sequence in diverse mode can now be shaded with \conservedresidues and, if active, \allmatchresidues. ${ }^{1}$
Introduction: ${ }^{2}$ (a) A command was introduced, i.e. \exportconsensus which produces a pymol script file for coloring a 3D model according to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shades conservation calculation. (b) With namerulerpos labels of the ruler can be exchanged by a string. (c) Various parts of the alignment can now be hidden by \hideblock. New home: $\mathrm{T}_{\mathrm{E}} \mathrm{Xsh}$ dede, $\mathrm{T}_{\mathrm{E}} \mathrm{Xtopo}$, and BioTEX have a new home: www.pharmazie.uni-kiel.de/chem/Prof_Beitz/biotex.html.

[^1]v1.15 2006/06/27
Correction: Sequence and subfamily logos can now be plotted with pdflatex; pstricks is not needed anymore.

v1.14 2006/05/11

Introduction: In order to better recognize relevant positions in a subfamily logo [14], a bit-value can now be set by $\backslash r e l e v a n c e ~ a b o v e ~ w h i c h ~$ a deviation is considered relevant. Such positions can be labeled with a symbol by \showrelevance and hidden by \hiderelevance.

v1.13 2006/02/23

Corrections: Helix symbols in feature lines were not drawn correctly if the standard Computer Modern Font was changed to another one, e.g. Palatino. ${ }^{3}$ Fixed. Unintended gaps occurred due to numbers at the end of lines in Clustal W alignment files. Fixed. The limitations in the number of sequences per alignment have finally been overcome by a more restrictive use of counter variables.
Introductions: (a) The numbering can now be displayed-in addition to left or right - on both sides of the alignment with the optional parameter \{leftright\} in the \shownumbering command (p.49). (b) TeXshade tries to guess the sequence type, i. e. protein or nucleotide, if not defined by the user. (c) Plotting of sequence logos has been implemented (p.46). Logos can be shown in addition to or together with the consensus, or alone without any alignment sequences. (d) The ruler numbering can be rotated in order to make labeling of every position possible. (e) A new way to visualize subfamily characteristics has been implemented, i.e. subfamily logos (p.48) [14].
v1.12 2005/09/20
Corrections: When regional labeling with \shaderegion, \emphregion, \tintregion, or \frameblock was combined with \setends incorrect output was produced lacking the labeling. ${ }^{4}$ Other minor fixes.
Introductions: An additional optional parameter for setting consensus colors was implemented in the \showconsensus command (p.44). This even allows one to use color scales illustrating sequence conservation in the consensus line.

[^2]
v1.11 2005/04/13

Corrections: Bounding boxes with \frameblock had a wrong height when \separationlines were used. Other minor fixes.
Introductions: (a) An additional parameter for setting individual bar and arrow thicknesses in feature lines has been introduced. (b) Additional parameters for setting the frame color and thickness of boxes in feature lines have been implemented. (c) Three more color scales have been defined: RedBlue, RedGreen, and HotCold. (d) Plotting of amino acid features (hydrophobicity, molweight, charge) as bar graphs or color scales. (e) Plotting of protein sequence conservation as bar graph or color scale ${ }^{5}$. (f) Color scales can be used for shading the consensus sequence according to protein sequence conservation. (g) Separate command for stretching color scales \colorscalestretch.

v1.10 2005/03/29

Corrections: Plotting of color scales and bar graphs has been sped up by more than a factor of $10 .{ }^{6}$
Introductions: (a) More colors have been introduced, i.e. even lighter versions of the existing PostScript colors 'LightLight' plus color name and 'LightLightLight' plus color name. (b) Sequence stretches and blocks can be tinted for labeling purposes \tintreqion, \tintblock and \tintdefault. (c) A new feature label style \{restriction\} has been introduced. (d) Java-typical ' NaN ' values are now allowed in data files for bar graphs and color scales.
v1.9 2005/02/08
Corrections: $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade version 1.8 introduced an incompatibility with $\mathrm{T}_{\mathrm{E}} \mathrm{Xtopo}$. This problem was identified by Meike Schmedt and has been fixed.
Introductions: (a) A short version of the figure caption can now be defined for display in the list of figures ${ }^{7} \backslash$ shortcaption $\{\langle t e x t\rangle\}$. (b) A colored frame can be drawn around a sequence block for labeling purposes with the command \backslash frameblock. ${ }^{8}$ (c) A new look for feature arrows has been implemented with scalable line thickness and a new end style 'ball'. (d) HMMTOP topology predictions can now be

[^3]included for plotting feature lines with information on the location of the transmembrane domains. ${ }^{9}$

v1.8 2004/08/26

Corrections: Only minor bugs were fixed.
Introductions: (a) More colors have been designed, i.e. 'light' versions of the existing PostScript colors. (b) Three color ramps in 5% steps have been introduced: i) Blue-Red, ii) Green-Red and iii) Cold-Hot. (c) Two new feature label styles bar and color have been introduced which allow one to display number values as bar graphs or color scales along the alignment ${ }^{10}$.

v1.7 2004/01/05

Corrections: Several bugs were fixed. In gaps the wrong character was plotted in 'donotshade' mode. Gaps were colored incorrectly when a single sequence was set as consensus. Another 'donotshade' problem was solved which led to a halt of the LaTeX run ${ }^{11}$. Due to several requests, the gap and match labels in diverse mode were switched ('-' in gaps; '.' at matching positions) in order to follow convention. Introduction: $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade speaks spanish (\spanishlanguage). Necessary translations were contributed by Mikel Egaña Aranguren. A new feature label style helix has been introduced.

v1.6 2002/03/26

Corrections: The unnecessary restriction to the DVIPS driver for color.sty has been removed nycolor.stycompatibledriveroptioncanbegivenwiththe\usepackage\{texshade\}callandisthenpassedtothecolorpackage.The'\namecolor'and'\numbercolor'commandsdonowsupportsequencelists.13Introductions:(a)TheFASTAfileformatissupportedby$\mathrm{T}_{\mathrm{E}}\mathrm{X}$shadeasalignmentinputs.(b)Twocommandssetthespacebetweensequenceblockseithertobeflexible(assofar)'\backslashflexblockspace'orthebefixed'\backslashfixblockspace'.(c)Onecannowrefertosequencesbytheirnameinadditiontothenumberintheinputfile.(d)Using'$\mathrm{ffirstcolumnDSSP'}\mathrm{and}\mathrm{'}\mathrm{\secondcolumnDSSP'}\mathrm{one}\mathrm{can}\mathrm{choose}\mathrm{which}$undefined

[^4]of the first to columns should refer to the sequence numbering (the second column remains default setting) ${ }^{14}$.

v1.5a 2001/03/08

Corrections: 'X's in the alignment file caused a run-time error. Fixed. Introductions: (a) The vertical space between feature lines can be controlled by four new commands: \ttopspace, \topspace, \backslash bottomspace and \backslash bbottomspace ${ }^{15}$. (b) It is now easily possible to add a caption to the alignment with the \showcaption command. (c) $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade stores the sequence lengths in the .aux file in order to have correct breaks of the gaps after the sequences.

v1.4\&4a 2000/9/12 \& 2000/10/3

Introductions: (a) The alignment legend can now be moved by the command '\movelegend'. (b) In commands with parameters that contain series of sequence numbers, e.g. \orderseqs, a dash can be used, e. g. $\{1-3,6-4,7\}$ instead of $\{1,2,3,6,5,4,7\}$.
v1.3a\&b 2000/7/28 \& 2000/7/30
Introductions: (a) It is now possible to force $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade to display gap symbols before and after the actual sequence by the commands '\showleadinggaps' and '\hideleadinggaps' (4.5.1). (b) The sequence names input routine is now more tolerant concerning special characters.

v1.3 2000/3/3

Corrections: Line scrambling occured when features where set in the ttop row without a feature in the top row. Fixed. The incompatible command '\language' with the babel package has been replaced by '\germanlanguage' and '\englishlanguage' ${ }^{16}$.
Introductions: (a) Now, translations of sequence stretches are possible. Either nucleotide or amino acid sources can be translated. This is done by the new \{translate\} option for the feature command. (b) The codons are defined by the new command '\codon'. Complete codon sets can be loaded by '\geneticcode'. (c) Further, the size and style of the nucleotide triplets of backtranslations can be set by ' \backslash backtranslabel' and ' \backslash backtranstext'. (d) Two more feature

[^5]counter styles were introduced: ' \backslash Romancount' and ' romancount'. (e) $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade is now compatible with $\mathrm{T}_{\mathrm{E}} \mathrm{Xtopo}$, a new $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ software for drawing and shading topology plots of membrane proteins.

v1.2a 1999/6/24 (not released)

Minor corrections: '\namecolor' and '\numbercolor' are now really correctly reordered. Brackets (and) are now allowed in sequence names. The option \{case\} in '\funcshadingstyle' works now.

v1.2 1999/6/12

Corrections: (a) Functional group definitions of more than seven groups produced an error when displaying group number eight. These residues where skipped in the alignment. Fixed.
Introductions: (a) Protein secondary structure files in the DSSP, STRIDE and PHD format can be included and displayed automatically within the alignment by '\includeDSSP' (and similar commands for STRIDE, PHDsec and PHDtopo, 4.6.5). (b) Which types of secondary structures are to be included or skipped in the alignment is chosen by '\showonDSSP' and ' hideonDSSP' (and respective commands for STRIDE, PHDsec and PHDtopo). (c) The appearance of the labels is defined by '\appearance'. (d) Internal counters for repeatedly occuring structure types can be activated by ' \backslash numcount', ' alphacount' and ' \backslash Alphacount'. All commands are described in 4.6.5.

v1.1 1999/5/26

Corrections: (a) The activation of 'emphregion' lead to an emphasized following alignment. This has been corrected. (b) '\namecolor' and ' numbercolor' were not reordered with the command 'orderseqs'. Fixed. (c) Sequence gaps at the beginning or the end of a sequence, i. e. before the first and after the last residue where labeled with the gap symbol. Now these positions are left blank.
Introductions: (a) In order to treat the preceeding and sequence following gaps correctly, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade needs to know the length of the sequences. Therefore, the command '\seqlength' was introduced (4.5). (b) With '\gapcolors' (also 4.5) the color selection for gap symbols is independent from non conserved residues. (c) The divisions of the ruler where so far fixed to 10 . Now, this value is changeable by ' \backslash rulersteps' (again 4.5). (d) '\hideresidues' and ' showresidues' turn off or on the residue names, i. e. one can choose
between a display of shaded boxes only or with letters in the boxes (4.5.2). (e) The changes (c) through (d) were necessary for the introduction of ' \backslash fingerprint'. This command allows one to display the complete sequence in one line for an easy survey of the alignment (4.5.4).

v1.0 1999/5/12

First release.

1.2 $\quad \mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ basics

1.2.1 Typesetting documents using $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$

In order to use any of the macros provided by the BioTEX-project ($\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shatle/ $\mathrm{T}_{\mathrm{E}} \mathrm{Xtopo}$) efficiently a basic understanding of the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ typesetting system and its usage is required. Several books are available on this topic, but a rather quick and easy introduction is the Not so short introduction to ${ }^{A} T_{E} X$. This document is available from all Comprehensive $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Archive Network (CTAN) servers, e.g. from ftp://ftp.dante.de/pub/tex/documentation/lshort/, in many different languages and formats besides $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$, such as PostScript and on-line viewable PDF. I also put a link from the BioTEX (TEXshade/TEXtopo) homepage to the document collection (http://homepages.uni-tuebingen.de/beitz/biotex.html).

1.2.2 Memory shortness when using TEXshade

If you are using T_{E} Xshade to align several large sequences (about 1000 residues/sequence), LaTeX will probably stop compiling and quit with one of the following messages:
! \TeX capacity exceeded, sorry [main memory size=384000] or

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ allocates space for different kinds of internal variables. Setting alignments needs lots of memory, usually more than for typesetting plain text. Thus, the parameter settings of a standard $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ installation might not be sufficient for certain projects. This manifests in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ error messages about insufficient memory and the setting process is interrupted. There is no reason to be concerned. The parameters can be set by hand. Unfortunately, each $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ system hides its default parameter file in a different place in the system.

In the following, an excerpt from the FAQ-list to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade is added. This explains how to increase the settings in OzTEX for the Macintosh, MikTEX for Windows and teTEX for *NIX TEX distributions. Please contribute to this list!

1. $\mathrm{OzT}_{\mathrm{E}} \mathrm{X} 4.0$ for the Macintosh:

Find the file 'OzTeX:TeX:Configs:Default'. This file contains all memory settings. Look for the section '\% TeX parameters' and increase the values that $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ complains about during the run. You will have to restart $\mathrm{OzT}_{\mathrm{E}} \mathrm{X}$ before the changes are active.

For older versions of $\mathrm{OzT}_{\mathrm{E}} \mathrm{X}$ the configuration file has the same name but the path is somewhat different.
2. teTEX for ${ }^{*}$ NIX: (contributed by Joerg Daehn)

Find the file: '/usr/share/texmf/web2c/texmf.cnf' or use locate texmf.cnf at the command prompt to find it.
Login as super user. Backup 'texmf.cnf' in case you destroy something and then open the 'texmf.cnf' file in your favorite text editor and use its search function to locate main_memory. This variable is set to 384000 . Change this to some higher value, i.e. 4000000 (works fine for me!). The total amount of memory should not exceed 8000000 , so check the other values in that section.

Next, you want to change the stack size. Search for stack_size. This will be set to 300 . I changed it to 4000 and it works fine.
There might be complains by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ about further specific parameters such as stack_size. You find all those in the same file.

After this you have to run 'texconfig init'.
Logout as root.
After this all should be set for large alignments. Happy $\mathrm{T}_{\mathrm{E}} \mathrm{Xing}$!
The information on how to achieve this was derived from a mail in the teTEX mail archive. The original question was posted by Pascal Francq and answered by Rolf Nieprasch.

3. MiKTEX for Windows:

The MiKTEX documentation describes very detailed how the memory settings can be changed. In brief, you must locate the
configuration file 'miktex/config/miktex.ini'. In the [MiKTeX] section of this file you find all the parameters you need, e.g. mem_min, mem_max, buf_size, stack_size etc.
It appears, that the standard settings of $\mathrm{MiKT}_{\mathrm{E}} \mathrm{X}$ are bigger than that of other $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ installations, so it may not always be necessary to increase the values.

1.3 System requirements

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade requires $\mathrm{EA}_{\mathrm{E}} \mathrm{X} 2 \varepsilon$ with color.sty and graphics.sty for shading. For arrows in the feature line (p.57) the AMS Math style is needed. David Carlisle's color.sty is part of the Standard $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ 'Graphics Bundle' [1]. This and the other packages can be downloaded from any $T_{E} X$ archive, e.g. ftp.dante.de; usually they are included in a comprehensive $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ installation.
The color style allows one to use several [\langle options \rangle], e.g. dvips, pdftex or dviwin. These provide the commands which different devices/programs need to display colored output. It is advisable to make yourself familiar with the color.sty manual. You should define a default driver in the file color.cfg. Since there is no direct call of color.sty by the user, the option can be stated when $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade is loaded, see next subsection. If no option is stated the DVIPS driver will be loaded.
With the [dvips] option the output DVI-file can be converted to PostScript using the DVIPS program and can later be viewed or printed with the public domain GHostVIEw program which is available for almost all computer platforms. Further, more and more standard $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ viewers are to a certain extent PostScript compatible.

1.4 The texshade environment

The commands provided by the thrm{T}_{\mathrm{E}}\mathrm{X}\)shadepackageareenabledbythefollowingcommandinthedocumentheadersection:\usepackage[〈option\rangle]\{texshade\}Makesurethatthefile'texshade.sty'ispresentinadirectorysearchedby$\mathrm{T}_{\mathrm{E}}\mathrm{X}$(seetheinstallationnotesinthefile'texshade.txt').undefined

The \langle option \rangle given here is passed to color.sty which handles the color commands for a particular output device, see previous subsection and the color.sty manual.
The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade package provides only one single new environment: texshade. This environment has one mandatory and one optional argument, both of them designating file names which must be present in a directory searched by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. The required file \langle alignmentfile \rangle contains the aligned nucleotide or peptide sequences (see section 2). This file is needed, because $T_{E} X$ shade does no alignment by itself, it has to take a preprocessed alignment as input. The optional file is a parameter file (section 3) with definitions for the customized calculation of the consensus, special sequence features or labels etc. In this parameter file all $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade commands which are allowed in the texshade environment can be used and are fully functional. Within the environment further $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade commands can be given to replace or complete settings from the parameter file.
Thus, setting an alignment with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade is as simple as this:

```
\begin{texshade}[\langleparameterfile\rangle] {\langlealignmentfile\rangle}
    further }\mp@subsup{\textrm{T}}{\textrm{E}}{}\textrm{X}\mathrm{ shade commands, if needed
\end{texshade}
```


1.5 Shading modes predefined in this package

1.5.1 Identity mode

This basic type of shading is provided by almost any alignment program. All identical residues at a position are shaded if the number of matching residues is higher than a given threshold percentage.

AQP1.PRO TLGLLLSCQISILRAVMYIIAQCVGAIVASAIL 112
AQP2.PRO TVACLVGCHVSFLRAAFYVAAQLLGAVAGAAIL 104
AQP3.PRO TFAMCFLAREPWIKLPIYTLAQTLGAFLGAGIV 112
AQP4.PRO TVAMVCTRKISIAKSVFYITAQCLGAIIGAGIL 133
AQP5.PRO TLALLIGNQISLLRAVFYVAAQLVGAIAGAGIL 105

Code:

```
\begin{texshade}{AQPpro.MSF}
    \setends{1}{80..112}
    \hideconsensus
\end{texshade}
```

If you like, positions where all residues are identical can be shaded in a special color and the consensus can be shown with or without shading according to the degree of conservation:

AQP1.PRO TLGLLLSCQISILRAVMYIIAQCVGAIVASAIL 112
AQP2.PRO TVACLVGCHVSFLRAAFYVAAQLLGAVAGAAIL 104
AQP3.PRO
AQP4.PRO
AQP5.PRO
consensus

Code:

```
\begin{texshade}{AQPpro.MSF}
    \allmatchspecial
    \setends{1}{80..112}
    \showconsensus[ColdHot]{bottom}
    \defconsensus{.}{lower}{upper}
\end{texshade}
```


1.5.2 Similarity mode

In many cases it is expedient-mostly when comparing protein sequences - to shade also residues which are not identical but similar to the consensus sequence. Consider a position where three out of five residues are basic arginines and two more residues are also basic but lysines. In similarity mode $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade shades similar residues in a different color to distinguish them from the consensus residue. Even when none of the residues alone reaches the threshold but a group of similar residues does these are shaded in the 'similarity' color. This case is given for instance when at a position in a five sequence alignment two aliphatic valines and two also aliphatic isoleucins are present and the threshold is set to 50%. Neither residue exceeds this percentage but as a group of similars they do.

In grayscale printouts some colors of the following alignment may appear undistinguishable. Don't worry if you usually use grayscaleall colors/grays can be selected freely (see 5).

first case (see text)		
\downarrow		
AQP1.PRO	TLGLLLSCQISILRAVMYIIAQCVGAIVASAIL	112
AQP2.PRO	TVACLVGCHVSFLRAAFYVVAQLLGAVAGAAIL	104
AQP3.PRO	TFAMCFLAREPWIKLPIYTLAQTLGAFLGAGIV	112
AQP4.PRO	TVAMVCTRKISIAKSVFYITAQCLGAIIGAGIL	133
AQP5.PRO	TLALLIGNQISLLRAVFYVAAQLVGAIAGAGIL	105
	second case (see text)	

Code:

```
\begin{texshade}{AQPpro.MSF}
    \shadingmode[allmatchspecial]{similar}
    \setends{1}{80..112}
    \hideconsensus
    \feature{top}{1}{93..93}{fill:$\downarrow$}{first case (see text)}
    \feature{bottom}{1}{98..98}{fill:$\uparrow$}{second case (see text)}
\end{texshade}
```

Probably you know this kind of shading from the VMS/Unix and DOS public domain program BoxShade by Kay Hofmann or from the Macintosh version MacBoxShade by Michael D. Barron. TEXshade provides the same functionality - and goes truly beyondfor the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ community.

1.5.3 Diversity mode

Contrary to the above described modes this shading style displays sequence differences. Thus, it is most suitable for comparing very similar sequences, e.g. species variants of a protein.
One sequence is used as consensus. Matching residues in other sequences are blanked out, mismatches are shown in lowercase.

AQP2 species variants

Code:

```
\begin{texshade}{AQP2spec.ALN}
    \seqtype{P}
    \shadingmode{diverse}
    \setends{1}{77.. 109}
    \featureslarge
    \feature{top}{1}{77..109}{}{AQP2 species variants}
    \namesrm\namessl
    \hidenumbering\showruler{top}{1}
    \shownames{left}
    \nameseq{1}{Bos taurus}
    \nameseq{2}{Canis familiaris}
    \nameseq{3}{Dugong dugong}
    \nameseq{4}{Equus caballus}
    \nameseq{5}{Elephas maximus}
    \frameblock{1}{82..82,106..106}{Red[1pt]}
\end{texshade}\label{frame}
```


1.5.4 Functionality modes

Displaying functional peptide similarities is one of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade's strong capabilities. Six functional shading modes are predefined; further user specific modes can easily be created. The examples may not look very impressive when printed in grayscale. Enjoy them on your screen or use color printouts. As mentioned before, all colors can be changed to others or to grays without restrictions (see chapter 5).
charge: residues which are charged at physiological pH (7.4) are shaded if their number at a position is higher than the threshold

AQP1.PRO GLGIEIIGTLQLVLCVLATTDR.RRRDLGGSAPL 170 AQP2.PRO AVTVELFLTMQLVLCIFASTDE.RRGDNLGSPAL 162 AQP3.PRO GFFDQFIGTAALIVCVLAIVDPYNNPVPRGLEAF 186 AQP4.PRO GLLVELIITFQLVFTIFASCDS.KRTDVTGSVAL 191 AQP5.PRO AMVVELILTFQLALCIFSSTDS.RRTSPVGSPAL 163

X acidic (-)
X basic (+)

Code:

```
\begin{texshade}{AQPpro.MSF}
    \shadingmode[charge]{functional}
    \setends{1}{138..170}
    \feature{top}{3}{153..165}{bar[-50,50]:-50,-45,%
        -40,-30,-20,-10,0,10, 20, 30, 40, 45,50}{}
    \feature{top}{3}{167..186}{color:5,10,15,20,25,30,35,%
        40,45,50,55,60,65,70,75,80,85,90,95,100 [ColdHot]}{}
    \showlegend
\end{texshade}
```

hydropathy: discrimination between acidic and basic, polar uncharged and hydrophobic nonpolar residues

tinted

AQP1.PRO GLGIEIIGTLQLVLCVLATTDR.RRRDLGGSAPL 170
AQP2.PRO AVTVELFLTMQLVLCIFASTDE.RRGDNLGSPAL 162
AQP3.PRO GFFDQFIGTAALIVCVLAIVDPYNNPVPRGLEAF 186
AQP4.PRO GLLVELITTFQLVFTIFASCDS.KRTDVTGSVAL 191
AQP5.PRO
AMVVELILTFQLALCIFSSTDS.RRTSPVGSPAL
163

X acidic (-)
X basic (+)
X polar uncharged
X hydrophobic nonpolar

Code:

```
\begin{texshade}{AQPpro.MSF}
    \shadingmode[hydropathy]{functional}
    \feature{top}{1}{158..163}{brace}{tinted}
    \tintblock{1}{158..163}
    \setends{1}{138..170}
    \showlegend
\end{texshade}
```

structure: displays the potential localization within the tertiary structure of the protein
transmembrane domain 4 trans. dom. 5
G M MMM
${ }^{m}$
AQP1.PRO GLGIEIIGTLQLVLCVLATTDR.RRRDLGGSAPL 170
AQP2.PRO AVTVELFLTMQLVLCIFASTDE.RRGDNLGSPAL 162 AQP3.PRO GFFDQFIGTAALIVCVLAIVDPYNNPVPRGLEAF AQP4.PRO GLLVELIITFQLVFTIFASCDS.KRTDVTGSVAL 191 186

AQP5.PRO AMVVELILTFQLALCIFSSTDS.RRTSPVGSPAL 163
loop D

```
X external
X ambivalent
X internal
```

Code:

```
\begin{texshade}{AQPpro.MSF}
    \shadingmode[structure]{functional}
    \setends{1}{138..170}
    \feature{top}{1}{138..157}{box[Blue,Red] [0.5pt]: %
            $\alpha$-helix[Yellow]}{transmembrane domain 4}
    \feature{top}{1}{158..163}{translate[Blue]}{}
    \backtranslabel{oblique}
    \feature{bottom}{1}{158..163}{brace[Blue]}{loop D [Blue]}
    \feature{top}{1}{164..170}{o-> [Red]}{trans. dom. 5}
    \showlegend
\end{texshade}
```

chemical: residues are shaded due to chemical properties of their functional groups

| AQP1.PRO | GLGIEIIGTLQLVLCVLATTDR.RRRDLGGSAPL | 170 |
| :--- | :--- | :--- | :--- |
| AQP2.PRO | AVTVELFLTMQLVLCIFASTDE.RRGDNLGSPAL | 162 |
| AQP3.PRO | GFFDQFIGTAALIVCVLAIVDPYNNPVPRGLEAF | 186 |
| AQP4.PRO | GLLVELIITFQLVFTIFASCDS. KRTDVTGSVAL | 191 |
| AQP5.PRO | AMVVELILTFQLALCIFSSTDS. RRTSPVGSPAL | 163 |

```
X acidic (-)
X aliphatic
X aliphatic (small)
X amide
X aromatic
X basic (+)
hydroxyl
X imino
X sulfur
```

Code:

```
\begin{texshade}{AQPpro.MSF}
    \shadingmode[chemical]{functional}
    \setends{1}{138..170}
    \showlegend
\end{texshade}
```

With \shadeallresidues the threshold is ignored and all residues are shaded due to their group assignment. This is not identical to a threshold of 0% where only the majority group would be shaded. See the difference:

AQP1.PRO GLGIEIIGTLQLVLCVLATTDR.RRRDLGGSAPL 170 AQP2.PRO AVTVELFLTMQLVLCIFASTDE.RRGDNLGSPAL 162 AQP3.PRO GFFDQFIGTAALIVCVLAIVDPYNNPVPRGLEAF 186 AQP4.PRO GLLVELIITFQLVFTIFASCDS.KRTDVTGSVAL 191 AQP5.PRO AMVVELILTFQLALCIFSSTDS.RRTSPVGSPAL 163

Code:

```
\begin{texshade}{AQPpro.MSF}
    \shadingmode[chemical]{functional}
    \setends{1}{138..170}
    \shadeallresidues
\end{texshade}
```

rasmol: similar to [chemical] but with shading following the rasmol color scheme

AQP1.PRO GLGIEIIGTLQLVLCVLATTDR.RRRDLGGSAPL 170
AQP2.PRO AVTVELFLTMQLVLCIFASTDE.RRGDNLGSPAL 162
AQP3.PRO GFFDQFIGTAALIVCVLAIVDPYNNPVPRGLEAF 186 AQP4.PRO GLLVELIITFQLVFTIFASCDS.KRTDVTGSVAL 191 AQP5.PRO AMVVELILTFQLALCIFSSTDS.RRTSPVGSPAL 163

X Asp, Glu
X Arg, Lys, His
X Phe, Tyr, Trp
X Ala, Gly
Cys, Met
X Ser, Thr
X Asn, Gln
X Leu, Val, Ile
囚 Pro

Code:

```
\begin{texshade}{AQPpro.MSF}
    \shadingmode[rasmol]{functional}
    \setends{1}{138.. 170}
    \showruler{bottom}{1}
    \rulersteps{1}
    \namerulerpos{150}{site A[Red]}
    \namerulerpos{155}{site B[Green]}
    \shadeallresidues
    \showlegend
\end{texshade}
```

standard area: this shading displays the differences in the surface area of the different amino acid's sidechains

AQP1.PRO GLGIEIIGTLQLVLCVLATTDR.RRRDLGGSAPL 170 AQP2.PRO AVTVELFLTMQLVLCIFASTDE.RRGDNLGSPAL 162 AQP3.PRO GFFDQFIGTAALIVCVLAIVDPYNNPVPRGLEAF 186 AQP4.PRO GLLVELIITFQLVFTIFASCDS.KRTDVTGSVAL 191 AQP5.PRO AMVVELILTFQLALCIFSSTDS.RRTSPVGSPAL 163

Code:

```
\begin{texshade}{AQPpro.MSF}
    \shadingmode[standard area]{functional}
    \setends{1}{138..170}
    \showlegend
    \shadeallresidues
\end{texshade}
```

accessible area: here, the surface area which can be accessed by solvent molecules is used as a basis for shading; low accessibility means hydrophobic (i.e. strongly buried residues), whereas highly accessible sidechains are hydrophilic (compare to hydropathy and structure)

AQP1.PRO GLGIEIIGTLQLVLCVLATTDR.RRRDLGGSAPL 170 AQP2.PRO AVTVELFLTMQLVLCIFASTDE.RRGDNLGSPAL 162 AQP3.PRO GFFDQFIGTAALIVCVLAIVDPYNNPVPRGLEAF 186
AQP4.PRO GLLVELIITFQLVFTIFASCDS.KRTDVTGSVAL 191
AQP5.PRO AMVVELILTFQLALCIFSSTDS.RRTSPVGSPAL 163

| X | $13.9(\mathrm{C}) ;$ Accessible sidechain area $\left(\AA^{2}\right)$ |
| :--- | ---: | :--- |
| X | $23.0(\mathrm{I}) ; 23.5(\mathrm{~V}) ; 25.2(\mathrm{G})$ |
| X | $28.7(\mathrm{~F}) ; 29.0(\mathrm{~L}) ; 30.5(\mathrm{M}) ; 31.5(\mathrm{~A})$ |
| X | $41.7(\mathrm{~W}) ; 44.2(\mathrm{~S}) ; 46.0(\mathrm{~T}) ; 46.7(\mathrm{H})$ |
| X | $53.7(\mathrm{P})$ |
| X | $59.1(\mathrm{Y}) ; 60.9(\mathrm{D}) ; 62.2(\mathrm{~N})$ |
| X | $72.3(\mathrm{E}) ; 74.0(\mathrm{Q})$ |
| X | $93.8(\mathrm{R})$ |
| X | $110.3(\mathrm{~K})$ |

Code:

```
\begin{texshade}{AQPpro.MSF}
    \shadingmode[accessible area]{functional}
    \setends{1}{138..170}
    \showlegend
    \feature{top}{1}{138..157,164..170}{helix}{membr.}
    \feature{top}{1}{158..163}{---}{loop}
    \featurerule{1mm}
    \shadeallresidues
\end{texshade}
```


1.6 Bar graphs and color scales

Amino acid properties, such as hydrophobicity, molecular weight, or charge can be shown as bar graphs or color scales along the alignment. Further, the degree of protein sequence conservation can be indicated. As an example, in the following aquaporin alignment plots of residue conservation (bars, top), are shown as well as properties of the AQP1 sequence: charge (scale, top), molecular weight are shown (scale, bottom), and hydrophobicity (bars, bottom).

AQP1.PRO GLGIEITGTLQLVLCVLATTDR.RRRDLGGSAPL

Code:

```
\begin{texshade}{AQPpro.MSF}
    \setends{1}{138..170}
    \feature{ttop}{1}{138..170}{bar:conservation}{}
    \ttopspace{-\baselineskip}
    \feature{top}{1}{138..170}{color:charge}{}
    \feature{bottom}{1}{138..170}{color:molweight[ColdHot]}{}
    \bbottomspace{-\baselineskip}
    \feature{bbottom}{1}{138..170}{bar:hydrophobicity[Red,Gray10]}{}
    \hideconsensus
\end{texshade}
```


1.7 Secondary structures

Predicted protein secondary structures in the DSSP, STRIDE PHD or HMMTOP file format can be included and displayed in the alignment. As an example, the following few commands show an aquaporin alignment with the PHD topology data for aquaporin type 1 (top sequence).

```
\begin{texshade}{AQPpro.MSF}
    \shadingmode[allmatchspecial] {similar}
    \includePHDtopo{1}{AQP1.phd}
\end{texshade}
```

Abbr.: int. - internal; ext. - external; TM - transmembrane domain

ext. B TM1
AQP1.PRO AQP2. PRO AQP3.PRO AQP4.PRO AQP5.PRO consensus

ext. B
AQP1.PRO
AQP2.PRO
AQP3.PRO
AQP4.PRO AQP5.PRO consensus

ext. D
AQP1.PRO
TM3
GLLLSCQISILRAVMYIIAQCVGAIVASAILSGI.
ACLVGCHVSFLRAAFYVAAQLLGAVAGAAILHEI.
AMCFLAREPWIKLPIYTLAQTLGAFLGAGIVFGIY
AMVCTRKISIAKSVFYITAQCLGAIIGAGILYLV.
ALLIGNQISLLRAVFYVAAQLVGAIAGAGILYWL.
$* * * * * * * * * * *!*!!*!!* * * *!* * *$115
AQP2.PROAQP3.PRO

AQP4.PRO
AQP5.PRO
107
consensus116136 108
ext. D

	TM4	
AQP1.PRO	TSSLLENSLGRTDLARGVNSGQ	137
AQP2.PRO	TPVEIRGDLAVNALHNNATAGQ	129
AQP3.PRO	YDAIWAFAGNELVVSGPNGTAGIFATYPSGHLDMV	151
AQP4.PRO	. TPPSVvGGLGVTTVHGNLTAGH	158
AQP5.PRO	APLNARGNLAVNALNNNTTPGK	130

AQP1.PRO
AQP2. PRO
AQP3.PRO
AQP4.PRO
AQP5.PRO
consensus

ext. F
AQP1.PRO
AQP2.PRO
AQP3.PRO
AQP4.PRO
AQP5.PRO
consensus

TM5	
AIGLSVALGHLLAIDYTGCGINPARSFGSAVLTR.	204
SIGFSVTLGHLLGIYFTGCSMNPARSLAPAVVTG.	196
TVGLVVLVIGTSMGFNSGYAVNPARDFGPRLFTAL	221
AIGFSVAIGHLFAINYTGASMNPARSFGPAVIMG.	225
SIGLSVTLGHLVGIYFTGCSMNPARSFGPAVVMN.	197
$* *!* *!* * * * * * * * *!* *!!!+* * * * * * *$	

ext. F
AQP1.PRO
AQP2.PRO
AQP3.PRO
AQP4.PRO
AQP5.PRO
consensus

AQP1.PRO	ILAPRSSDFTDRMK	VWTS	247
AQP2.PRO	LLFPSAKSLQER	AVLKG. LEPDTDWEEREVRR	253
AQP3.PRO	QL.		256
AQP4.PRO	V.FCPDVELKRRIKE	KEAFSKAAQQTKGSYMEVEDNR	284
AQP5.PRO	LLFPSSLSLHDR	AVVKGTYEPEEDWEDHREER	256
consensus	**** * ***	**	

 int. G

AQP1.PRO	..	269
AQP2.PRO	. SKA	271
AQP3.PRD	..QI	285
AQP4.PRO	LSSV	323
AQP5.PRD	$\cdots \cdots$	265
consensus		

1.8 Sequence fingerprints

To gain a quick overview of sequence similarities or properties the \fingerprint command has been implemented. It can depict the complete sequence in one single line. The residues are presented as colored vertical lines. The implementation of this kind of output was inspired by a publication by Kai-Uwe Fröhlich [6].


```
non conserved
similar
conserved
all match
```

Code:

```
\begin{texshade}{AQPpro.MSF}
    \shadingmode[allmatchspecial]{similar}
    \shadingcolors{grays}
    \fingerprint{360}
    \showlegend
    \feature{top}{1}{13..36,51..68,94..112,138..156,%
                            165..185,211..232}{,- ,}{TM}
\end{texshade}
```

The higher the similarity the darker the vertical lines. In this overview it becomes obvious that the transmembrane regions of the aquaporin isoforms are most conserved.


```
acidic (-)
basic (+)
```

Code:

```
\begin{texshade}{AQPpro.MSF}
    \shadingmode[charge] {functional}
    \shadeallresidues
    \fingerprint{360}
    \gapchar{rule}
    \showlegend
\end{texshade}
```


1.9 Sequence logos

Sequence logos represent the information content of the aligned sequences at a position in bit (max. 2 bit for DNA, i. e. $\log _{2} 4$, and 4.322 bit for proteins, i.e. $\log _{2} 20$) and the relative frequency of a base or amino acid at this position [7]. Thus, more information is contained in logos than in a standard consensus sequence. The example below shows a DNA sequence alignment with the logo on the top.
It must be remarked that a logo from only five sequences does not produce meaningful results - it rather illustrates the technique.
logo

AQP1nuc.SEQ CCTGGGCATTGAGATCATTGGCACCCTGCA 443
AQP2nuc.SEQ TGTGACTGTAGAGCTCTTCCTGACCATGCA 419
AQP3nuc. SEQ .CCAATGGCACAGCTGGTATC..TTTGCCA 424
AQP4nuc.SEQ GCTCCTGGTGGAGCTAATAATCACTTTCCA 506 AQP5nuc. SEQ CATGGTGGTGGAGTTAATCTTGACTTTCCA

Code:

```
\begin{texshade}{AQPDNA.MSF}
    \setends{1}{414..443}
    \showsequencelogo{top}
\end{texshade}
```

Next, only the logo of a protein alignment is displayed plus the degree of sequence conservation as a color scale in the consensus line. Note, that the full functionality of the feature lines remains.

Code:

```
\begin{texshade}{AQPpro.MSF}
    \setends{AQP3.PRO}{203.. 235}
    \showsequencelogo{top} \showlogoscale{leftright}
    \hideseqs
    \residuesperline*{33}
    \defconsensus{{$\bullet$}}{{$\bullet$}}{{$\bullet$}}
    \showconsensus[ColdHot] {bottom}
    \nameconsensus{conservation} \namessf\namessl
    \showruler{bottom}{AQP3.PRO} \rulersteps{1}
    \feature{top}{AQP3.PRO}{208..210}{---}{NPA}
    \feature{top}{AQP3.PRO}{211..219}{helix}{}
    \feature{top}{AQP3.PRO}{220..232}{brace}{loop E}
    \feature{top}{AQP3.PRO}{233..235}{helix}{TM6}
    \feature{bottom}{AQP3.PRO}{203..235}{brace}{1-step numbering}
\end{texshade}
```

The same logo is shown below but with frequence correction turned on (\dofrequencycorrection), see p.46. This takes into account the difference between the amino acid distribution in the alignment and the equal distribution of 5% for each residue.

1.10 Subfamily logos

The following output is derived from the calculation of a subfamily logo [14]. Such logos display relevant deviations of a subfamily compared to the remaining set of sequences. Here, typical residues of AQP3 are shown (upright) which deviate from the remaining four
aquaporins of this alignment (upside-down). The output can be directly compared to the sequence logo above, which displays the same section of the alignment. Note, that five sequence are far too few to obtain meaningful results with this method. This is just to illustrate the approach.

AQP3
others

Code:

```
\begin{texshade}{AQPpro.MSF}
    \setends{AQP3.PRO}{203..235}
    \residuesperline*{33}
    \setsubfamily{3}
    \showsubfamilylogo{top} \showlogoscale{leftright}
    \namesubfamilylogo[others]{AQP3}
    \namessf \namessl
    \showruler{bottom}{AQP3.PRO} \rulersteps{1}
    \hideseqs
    \hideconsensus
    \dofrequencycorrection
\end{texshade}
```


1.11 Customization of the alignment output

Extensive possibilities are given to the user to customize the final output of an alignment. Thus, all parameters defining the appearance of letters can be changed individually for sequence residues, names and numbering or the describing feature texts. Additional manual shading can be applied to any region or block of residues. Sequences are easily re-ordered, separated, hidden or blanked out without recalculation of the entire alignment; sections of the alignment can also be
shown. Numbering and rulers can be displayed and set to any value. A powerful tool is the \feature command which allows one to label stretches of residues with bars, arrows, braces or any fill character and describing text. Legends are set automatically if desired, but user commands are also provided to build individual legends.

2 Format of alignment input files

TEXshade can handle two common alignment input formats, i.e. the MSF format (multiple sequence format) and the ALN format (alignment format). The MSF format is used by PILEUP of the Unix GCG sequence analysis package ${ }^{17}$. Files in the ALN format are produced by CLUSTAL which is available for free for Unix, DOS and Macintosh. Further, upon request, the FASTA format is supported since version 1.6. In addition to the mentioned software many alignment programs have export filters for the MSF, ALN or FASTA format, e. g. MACAW produces ALN files. If you are not sure whether your favorite sequence aligner produces one of the required formats compare its output to the following examples. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade determines the format from the internal file structure, thus extensions like MSF, ALN or FASTA are not required. If you can choose the alignment format MSF is recommended, because this format gives information about the sequence type, i.e. peptide or nucleotide sequences, and length (for the correct setting of gaps at the sequence end).

2.1 The MSF file format

Files of this type are divided into a header section and the multiple sequence alignment. The header may contain the following components:

File Type: (optional) The first header line reads for nucleic acids alignments !!NA_MULTIPLE_ALIGNMENT 1.0 and for amino acid sequences !!AA_MULTIPLE_ALIGNMENT 1.0 (all uppercase).

Description: (optional) Informative text describing what is in the file.
Dividing line: (required!) Must include the following attributes:
MSF: Displays the number of bases or residues in the multiple sequence alignment.

Type: Displays the sequence type, ' P ' for a peptide and ' N ' for a nucleotide alignment.

Checksum: Displays an integer value that characterizes the contents of the file.

[^6].. The two periods act as a divider between the descriptive information and the following sequence information.

Name/Weight: (required!) Must include the name of each sequence included in the alignment, as well as its length, checksum and weight.

Two slashes (//): (required!) This separating line divides the name/weight information from the sequence alignment

The alignment section consists of sequence blocks divided by an empty line. Each sequence line starts out with the sequence name. An example file is shown here:

```
AQP.MSF MSF: 87 Type: P May 1st, 1998 Check: 2586 ..
Name: AQP1.PRO Len: 66 Check: 1367 Weight: 1.00
Name: AQP2.PRO Len: 58 Check: 2176 Weight: 1.00
Name: AQP3.PRO Len: 83 Check: 1893 Weight: 1.00
Name: AQP4.PRO Len: 63 Check: 3737 Weight: 1.00
Name: AQP5.PRO Len: 59 Check: 3413 Weight: 1.00
//
    145
AQP1.PRO MAS............................EIKKKLFWRAVVAEFLAM
AQP2.PRO MW............................... . ELRSIAFSRAVLAEFLAT
AQP3.PRO M.........NRCG.....EMLHIRYR.......LLRQALAECLGT
AQP4.PRO MSDGAAARRWGKCGPPCSRESIMVAFKGVWTQAFWKAVTAEFLAM
AQP5.PRO MK.............................. KEVCSLAFFKKVFAEFLAT
    4 5
                            8 7
AQP1.PRO TLFVFISIGSALGFNYPLERNQTLVQDNVKVSLAFGLSIATL
AQP2.PRO LLFVFFGLGSALQWA...SS....PPSVLQIAVAFGLGIGIL
AQP3.PRO LILVMFGCGSVAQVVLSRGTHGGF . . . .LTINLAFGFAVTLA
AQP4.PRO LIFVLLSVGSTINWG...GSENPLPVDMVLISLCFGLSIATM
AQP5.PRO LIFVFFGLGSALKWP...SA....LPTILQISIAFGLAIGTL
```

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade extracts only the information from the file it really needs. So, do not mind all the checksums listed in the file- $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade does not either. The same is true for Weight. Required are the string MSF : for the identification of the file format and Type: for the determination of the sequence type (both in the dividing line), further all Name: definitions and finally //. The MSF format allows one to comment out sequences. This is done by putting an exclamation point directly infront of the respective Name. These sequences are neither
displayed nor used for the calculation of the consensus. This works for $T_{E} X$ shade, too. To comment out sequences without changing the input file use the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade command \backslash killseq\{〈seqref $\left.\rangle\right\}$ (4.5.2).

```
AQP.MSF MSF: }87\mathrm{ Type: P May 1st, 1998 Check: 2586 ..
Name: AQP1.PRO Len: 66 Check: 1367 Weight: 1.00
!Name: AQP2.PRO Len: 58 Check: 2176 Weight: 1.00
!Name: AQP3.PRO Len: 83 Check: 1893 Weight: 1.00
Name: AQP4.PRO Len: 63 Check: 3737 Weight: 1.00
Name: AQP5.PRO Len: 59 Check: 3413 Weight: 1.00
//
    1
                            4 5
AQP1.PRO MAS............................ . EIKKKLFWRAVVAEFLAM
AQP2.PRO MW............................... . ELRSIAFSRAVLAEFLAT
AQP3.PRO M..........NRCG..... . EMLHIRYR. . . . . .LLRQALAECLGT
AQP4.PRO MSDGAAARRWGKCGPPCSRESIMVAFKGVWTQAFWKAVTAEFLAM
```



```
    4 5
                                    8 7
AQP1.PRO TLFVFISIGSALGFNYPLERNQTLVQDNVKVSLAFGLSIATL
AQP2.PRO LLFVFFGLGSALQWA...SS....PPSVLQIAVAFGLGIGIL
AQP3.PRO LILVMFGCGSVAQVVLSRGTHGGF . . . .LTINLAFGFAVTLA
AQP4.PRO LIFVLLSVGSTINWG...GSENPLPVDMVLISLCFGLSIATM
AQP5.PRO LIFVFFGLGSALKWP...SA....LPTILQISIAFGLAIGTL
```

The sequence lengths given after Len: are not used by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade. Due to the fact that most alignment programms calculate the sequence length by summing up residues and additionally gaps which is not really correct. In order to have the sequence break right after the last residue without printing further gap symbols T_{E} Xshade counts the number of residues by itself. You can also use the command \seqlength in the $T_{E} X$ shade environment to set the values manually if you do not trust a machine.

2.2 The ALN file format

ALN files are quite similar to the above described MSF files. They simply lack a defined header section. Nevertheless, describing text is allowed before the alignment part. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade determines the number of sequences and their names from the last sequence block-so, no further text lines are allowed after this block! Due to a lacking
declaration in the file the sequence type has to be set in the texshade environment by \seqtype $\{\langle$ type $\rangle\}$ with ' P ' for peptide and ' N ' for nucleotide sequences; for the example below: \seqtype\{P\}. If no \seqtype command is used $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade assumes a nucleotide sequence.

The minimal contents of an ALN file are shown below; this is fully sufficient. Many sequence alignment programs can produce such an output. Have a look at seqpup by Don Gilbert if you need a comprehensive conversion program ${ }^{18}$.

[^7]```
AQP1.PRO MAS..........................EIKKKLFWRAVVAEFLAM
AQP2.PRO MW...........................ELRSIAFSRAVLAEFLAT
AQP3.PRO MNRCGEMLHIRYR LLRQALAECLGT
AQP4.PRO MSDGAAARRWGKCGPPCSRESIMVAFKGVWTQAFWKAVTAEFLAM
AQP5.PRO MK......................... NEVCSLAFFKAVFAEFLAT
AQP1.PRO TLFVFISIGSALGFNYPLERNQTLVQDNVKVSLAFGLSIATL
AQP2.PRO LLFVFFGLGSALQWA . . .SSPPSVLQIAVAFGLGIGIL
AQP3.PRO LILVMFGCGSVAQVVLSRGTHGGFLTINLAFGFAVTLA
AQP4.PRO LIFVLLSVGSTINWG . . .GSENPLPVDMVLISLCFGLSIATM
AQP5.PRO LIFVFFGLGSALKWP...SA....LPTILQISIAFGLAIGTL
```


### 2.3 The FASTA file format

In FASTA files each sequence is led by a single description line starting with a ' $>$ '. TEXshade uses the first word delimited by the leading ' $>$ ' and a space as the sequence name. If no descriptive text is present TEXShade generates a sequence name consisting of 'seq' plus a consecutive number. The lines following the description line contain the sequence.

```
>AQP1.PRO
MAS...........................EIKKKLFWRAVVAEFLAM
TLFVFISIGSALGFNYPLERNQTLVQDNVKVSLAFGLSIATL
>AQP2.PRO
MW.............................ELRSIAFSRAVLAEFLAT
LLFVFFGLGSALQWA...SS.....PPSVLQIAVAFGLGIGIL
>AQP3.PRO
M.NRCG......EMLHIRYR.......LLRQALAECLGT
LILVMFGCGSVAQVVLSRGTHGGF....LTINLAFGFAVTLA
>AQP4.PRO
MSDGAAARRWGKCGPPCSRESIMVAFKGVWTQAFWKAVTAEFLAM
LIFVLLSVGSTINWG...GSENPLPVDMVLISLCFGLSIATM
>AQP5.PRO
MK..CVCLAFFKAVFAEFLAT
LIFVFFGLGSALKWP...SA.....LPTILQISIAFGLAIGTL
```


## 3 Use of a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade parameter file

Using predefined parameter files for repeatedly occuring situations can save a lot of typing and makes the output throughout the publication or presentation more consistent．Further，such files are an easy way to exchange self－defined shading modes or new color schemes（i．e．for a satisfying grayscale output）with other users．If you have created a parameter file，which you think is of interest for others，please submit it to me ${ }^{19}$ as an e－mail attachment together with a short description． I will take care of those files and post them－with a reference to the author－together with the next $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade distribution to make them available for all interested users．
No special file format is required for parameter files． $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade simply calls the file using the \input command right after resetting all pa－ rameters to default．An example parameter file is present containing the standard parameters of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade called texshade．def．This file can be changed freely and can be used as a template for the creation of personal parameter files．
Five steps are executed by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade when processing the texshade environment：
\begin\｛texshade\}[〈parameterfile $\rangle$ ］\｛〈alignmentfile $\rangle\}$
1．Analysis of the 〈alignmentfile〉；determination of the number of sequences and sequence names

2．Setting parameters to default
3．Setting parameters to the definitions of the $\langle$ parameterfile $\rangle$ ，if existent

4．Execution of further $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shatle commands within the eviron－ ment，if existent
\end\｛texshade\}
5．Loading and setting the alignment on a line by line basis

[^8]
## 4 texshade user commands

The (\mathrm{T}_{\mathrm{E}}\mathrm{X}\)shadepackagemustbeloadedbythe\usepackagecommandinthedocumentheadersection．\usepackage［〈option〉］\｛texshade\}Then，thetexshadeenvironmentisreadytouseasdescribedin1．4．Seealsosection3foradescriptionoftheoptionalparameterfile．Allothercommandsprovidedby$\mathrm{T}_{\mathrm{E}}$Xshade（except$\backslash$molweight，\charge［4．10］and\shadebox［4．7］）mustbeusedwithinthetexshadeenvi－ronment．undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

## 4．1 Using predefined shading modes

If no \shadingmode command is given in the texshade environment the default shading mode（identical，see 1．5．1）is active．For the se－ lection of one of the other predefined shading modes the following command is provided．

```
\shadingmode[\langleoption\rangle]{\langlemode\rangle}
```

You can choose from four shading modes and declare one option which depends on the selected mode．

1．\shadingmode［〈allmatchspecial $\rangle$ ］\｛identical\}
There is not much to explain here（see 1．5．1）．Use the option allmatchspecial to shade positions with a special color where all residues are identical．\allmatchspecial can also be used as a command．As both，option or command allmatchspecial is only active in the identical and similar shading modes．
One can choose from five predefined shading color schemes with the command \shadingcolors\｛〈scheme $\rangle\}$ ．The sets are named ＇blues＇（used in the example，1．5．1），＇reds＇，＇greens＇，＇grays＇and ＇black＇．Default is \shadingcolors\｛blues\}. Further, the colors for the non matching，the conserved and all matching residues can be set individually plus the letter case（lower or upper）or any character can be chosen：

```
\nomatchresidues{\langleres.col.\rangle}{\langleshad.col..}\rangle}{\langle\mathrm{ case }\rangle}{\langle\mathrm{ style }\rangle
\conservedresidues{\langleres.col..}}{{\langle\mathrm{ shad.col. }\rangle}{\langle\mathrm{ case }\rangle}{\langlestyle\rangle
```

\allmatchresidues $\{\langle$ res．col．$\rangle\}\{\langle$ shad．col．$\rangle\}\{\langle$ case $\rangle\}\{\langle$ style $\rangle\}$
For how to handle colors for the foreground $\langle$ res．col．〉 and the background $\langle$ shad．col．$\rangle$ see section 5．The third parameter 〈case〉 tells $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade to print the corresponding residue as a lowercase or an uppercase letter or even to print any other character．Fi－ nally，the $\langle$ style $\rangle$ parameter tells $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade which shape to use for the letters．Use one of the following styles for $\langle$ style $\rangle$ ．

| $\langle$ style $\rangle$ | effect |
| :---: | :--- |
| bf | bold face series |
| md | normal series |
| up | upright shape（normal shape） |
| it | italics shape |
| sl | slanted shape |
| rm | modern roman family |
| sf | sans serif family |
| tt | typewriter family |

In order to change only some of the parameters it is sufficient to declare these and use empty braces for the others．Examples：
\conservedresidues\｛White\}\{Blue\} \{upper\} \{bf\}: the conserved residues are printed as bold face white uppercase letters on blue．
\nomatchresidues\｛\}\{\}\{\{\$\bullet\$\}\}\{\}: instead of the non matching residues a＇$\bullet$＇is printed．The colors and style are not changed．Note the double curly braces which make TEXshade interpret this complex symbol description as one single charac－ ter．

2．\shadingmode［〈allmatchspecial $\rangle$ ］\｛similar\}
See 1．5．2 for an example output and an explanation of the shading．In addition to the described commands for chang－ ing shading colors this shading mode provides the command \similarresidues．Use it in analogy to the commands above．
How does $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade know which residues are considered to be similar？These definitions are set by two command couples，i．e．
\pepsims,\pepgroups for peptides and \DNAsims,\DNAgroups for nucleotides. With \pepsims and \DNAsims residues are defined which are similar to the consensus residue. Examples:
\pepsims\{S\}\{TA\} If a serine is the consensus residue then all threonins and alanines at this position are shaded in the color for similars. This definition does not imply that threonine and alanine are similar to each other! This becomes obvious when you inspect the next definition:
\pepsims\{T\}\{S\} Serine but not alanine is declared to be similar to threonine.

What happens if there is no consensus residue? How does $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade decide if a group of similars is greater than the threshold? Therefore groups are pre-defined:
\pepgroups\{FYW, ILVM, RK, DE, GA , ST, NQ\} This command allows one to set up to nine groups of similars, separated by commas. Each residue can belong to only one group. If one residue is assigned to several groups only the last assignment is carried out.
\DNAgroups\{GAR, CTY\} This command is used in analogy to the amino acid groups. Here, two ambiguity codes (' $R$ ' for purine base and ' Y ' for pyrimidine base) are assigned in addition.
Residues which do not appear in any of the four commands are considered not to belong to a group. The default settings for similars are listed below:

```
\pepgroups{FYW,ILVM,RK,DE,GA,ST,NQ}
\pepsims{F}{YW} % Y and W are similar to F
\pepsims{Y}{WF} % W and F are similar to Y
\pepsims{W}{YF} % Y and F are similar to W
\pepsims{I}{LVM} % L, V and M are similar to I
\pepsims{L}{VMI} % V, M and I are similar to L
\pepsims{V}{MIL} % M, I and L are similar to V
\pepsims{R}{KH} % K and H are similar to R
\pepsims{K}{HR} % H and R are similar to K
\pepsims{H}{RK} % R and K are similar to H
```

```
\pepsims{A}{GS} % G and S are similar to A
\pepsims{G}{A} % A (but not S) is similar to G
\pepsims{S}{TA} % T and A are similar to S
\pepsims{T}{S} % S (but not A) is similar to T
\pepsims{D}{EN} % E and N (but not Q) are similar to D
\pepsims{E}{DQ} % D and Q (but not N) are similar to E
\pepsims{N}{QD} % Q and D (but not E) are similar to N
\pepsims{Q}{NE} % N and E (but not D) are similar to Q
```

\DNAgroups\{GAR, CTY\}
\DNAsims\{A\}\{GR\} \% $G$ and $R$ are similar to $A$
\DNAsims\{G\}\{AR\} \% $A$ and $R$ are similar to $G$
\DNAsims\{R\}\{AG\} \% A and G are similar to $R$
\DNAsims\{C\}\{TY\} \% T and Y are similar to C
\DNAsims\{T\}\{CY\} \% C and Y are similar to $T$
\DNAsims $\{\mathrm{Y}\}\{\mathrm{CT}\} \% \mathrm{C}$ and T are similar to Y
3. \shadingmode [〈seqref $\rangle]$ \{diverse\}
1.5.3 depicts an example alignment. Choose the number or the name of the sequence $\langle$ seqref $\rangle$ which will be treated as the consensus and to which the other sequences are compared. If no $\langle$ seqref $\rangle$ is declared the first sequence is set as consensus ( $\langle$ seqref $\rangle$ $=1$ ).

Standard definitions for diverse mode are:

```
\nomatchresidues{Black}{White}{lower}{up}
\similarresidues{Black}{White}{lower}{up}
\conservedresidues{Black}{White}{{.}}{up}
\allmatchresidues{Black}{White}{{.}}{up}
\gapchar{-}
```

After calling \shadingmode\{diverse\} these commands can be used to redefine the diverse mode settings (mind the double curly braces around the dot-symbol!).
4. \shadingmode[〈type〉]\{functional\} There are six different functional shading modes available for peptide sequences; nucleotide sequences can not be shaded due to functional aspects. Four of TEXshade's functional modes correspond to the four 'alphabets' employed by Karlin and Ghandour for peptide alignments [2]. Additional 'alphabets' to the standard 20-letter array of amino acids can highlight peptide similarities which were otherwise not visible. For the 'alphabet' definitions see below:

- $\langle$ type $\rangle=$ charge Acidic (D, E) and basic (H, K, R).
- $\langle$ type $\rangle=$ hydropathy Acidic and basic (as above), polar uncharged (C, G, N, Q, S, T, Y) and hydrophobic nonpolar (A, F, I, L, M, P, V, W), see also Kyte and Doolittle [3].
- $\langle$ type $\rangle=$ structure $\operatorname{External}(\mathrm{D}, \mathrm{E}, \mathrm{H}, \mathrm{K}, \mathrm{N}, \mathrm{Q}, \mathrm{R})$, internal (F, I, L, M, V) and ambivalent (A, C, G, P, S, T, $\mathrm{W}, \mathrm{Y}$ ).
- $\langle$ type $\rangle=$ chemical Acidic (D, E), aliphatic (I, L, V), aliphatic (small) (A, G), amide (N, Q), aromatic (F, W, Y), basic ( $\mathrm{H}, \mathrm{K}, \mathrm{R}$ ), hydroxyl ( $\mathrm{S}, \mathrm{T}$ ), imino ( P ) and sulfur (C, M).
- $\langle$ type $\rangle=\operatorname{rasmol}(\mathrm{D}, \mathrm{E}),(\mathrm{K}, \mathrm{R}, \mathrm{H}),(\mathrm{F}, \mathrm{Y}, \mathrm{W}),(\mathrm{A}, \mathrm{G})$, (C, M), (S, T), (N, Q), (I, L, V), (P).

The two modes described below highlight sidechain sizes and hydrophobicity, respectively, according to Rose et al. [4,5]. Standard area stands for the surface area of the residue in $\AA^{2}$, i.e. it is a measure for the size of a residue's sidechain. The accessible area value (also in $\AA^{2}$ ) gives information about the size of the surface area which is accessible by solvent molecules within the folded protein. A very small area means that the residue is strongly buried and is thus very hydrophobic. Hydrophilic residues in turn possess large accessible areas due to their prefered location at the protein surface. Therefore, this kind of shading provides another method, in addition to hydropathy and structure, for the visualization of structural protein properties.

- $\langle$ type $\rangle=$ standard area for the area values see legend of the alignment in 1.5.4
－$\langle$ type $\rangle=$ accessible area for values see 1．5．4
If no $\langle$ type $\rangle$ or an unknown $\langle$ type $\rangle$ is designated as option all functional groups and shading colors are cleared．This is also achieved by the command \clearfuncgroups．With all groups cleared one can start to build new shading modes from scratch． How to do this is explained in the next section．
In order to exchange the colors but to keep the group defini－ tions and descriptions the command $\backslash$ funcshadingstyle can be employed．Usage：

$$
\begin{array}{r}
\backslash \text { funcshadingstyle\{〈residue }\rangle\}\{\langle\text { res.col. }\rangle\}\{\langle\text { shad.col. }\rangle\} \\
\\
\{\langle\text { case }\rangle\}\{\langle\text { style }\rangle\}
\end{array}
$$

$\langle r e s i d u e\rangle$ is one representative of the whole amino acid group． The colors which are declared by the next four parameters are used for all residues in this group．〈case〉 and $\langle$ style $\rangle$ are as described for example in \nomatchresidues．

## 4．2 Creating new functional shading modes

The grouping of amino acids due to other properties can make sense as suggested by Karlin and Ghandour［2］，e．g．physical proper－ ties（molecular weight，shape），kinetic properties（reaction velocity， Michaelis－Menton constant），or structure（ $\alpha$－helices，$\beta$－sheets，turns）． New amino acid groups are defined with the \funcgroup command． This command needs six parameters：

$$
\begin{array}{r}
\backslash \text { funcgroup }\{\langle\text { descr }\rangle\}\{\langle\text { residues }\rangle\}\{\langle\text { res.col. }\rangle\}\{\langle\text { shad.col. }\rangle\} \\
\{\langle\text { case }\rangle\}\{\langle\text { style }\rangle\}
\end{array}
$$

$\langle$ descr $\rangle$ contains descriptive text which is displayed in the legend．The second parameter $\langle$ residues $\rangle$ holds the amino acids to be grouped．The colors for the foreground and background are set with the following two parameters，the case and style is declared by the last parameters． The example below defines a funcional group named＇acidic（ - ＇）con－ taining the amino acids aspartic and glutamic acid with white letters on a red background：

```
\funcgroup{acidic ($-$)}{DE}{White}{Red}{upper}{up}
```

For the usage of colors see section 5．Up to nine individual groups can be defined．New groups are simply added to the already ex－ isting groups，i．e．if an extension of the group definitions of an existing shading mode is desired there is no need to clear these groups und re－define them again．Just add the new groups with the \funcgroup command．To create completely new modes use the com－ mand \shadingmode\｛functional\} without an option before setting the new groups．The new definitions are active only in the functional shading mode－so be sure to have it switched on before setting the new groups．Remember，\shadingmode\｛functional\} without an optional parameter clears all groups defined before，see above．The following example shows the definitions needed to produce an output which is identical to the functional mode＇charge＇：

```
\begin{texshade}{\langlealignmentfile\}
 \shadingmode{functional}
 \funcgroup{acidic ($-$)}{DE}{White}{Red}{upper}{up}
 \funcgroup{basic ($+$)}{HKR}{White}{Blue}{upper}{up}
\end{texshade}
```


## 4．3 Appearance of the consensus line

An important parameter for the calculation of the consensus is the threshold percentage．Default setting is $50 \%$ ，i．e．to become the consensus residue more than half of the residues at this posi－ tion must be identical or similar，depending on the shading mode． Any percentage between 0 and 100 is allowed and can be set with \threshold\｛〈percentage〉\}, e. g. \threshold\{50\}.
Another possibility is to set one sequence of the alignment as con－ sensus and compare the other sequences to this one．Therefore，the command \constosingleseq\｛〈seqref $\rangle\}$ is provided．The $\langle$ seqref $\rangle$ se－ lects the sequence to be used as consensus（numbering according to the appearance in the alignment file；top sequence is number 1 ，or use the sequence name）．Nevertheless，the threshold percentage is also taken into account，i．e．with a threshold of $50 \%$ half of the sequences must be identical or similar compared to the specified consensus sequence in order to be shaded．With \constoallseqs the consensus is calcu－ lated considering all sequences（the case described in the paragraph above）．

Consensus lines are displayed either on the top or at the bottom of the alignment by calling
\showconsensus［〈color／scale〉［，$\langle$ color $/$ scale $\rangle]]\{\langle$ position $\rangle\}$
with $\langle$ scale $\rangle$ Gray，BlueRed，RedBlue，GreenRed，RedGreen，ColdHot （recommended）or HotCold and 〈position〉 top or bottom．
The first color defines the foreground，i．e．the letters，the second color－if specified－defines the background．If a color scale is named the consensus will be shaded according to the level of sequence conser－ vation．For an example see page 14．You can find more information on color scales on page 61．These scales can be exported as a Pymol［8］ script by $\backslash$ exportconsensus $[\langle$ filename $\rangle]\{\langle$ seqref $\rangle\}$ ．If no $\langle$ filename $\rangle$ is specified export．txt will be used．The generated file can be opened in Pymol in order to shade a 3D model of the sequence $\langle$ seqref $\rangle$ ．
To hide the consensus use \hideconsensus．The consensus line is named＇consensus＇in english texts，＇consenso＇in spanish or＇Konsen－ sus＇if the german．sty is used．With \nameconsensus $\{\langle n a m e\rangle\}$ any name can be set．
You can tell $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade which symbols or letters to use in the consensus line for different matching qualities by
\defconsensus $\{\langle$ symbol1 $\rangle\}\{\langle$ symbol2 $\rangle\}\{\langle$ symbol3 $\rangle\}$ ．
The following parameters are allowed for symobols 1－3：
1．$\langle$ symbol1 $\rangle=$ no match symbol（if below threshold）
－any character or letter
－\｛\} (empty braces) for blank space
2．$\langle$ symbol2 $\rangle=$ conserved symbol（if threshold is exceeded）
－upper（prints the consensus residue in uppercase）
－lower（prints the consensus residue in lowercase）
－any character or letter
－\｛\} (empty braces) for blank space
3．$\langle$ symbol 3$\rangle=$ all match symbol（if all residues match and \allmatchspecial is active）
－see $\langle$ symbol2 $\rangle$

Example: \defconsensus\{\{\}\}\{*\}\{upper\} does not show non matching residues in the consensus line, marks conserved residues with ' $*$ ', and displays the uppercase letter of the consensus residue at positions where all residues match.
Finally, the colors of the above defined symbols are adjustable by the command:

> \consensuscolors $\{\langle$ res.col. 1$\rangle\}\{\langle$ shad.col. 1$\rangle\}$
> $\{\langle$ res.col. 2$\rangle\}\{\langle$ shad.col. 2$\rangle\}$
> $\{\langle$ res.col. 3$\rangle\}\{\langle$ shad.col. 3$\rangle\}$

The color definitions are in the same order as in the \defconsensus command:

1. $\langle$ res.col. 1$\rangle=$ no match residue color (if below threshold)
$\langle$ shad.col.1 $=$ no match background color
2. $\langle$ res.col.2 $\rangle=$ conserved residue color (if threshold is exceeded)
$\langle$ shad.col.2 $\rangle=$ conserved background color
3. $\langle$ res.col.3〉 $=$ all match residue color (if all residues match and \allmatchspecial is active)
$\langle$ shad.col.3 $\rangle=$ all match background color
For colors which are not to be changed empty braces can be used.
Example:
```
\consensuscolors{}{}{Blue}{White}{Red}{Green}
```

Non matching symbol colors are not changed, conserved residues are displayed blue on white and where all residues match red symbols on green ground are displayed in the consensus line.

### 4.4 Display of logos

### 4.4.1 Sequence logos

In a sequence logo [7], the information content $I\left(P_{i}\right)$ of each alignment position $i$ is defined as

$$
I\left(P_{i}\right)=\log _{2}|\Sigma|+\sum P_{i j} \cdot \log _{2} P_{i j}
$$

with $|\Sigma|$ being the cardinality of the used alphabet, i.e. 4 for DNA and 20 for protein sequences, and $P_{i j}$ being the frequency of residue $j$ at this position. Each position is displayed as a stack of residue symbols whose heights represent their proportion of the information content (example on p.28).
The display of sequence logos can be either on the top or at the bottom of a nucleotide or protein alignment. Logos will be shown after the command: \showsequencelogo [〈colorset $\rangle]\{\langle$ top $/$ bottom $\rangle\}$. If no optional $\langle$ colorset $\rangle$ is selected the residues will be shaded as follows:

- Nucleotide sequences

G: Black
A : Green
T, U : Red
C: Blue

- Protein sequences (similar to rasmol)

D,E:Red
C,M : Yellow
K,R : Blue
S,T : Orange
F,Y:MidnightBlue
N, Q : Cyan
G: LightGray
L,V,I: Green
A : DarkGray
W:CarnationPink
H : CornflowerBlue
P : Apricot
B,Z : LightMagenta
Optional color sets correspond to the functional shading modes chemical, rasmol, hydropathy, structure, standard area,
accessible area（see p．42）．The \showsequencelogo command can be reversed by \hidesequencelogo．
Logo colors can be turned to＇Black＇with the command \clearlogocolors $[\langle c o l o r\rangle\}$ with the optional parameter not set． The optional parameter can be used to set all residue colors to $\langle c o l o r\rangle$, e．g．\clearlogocolors［Blue］．User specific logo color sets are defined by using \logocolor\｛〈residues $\rangle\}\{\langle$ color $\rangle\}$ ，e．g． \logocolor\｛DE\}\{Red\} \logocolor\{CM\}\{Yellow\} etc.
It is common practice for protein sequence logos to correct amino acid frequencies to the background frequency in the alignment，which usually differs from the equal distribution of $5 \%$ for each residue．Fre－ quency correction can be turned on by \dofrequencycorrection and off by \undofrequencycorrection．
The vertical extent of the logo can be changed by \logostretch\｛〈factor $\rangle\}$ ，e．g．\logostretch\｛1．5\}. The width of the logo characters is dependent on the character width set for the alignment，see \charstretch on p．54．
Finally，the bit－scale can be turned off and on using \hidelogoscale and \showlogoscale［〈color $\rangle$ ］\｛〈position $\rangle\}$ ，respectively，with $\langle$ position $\rangle$ left，right，or leftright and an optional 〈color〉．A name for the sequence logo can be set，which is displayed next to the scale by \namesequencelogo\｛〈name $\rangle$ \}.

## 4．4．2 Subfamily logos

Subfamily logos provide a novel tool to visualize subfamily－specific sequence deviations at alignment positions with a high information content in an intuitive way［14］．
This is achieved by subtracting from the frequency of a residue within a pre－defined subset of sequences，i．e．a subfamily，the frequency of this residue in the remaining set of sequences．The difference is then weighted by the information content，see above section on sequence logos．An example is shown on p．29．
Subtraction of frequencies produces values from -1 to 1 ．Positive val－ ues correspond to residues which are characteristic for the subfamily （shown upright in the output），negative values to those that are typi－ cal for the remaining sequences（shown upside－down）．Positions with an equal distribution of the residue result in a zero value．
Subfamily logos are displayed analogous to sequence logos by the command \showsubfamilylogo［〈colorset $\rangle]\{\langle$ top／bottom $\rangle\}$ and hid－ den by \hidesubfamilylogo．To calculate a subfamily logo，it
is further required to define a subfamily within the alignment by \setsubfamily\｛〈seqrefs $\rangle\}$ ，e．g．\setsubfamily\｛1－10，20，AQP3\}.
For coloring residues，display／stretching of the scales，and frequency correction the same commands as for sequence logos apply with two exceptions．First，subfamily logos contain negative values， which can be displayed \shownegatives［〈weak，medium，strong $\rangle$ ］ or hidden \hidenegatives．Without the optional parameter nega－ tive residues will be tinted by $50 \%$ ，i．e．medium．This greatly im－ proves readability．Second，a name for the subfamily logo is set by \namesubfamilylogo［\｛neg．name $\rangle$ ］\｛〈pos．name $\rangle\}$ with a required name for the positive part of the logo and an optional name for the negative part．
In order to better recognize relevant positions in the subfamily logo，a bit－value can be set above which the deviation is con－ sidered relevant by the command \relevance\｛〈bit－value $\rangle$ \}. If this command is not given 2.321 bit is assumed for proteins， i．e． $\log _{2} 5$ ，and 1 bit for DNA，i．e． $\log _{2} 2$ ．Such posi－ tions will be labeled by \showrelevance $[\langle$ color $\rangle]\{\langle$ symbol $\rangle\}$ ，e．g． \showrelevance［Blue］\｛\＄\nabla\＄\}. The symbol will be hidden with \hiderelevance．

## 4．5 Appearance of the sequence lines

## 4．5．1 Names，numbers and gaps

Many parameters that influence the appearance of the actual sequence lines can be changed for customization．Thus，the sequence names can be shown colored via $\langle$ color $\rangle$ either left or right by
\shownames［〈color $\rangle$ ］\｛〈position $\rangle\}$
with $\langle$ position $\rangle$ set to left or right．The numbering can be displayed either left or right and even on both sides by

```
\shownumbering[\langlecolor\rangle] {\langleposition\rangle}
```

with $\langle$ position $\rangle$ left，right or leftright．Both，names and number－ ing can be displayed on the same side．The colors can also be set with \namescolor $\{\langle$ color $\rangle\}$ and $\backslash$ numberingcolor $\{\langle$ color $\rangle\}$ ，respectively． $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade uses the sequence names from the alignment input file．This can cause some problems during the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$－run when special characters are present in those names！ $\mathrm{T}_{\mathrm{E}}$ Shade does not accept the following characters in sequence names：$\backslash\}$＠spaces and the tilde．Those have to be replaced in the input file．The characters \＃and \％can only
be used with a leading backslash，e．g．<br>＃．This must also be changed in the input file．All other special characters should be displayed properly．
Sequence names that are accepted by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade can further be changed in the texshade environment：

```
\nameseq{\langleseqref }\rangle}{\langle\mathrm{ name\}
```

〈seqref〉 selects the sequence whose name is to be changed．The basis for the 〈seqref〉 is the appearance in the alignment input file with the top sequence $=1$ ，or the old name．In or－ der to change the colors only of some sequence names or num－ bers the commands \namecolor $\{\langle$ seq 1$\rangle, \ldots,\langle$ seq $n\rangle\}\{\langle$ color $\rangle\}$ and $\backslash$ numbercolor $\{\langle$ seq1 $\rangle, \ldots,\langle$ seq $n\rangle\}\{\langle$ color $\rangle\}$ are provided．
In order to hide all names or the numbering use the command \hidenames or \hidenumbering．If only the names or numbers of some sequences should be hidden apply
$\backslash$ hidename $\{\langle$ seq1 $\rangle, \ldots,\langle$ seq $n\rangle\}$ or $\backslash$ hidenumber $\{\langle$ seq1 $\rangle, \ldots,\langle s e q n\rangle\}$ ，respectively．
In some situations，e．g．when only sections of sequences are dis－ played，one may not want to have the residue numbering start out with number 1．The command $\backslash$ startnumber $\{\langle$ seqref $\rangle\}\{\langle$ first residue number $\rangle\}$ allows one to set the starting number of any sequence to any value incl．negative values but except＇ 0 ＇which is not usually used in sequence numbering（the transition from negative to positive values is like this：$\ldots-2,-1,1,2 \ldots)$ ．If，however，the use of the number ＇ 0 ＇is wanted as sometimes in sequence logos this can be turned on by \allowzero and off with \disallowzero．
$\mathrm{T}_{\mathrm{E}} \mathrm{Sh}$ shade needs to know the correct length of the sequences to be able to break them right after the last residue．If MSF files are used as an input the length is already given but the calculation is usually wrong because the gaps are also counted．Thus， $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade counts the number of residues during each run by itself and stores the values in the ．aux file．That means that it needs two runs to get the num－ bers right．Again，this is only important if the gap symbol after the sequence end should be suppressed，see below（\hideleadinggaps）． If you know the correct length of the sequences you can use the com－ mand

```
\seqlength{\langleseqref }\rangle}{\langlelength\rangle
```

in order to set the values by hand and have the gaps break properly already in the first $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ run．

Example: \seqlength\{1\}\{346\} means that sequence no. 1 is 346 residues long.
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade can display a section of the complete alignment without the need to edit the alignment input file or even to re-calculate the entire alignment. This allows one to use one single alignment of the full length proteins or open reading frames for multiple visualizations of different sections in a document as done in this manual. Thus, the file AQPpro. MSF contains the full-length multiple protein alignment of five aquaporins but only sections are displayed as examples in 1.5.1 through 1.5.4. The definition of a section is done by
\setends $\{\langle$ seqref $\rangle\}\{\langle$ startnumber $\rangle ..\langle$ stopnumber $\rangle\}$.
Again, $\langle$ seqref $\rangle$ is the sequence number based on the appearance in the alignment file, or the name; further, in order to use the consensus as a measure for the sequence section the string 'consensus' as $\langle s e q r e f\rangle$ is accepted. The specified sequence is truncated at positions $\langle$ startnumber $\rangle$ and $\langle$ stopnumber $\rangle$. All other sequences are cut accordingly. If the number of the first residue in the sequence is set to a new value with the \startnumber command (s.a.) this is taken into account. Some examples:
a) $\backslash$ setends $\{1\}\{20$. . 100 $\}$
b) \startnumber $\{1\}\{15\}$ \setends $\{1\}\{35 . .115\}$

Both commands select the same section from the alignment but the numbering for sequence 1 starts at position 20 in the first example and at position 35 in the latter.
c) $\backslash$ setends\{consensus $\}$ \{20 . 100\}

This may describe a completely different section of the multiple sequence alignment.
Another possibility to label sequence positions is to switch on a ruler on the top or at the bottom of the sequence block using \showruler $[\langle$ color $\rangle]\{\langle$ position $\rangle\}\{\langle$ seqref $\rangle\}$. The residue ruler of one sequence $\langle$ seqref $\rangle$ or the consensus (declare 'consensus' as $\langle$ seqref $\rangle$ ) can be displayed at 〈position〉 top or bottom. The ruler is hidden with \hideruler. The steps between two numbers are set by $\backslash$ rulersteps $\{\langle$ number $\rangle\}$. If the steps are set to be very close $(<4)$ or when every position is numbered, the numbering is automatically rotated by $90^{\circ}$. Using \rotateruler and \unrotateruler this can be done and undone manually. In order to change the ruler color use the optional parameter or the command $\backslash$ rulercolor\{ $\langle$ color $\rangle\}$. Also, the
label and its color at individual ruler positions can be changed by the user to a string using \namerulerpos\｛〈number $\rangle\}\{\langle$ text $\rangle[\langle$ color $\rangle]\}$ （see example on p．20）．
Further，the symbol which is displayed in sequence gaps is freely se－ lectable with $\backslash$ gapchar $\{\langle$ symbol $\rangle\}$ ．〈symbol $\rangle$ can be any character or symbol．If math symbols are to be used math mode must be activated by $\$$ characters，i．e．\gapchar\｛\｛\＄\triangle\＄\}\}. Note the double curly braces in the last command．Everytime a＇com－ plex＇character is used，i．e．a character definition consisting of more than one letter，it must be braced in order to be interpreted as one character．One exception is \gapchar\｛rule\}; with this parameter lines are drawn in the sequence gaps with a certain thickness de－ fined by \gaprule\｛〈thickness\}\}, e.g. \gaprule\{1.5pt\}. The colors of the gaps and gap symbols are set by \gapcolors\｛〈symbol color $\rangle\}\{\langle$ background color $\rangle\}$ ．
There are some discussions whether or not to display gap symbols be－ fore and after the actual sequence．Since v1．3a one can control the ap－ pearance of those gap symbols by the commands \showleadinggaps and \hideleadinggaps．By default，leading gaps are indicated by symbols despite my personal thinking that it could suggest that there are some not displayed residues upstream resp．downstream of the gap．

## 4．5．2 Hiding，killing，separating and ordering

If one or more sequences from the alignment input file should be used for the calculation of the consensus but it is desired not to display these sequences in the final output use the com－ mand \hideseq\｛〈seq1〉，$\langle$ seq2 $\rangle, \ldots,\langle$ seq $n\rangle\}$ ．For consecutive se－ quence numbers a dash can be used，e．g．\hideseq\｛1－3\} instead of \hideseq\｛1，2，3\}. Decending series are also permitted, e.g. $\backslash$ hideseq\｛3－1\}. This command allows one for example to hide the sequence which has been defined as the consensus sequence with \constosingleseq．When all sequences should be hidden，e．g．to show a sequence logo alone，one can simply say \hideseqs．This command is reversed by \showseqs．
In order to completely exclude sequences the command $\backslash$ killseq $\{\langle$ seq 1$\rangle,\langle$ seq 2$\rangle, \ldots,\langle$ seq $n\rangle\}$ is provided．Again，for number series the dash can be used（s．a．）．The designated sequences are neither displayed nor considered for the calculation of the consensus．This is another possibility to comment out sequences in
addition to the use of an exclamation point infront of the Name: definition in an MSF-file (see figure on page 34).
The command $\backslash$ donotshade $\{\langle\operatorname{seq} 1\rangle,\langle$ seq2 $\rangle \ldots,\langle$ seq $n\rangle\}$ makes one or more sequences (remember the dash, s.a.) appear unshaded in black letters on white background. This does not influence any other sequences or the consensus calculation.
If a very graphical output of the sequences is desired, the residue symbols or letters can be blanked out by \hideresidues. Now, only the shaded boxes are printed. In combination with \gapchar\{rule\} one obtains alignments in a style à la Mondrian. The residues reappear with \showresidues.
If an alignment contains members of several subgroups of a protein or a gene family it may be rather helpful to visualize the group divisions by a separation line. Therefore, the command \separationline $\{\langle s e q r e f\rangle\}$ is applicable. This command inserts vertical space after the sequence which is refered to by $\langle$ seqref $\rangle$. How much space is inserted is defined by one of the following commands: \smallsep, \medsep (default) or \bigsep. These lengths correspond to the known \small-, \med- and \bigskip commands. With \vsepspace\{$\{l e n g t h\rangle\}$ any length with any $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ unit can be assigned, e. g. \vsepspace\{2mm\}.

The sequence order given by the alignment input file is easily reorganized by \orderseqs $\{\langle\operatorname{seq} 1\rangle,\langle s e q 2\rangle, \ldots,\langle s e q n\rangle\}$ without the need for editing the alignment input file (which would be a big copy'n'paste job). Make sure that all sequences are assigned in this command. If there are more sequences present than numbers or names in the command an error message will occur. Here also, the dash can be used for sequence number series. Example: \orderseqs $\{1-3,6-4,7\}$ is equivalent to \orderseqs $\{1,2,3,6,5,4,7\}$. Reordering of sequences only changes the output; all commands using the parameter $\langle$ seqref $\rangle$ are not influenced, because $\langle$ seqref $\rangle$ always corresponds to the appearance in the alignment file. Thus, to completely reverse the order of a five sequence alignment simply type \orderseqs\{5-1\}.

### 4.5.3 Residues per line and further settings

By default $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shadle puts the highest possible by five divisible number of residues in one line depending on the \textwidth. With $\backslash$ residuesperline $\{\langle$ number $\rangle\}$ a new value can be set. If this value exceeds the highest possible number of residues per line it is ignored; lower values are accepted of course. But also in the lat-
ter case the number of residues printed per line is rounded such to be divisible by five. To force TEX shade to set lines with exactly the desired number of residues use the asterisk-extended command \residuesperline*\{〈number $\rangle$ \}. Expect multiple overfull hbox errors after this command, because in this mode $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade does not check the length of the lines any more.
TEXshade calculates the dimensions of a shaded box from the width and height of the uppercase letter ' M ' and the depth of the lowercase ' $g$ '. Depending on the font used for the sequence residues the box dimensions might not be fully satisfactory. With $\backslash$ charstretch\{ $\langle$ factor $\rangle\}$ and $\backslash$ linestretch\{ $\langle$ factor $\rangle\}$ the width and height/depth, respectively, of the boxes can be multiplied individually by a $\langle$ factor $\rangle$ to stretch ( $>1$ ) or shrink $(<1)$ the dimensions.
The reserved space for the sequence numbering is set by the command \numberingwidth $\{\langle n$ digits $\rangle\}$. Here, the default setting is four-digit numbering, i.e. -999 through 9999. If this range is to be changed assign the desired number as parameter $\langle n$ digits $\rangle$, e.g. \numberingwidth\{111111\} reserves space for 6 digit numbering. The vertical space between the sequence blocks can be controlled by the commands \smallblockskip, \medblockskip (default setting), \bigblockskip or \noblockskip. Further, the command \vblockspace\{〈length $\rangle\}$ allows one to set a defined space length using any $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ unit, e.g. \vblockspace\{0.4in\}.
Two more commands set the space between the sequence blocks to
 Flexible means, that only the vertical white space between the blocks is kept to the settings by e.g. \medblockskip. This results in flexible space between the actual blocks depending on the presence of feature lines. When switching to fixed space the distance of the blocks is kept constant by using more white space between blocks without feature lines. Thus, a difference between flexible and fixed space will only be noticeable when features are used.
The position of the output can be aligned left, right or centered on the page by $\backslash$ alignment $\{\langle$ position $\rangle\}$ with the $\langle$ position $\rangle$ parameter left, center or right.

### 4.5.4 Fingerprinting

An easy way to gain an overview on complete alignments is provided by displaying a so called alignment 'fingerprint'. In this style the whole sequence can be shown in one line. Due to the lacking space the residue
names are hidden and the shaded boxes are reduced to thin vertical colored lines. The command \fingerprint $\{\langle$ res. per line $\rangle\}$ takes one argument stating the desired number of residues per line, e.g. \fingerprint\{1000\}. All $\mathrm{T}_{\mathrm{E}}$ Xshade commands are compatible with \fingerprint, i.e. all shading modes are applicable for displaying overviews on similarity or every functional aspect. Also, all kinds of labeling-as described in the following-work with this command.

### 4.6 Individual shading and labeling of sequence stretches

Computer calculated alignment shading is informative-but even more information can be visualized by manual labeling of positions and regions of interest with different colors, text styles or graphical marks and descriptive text. All this is provided by easy to handle TEXshade commands.

### 4.6.1 Manual shading of regions and blocks

Besides the shading calculated by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade any region can be shaded manually with a color specified by the user. This is very useful to highlight secondary protein modification sites such as phosphorylation or glycosylation sites or longer motifs for example protein/protein interaction sites. This is done by the use of the following command:

$$
\begin{gathered}
\backslash \text { shaderegion }\{\langle\text { seqref }\rangle\}\{\langle\text { start } 1\rangle . . .\langle\text { stop } 1\rangle,\langle\text { start } 2\rangle . .\langle\text { stop } 2\rangle, \\
\ldots,\langle\text { start } n\rangle . .\langle\text { stop } n\rangle\}\{\langle\text { res.col. }\rangle\}\{\langle\langle\text { shad.col. }\rangle\}
\end{gathered}
$$

Example: in order to shade residue number 13 and the region 20-30 of sequence number 1 in red letters on green ground type the following command:

```
\shaderegion{1}{13..13,20..30}{Red}{Green}
```

If the consensus is to be shaded use consensus as $\langle$ seqref $\rangle$.
In analogy to \shaderegion which is restricted to one single sequence \shadeblock shades the corresponding region in all other sequences as well except the consensus. If also the consensus is to be shaded define the region using consensus as $\langle$ seqref $\rangle$.

$$
\begin{array}{r}
\backslash \text { shadeblock }\{\langle\text { seqref }\rangle\}\{\langle\text { start } 1\rangle . .\langle\text { stop } 1\rangle,\langle\text { start } 2\rangle . .\langle\text { stop } 2\rangle, \\
\ldots,\langle\text { start } n\rangle . .\langle\text { stop } n\rangle\}\{\langle\text { res.col. }\rangle\}\{\langle\langle\text { shad.col. }\rangle\}
\end{array}
$$

### 4.6.2 Emphasizing and tinting regions and blocks

If it is prefered to keep the calculated shading colors but distinct regions or blocks are yet to be emphasized one can use the following commands to change the font style of such regions:

$$
\begin{aligned}
\text { \emphregion }\{\langle\text { seqref }\rangle\}\{\langle\text { start } 1\rangle . .\langle\text { stop1 }\rangle & ,\langle\text { start2 }\rangle . .\langle\text { stop2 }\rangle, \\
& \ldots,\langle\text { start } n\rangle . .\langle\text { stop } n\rangle\}
\end{aligned}
$$

and

$$
\begin{aligned}
\backslash e m p h b l o c k\{\langle\text { seqref }\rangle\}\{\langle\text { start1 }\rangle . .\langle\text { stop1 }\rangle, & \langle\text { start2 }\rangle . .\langle\text { stop2 }\rangle \\
& \ldots,\langle\text { start } n\rangle .\langle\text { stop } n\rangle\}
\end{aligned}
$$

Which style $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade uses for emphasizing regions is defined by $\backslash e m p h d e f a u l t\{\langle s t y l e\rangle\}$. Default setting is the italics font shape (set by $\backslash$ emphdefault\{it\}). In order to change this setting choose one of the styles bf, md, up, it, sl, rm, sf, tt.
Example: \emphdefault\{bf\}
Further, it is possible to tint the region or block in question by using the commands (for example see hydropathy-figure on page 17):
\tintregion $\{\langle$ seqref $\rangle\}\{\langle$ start1 $\rangle ..\langle$ stop 1$\rangle,\langle$ start2 $\rangle ..\langle$ stop2 $\rangle$, $\ldots,\langle$ start $n\rangle . .\langle$ stop $n\rangle\}$
and

$$
\begin{aligned}
\backslash \text { tintblock }\{\langle\text { seqref }\rangle\}\{\langle\text { start } 1\rangle . .\langle\text { stop } 1\rangle,\langle\text { start } 2\rangle . .\langle\text { stop } 2\rangle, \\
\ldots,\langle\text { start } n\rangle . .\langle\text { stop } n\rangle\}
\end{aligned}
$$

The level of tinting in the region in question can be set by \tintdefault $\{\langle$ level $\rangle\}$ with weak, normal, and strong as possible $\langle$ level〉s.
Another option is to draw a bounding box around the sequence block in question (for an example see diversity mode-figure on page 16) with the command: ${ }^{20}$

$$
\begin{aligned}
& \backslash \text { frameblock }\{\langle\text { seqref }\rangle\}\{\langle\text { start1 }\rangle . .\langle\text { stop } 1\rangle,\langle\text { start2 }\rangle . .\langle\text { stop2 }\rangle, \\
&\ldots,\langle\text { start } n\rangle . .\langle\text { stop } n\rangle\}\{\langle\text { color }\rangle[\langle\text { length }\rangle]\}
\end{aligned}
$$

With the optional parameter the default line thickness of the frame can be changed, example: \frameblock\{1\}\{10..20,50..70\}\{Red[2pt]\}

[^9]
### 4.6.3 Hiding blocks of the alignment (still experimental!)

Be aware that this feature is still highly experimental. There are many instances in which this command fails. Please be patient until everything is fixed.
Complete blocks of the alignment incl. all sequences, consensus and labels can be hidden, e.g. to eliminate uninteresting alignment stretches or to condense the output, by:

```
\hideblock{\langleseqref \rangle}{\langlestart1\rangle..\stop1\rangle,\langlestart2\rangle...\langlestop2\rangle,
 ...,\langlestart n\rangle...\langlestop n\rangle}{\langlelabel\rangle[\langlecolor\rangle]}{\langletext\rangle[\langlecolor\rangle]}
```

Here, $\langle s e q r e f\rangle$ denotes the sequence by its number of name which is used to define the alignment positions $\langle$ start 1$\rangle ..\langle$ stop 1$\rangle$ etc. to be hidden. A symbol can be displayed as a 〈label〉 of the alignment deletion, i.e. circ, triangle, square, or none. A color can be assigned to the label by the optional parameter $\langle c o l o r\rangle$. Further, an explanatory text can be displayed above the symbol $\langle t e x t\rangle$ with an optional $\langle$ color $\rangle$. For how to change the appearance of the font see p.70.

Examples:

```
\hideblock{1}{20..80}{circ}{condensed![Red]}
\hideblock{1}{20..80}{triangle[Red]}{hidden block}
\hideblock{AQP1}{20..80}{none[Blue]}{Δ20-80)}
\hideblock{consensus}{20..80,100..150,200..220}{none}{}
```

It may be advisable to show a ruler (probably single-stepped, see p.51) to further indicate the alignment deletion. Make sure that there are no feature definitions (also frames, emphs, shades, tints) starting or ending within the hidden block. This may cause messy sequence labels.

### 4.6.4 Graphical labeling of sequence features

The \feature command is designed to fulfill most needs for the graphical labeling of sequence stretches and the setting of descriptive text. It needs five parameters:

```
\feature{\langleposition\rangle}{\langleseqref\rangle}{\langlestart1\rangle..\stop1\rangle,
 \langlestart2\rangle..\stop2\rangle,...,\langlestart n\rangle..\langlestop n\rangle}{\langlelabelstyle }\rangle}{\langletext\rangle
```

In the following paragraphs all possible parameter settings of this rather complex but mighty command are discussed in detail. The parameter $\langle$ position $\rangle$ tells $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade where to display the feature label, i.e. on the top of the alignment (top), or at the bottom (bottom).

Further，there can be a feature line ontop of the top feature line（ttop） or below the bottom feature line（bbottom）．Thus，up to four features overlapping in four different lines may be displayed．Depending on the content of the feature lines the gaps between them might be not satisfactory．Therefore，four separate commands can be employed to change the space between ttop and top（\ttopspace\｛〈length $\rangle\}$ ）， between top and the alignment（\topspace\｛〈length $\rangle\}$ ），between the alignment and bottom（ $\backslash$ bottomspace\｛ $\langle$ length $\rangle\}$ ）and between bottom and bbottom（\bbottomspace\｛〈length $\rangle\}$ ）．Use positive val－ ues to further separate the lines，e．g．\ttopspace\｛3mm or negative values to reduce the space，e．g．\bottomspace\｛－0．1in\}.
The argument $\langle$ seqref $\rangle$ and the third parameter containing the defini－ tions of the specified regions are identical to the ones described before in several commands，e．g．\ruler（4．5．1）or \shaderegion（4．6．1）．
New is the fourth parameter for the definition of the label style．There are many possibilities like braces，helices，boxes，arrows，bars，any fill character，bar graphs，color scales or even translations of the specified regions．

## Braces：

In order to display an over－or underbrace as a label use the param－ eter \｛brace\}. Depending on the $\langle$ position （ttop，top，bottom or bbottom）the respective brace is displayed．The standard color of braces is black．It can be changed by an optional parameter directly after the definition of the symbol，e．g．\｛brace［Red］\}.

## Protein $\alpha$－Helices：

The parameter \｛helix\} will plot a symbolized $\alpha$－helix as a label．The standard color of the helix spiral is black．It can be changed by an optional parameter directly after the definition of the symbol，e．g． \｛helix［Red］\}.

## Filling a stretch with a symbol：

A region can be filled with any character for labeling purposes using the parameter \｛fill：$\langle$ symbol $\rangle$ \}. The $\langle$ symbol $\rangle$ is freely selectable；the usage is like in \gapchar（4．5．1）．Do not use spaces before or after the expression $\langle$ symbol $\rangle$ ；this will shift the symbols to the respective direction．The standard color of the fill symbol is black．It can be changed by an optional parameter directly after the definition of the symbol，e．g．\｛fill：\＄\bullet\＄［Red］\}.
The $\backslash$ feature command does not like special characters in text mode， e．g．\dag．One has to use the math version of those symbols between
\$-signs. The following quite common text symbols have also a math equivalent ${ }^{21}$ :

| symbol | command | description |
| :---: | :--- | :--- |
| $\dagger$ | \$\dagger\$ | dagger |
| $\ddagger$ | \$\ddagger\$ | double dagger |
| ■ | \$\mathparagraph\$ | paragraph mark |
| § | \$\mathsection\$ | section mark |
| $\$$ | \$\mathdollar\$ | dollar |
| $\{$ | \$\lbrace\$ | left brace |
| $\}$ | \$\rbrace\$ | right brace |

## Labeling restriction or protease cutting sites:

If a label is needed that points between two residues, e.g. for showing restriction sites, simply use the feature style $\{$ restriction $[\langle$ color $\rangle]\}$. This will show a filled triangle with the tip right between the residues to be labeled, e.g. \feature\{top\}\{1\}\{25..26\}\{restriction[Blue]\}\{EcoR I\}.

## Boxes:

Boxed text is printed using the parameter \{box: $\langle t e x t\rangle\}$. By default black letters in a white framed box are displayed. In order to change these colors optional parameters can be included in the argument:
$\{\operatorname{box}[\langle$ framecolor,boxcolor $\rangle][\langle$ length $\rangle]:\langle$ text $\rangle[\langle$ textcolor $\rangle]\}$.
If the box frame and fill colors are the same it is sufficient to use only this one color as an argument in the command. The optional parameter $\langle l e n g t h\rangle$ defines the thickness of the box frame. If this parameter is not set in the command the value from the \featurerule $\{\langle$ length $\rangle\}$ command (see below) is used.
Examples:

```
{box[Blue]:α~helix[Yellow]}
{box[Blue,Red]:α~helix[Yellow]}
{box[Blue,Red][2pt]:α ~helix[Yellow]}
```


## Horizontal bars and arrows:

For displaying bars and arrows a simple selection scheme consisting of three consecutive characters is used as the 〈labelstyle〉 parameter. Each bar or arrow is defined by its left end, the middle part, and the right end. The following table gives some examples for the construction of arrows and bars.

[^10]middle
left end $\downarrow$ right end


All combinations of the left－end－characters（ $-=<^{\prime}, \mid 0$ ），the middle－ characters（ $-=$ ），and the right－end－characters（ $-=>^{\prime}, \mid 0$ ）are allowed and produce the desired arrow or bar．The color is changed as de－ scribed above．The thickness can be generally set by the separate command $\backslash$ featurerule $\{\langle$ length $\rangle\}$ with any $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ measure as $\langle$ length $\rangle$ ， e．g．\featurerule\｛3pt\}. This value is then used for all arrows, bars, and boxes（see above）throughout the alignment．If an individual thickness for a particular arrow should be set one can add an optional parameter to the 〈labelstyle〉 parameter，e．g．\｛o－＞［Red］［1mm］\}. Similar to the boxes described above，a text can be put on the arrow or bar，e．g．$\{\langle-\rangle[\operatorname{Red}][1 \mathrm{~mm}]: \$ \backslash$ beta $\$$－sheet［Blue］$\}$ ．
In $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade versions before v1．9，the original $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$－arrows were used．These have now been replaced by more modern looking ar－ rows with scalable line thickness．If the classical look is requested，use v instead of＜or＞in the arrow definition，e．g．\｛－－v\}, to get them back．The new arrow style makes use of of the AMS math symbol font （amssymb．sty）．Thus，in order to display the arrow heads correctly make sure that this style is present on your system（usually it is in a common $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ installation）．

## Sequence translations：

With the option \｛translate\}, sequence stretches can be translated from nucleotide to peptide sequences as well as backtranslations from peptide to nucleotide sequences are possible．Default setting for the translations is the standard genetic code．Of course，the codons can be re－defined by the user．The command \codon\｛〈amino acid $\rangle\}\{\langle$ triplet1，$\ldots$ ，triplet $n\rangle\}$ has been implemented for this issue． The usage is simple．Replace $\langle$ amino acid $\rangle$ by the single letter code of the amino acid to be defined and add a list of triplets for this residue． Example definition for the amino acid alanine：
$\backslash \operatorname{codon}\{A\}\{G C A, G C G, G C C, G C T, ~ G C U ~, ~ G C N\}$
Note the last triplet in the list．It contains an ambiguity code N which stands for any nucleotide．This triplet has been added at the last posi－ tion because the last triplet is used for the generation of the backtrans－ lated nucleotide sequence from a peptide．Two files are included in the TEXshade distribution as examples（standard．cod，ciliate．cod）． If you want to define a new genetic code store your commands in a file like the examples．Such files with the suffix ．cod can be loaded in the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade environment by $\backslash$ geneticcode\｛ $\langle$ filename $\left.\rangle\right\}$ ， e．g．\geneticcode\｛ciliate\}. Do not designate the suffix .cod in〈filename〉．Please note，when inspecting the example files，that only the exchanges compared to the standard code need to be defined in a new genetic code file．
When DNA sequences are translated to protein the resulting amino acids are aligned to the second nucleotide of each triplet．It is more difficult to produce a satisfactory display of backtranslated nucleotide sequences due to the lack of space．You need thrice as much space than the original peptide sequence，because single letter amino acid code is translated to a triplet code．Therefore，the user can choose from five display styles for backtranslations depending on personal preferences：
\backtranslabel［〈size〉］\｛〈style $\rangle\}$ ，with

$$
\begin{aligned}
\{\langle\text { style }\rangle\} & =\{\text { horizontal }\} \\
& =\{\text { alternating }\} \\
& =\{\text { zigzag }\} \\
& =\{\text { oblique }\} \\
& =\{\text { vertical }\}
\end{aligned}
$$

$\langle s i z e\rangle$ can be any $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ size from tiny up to Huge，but tiny is recom－ mended（and default setting）．Translations can be colored as all other labels，see above．

## Bar graphs and color scales：

Sequence related numeral data，such as hydropathy or solvent acces－ sibility data etc．，can be shown in a feature line as bar graphs or color scales．The data are（a）pre－defined or calculated by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade due to amino acid properties or conservation，（b）are provided in a separate file or（c）may be entered by hand in the $\backslash$ feature command．
(a) Currently, three different properties can be plotted, i.e. hydrophobicity, molweight, and charge. Further, the level of sequence conservation at the given protein sequence stretch can be shown (conservation).
(b) The format of a data file is simple: every value must appear in a separate line. Numbers and the Java-typical 'NaN' for 'Not a Number' are permitted. Comments are allowed, because $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade ignores all lines starting with a letter except ' NaN ' lines (avoid '-' as the first character of a comment line as this is interpreted as a negative number). Make sure that there are as many values as positions defined as the sequence stretch in the feature command. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade will read this file and determine the minimal and maximal values. These data are then normalized for plotting. Due to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ 's limited calculation capabilities no values above 10737 are allowed and the difference between minimum and maximum must not exceed this very number. Values below 0.001 may be susceptible to major rounding errors. Thus, try to provide your data already normalized to moderate scales, e.g. 0.0-1.0 or -100-100.
(c) Data which is directly entered in the \feature command must be normalized to integer values with a maximal difference of 100 between the highest and lowest value, e.g. $-50-50$ or $0-100$.
For (b) and (c), the range to be plotted can be set by hand as an optional parameter in the \feature command. This can be necessary when the data file contains values between e.g. -0.44 and 0.87. Without help TEXshade will assume -0.44 as minimum and 0.87 as maximum. But if the actual range to be plotted should be $-1.0-1.0$ this needs to be set manually, see examples below. Be aware of the fact, that if you define a scale by hand, which is more narrow than the values of the input, this will stretch the bars accordingly. It is NOT recommended to use this method for stretching bars vertically. Instead another command has been introduced. The plotted bars can be stretched by a factor if the appearance is not as desired: \bargraphstretch\{$\{$ factor $\rangle\}$. Here, the factor is multiplied with the bar length, e.g \bargraphstretch\{2\} will double the bar height, \bargraphstretch\{0.5\} will make them half as high. Similarly, color scales can be stretched vertically with \colorscalestretch\{〈factor $\rangle$ \}.
The default color of bar graphs is gray and can be changed by an optional parameter at the end of the label definition. Further, an optional background color can be chosen for the bars. Doing so will visualize the maximal bar extension.

Default for color scales is a $5 \%$ gray scale from very light gray to black (Gray). More colorful scales have been implemented, i.e. BlueRed, RedBlue, GreenRed, RedGreen, ColdHot and HotCold, the latter two being particularly useful for ranges from negative to positive values. The general format of this feature label definition for bar graphs is:
$\{\operatorname{bar}[\langle\min \rangle,\langle\max \rangle]:\langle$ properties/file/data $\rangle[\langle$ color(, bgcolor $)\rangle]\}$
and for color scales:

$$
\{\operatorname{color}[\langle\min \rangle,\langle\max \rangle]:\langle\text { properties/file/data }\rangle[\langle\text { scale }\rangle]\}
$$

Some examples:

```
{bar:conservation}
{bar:hydrophobicity}
{bar:charge[Red]}
{bar:molweight[Red,Gray10]}
{bar:10, 20, 30,40,50[Red]}
{bar[-20, 40]:-10,0,10, 20,30[Red,Gray10]}
{bar:data.txt}
{bar[-10,10]:data.txt[Red,Gray10]}
{color:conservation[BlueRed]}
{color:hydrophobicity[GreenRed]}
{color:charge}
{color:molweight}
{color[-10,10]:data.txt[ColdHot]}
{color[-0.1,0.1]:otherdata.txt[ColdHot]}
```

See also the example output in section 1.6 on page 22 .

## No graphical label, only text:

If no graphical label is wanted the fourth parameter of $\backslash$ feature can be empty braces.

Finally, the fifth parameter of the \feature command contains the descriptive text for the labeled region. Type whatever you want incl. symbols and math chars. The text field can also contain sequence translations. In this case just set $\langle$ text $\rangle=\{$ translate $\}$. There is a command for setting the size and style of backtranslated sequences in the feature $\langle t e x t\rangle$ which corresponds to the one described above:

```
\backtranstext[\langlesize\rangle]{\langlestyle\rangle}
```

Again, the color can be set by an optional parameter appended to the text. For how to change the font size of text or symbols in the feature style line (featurestyles) or the in descriptive text line (features) see section 4.9.1, page 69 .
Examples for the appearance of features are given in the overview section (1), see:
similarity mode (1.5.2): fill-character; here, only one position is labeled. It is also possible to label a longer stretch, then, the character is printed several times to fill the specified region.

```
\feature\{top\}\{1\}\{93..93\}\{fill:\$\downarrow\$\}\{first...\}
\feature\{bottom\}\{1\}\{98..98\}\{fill:\$\uparrow\$\}\{second...\}
```

diversity mode (1.5.3): frames, text only
\feature\{top\}\{1\}\{77..109\}\{\}\{AQP2 species variants\}
$\backslash$ frameblock\{1\}\{82..82,106..106\}\{Red[1pt]\}
functional mode (1.5.4): bar graph, color scale, tinting, box, arrow, translation, brace, helix
\feature\{top\}\{3\}\{153..165\}
$\{\operatorname{bar}[-50,50]:-50,-45,-40, \ldots, 40,45,50\}\}$
\feature\{top\}\{3\}\{167..186\}
\{color: $5,10,15, \ldots, 90,95,100[C o l d H o t]\}\}$
\feature\{top\}\{1\}\{158..163\}\{brace\}\{tinted\}
\tintblock\{1\}\{158..163\}
\feature\{top\}\{1\}\{138..157\}
\{box[Blue,Red] [0.5pt]:\$\alpha\$~helix[Yellow]\}
\{transmembrane domain 4$\}$
\feature\{top\}\{1\}\{164..170\}\{o->[Red]\}\{trans. dom. 5\}
$\backslash$ feature\{top\}\{1\}\{158..163\}\{translate[Blue]\}\{\}
\backtranslabel\{oblique\}
\feature\{bottom\}\{1\}\{158..163\}
\{brace[Blue]\}\{loop D[Blue]\}
\feature\{top\}\{1\}\{138..157,164..170\}\{helix\}\{membr.\}
\feature\{top\}\{1\}\{158..163\}\{---\}\{loop\}
$\backslash$ featurerule\{1mm
bar graphs and color scales (1.6): sequence conservation, charge, molecular weight, hydrophobicity
\feature\{ttop\}\{1\}\{138..170\}\{bar:conservation\}\{\}

```
\feature{top}{1}{138..170}{color:charge}{}
\feature{bottom}{1}{138..170}
 {color:molweight[ColdHot]}{}
\feature{bbottom}{1}{138..170}
 {bar:hydrophobicity[Red,Gray10]}{}
```


### 4.6.5 Including secondary structure information

The DSSP [9], STRIDE [10], PHD [11] and HMMTOP [12] algorithms produce secondary protein structure predictions. PHD files contain both, secondary structure information and topology data. This information can be displayed in an alignment by one of the commands:

| \includeDSSP | sec. structure calculated by DSSP |
| :--- | :--- |
| \includeSTRIDE | sec. structure calculated by STRIDE |
| \includePHDsec | sec. structure calculated by PHD |
| \includePHDtopo | topology data calculated by PHD |
| \includeHMMTOP | topology data calculated by HMMTOP |

The syntax is $\backslash$ include $\operatorname{DSSP}\{\langle$ seqref $\rangle\}\{\langle$ filename $\rangle\}$, with seqref indicating the number or name of the sequence for which the secondary structure data is calculated and filename designating the corresponding structure file to be included.
Several types of secondary structures are predicted by these programs; in order to designate them in $T_{E} X$ shade use the names from the right column:
secondary structure designation

| DSSP and STRIDE |  |
| :--- | :--- |
| 4-helix $(\alpha$-helix $)$ | alpha |
| isolated $\beta$-bridge | bridge |
| extended strand $(\beta$-strand $)$ | beta |
| 3-helix $\left(3_{10}\right.$-helix) | $3-10$ |
| 5 -helix $(\pi$-helix $)$ | pi |
| H-bonded turn | turn |

## PHDsec

| helix | alpha |
| :--- | :--- |
| sheet | beta |

PHDtopo and HMMTOP

| internal region | internal |
| :--- | :--- |
| external region | external |
| transmembrane domain | TM |

By default all three types of helices and the strands are displayed whereas turns and bridges are skipped. If it is desired to shown them as well, call for example \shownonDSSP\{bridge, turn\}. In analogy to this example all structure features can be activated in DSSP, STRIDE, PHDsec, PHDtopo and HMMTOP. In order to hide certain structure types use for example \hideonDSSP\{3-10, pi\}.
The DSSP format has two columns of sequence numberings. The first column is consecutive, whereas the second column contains the actual sequence numbering. This can be different from the first column when sequence parts are missing in the DSSP file. One can choose which column will be read by TEXshade by ' $\backslash$ firstcolumnDSSP' and \secondcolumnDSSP'. The second column is still default.
The HMMTOP algorithm can present its results as plain text or as HTML_plain text needs to be selected here. Further, the output can be formatted in a single line or in an extended form (see the HMMTOP documentation). Both can be read and interpreted by TEXshade. Importantly, HMMTOP files can contain topology predictions of multiple sequences. $\mathrm{T}_{\mathrm{E}} \mathrm{Xshade}$ tries to find the correct data based on the respective sequence name. If the sequence name is not found in the file, the first topology data is used. Using an optional parameter (number of the prediction in the file or name) one can define which data from the file is to be used:
\includeHMMTOP\｛〈seqref in texshade $\rangle[\langle$ seqref in file $\rangle]\}\{\langle$ filename $\rangle\}$
PHD predictions：when starting the PHD software do not restrict the prediction to secondary structure or topology alone．This leads to changes in the PHD output file which are not correctly interpretable by TEXshade due to ambiguities．There is no way around it－thus， run the full prediction．
Now，some information on how $\mathrm{T}_{\mathrm{E}} \mathrm{S}$ shade extracts and displays sec－ ondary structure features．In short，it is a two step process．First， $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade analyzes the secondary structure file and extracts all nec－ essary data．This data is converted into a format which is readable and processable by $\mathrm{T}_{\mathrm{E}} \mathrm{Xh}$ shde using the feature command（see 4．6．4）． This command allows one to label sequence stretches graphically．For a detailed explanation see the indicated reference．A list of feature commands is saved in a file with the ending＇．sec＇for DSSP，STRIDE and PHDsec or＇．top＇for PHDtopo．Then，in a second step，this file is loaded again and executed．When $\mathrm{T}_{\mathrm{E}} \mathrm{Sh}$ shade encouters this file a second time，i．e．in a second $\mathrm{T}_{\mathrm{EX}}$ run，it uses the already existing file for the output．The great advantage of this method is its flexibility．Due to the simple reason that the feature file can be edited in the meantime．Thus，the user has the ability to change the computer generated file according to his personal needs．On the other hand，one can force $\mathrm{T}_{\mathrm{E}} \mathrm{S}$ shade to write a new file every time by the optional argument［make new］in the include command，e．g． \includePHDsec［make new］\｛1\}\{AQP.phd\}.
Finally，the appearance of the feature labels can be assigned by the command
\appearance\｛〈filetype $\rangle\}\{\langle$ type $\rangle\}\{\langle$ position $\rangle\}\{\langle$ labelstyle $\rangle\}\{\langle$ text $\rangle\}$ ．
Here，〈filetype〉 stands for one of the following secondary structure file types：DSSP，STRIDE，PHDsec，PHDtopo or HMMTOP and 〈type〉 desig－ nates the secondary structure type as shown in the right column of the table above．The other arguments 〈position〉，〈labelstyle〉 and 〈text〉 are almost as described in 4．6．4．One further possibility is to include internal counters for each secondary structure type．Just add one of the following commands to the text in the feature description．

$$
\begin{array}{ll}
\text { counter } & \text { display } \\
\text { \numcount } & 1,2,3 \ldots \\
\text { \alphacount } & \text { a, b, c } \ldots \\
\text { \Alphacount } & \text { A, B, C ... } \\
\text { \romancount } & \text { i, ii, iii ... } \\
\text { \Romancount } & \text { I, II, III ... }
\end{array}
$$

Examples:

```
\appearance{DSSP}{alpha}{ttop}
 {-->}{α-helix~\Alphacount}
\appearance{PHDtopo}{TM}{bottom}
{box[Blue]:TM\numcount[Yellow]}{}
```


### 4.7 Displaying and building legends

For each predefined shading mode $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade can print an appropriate legend to explain the used shading colors. The commands \showlegend and \hidelegend display or clear the legend at the end of the alignment. The legend is displayed by default beneath the first residue of the last alignment line. The location can be changed by $\backslash$ movelegend $\{\langle x$-offset $\rangle\}\{\langle y$-offset $\rangle\}$. Both parameters require a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ length, e.g. \movelegend\{5cm\}\{-2cm\} moves the legend 5 cm to the right and 2 cm up.
The language for the descriptions is english by default; if the \german.sty package is active legend texts are in german. So far, german, spanish and english are implemented. With the commands \germanlanguage, \spanishlanguage and \englishlanguage switching between the languages is made possible. For the addition of other languages contact me. Finally, the color of the describing legend texts can be set with the command $\backslash l e g e n d c o l o r\{\langle c o l o r\rangle\}$.
User defined legends are easily built with the following command \shadebox $\{\langle$ color $\rangle\}$. Use this command outside the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade environment, e.g. in the text or in the caption. As $\langle$ color $\rangle$ any color can be designated (see section 5) or one of the following parameters:

- nomatch $=$ the color used for nonmatching residues
- similar $=$ the color used for similar residues
- conserved $=$ the color used for conserved residues
- allmatch $=$ the color used for the case that all residues match (if \allmatchspecial is active)

The command simply prints a shaded box in the specified color then a describing text can be appended. Examples:

```
\shadebox{nomatch}---nonmatching residues
\shadebox{similar}: similar residues
```

```
\shadebox{conserved}~conserved residues
\shadebox{Yellow}\quad PKA phosphorylation sites
```


### 4.8 Adding captions to the alignment

Since $T_{E} X$ shade v1.5 captions can be added to the alignment. So far, captions were difficult to use when the alignment was bigger than one page and therefore did not fit into a figure environment. The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade captions behave exactly as normal figure captions. They adopt their style, use the figure counter number and appear in the list of figures as any other figure.
The usage is slightly different from normal captions but intuitive:

```
\showcaption[\langleposition\rangle]{\langletext\rangle}
```

The optional $\langle$ position $\rangle$ tells $\mathrm{T}_{\mathrm{E}}$ X shade to put the caption on top or at the bottom of the alignment. If nothing is stated here the caption will appear at the bottom. The parameter $\langle$ text $\rangle$ just holds the caption text as in the normal \caption. The command can be used at any position within the texshade environment. A simple example would be:

```
\showcaption{A beautiful \TeXshade{} alignment.}
```

In order to show a short version of the caption in the "List of Figures" the $\backslash$ shortcaption $\{\langle$ short caption text $\rangle\}$ command can be used.

### 4.9 Font handling

### 4.9.1 Changing font styles

The font styles for the numbering, the sequence names, the sequence residues, the descriptive feature texts and the legends can be changed by several commands.

```
\setfamily{\langletext\rangle}{\langlefamily\rangle}
\setseries{\langletext\rangle}{\langleseries\rangle}
\setshape{\langletext\rangle}{\langleshape\rangle}
\setsize{\langletext\rangle}{\langlesize\rangle}
```

The first parameter selects the text whose style is to be changed. Possible first parameters are numbering, names, residues, features, featurestyles, hideblock, and legend.

The style is set by the second parameter:

| command | $\langle$ 2. parameter $\rangle$ |  |
| :--- | :--- | :--- |
| \setfamily | rm | modern roman font family |
|  | sf | sans serif font family |
|  | tt | typewriter font family |
| \setseries | bf | bold face series |
|  | md | normal series |
| \setshape | it | italics shape |
|  | sl | slanted shape |
|  | sc | small capitals shape |
|  | up | upright shape |
| ssetsize | tiny | the known TEX sizes |
|  | scriptsize |  |
|  | footnotesize |  |
|  | small |  |
|  | normalsize |  |
|  | large |  |
|  | Large |  |
|  | LaRGE |  |
|  | huge |  |
|  | Huge |  |

Example: \setfamily\{features\}\{it\} \setseries\{features\}\{bf\}

With the command

```
\setfont{\langletext\rangle}{\langle{amily\rangle}{\langleseries\rangle}{\langleshape\rangle}{\langlesize\rangle}
```

all four font attributes of one $\langle t e x t\rangle$ can be changed simultaneously. The order of the parameters is as indicated.

Example: \setfont\{features\}\{rm\}\{it\}\{bf\}\{normalsize\}
Further, short commands are provided to change single font attributes quickly. The following commands set attributes of feature texts.

```
\featuresrm \featurestiny
\featuressf \featuresscriptsize
\featurestt \featuresfootnotesize
\featuresbf \featuressmall
\featuresmd \featuresnormalsize
\featuresit \featureslarge
\featuressl \featuresLarge
\featuressc \featuresLARGE
\featuresup \featureshuge
\featuresHuge
70
```

Corresponding sets are provided for the numbering (\numberingrm etc.), featurestyles (featurestylesrm etc.), names (\namesrm etc.), residues ( $\backslash$ residuesrm etc.), hideblock labels (hideblockrm etc.), and legend texts (legendrm etc.).

### 4.9.2 Using PostScript fonts

As already mentioned _{E}X\)shademakesintensiveuseofPostScriptforshading.Now,thatPostScriptoutputisactiveanyway,includingPostScriptfontsisveryeasy.Justdeclareinthedocumentheader\usepackage\{$\langlePS$-font$\rangle\}$.Thetypewriterfontof$\mathrm{T}_{\mathrm{E}}\mathrm{X}$isalwaysatopicofdiscussions.Byincludingthepackage\usepackage\{courier\}$\mathrm{T}_{\mathrm{E}}\mathrm{X}$'stypewriterfontisreplacedbythewidelyacceptedCourier.Havealookintothedirectory..texinputs:latex:psnfss;there,somestylesarelocatedwhichexchangethecommon$\mathrm{T}_{\mathrm{E}}\mathrm{X}$fontsbyPostScriptfonts,e.g.avant.sty,bookman.sty,chancery.sty,courier.sty,helvet.styorutopia.sty.Dependingonthestyleusedthe\rmdefault-,\sfdefault-,and\ttdefaultfontsaresubstitutedpartlyorcompletely.Thus,courier.styforinstanceexchangesonlythetypewriterfont,whereasbookman.stysetsBookmanas\rmdefault,Avantgardeas\sfdefaultandCourieras\ttdefault.ForfurtherinformationseeTomasRokicki'sdvipsmanual[13].undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

### 4.10 Goodies-molweight and charge

During the process of sequence setting $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade sums up the molecular weight and charge of the aligned proteins. This data can be accessed by the following two commands.
$\backslash$ molweight $\{\langle$ seqref $\rangle\}\{\langle D a / k D a\rangle\}$
$\backslash$ charge $\{\langle$ seqref $\rangle\}\{\langle i / o / N / C\rangle\}$
The first parameter $\langle$ seqref〉 selects the sequence. The second parameter in the \molweight command allows one to switch the units between Dalton (Da) and kilo-Dalton (kDa). The \charge command needs the second parameter for the correct consideration of the charged protein termini. Thus, ' $i$ ' refers to internal sequences, 'o' to the overall charge, ' N ' to N -terminal sequence parts, and ' C ' to the C-terminal end of a protein.

Example: Charge: \charge\{1\}\{o\}; Weight: \molweight\{1\}\{Da\}

## 5 The PostScript color selection scheme

PostScript provides 64 standard colors. All these colors are predefined in the color.sty. Each color has a pictorial name such as Bittersweet and a distinct composition, e.g. $0 \%$ cyan $+75 \%$ magenta $+100 \%$ yellow $+24 \%$ black-the so-called CMYK scheme. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade enhances this color scheme by gray scales in $5 \%$ steps. The following colors and grays can be used in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade by simply declaring the name of the color in the respective command, e.g.
\consensuscolors:

| name | CMYK | name | CMYK |
| :---: | :---: | :---: | :---: |
| GreenYellow | 0.15,0,0.69,0 | Yellow | 0,0,1,0 |
| Goldenrod | 0,0.10,0.84,0 | Dandelion | 0,0.29,0.84,0 |
| Apricot | 0,0.32,0.52,0 | Peach | 0,0.50,0.70,0 |
| Melon | 0,0.46,0.50,0 | YellowOrange | 0,0.42,1,0 |
| Orange | 0,0.61,0.87, 0 | BurntOrange | 0,0.51,1,0 |
| Bittersweet | 0,0.75,1,0.24 | RedOrange | 0,0.77, $0.87,0$ |
| Mahagony | 0,0.85,0.87, 0.35 | Maroon | 0,0.87,0.68,0.32 |
| BrickRed | 0,0.89, $0.94,0.28$ | Red | 0,1,1,0 |
| OrangeRed | 0,1,0.50,0 | RubineRed | 0,1,0.13,0 |
| WildStrawberry | 0,0.96,0.39,0 | Salmon | 0,0.53,0.38,0 |
| CarnationPink | 0,0.63,0,0 | Magenta | 0,1,0,0 |
| VioletRed | 0,0.81,0,0 | Rhodamine | 0,0.82,0,0 |
| Mulberry | 0.34,0.90,0,0.02 | RedViolet | 0.07,0.90, $0,0.34$ |
| Fuchsia | 0.47,0.91,0,0.08 | Lavender | 0,0.48,0,0 |
| Thistle | 0.12,0.59,0,0 | Orchid | 0.32,0.64,0,0 |
| DarkOrchid | 0.40,0.80,0.20,0 | Purple | 0.45,0.86,0,0 |
| Plum | 0.50,1,0,0 | Violet | 0.79,0.88,0,0 |
| RoyalPurple | 0.75,0.90,0,0 | BlueViolet | 0.86,0.91, $0,0.04$ |
| Periwinkle | 0.57,0.55,0,0 | CadetBlue | 0.62,0.57,0.23,0 |
| CornflowerBlue | 0.65,0.13,0,0 | MidnightBlue | 0.98,0.13,0,0.43 |
| NavyBlue | 0.94, $0.54,0,0$ | RoyalBlue | 1,0.50,0,0 |
| Blue | 1,1,0,0 | Cerulean | 0.94,0.11, 0,0 |
| Cyan | 1,0,0,0 | ProcessBlue | 0.96,0,0,0 |
| SkyBlue | 0.62,0,0.12,0 | Turquoise | 0.85,0,0.20,0 |
| TealBlue | 0.86,0,0.34,0.02 | Aquamarine | 0.82,0,0.30,0 |
| BlueGreen | 0.85,0,0.33,0 | Emerald | 1,0,0.50,0 |
| JungleGreen | 0.99,0,0.52,0 | SeaGreen | 0.69,0,0.50,0 |
| Green | 1,0,1,0 | ForestGreen | 0.91,0,0.88,0.12 |
| PineGreen | 0.92,0,0.59,0.25 | LimeGreen | 0.50,0,1,0 |
| YellowGreen | 0.44,0,0.74,0 | SpringGreen | 0.26,0,0.76,0 |
| OliveGreen | 0.64,0,0.95, 0.40 | RawSienna | 0,0.72,1,0.45 |
| Sepia | 0,0.83,1,0.70 | Brown | 0,0.81,1,0.60 |
| Tan | 0.14,0.42,0.56,0 |  |  |
| White (Gray0) | 0,0,0,0 | Black (Gray100) | 0,0,0,1 |
| Gray5 | 0,0,0,0.05 | Gray10 | 0,0,0,0.10 |
| Gray15 | 0,0,0,0.15 | Gray20 | 0,0,0,0.20 |


| Gray25 | 0,0,0,0.25 | Gray30 | 0,0,0,0.30 |
| :---: | :---: | :---: | :---: |
| LightGray | 0,0,0,0.33 | Gray35 | 0,0,0,0.35 |
| Gray40 | 0,0,0,0.40 | Gray45 | 0,0,0,0.45 |
| Gray50 | 0,0,0,0.50 | Gray | 0,0,0,0.50 |
| Gray55 | 0,0,0,0.55 | Gray60 | 0,0,0,0.60 |
| Gray65 | 0,0,0,0.65 | DarkGray | 0,0,0,0.66 |
| Gray70 | 0,0,0,0.70 | Gray75 | 0,0,0,0.75 |
| Gray80 | 0,0,0,0.80 | Gray85 | 0,0,0,0.85 |
| Gray90 | 0,0,0,0.90 | Gray95 | 0,0,0,0.95 |
| LightGreenYellow | 0.08,0,0.35,0 | LightYellow | 0,0,0.50,0 |
| LightGoldenrod | 0,0.05,0.42,0 | LightDandelion | 0,0.15,0.42,0 |
| LightApricot | 0,0.16,0.26,0 | LightPeach | 0,0.25,0.35,0 |
| LightMelon | 0,0.23,0.25,0 | LightYellowOrange | 0,0.21,0.50,0 |
| LightOrange | 0,0.31,0.44,0 | LightBurntOrange | 0,0.26,0.50,0 |
| LightBittersweet | 0,0.38,0.50,0.12 | LightRedOrange | 0,0.39, $0.44,0$ |
| LightMahagony | 0,0.43,0.44,0.18 | LightMaroon | 0,0.44,0.34,0.16 |
| LightBrickRed | 0,0.45,0.47,0.14 | LightRed | 0,0.50,0.50,0 |
| LightOrangeRed | 0,0.50,0.25,0 | LightRubineRed | 0,0.50,0.07,0 |
| LightWildStrawberry | 0,0.48,0.20,0 | LightSalmon | 0,0.27,0.19,0 |
| LightCarnationPink | 0,0.32,0,0 | LightMagenta | 0,0.50,0,0 |
| LightVioletRed | 0,0.40,0,0 | LightRhodamine | 0,0.41,0,0 |
| LightMulberry | 0.17,0.45,0,0.01 | LightRedViolet | 0.04, $0.45,0,0.17$ |
| LightFuchsia | 0.24,0.46,0,0.04 | LightLavender | 0,0.24,0,0 |
| LightThistle | 0.06,0.30,0,0 | LightOrchid | 0.16,0.32,0,0 |
| LightDarkOrchid | 0.20,0.40,0.10,0 | LightPurple | 0.23,0.43,0,0 |
| LightPlum | 0.25,0.50,0,0 | LightViolet | 0.40,0.44,0,0 |
| LightRoyalPurple | 0.38,0.45,0,0 | LightBlueViolet | 0.43,0.46,0,0.02 |
| LightPeriwinkle | 0.29,0.28,0,0 | LightCadetBlue | 0.31,0.29,0.12,0 |
| LightCornflowerBlue | 0.33,0.07,0,0 | LightMidnightBlue | 0.49,0.07,0,0.22 |
| LightNavyBlue | 0.47,0.27,0,0 | LightRoyalBlue | 0.50,0.25,0,0 |
| LightBlue | 0.50,0.50,0,0 | LightCerulean | 0.47,0.06,0,0 |
| LightCyan | 0.50,0,0,0 | LightProcessBlue | 0.48,0,0,0 |
| LightSkyBlue | 0.31,0,0.06,0 | LightTurquoise | 0.43,0,0.10,0 |
| LightTealBlue | 0.43,0,0.17,0.01 | LightAquamarine | 0.41,0,0.15,0 |
| LightBlueGreen | 0.43,0,0.17,0 | LightEmerald | 0.50,0,0.25,0 |
| LightJungleGreen | 0.50,0,0.26,0 | LightSeaGreen | 0.35,0,0.25,0 |
| LightGreen | 0.50,0,0.50,0 | LightForestGreen | 0.46,0,0.44,0.06 |
| LightPineGreen | 0.46,0,0.30,0.13 | LightLimeGreen | 0.25,0,0.50,0 |
| LightYellowGreen | 0.22,0,0.37,0 | LightSpringGreen | 0.13,0,0.38,0 |
| LightOliveGreen | 0.32,0,0.48,0.20 | LightRawSienna | 0,0.36,0.50,0.23 |
| LightSepia | 0,0.44,0.50,0.35 | LightBrown | 0,0.41, $0.50,0.30$ |
| LightTan | 0.07,0.21,0.28,0 |  |  |
| LightLight- and LightLightLight-versions were derived by dividing all values from Light-color definitions by 2 and 4, respectively. |  |  |  |


| name | RGB | name | $R G B$ |
| :--- | :--- | :--- | :--- |
| BlueRed5 | $0.15,0.17,0.55$ | BlueRed10 | $0.20,0.23,0.57$ |
| BlueRed15 | $0.24,0.29,0.60$ | BlueRed20 | $0.33,0.35,0.64$ |
| BlueRed25 | $0.43,0.43,0.68$ | BlueRed30 | $0.52,0.52,0.73$ |


| BlueRed35 | $0.60,0.60,0.78$ | BlueRed40 | $0.70,0.70,0.84$ |
| :--- | :--- | :--- | :--- |
| BlueRed45 | $0.80,0.80,0.85$ | BlueRed50 | $0.86,0.82,0.82$ |
| BlueRed55 | $0.87,0.73,0.73$ | BlueRed60 | $0.89,0.64,0.64$ |
| BlueRed65 | $0.90,0.55,0.55$ | BlueRed70 | $0.91,0.47,0.46$ |
| BlueRed75 | $0.91,0.39,0.37$ | BlueRed80 | $0.90,0.33,0.28$ |
| BlueRed85 | $0.89,0.25,0.20$ | BlueRed90 | $0.88,0.23,0.14$ |
| BlueRed95 | $0.87,0.21,0.09$ | BlueRed100 | $0.87,0.16,0.04$ |
| GreenRed5 | $0,1,0$ | GreenRed10 | $0.05,0.95,0$ |
| GreenRed15 | $0.10,0.90,0$ | GreenRed20 | $0.15,0.85,0$ |
| GreenRed25 | $0.20,0.80,0$ | GreenRed30 | $0.25,0.75,0$ |
| GreenRed35 | $0.30,0.70,0$ | GreenRed40 | $0.35,0.65,0$ |
| GreenRed45 | $0.40,0.60,0$ | GreenRed50 | $0.45,0.55,0$ |
| GreenRed55 | $0.50,0.50,0$ | GreenRed60 | $0.55,0.45,0$ |
| GreenRed65 | $0.60,0.40,0$ | GreenRed70 | $0.65,0.35,0$ |
| GreenRed75 | $0.70,0.30,0$ | GreenRed80 | $0.75,0.25,0$ |
| GreenRed85 | $0.80,0.20,0$ | GreenRed90 | $0.85,0.15,0$ |
| GreenRed95 | $0.90,0.10,0$ | GreenRed100 | $0.95,0.05,0$ |
| ColdHot5 | $0,0.08,1$ | ColdHot10 | $0,0.29,1$ |
| ColdHot15 | $0,0.49,1$ | ColdHot20 | $0,0.70,1$ |
| ColdHot25 | $0,0.90,1$ | ColdHot30 | $0,1,0.87$ |
| ColdHot35 | $0,1,0.68$ | ColdHot40 | $0,1,0.46$ |
| ColdHot45 | $0,1,0.25$ | ColdHot50 | $0,1,0.04$ |
| ColdHot55 | $0.16,1,0$ | ColdHot60 | $0.35,1,0$ |
| ColdHot65 | $0.56,1,0$ | ColdHot70 | $0.79,1,0$ |
| ColdHot75 | $0.98,1,0$ | ColdHot80 | $1,0.82,0$ |
| ColdHot85 | $1,0.60,0$ | ColdHot90 | $1,0.40,0$ |
| ColdHot95 | $1,0.20,0$ | ColdHot100 | $0.91,0,0$ |
| and reverse definitions: RedBlue, RedGreen, HotCold. |  |  |  |

Type the color names with the upper case letters exactly as described above. For the definition of new colors use one of the color.sty commands:

```
\definecolor{\langlename\rangle}{cmyk}{\langleC,M,Y,K\rangle}
\definecolor{\langlename\rangle}{rgb}{\langleR,G,B\rangle}
```

The $\langle$ name $\rangle$ can be chosen freely, the values for the color composition must be in the range $0-1$, ie. $0-100 \%$ of the respective component (' C ' - cyan, 'M' - magenta, 'Y' - yellow, 'K' - black; or 'R' - red, 'G' green, 'Blue' - blue) separated by commas.
Examples:
$\backslash$ definecolor\{Salmon\}\{cmyk\}\{0, 0.53, 0.38, 0\}
\definecolor\{ColdHot15\}\{rgb\}\{0,0.49,1\}

## 6 Listing of the texshade default settings

### 6.1 Standard definitions

The file texshade. def mirrors all commands which are carried out at the beginning of the texshade environment. Short comments are also included, thus, it is refered to this file for further information.

### 6.2 Colors used in the different shading modes

Color scheme blues:

| res.color | shad.color | residues |
| :--- | :--- | :--- |
| Black | White | no match |
| Black | Magenta | similar |
| White | RoyalBlue | identical |
| Goldenrod | RoyalPurple | all match |

Color scheme greens:
res.color
Black
Black
White
YellowOrange
shad.color
White
GreenYellow
PineGreen
OliveGreen
residues
no match
similar
identical
all match

Color scheme reds:
res.color
shad.color
residues
Black
White
Black
White
YellowOrange
BrickRed
Mahagony
no match
similar
identical
YellowGreen
all match

Color scheme grays:

| res.color | shad.color | residues |
| :--- | :--- | :--- |
| Black | White | no match |
| Black | LightGray | similar |
| White | DarkGray | identical |
| White | Black | all match |

Color scheme black:

| res.color | shad.color | residues |
| :--- | :--- | :--- |
| Black | White | no match |
| Black | White | similar |
| White | Black | identical |
| White | Black | all match |

Functional mode charge:

| res.color | shad.color | residues |
| :--- | :--- | :--- |
| Black | White | no match |
| White | Red | acidic |
| White | Blue | basic |

Functional mode hydropathy:

| res.color | shad.color | residues |
| :--- | :--- | :--- |
| Black | White | no match |
| White | Red | acidic |
| White | Blue | basic |
| Black | Yellow | polar uncharged |
| White | Green | hydrophobic nonpolar |

Functional mode chemical:

| res.color | shad.color | residues |
| :--- | :--- | :--- |
| Black | White | no match |
| White | Red | acidic |
| White | Black | aliphatic |
| White | Gray | aliphatic (small) |
| White | Green | amide |
| White | Brown | aromatic |
| White | Blue | basic |
| Black | Magenta | hydroxyl |
| Black | Orange | imino |
| Black | Yellow | sulfur |

Functional mode rasmol:

| res.color | shad.color | residues |
| :--- | :--- | :--- |
| Black | White | no match |
| Red | White | Asp, Glu |
| Blue | White | Arg, Lys, His |
| MidnightBlue | White | Phe, Tyr, Trp |
| Gray | White | Ala, Gly |
| Yellow | White | Cys, Met |
| Orange | White | Ser, Thr |
| Cyan | White | Asn, Gln |
| Gree | White | Leu, Val, Ile |
| Apricot | White | Pro |

Functional mode structure:

| res.color | shad.color | residues |
| :--- | :--- | :--- |
| Black | White | no match |
| Black | Orange | external |
| Black | Yellow | ambivalent |
| White | Green | internal |

Functional mode standard area:

| res.color | shad.color | residues |
| :--- | :--- | :--- |
| Black | White | no match |
| Black | BrickRed | G |
| Black | Orange | A, S |
| Black | Yellow | C, P |
| Black | YellowGreen | T, D, V, N |
| White | PineGreen | I, E |
| Black | SkyBlue | L, Q, H, M |
| White | RoyalPurple | F, K |
| White | RedViolet | Y |
| White | Black | R, W |

Functional mode accessible area:

| res.color | shad.color | residues |
| :--- | :--- | :--- |
| Black | White | no match |
| Black | BrickRed | C |
| Black | Orange | I, V, G |
| Black | Yellow | F, L, M, A |
| Black | YellowGreen | W, S, T, H |
| White | PineGreen | P |
| Black | SkyBlue | Y, D, N |
| White | RoyalPurple | E, Q |
| White | RedViolet | R |
| White | Black | K |

## 7 Quick Reference

The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade logo
$\backslash$ TeXshade

## The $\mathrm{T}_{\mathbf{E}}$ Xshade environment (12 ff.)

```
\begin{texshade}[\langleparameterfile\rangle] {\langlealignmentfile\rangle}
 further }\mp@subsup{\textrm{T}}{\textrm{E}}{\textrm{X}
\end{texshade}
```


## Predefined shading modes

\seqtype $\{\langle$ type $\rangle\} \quad(\mathrm{P}$ - peptide, N - nucleotide)
$\backslash$ shadingmode $[\langle$ option $\rangle]\{\langle$ mode $\rangle\}$

| $\langle$ mode $\rangle$ | $\langle$ option $\rangle$ |  |
| :--- | :--- | :--- |
| identical | allmatchspecial |  |
| similar | allmatchspecial |  |
| diverse | $\langle$ seqref $\rangle$ |  |
| functional | $\langle$ type |  |
|  |  | charge |
|  |  | structure |
|  |  | chemical |
|  |  | rasmol |
|  |  | accessible area |
|  |  |  |
|  |  |  |

```
\shadeallresidues
```

Shading colors (38 ff.)

```
\shadingcolors{\langlescheme\rangle} (blues, reds, greens, grays, black)
\nomatchresidues{\langleres.col.\rangle}{\langleshad.col.\rangle}{\langlecase\rangle}{\langlestyle\rangle}
\similarresidues{\langleres.col.\rangle}{\langleshad.col.\rangle}{\langlecase\rangle}{\langlestyle\rangle}
\conservedresidues{\langleres.col.\rangle}{\langleshad.col.\rangle}{\langlecase\rangle}{\langlestyle\rangle}
\allmatchresidues{\langleres.col.)}{\langleshad.col..)}{\langlecase\rangle}{\langlestyle\rangle}
```

```
\funcshadingstyle{\langleresidue\rangle}{\langleres.col.\rangle}{\langleshad.color\rangle}
 {\langlecase\rangle}{\langlestyle\rangle}

\section*{Residue grouping}
```

\pepsims{\langleresidue\rangle}{\langlesimilars\rangle} [39]
\pepgroups{\langlegroup1\rangle,\langlegroup2\rangle, ... , \langlegroupn\rangle} [39]
\DNAsims{\langleresidue\rangle}{\langlesimilars\rangle} [39]
\DNAgroups{\langlegroup1\rangle,\langlegroup2\rangle, ... , \langlegroupn\rangle} [39]

```

Definition of new functional shading modes
\[
\begin{align*}
& \text { \clearfuncgroups } \\
& \begin{array}{l}
\text { funcgroup }\{\langle\text { descr }\rangle\}\{\langle\text { residues }\rangle\}\{\langle\text { res.col. }\rangle\}\{\langle\text { shad.col. }\rangle\} \\
\qquad\{\langle\text { case }\rangle\}\{\langle\text { style }\rangle\}
\end{array}
\end{align*}
\]

\section*{Appearance of the consensus line}
```

\threshold{\langlepercentage\rangle}[44]
\constosingleseq{\langleseqref\rangle} [44]
\showconsensus[\langlecolor/scale\rangle[,\langlecolor/scale\rangle]]{\langletop/bot.\rangle} [44]
\exportconsensus[\langlefilename\rangle]{\langleseqref }\rangle
\hideconsensus [44]
\nameconsensus{\langlename\rangle} [44]
\defconsensus{\langlesymbol1\rangle}{\langlesymbol2\rangle}{\langlesymbol3\rangle} [45]
\consensuscolors{\langleres.col.1\rangle}{\langleshad.col.1\rangle}
{\langleres.col.2\rangle}{\langleshad.col.2\rangle}
{\langleres.col.3\rangle}{\langleshad.col.3\rangle}[46]

```

\section*{Sequence logos}
```

\showsequencelogo[\langlecolorset\rangle]{\langletop/bottom\rangle} [46]
\hidesequencelogo[46]
\clearlogocolors[\langlecolor\rangle] [48]
\logocolor{\langleresidues\rangle}{\langlecolor\rangle} [48]
\showlogoscale[\langlecolor\rangle]{\langleleft/right/leftright\rangle}
\hidelogoscale [48]
\logostretch{\langlefactor\rangle} [48]
\namesequencelogo{\langlename\rangle} [48]
\dofrequencycorrection

## Subfamily logos

```
\showsubfamilylogo[\langlecolorset\rangle]{\langletop/bottom\rangle}
\hidesubfamilylogo
\setsubfamily{\langleseqrefs\rangle}
\shownegatives[\langleweak, medium, strong\rangle]
\hidenegatives
\namesubfamilylogo[\langleneg.name\rangle]{\langlename\rangle}
\relevance{\langlebit-value\rangle}
\showrelevance[\langlecolor\rangle]{\langlesymbol\rangle}
\hiderelevance

\section*{\showrelevance［〈color〉］\｛〈symbol \(\rangle\}\)}

\section*{Appearance of the sequence lines}
```

\shownames[\langlecolor\rangle]{\langleleft/right\rangle}［49］
\shownumbering[\langlecolor\rangle]{\langleleft/right/leftright\rangle} [49]
\nameseq{\langleseqref\rangle}{\langlename\rangle} [49]
\namescolor{\langlecolor\rangle}
\namecolor{\langleseq1\rangle, ... ,\langleseq n\rangle}{\langlecolor\rangle} [50]49
\hidenames［50］
\hidename{\langleseq1\rangle, ... ,\langleseq n\rangle} [50]
\numberingcolor{\langlecolor\rangle} [49]
\numbercolor{\langleseq1\rangle, . . , <seq n\rangle}{\langlecolor\rangle} [50]
\hidenumbering [50]
\hidenumber{\langleseq1\rangle, . . , <seq n\rangle} [50]
\hideresidues [53]
\showresidues
[53]
\startnumber{\langleseqref\rangle}{\langle first residue number\rangle} [50]
\allowzero
[50]
\disallowzero
[50]
\seqlength{\langleseqref \rangle}{\langlelength\rangle} [50]
\setends{\langleseqref\rangle}{\langlestartnumber\rangle..\langlestopnumber\rangle} [51]
\showruler [\langlecolor\rangle]{\langletop/bottom\rangle}{\langleseqref\rangle} [51]
\rulersteps{\langlenumber\rangle} [51]
\rulercolor{\langlecolor\rangle} [51]
\hideruler [51]
\rotateruler
[51]
\unrotateruler
51]
\namerulerpos{\langlenumber }\rangle}{\langle\mathrm{ text }\rangle[\langle\mathrm{ color }\rangle]
[51]

```
```

\gapchar{\langlesymbol\rangle} (incl. rule)［52］

```
\gapcolors\｛〈symbol color〉\}\{〈background color〉\} ［52］
\showleadinggaps ［52］
\hideleadinggaps ［52］
\fingerprint\｛〈res．per line〉\} ［54］
Hiding，killing，separating and ordering
\(\backslash\) hideseq\｛ \(\langle\) seq 1\(\rangle,\langle\) seq 2\(\rangle, \ldots,\langle\) seq \(n\rangle\}\) ［52］
\hideseqs ［52］
\showseqs ［52］
\killseq\｛〈seq1〉，〈seq2〉，．．．，\(\langle\) seq \(n\rangle\}\) ［52］
\(\backslash\) donotshade \(\{\langle\) seq1 \(\rangle,\langle\) seq2 \(\rangle, \ldots,\langle\) seq \(n\rangle\}\) ［53］
\separationline\｛〈seqref〉\} ［53］
\smallsep ［53］
\medsep ［53］
\bigsep ［53］
\vsepspace\｛〈length〉\} ［53］
\orderseqs \(\{\langle\) seq 1\(\rangle,\langle s e q 2\rangle, \ldots,\langle s e q n\rangle\}\) ［53］
Residues per line and further settings
\(\backslash\) residuesperline\｛ \(\langle\) number \(\rangle\}\) ［53］
\residuesperline＊\｛〈number〉\} ［53］
\charstretch \(\{\langle\) factor \(\rangle\}\) ［54］
\linestretch\｛〈factor〉\} ［54］
\numberingwidth\｛〈n digits \(\rangle\}\) 54］
\smallblockskip ［54］
\medblockskip ［54］
\bigblockskip ［54］
\noblockskip ［54］
\vblockspace\｛〈length〉\} ［54］
\flexblockspace ［54］
\fixblockspace ［54］
\alignment\｛〈left／center／right〉\} ［54］

Individual shading and labeling of sequence stretches
\[
\begin{array}{r}
\backslash \text { shaderegion }\{\langle\text { seqref }\rangle\}\{\langle\text { start } 1\rangle . .\langle\text { stop } 1\rangle,\langle\text { start } 2\rangle . .\langle\text { stop } 2\rangle, \\
\ldots,\langle\text { start } n\rangle . .\langle\text { stop } n\rangle\}\{\langle\text { res.col. }\rangle\}\{\langle\text { shad.col. }\rangle\}
\end{array}
\]［55］
```

\shadeblock\{〈seqref $\rangle\}\{\langle$ start1 $\rangle ..\langle$ stop1 $\rangle,\langle$ start2 $\rangle ..\langle$ stop2 $\rangle$,
$\ldots,\langle$ start $n\rangle . .\langle$ stop $n\rangle\}\{\langle$ res.col. $\rangle\}\{\langle$ shad.col. $\rangle\}$ [55]
\emphregion $\{\langle$ seqref $\rangle\}\{\langle$ start1 $\rangle ..\langle$ stop 1$\rangle,\langle$ start2 $\rangle ..\langle$ stop2 $\rangle$,
$\ldots,\langle$ start $n\rangle . .\langle$ stop $n\rangle\}$ [56]
\emphblock $\{\langle$ seqref $\rangle\}\{\langle$ start1 $\rangle ..\langle$ stop 1$\rangle,\langle$ start2 $\rangle ..\langle$ stop2 2$\rangle$,
... , $\langle$ start $n\rangle . .\langle$ stop $n\rangle\}[56]$
\emphdefault $\{\langle$ style $\rangle\}$
\tintregion\{〈seqref $\rangle\}\{\langle$ start1 $\rangle ..\langle$ stop1 $\rangle,\langle$ start2 $\rangle ..\langle$ stop2 $\rangle$,
$\ldots,\langle$ start $n\rangle . .\langle$ stop $n\rangle\}[56]$
\tintblock $\{\langle$ seqref $\rangle\}\{\langle$ start 1$\rangle ..\langle$ stop 1$\rangle,\langle$ start2 $\rangle ..\langle$ stop2 $\rangle$,
..., , start nो... $\langle$ stop $n\rangle\}$ [56]
\tintdefault $\{\langle$ effect $\rangle\}$ weak, normal, strong [56]
\frameblock $\{\langle$ seqref $\rangle\}\{\langle$ start1 $\rangle ..\langle$ stop 1$\rangle,\langle$ start2 $\rangle ..\langle$ stop2 $\rangle$,
$\ldots,\langle$ start $n\rangle . .\langle$ stop $n\rangle\}\{\langle$ color $\rangle[\langle$ length $\rangle]\}[56]$
\hideblock $\{\langle$ seqref $\rangle\}\{\langle$ start1 $\rangle ..\langle$ stop1 $\rangle,\langle$ start2 $\rangle ..\langle$ stop2 $\rangle$,
..., $\langle$ start $n\rangle . .\langle$ stop $n\rangle\}\{\langle$ label $\rangle[\langle$ color $\rangle]\}\{\langle$ text $\rangle[\langle$ color $\rangle]\}$ [57]
$\backslash$ feature $\{\langle$ position $\rangle\}\{\langle$ seqref $\rangle\}\{\langle$ start 1$\rangle ..\langle$ stop 1$\rangle$,
$\left\langle\right.$ start2 ${ }^{2} . .\langle$ stop2 $2, \ldots,\langle$ start $n\rangle . .\langle$ stop $n\rangle\}\{\langle$ labelstyle $\rangle\}\{\langle$ text $\rangle\}[57]$
$\{\langle$ labelstyle $\rangle\}=\{$ brace $[\langle$ color $\rangle]\}$
$=\{$ fill $:\langle$ symbol $\rangle[\langle$ textcolor $\rangle]\}$
$=\{$ restriction $[\langle$ color $\rangle]\}$
$=\{$ helix[ $\langle$ helixcolor $\rangle]\}$
$=\{$ box $[\langle$ framecolor,boxcolor $\rangle][\langle$ length $\rangle]$ :
$\langle$ text $\rangle[\langle$ textcolor $\rangle]\}$
$=$ arrows and bars $\left(-=<^{\prime}, \mid 0\right)(-=)\left(-=>^{\prime}, \mid 0\right)$
$=\{$ translate $[\langle$ color $\rangle]\}$
$=\{\operatorname{bar}[\langle\min \rangle,\langle\max \rangle]$ :
$\langle$ properties/file/data〉[〈color(,bgcolor) $\rangle]\}$
$=\{\operatorname{color}[\langle\min \rangle,\langle\max \rangle]:$
$\langle$ properties/file/data $[\langle$ scale $\rangle]\}$
〈properties〉: hydrophobicity, charge,
molweight, conservation

```
\ttopspace\{\(\{\) length \(\rangle\}\)
```

\colorscalestretch{\langlefactor\rangle} [62]
\codon{\langleamino acid\rangle}{\langletriplet1,..., triplet n\rangle} [60]
\geneticcode{\langlefilename\rangle} [61]
\backtranslabel[\langlesize\rangle]{\langlestyle\rangle}
\backtranstext[\langlesize\rangle]{\langlestyle\rangle} [63]

$$
\begin{aligned}
\{\langle\text { style }\rangle\} & =\{\text { horizontal }\} \\
& =\{\text { alternating }\} \\
& =\{\text { zigzag }\} \\
& =\{\text { oblique }\} \\
& =\{\text { vertical }\}
\end{aligned}
$$

```

\section*{Including secondary structure information}
\includeDSSP［make new］\｛〈seqref \(\rangle\}\{\langle\) filename \(\rangle\}\) ［65］
\includeSTRIDE［make new］\(\{\langle\) seqref \(\rangle\}\{\langle\) filename \(\rangle\}\) ［65］
\includePHDsec［make new］\(\{\langle\) seqref \(\rangle\}\{\langle\) filename \(\rangle\}\) 65］
\includePHDtopo［make new］\｛〈seqref \(\rangle\}\{\langle\) filename \(\rangle\}\) ［65］
\includeHMMTOP［make new］\｛〈seqref \(\rangle[\langle\) seqref \(\rangle\) ］\}\{〈filename \(\rangle\}\) ［65］
\showonDSSP\｛〈structures〉\} ［66］
\showonSTRIDE\｛〈structures〉\} ［66］
\showonPHDsec\｛〈structures〉\} 66］
\showonPHDtopo\｛〈structures \(\rangle\}\) ［66］
\showonHMMTOP\｛〈structures〉\} 66
\hideonDSSP\｛〈structures〉\} ［66］
\hideonSTRIDE\｛〈structures〉\} ［66］
\hideonPHDsec\｛〈structures〉\} ［66］
\hideonPHDtopo\｛〈structures \(\rangle\}\) ［66］
\hideonHMMTOP\｛〈structures \(\rangle\}\) 66
\appearance\｛〈type〉\}\{〈position \(\rangle\}\{\langle\) labelstyle \(\rangle\}\{\langle\) text \(\rangle\}\) ［67］
\numcount ［67］
\alphacount ［67］
\(\backslash\) Alphacount 67］
\romancount 67］
\(\backslash\) Romancount ［67］
\firstcolumnDSSP ［66］
\secondcolumnDSSP ［66］

\section*{Displaying and building legends}
```

\showlegend［68］

```
\hidelegend ［68］
\(\backslash\) movelegend \(\{\langle x\)－offset \(\rangle\}\{\langle y\)－offset \(\rangle\}\) ［68］
\germanlanguage，\spanishlanguage，\englishlanguage 68］
\legendcolor\｛〈color〉\} ［68］
\shadebox\｛〈color〉\} ［68］

\section*{Adding captions to the alignment}
```

\showcaption[\langletop/bottom\rangle]{\langletext\rangle}［69］

```
\shortcaption\｛〈text \(\rangle\}\) ［69］
Font handling
```

\setfamily{\langletext\rangle}{\langlefamily\rangle}［69］

```
\(\backslash\) setseries \(\{\langle\) text \(\rangle\}\{\langle\) series \(\rangle\}\) ［69］
\(\backslash\) setshape \(\{\langle\) text \(\rangle\}\{\langle\) shape \(\rangle\}\) ［69］
\setsize\｛〈text \(\rangle\}\{\langle\) size \(\rangle\}\) ［69］
\setfont \(\{\langle\) text \(\rangle\}\{\langle\) family \(\rangle\}\{\langle\) series \(\rangle\}\{\langle\) shape \(\rangle\}\{\langle\) size \(\rangle\}\) ［70］
\featuresrm \featurestiny ［70］
\featuressf \featuresscriptsize
\featurestt \featuresfootnotesize
\featuresbf \featuressmall
\featuresmd \featuresnormalsize
\featuresit \featureslarge
\featuressl \featuresLarge
\featuressc \featuresLARGE
\featuresup \featureshuge
\featuresHuge

Corresponding sets are provided for the numbering（\numberingrm etc．），featurestyles（featurestylesrm etc．），names（\namesrm etc．）， residues（\residuesrm etc．）and legend texts（legendrm etc．）．

\section*{Goodies－molweight and charge}
```

$\backslash$ molweight $\{\langle$ seqref $\rangle\}\{\langle D a / k D a\rangle\}$
\charge\{ $\langle$ seqref $\rangle\}\{\langle i / o / N / C\rangle\}$

```

\section*{8 References}
[1] Carlisle, D. The Standard \(\mathrm{EAT}_{\mathrm{E}} \mathrm{X}\) ‘Graphics Bundle’, color.sty.
[2] Karlin, S.; Ghandour, G. (1985) Multiple-alphabet amino acid sequence comparisons of the immunoglobulin \(\kappa\)-chain constant domain. Proc. Natl. Acad. Sci. USA: 82, 8597-8601.
[3] Kyte, J.; Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.: 157, 105-132.
[4] Rose, G. D.; Geselowitz, A. R.; Lesser, G. J.; Lee, R. H.; Zehfus, M. H. (1985) Hydrophobicity of amino acid residues in globular proteins. Science: 229, 835-838.
[5] Lesser, G. J.; Rose, G. D. (1990) Hydrophobicity of amino acid subgroups in proteins. Proteins: structure, function and genetics: 8, 6-13.
[6] Fröhlich, K.-U. (1994) Sequence similarity presenter: a tool for the graphic display of similarities of long sequences for use in presentations. Comput. Applic. Biosci.: 10, 179-183.
[7] Schneider, T.D.; Stephens, R.M. (1990) Sequence logos: a new way to display consensus Nucleic Acid Res.: 18, 6097-6100.
[8] DeLano Scientific LLC 'www.pymol.org'
[9] Kabsch, W.; Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers: 22, 2577-2637.
[10] Frishman, D.; Argos, P. (1995) Knowledge-based protein secondary structure assignment. Proteins: structure, function and genetics: 23, 566-579.
[11] Rost, B.; Sander, C. (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins: structure, function and genetics: 19, 55-72.
[12] Tusnady, G.E.; Simon, I. (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics: 17, 849-850.
[13] Rokicki, T. DVIPS: A TEX driver.
[14] Beitz, E. (2006) Subfamily logos: visualization of sequence deviations at alignment positions with high information content. BMC Bioinformatics: 7:313.```

[^0]: *Please cite: Eric Beitz (2000), $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ shade: shading and labeling multiple sequence alignments using $\mathrm{LT}_{\mathrm{E}} 2_{\varepsilon}$. Bioinformatics: 16, 135-139.
 ${ }^{\dagger}$ University of Kiel, Pharmaceutical Chemistry, Gutenbergstrasse 8, D-24118 Kiel, Germany; send electronic mail to ebeitz@pharmazie.uni-kiel.de; for further information, updates and on-line documentation see my homepage at www. pharmazie.uni-kiel.de/chem/ - click on 'Beitz'

[^1]: ${ }^{1}$ For this and suggesting namerulerpos credit to Marco Pasi.
 ${ }^{2}$ Both extensions were suggested by Phillip Hahn.

[^2]: ${ }^{3}$ Thanks to Markus Heller
 ${ }^{4}$ Discovered by Chris Page.

[^3]: ${ }^{5}$ Ahmad Mirza asked for (e) and (f), great suggestion!
 ${ }^{6}$ This and (d) I owe again to Christoph Gille.
 ${ }^{7}$ Meike, here you go ...
 ${ }^{8}$ Alan Robinson, this is for you.

[^4]: ${ }^{9}$ Implemented after a request by Steffen Moeller.
 ${ }^{10}$ Inspired by Christoph Gille's STRAP
 ${ }^{11}$ Thanks to Jeferson J. Arenzon and Naomi Siew
 ${ }^{12}$ As suggested by Eckhart Guthöhrlein.
 ${ }^{13}$ Thanks to Denys Bashtovyy.

[^5]: ${ }^{14} \mathrm{c}$ and d were suggested by Christoph Gille.
 ${ }^{15}$ Suggested by Ulrike Folkers.
 ${ }^{16}$ Thanks to Eckhart Guthöhrlein.

[^6]: ${ }^{17}$ For a description see http://gene.md.huji.ac.il/Computer/GCG9doc

[^7]: ${ }^{18}$ Sorry, seqpup is much more!

[^8]: ${ }^{19}$ eric．beitz＠uni－tuebingen．de

[^9]: ${ }^{20}$ Thanks to Alan Robinson for inspiration.

[^10]: ${ }^{21}$ Thanks to Darrell Conklin for reporting this problem

