The teubner package
Extensions for Greek philology™

Claudio Beccari
claudio dot beccari at gmail dot com

Contents 5.9 Greek, English, and Ger-
man quotes 33
1 Introduction 1 5.10 Other philological sym-
bols and macros 34
2 Environments 3 5.11 Ancient Greek monetary
unit symbols 39
3 Commands and symbols 5 5.12 Another set of philologi-
cal symbols and macros . 39
4 Acknowledgements 5 5.13 Poetry environments and
macros 41
5 Code 5 5.14 Metrics symbols, macros
5.1 Preliminaries 5 and environmnets 46
5.2 Compatibility with Latin 5.15 Debugging commands . . 49
fonts 9 5.16 Classical Greek numerals. 50
5.3 Service macros 15 5.17 A.ttic numerals 53
5.4 Extended accent definitions 18 5.18 First st (,)f_ extended ac-
. cent definitions 54
5.5 Special accent macros . . 19 519 Second set of extended
5.6 Some text commands . . . 24 accent definitions 56
5.7 Accent macros and glyph
names 25 6 Accessing the CBgreek fonts
5.8 Text philological symbols when the TX fonts are se-
and macros 29 lected 60
Abstract

This extension package complements the greek option of the babel pack-
age so as to enable the use of the Lipsian® fonts and to use several macros
for inserting special annotations in the written text, as well as to typeset
verses with special layout. Metric sequences may be defined and typeset by

*This file has version number v.3.1, last revised on 2010/11/02.

IWhat here are called Lipsian fonts are a family of fonts that in Greece are called “Lipsiakos”;
they are similar to the ones that were being used in the Teubner Printing Company of Lipsia
from mid XIX century on.

means of a companion font gmtr???7? that follows the same conventions as
the CB fonts that are normally used when the babel greek option is in force.

Examples and lists of commands are available in the file teubner-doc. pdf
which, as a regular pdf file, embeds all the necessary fonts and may be read
on screen as well as printed on paper; beware, though, that the PostScript
fonts that are being used in teubner-doc.pdf are not distributed with the
package. While this documentation is being written the TEX-Live Team is
trying to reduce the size of the distribution and one of the proposals is to re-
duce the number of Greek fonts distributed on TEX-Live; therefore it might
be necessary that the users of this teubner package download the missing
fonts directly from one of the CTAN archives.

1 Introduction

Philologists in general have the necessity of using special alphabets and several
special symbols in order to mark up their texts and to typeset them in a special
way. Greek philology makes no exception, therefore I prepared this file and some
extra fonts in order to complement what is already available with the greek option
of the babel package.

I must warmly thank Paolo Ciacchi of the University of Trieste who invited me
in this “adventure”, since I know nothing about philology; he assisted me with all
his competence, so that I could learn so many new things and I could appreciate
the world of philologists.

Paolo Ciacchi’s “invitation” arrived when I was almost finished with the design
of the Lipsian font family; I was working on this new typeface after a kind request
of Dimitri Filippou, with whom I already collaborated for other questions related
to Greek typesetting. I warmly thank also Dimitri Filippou for the patience with
which he revised every single glyph of the new typeface. Paolo Ciacchi added
his constructive criticism to the typeface, especially for what concerns diacritical
marks. At the end I think that the new typeface turned out pretty well thanks to
both my friends.

The Lipsian font, also called Leipzig or Lipsiakos in Greece, is one of the oblique
fonts that used to be employed by the typesetters working in the German city of
Leipzig, among which the Teubner Printing Company. This Company’s classical
works of ancient Greek poetry are considered among the best ever published. The
name of this file and this extension package is in honor of that printing company.

This package documentation does not contain any example written in Greek,
because when you process this file it is very likely that you don’t have the suitable
Greek fonts and you must still download all or some of them. Therefore a com-
panion file teubner-doc.pdf is included in this bundle where most, if not all, the
new commands are documented and suitably shown.

This package contains new environments and new commands; it presumes the
user invokes it after declaring the greek option to the babel package; should he
forget, this package will complain. But once the greek option is properly declared,
this package verifies that the polutonikogreek dialect is selected, or that the
polutoniko attribute is set. This choice depends on the particular version of

versi

\verso

the babel package, but should not concern the user; switching back and forth
between classical Greek and some modern western language is performed in a
transparent way; possibly there might be some problem switching from classical
to modern spelling in Greek itself, but since in modern spelling the multiplicity of
Greek diacritical marks is not forbidden, it’s the author choice to select classical or
modern words, Lipsian or Didot fonts, polytonic or monotonic accentuation. The
worst it can happen is that babel might use just one hyphenation pattern set, so
that in one of the two Greek versions some words might turn out with the wrong
hyphens.

The CB Greek fonts, which have been available for some years now on CTAN
in the directory /tex-archive/fonts/greek/cb have been completed with the

does not need a formal font definition file, because the necessary definitions are
included in this package. All fonts are available also as Type 1 scalable fonts.
In general, recent distributions of the TEX system already contain the necessary
configuration to use the Type 1 font in one size, 10 pt, but, thanks scaling, these
can be used at any size; this version of teubner is compatible with this reduced set.
If optical sizes are desired for a more professional typesetting, the CTAN archives
contain also the cbgreek-full package, which includes also all the Type 1 fonts at
the various standard (EC) sizes, plus other facilities that allow to use the CB fonts
also in conjunction with the Latin Modern ones.

The CB Greek fonts allow to input Greek text with a Latin keyboard and by
employing the prefix notation; with a Greek keyboard and file 1s0-8859-7.def it
is possible to directly input Greek text with the monotonic spelling; if polytonic
spelling is required I fear that the above file is of little help and that a Latin
keyboard does the job without an excessive burden.

Nevertheless there is a little point to observe; Lipsian fonts are very nice but
show most kerning errors with more evidence than the traditional Didot Greek
fonts. With the prefix notation in force, kerning programs may result disabled and
some diphthongs and some consonant-vowel combinations appear poorly matched
when the second letter caries any diacritical mark. In order to avoid this “feature”,
the accented vowels may be input by means of macros, that directly translate to
the accented glyph, rather than invoking the ligature programs that are implied
by the prefix notation; reading a Greek text on the screen while editing the input
.tex file when a Latin keyboard and such macros are used may be very strange,
but authors get used to it, and agree that the effort is worth the result.

2 Environments

I apologize if I chose Italian names for verse environments; I wanted to use names
very different from the corresponding English ones, but at the same time easily
recognizable; after all versi is the plural of verso and therefore is the exact Italian
translation of verses. If you feel more comfortable with Latin the alias environment
names in Latin, versus, Versus, and VERSUS, are also available.

The environment versi (versus) is used to typeset verses in line, without an

Versi

VERSI
\SubVerso
\NoSubVerso

bracedmetrics

implicit end of line at the end of each verse; a vertical bar with a number on top of
it marks the verse limit while allowing a numeric reference to a specific verse; the
opening environment statement requires a string, a short text, in order to indent
the verse lines the amount of this string width; the syntax is the following

\begin{versi}{(string)}
(verse)\verso[(starting number)] (verse)\verso
(verse)\verso(verse). ..

\end{versi}

where, of course, (starting number) is required only for the first instance of \verso
or when numbering must be restarted, for example after an ellipsis.

The environment Versi (Versus) is similar to the standard XTEX environment
verse, except verse lines are numbered on multiples of 5; the opening statement
requires the (starting number) as an optional argument; if this optional argument
is not specified, the starting number is assumed to be 1.

\begin{Versi}[(starting number)]
(verse)\\(*) [(vertical space)]
(verse)\\

iéﬁd{Versi}

The environment VERSI (VERSUS) allows for two verse enumerations; the main
enumeration is identical to the one performed by the previous environment Versi,
while the secondary enumeration is in smaller digits and normally numbers con-
secutive verses, except that it can be turned on and off; the verses that lack the
secondary enumeration are indented by moving them to the right.

\begin{VERSI}[(starting principal number)]
(verse)\\(*) [(vertical space)]
\SubVerso[(starting secondary number)]
(verse)\\(*) [(vertical space)]

iﬁéSubVerso
(verse)\\(*) [(vertical space)]

iéz‘ld{VERSI}

where if (starting principal number) is missing, 1 is assumed, while if (starting
secondary number) is missing, the enumeration is continued from the next avail-
able integer. Of course (starting secondary number) is used again when the sec-
ondary enumeration must be restarted; there are no means to restart the principal
enumeration.

The previous environments accept (verses) in any language and in any alpha-
bet, the one that is in force before opening the environment; the language and,
even less, the alphabet cannot be globally changed within the above environments;
if such a change is performed, it is valid only for one verse, or for the remaining
fraction of the verse after the language or font change. This means, among the

\verseskip
\Hfill

\newmetrics

other things, that if the default “alphabet” is the one that shows the metric sym-
bols, the above environments may be used to display “metric verses”, that is the
pattern of long, short or ancipital symbols, together with any other metric symbol
so as to display the metrics without disturbing the written text; when doing this
metric typesetting, it may happen that some verse patterns exhibit some variants;
in this case the bracedmetrics environment comes handy, because it can display
such variants in separate lines but grouped with a large right brace; some com-
mands allow to roughly align these variants, so as to allow to nest several such
environments as if they were single blocks of metric symbols. The argument of
the opening statement specifies the width of the block so as to align properly all
the symbols even in nested environments.

\begin{bracedmetrics}{({length)}
(metric pattern)\\
(metric pattern)\\

\end{bracedmetrics}

Within the (metric pattern) it is possible to flush right the symbols by prefixing
the whole string with a \Hfill command; the (length) may be specified as an
integer multiple of a “long” symbol by means of

\verseskip{(number)}

The macro \verseskip can be used also within (metric pattern) in order to space
out metric symbols.

3 Commands and symbols

This package defines a lot of commands for inserting special signs in the middle
of regular text, for marking zeugmas and synizeses, for putting unusual accents
on any symbol, for inserting special “parentheses” that are used by philologists
for marking blocks of letters or blocks of text. I suggest that the user consults
the documentation file teubner-doc.pdf for a complete list of commands and
symbols.

Here it might be useful to describe a command for defining metric sequences,
so as to shorten the definition of metric verses; this new command is \newmetrics
and may be used for the definition of new commands whose name may start with
one digit: precisely this digit may be one of 2, 3, 4. Even if I/ TEX does not allow
macros to contain both digits and letters, other service macros have been defined
so as to handle these special control sequences even if they start with one digit
strictly lower than 5. The syntax is:

\newmetrics{(control sequence)}{(definition)}

where (definition) consists in general of a sequence of metric commands such as
\longa, \brevis, \anceps, etc.

4 Acknowledgements

I must thank with gratitude Paolo Ciacchi that urged me to prepare this extension
file in order to help him typeset his master thesis of philological type in classical
Greek.

I am pleased to thank Gilinter Milde who wrote a definition file for accessing
the LGR encoded fonts in order to fetch the accented glyphs; I kindly gave me
permission to use his macros, that I adapted to the conventions used within this
file. These macros are saved into the definition file LGRaccent-glyph.def, so that
it can be used also without the teubner package, fore example for typesetting
without setting the polytoniko language attribute.

I got some ideas also from a paper that Werner Lemberg published on Eutypon,
the magazine of the Hellenic Friends of TEX, where he discussed in a constructive
critical way the problems connected with the LGR encoded fonts and the Unicode
encoding.

5 Code

5.1 Preliminaries

The beginning of the file starts with the traditional stuff; as usual we provide also
the means for avoiding reading this file again.

1 (xpackage)

2 \ifx\teubner\undefined

3 \def\teubner{teubner}\else\expandafter\endinput

4 \fi

In order to use the PostScript pfb fonts (CM, EC, and CB) it is necessary to know
if we are dealing with INTEX or pdfIATEX; this was necessary because apparently
the pfb math scalable fonts derived from the METAFONT counterparts do not
have exactly the same effective dimensions; this is why the “zeugma” and the
“synizesis” signs have to be corrected when the pfb fonts are used; with these, in
facts, the black leader that joins the curved extremities appeared a little too fat
and did not join exactly the left mark. Recently, apparently, the fonts have been
corrected and this trick is not necessary any more. Nevertheless we define a new
boolean that copes with the fact that sin 2007 the TEX engine is pdftex even when
DVT output is sought:

5 \newif\ifPDF \PDFfalse

6 \@ifundefined{pdfoutput}{\PDFfalse}{\ifnum\pdfoutput>\z@\PDFtrue\fi}

When teubner. sty is input the language Greek must have been already defined;
otherwise an error message is issued and processing is terminated.

7 \ifx\captionsgreek\undefined

8 \PackageError{teubner}{Greek language unknown!\MessageBreak

9I am not going to use Lipsian fonts and Scholars’ signs\MessageBreak
10 if Greek is unknown.\MessageBreak

11 Use the babel package with the \texttt{greek} option.\MessageBreak

12 Type X <return> to exit.}}

13 {Type X <return> to exit.}

14 \fi

If this test is passed, this means that not only the greek option to the babel package
is set, but also that all the babel machinery is available.

Since teubner.sty accepts some options it is necessary to provide their def-
initions; in particular the \or control sequence conflicts with the \or primitive
command used within the syntax of \ifcase?; \oR is a little exception since all
the other accent-vowel macros contain only lowercase letters. The point is that
accent vowel sequences that directly access the accented glyph are made up as
such:

\(base character)(first diacritic)(second diacritic)
(third diacritic)

where

(first diacritic) isdor r or s for

diaeresis, rough or smooth breadth

(second diacritic) is c or a or g for

circumflex or acute or grave

(third diacritic) is i for iota subscript or adscript

Evidently none of the diacritical marks is compulsory, but at least one must be
present; if more than one is present it must be given in that sequence. Since \oR
means omicron with rough breath, it is not very important that it is declared with
the standard sequence <o or with \oR, because it never falls after another letter,
so that it never breaks any ligature or kerning command. The command is there
just for completeness.

At the same time since all accent combinations are defined as “text commands”,
in BTEX jargon, when their commands are followed by a vowel (or ‘r’) they define a
“text symbol” i.e. they fetch directly the glyph of the accented character; therefore
<o, \oR and \r{o} are all equivalent (at the beginning of a word where omicron
with rough breath is the only place where you can find it). See more on this point
in the sequel.

Nevertheless, while these glyph name macros are defined by default, it is pos-
sible to do without by specifying the option NoGlyphNames, In this case the same
result is more comfortably obtained by using the extended accent macros whose
behaviour is specified in the definition file LGRaccent-glyph.def.

Another unusual option is set up for being used with non standard TEX system
fonts; we have noticed that the Lipsian fonts appear a little too light when used
together with the Times or the Palatino fonts; probably this is true also with other
PostScript fonts. In this case the user might specify the option boldLipsian and
the Lipsian fonts used in medium series will be substituted with those of the
semibold one.

At the same time, from July 2005, The full collection of the complete size set
of the CB fonts is not available any more as the default TEX system set up; only

2With version 2002/07/18 v.1.0d this has been eliminated; the option remains for compati-
bility with older versions, but the only legal command is now \oR.

the 10pt size are available unless the cbgreek-full font package is loaded; for this

reason a new option is needed in order to instruct teubner. sty to use the specific

file typelec.sty dated at least 2002/09/07, so as to scale up or ddown all the

EC and CB fonts from an original 10 pt size. In order that the 10pt plays its role

correctly, it is convenient, if not compulsory, to require first the babel package,

then the teubner one with the option 10pt, then all other packages required for a

specific document, in particular the fontenc one if the T1 encoding is requested.
This kludge is necessary for all fonts that have description files that use the

\ECe@family command for describing the available shapes and sizes; in practice this

happens only with the EC fonts, even when the cm-super scalable implementation

is used. For using the Latin Modern fonts (LM) new specific font description files

for the CB fonts are part of the babel package, so this problem does not exist;

when using other fonts, such as the TX, PX, ZE, ..., other kludges are necessary,

because their font family names are different from those normally used with TEX:

cmr for serifed fonts, cmss for sanserif ones, and cmtt for monospaced ones.?
Notice that when using, for example, the TX fonts and no kludge is available,

the CB fonts are loaded only as the “error font”, since the TX fonts have different

family names than the CB ones; in many cases this might pass un-noticed, but

if real Greek text in different shapes and series has to be typeset, the unaware

typesetter might get crazy trying to force shape and series changes in the Greek

text; it would not be impossible, but it would be very, very boring. In any case see

in the sequel for the implemented kludges in order to run successful compilations

also with non standard TEX system fonts.

15 \newif\ifor\orfalse % Compatibility with older versions

16 \DeclareOption{or}{\relax}

17 \newif\ifboldLipsian \boldLipsianfalse

18 \DeclareOption{boldLipsian}{\boldLipsiantrue}

19 \newif\ifonesizetypeone

20 \DeclareOption{10pt}{\onesizetypeonetrue}

21 \newif\ifGlyphNames \GlyphNamestrue

22 \DeclareOption{NoGlyphNames}{\GlyphNamesfalse}

23 \ProcessOptions*

In the sequel we frequently use the acronym for the Greek font encoding; we
hope it will eventually become GR or, following the actual 256 glyph font encodings,
T7 or X7*. Meanwhile the acronym is LGR, so we’d better define a symbolic name,
so that we can change the definitive name in just one place.

3Even the Latin Modern fonts have different family names, but, due to their importance,
specific font description files have been added to the babel package. The Lm fonts are more
comfortable than the EC ones, when scalable fonts are to be used, because they are continuously
scalable and download into the produced files less font files than the EC o cm-super ones. Unless
specifically requested, the LM fonts should always be preferred to the EC and cm-super ones.
When using the LM fonts, its better to use the full collection of the CB fonts, although the CB
font description files are compatible with the single 10 pt size.

4 Apparently T7 has been chosen to define an encoding where the first 128 glyphs are the
standard 0T1 encoded Latin fonts, and the second group again of 128 glyphs contains the Greek
characters; therefore, since polytonic spelling requires more than 128 glyphs, the extended en-
coding X7 will probably become the one applicable to the whole set of the CB fonts.

\metricsfont

\GreekName

24 \def\GRencoding@name{LGR}

Now the default Olga Greek fonts, used for rendering the “Greek italic shape”
are an alternative with the Lipsian ones. If the 10pt option was specified it is
necessary to load also the package texttttypelec.sty. In any case we load also
packages graphicx and ifthen that shall be useful for some commands.

25 \ifonesizetypeone

26 \RequirePackage [10pt]{typelec} [2002/09/07]
27 \fi

28 \RequirePackage{graphicx}

29 \RequirePackage{ifthen}

Similarly the metric symbol font is declared together with a command for selecting
it:

30 \DeclareFontFamily{U}{mtr}{\hyphenchar\font\m@ne}

31 4\EC0family{U}{mtr}{m}{n}{gmtr}

32 \ifonesizetypeone

33 \DeclareFontShape{Ut{mtr}{m}{n}{<-> gmtr1000}{1}/

34 \else

35 \DeclareFontShape{Utmtr}{m}{n}{/%

36 <-5.5> gmtr0500 <5.5-6.5> gmtr0600

37 <6.5-7.5> gmtr0700 <7.5-8.5> gmtr0800

38 <8.5-9.5> gmtr0900 <9.5-11> gmtr1000

39 <11-15> gmtr1200 <15-> gmtr1728}{}%
40 \fi

41 \DeclareFontShape{UHmtr}Hm}{it}{<->ssub*mtr/m/n}{}%

42 \DeclareFontShape{UtHmtr}{b}{it}H<->ssub*mtr/m/n}{}/,

43 \DeclareFontShape{Ut{mtr}{b}{n}{<->ssub*mtr/m/n}{}%

44 \newcommand*\metricsfont{\fontencoding{U}\fontfamily{mtr}\upshape}

Next we require the package for extensible math fonts; it might be strange to
use extensible math fonts in Greek philology, but a certain command must be
picked up from such fonts, with the assurance that it changes size together with
the current font size.

45 \RequirePackage{exscale}

Some macros are necessary to switch languages; such macros must be inde-
pendent (at least for now) from the particular babel version, whether it be version
3.6 or 3.7; in the former the concept of “language attribute” is unknown, while
the latter recognizes varieties of the same language by the attribute setting. Such
macros, besides being as robust as possible, must provide the alphabet changes as
required.

During the language switching operations \GreekName distinguishes the dialect or
the main language whose attribute gets set and, evidently, becomes effective when
the main language greek is in force.

46 \ifx\languageattribute\undefined

47 \def\GreekName{polutonikogreek}

48 \else

49 \languageattribute{greek}{polutoniko}\def\GreekName{greek}/,
50 \fi

5.2 Compatibility with Latin fonts

\previouslanguage The “default” language is defined as the “previous” language; similarly the “de-

\previousencoding fault” encoding is defined as the “previous” encoding; these are the language and
the encoding in force when the document starts; this is why such macros are de-
fined at the beginning of the document. At the same time we assure that if the
CM (or EC) or the LM fonts are the default ones, nothing special is done, while
if the default fonts are, say, the TX ones, they are correctly restored, but the CM
families are used for the CB ones.

\substitutefontfamily The font macro \substitutefontfamily is already present in the babel kernel;
\ifLipsian I copes only with the standard families, series and shapes, therefore it does not
consider the Lipsian shape and its series. I had to redefine it together with a new
conditional macro in order to do the same job as the original one but taking into
consideration also the Lipsian shape; the purpose of this macro is to write in the
working directory a number of font description files that refer to the LGR Greek
encoding, but have the names of the Latin font families; such font description files,
simply substitute these non existent encoding-family series and shapes with the
existing series and shapes of any other LGR encoded Greek font, in particular the
CB ones. By issuing a command such as:

\ifFamily{pxr}{cmr}

an association is made with all the series and shapes of the Palatino serifed fonts
to the corresponding CB serifed series and shapes; therefore when a language
shift changes the default encoding from, say, T1 to LGR the font family LGR+pxr
is mapped to the font family LGR+cmr and everything is supposed to work fine;
when another language change resets the encoding to T1, the original Latin script
is used again. The redefined \substitutefontfamily macro is as such:

51 \newif\ifLipsian

52

53 \providecommand*\substitutefontfamily{}%

54 \renewcommand*\substitutefontfamily [3]{{%

55 \edef\Q@tempA{#1#2.£d}Y

56 \lowercase\expandafter{\expandafter\def\expandafter\@tempA\expandafter{\QtempA}}’
57 \expandafter\IfFileExists\expandafter{\@tempA}{}{%

58 \immediate\openout15=\@tempA

59 \typeout{Writing file #1#2.fd}

60 \immediate\writel15{%

61 \string\ProvidesFile{#1#2.£fd}""J

62 [\the\year/\two@digits{\the\month}/\two@digits{\the\day}
63 \space generated font description file]~"~J

64 \string\DeclareFontFamily{#1}{#2}{}""J

65 \string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}""J
66 \string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}""J
67 \string\DeclareFontShape{#1}{#2}{m}{s1}{<->ssub * #3/m/s1}{}""J

10

68 \string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}""J
69 \string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}""J
70 \string\DeclareFontShape{#1}{#2}{b}{it}{<->ssub * #3/bx/it}{}""J
71 \string\DeclareFontShape{#1}{#2}{b}{s1}{<->ssub * #3/bx/s1}{}""J
72 \string\DeclareFontShape{#1}{#2}{b}{scH{<->ssub * #3/bx/sc}{}""J
73 \string\DeclareFontShape{#1}{#2}{bx}{n}{<->ssub * #3/bx/n}{}""J
74 \string\DeclareFontShape{#1}{#2}{bx}{it}{<->ssub * #3/bx/it}{}""J
75 \string\DeclareFontShape{#1}{#2}{bx}{sl}{<->ssub * #3/bx/s1}{}""J
76 \string\DeclareFontShape{#1}{#2}{bx}{sc}{<->ssub * #3/bx/sc}H{}""J

77 iy
78 \ifLipsian
79 \immediate\writel15{}

80 \string\DeclareFontShape{#1}{#2}{m}{1li}{<->ssub * #3/m/1i}{}""J %<- Lipsian
81 \string\DeclareFontShape{#1}{#2}{b}{1i}{<->ssub * #3/b/1i}{}""J ¥%<- Lipsian
82 \string\DeclareFontShape{#1}{#2}{bx}{1i}{<->ssub * #3/bx/1i}{}""J Y<-Lipsian
83 \string\DeclareFontShape{#1}{#2}{m}{ui}{<->ssub * #3/m/uil{}~"J %<- upright Olga
84 \string\DeclareFontShape{#1}{#2}{b}{uil{<->ssub * #3/m/ui}{}""J %<- upright Olga
85 \string\DeclareFontShape{#1}{#2}{bx}{uit{<->ssub * #3/bx/uil}{}""J)<-upright Olga

86 \string\DeclareFontShape{#1}{#2} {m}{rs}{<->ssub * #3/m/rs}{}""J Y<-serifed lc
87 \string\DeclareFontShape{#1}{#2}{b}{rs}{<->ssub * #3/m/rs}{}""J J<-serifed lc
88 \string\DeclareFontShape{#1}{#2}{bx}{rs}{<->ssub * #3/bx/rs}{}""J)<-serifed lc
89 Yh

90 \fi

91 \closeout15}y,

92 }}

93

Notice that together with the Lipsian fonts the upright italics (Olga) and upright
serifed lowercase alphabets are defined. In a while there are the definition for
selecting these shapes. Of course you are not obliged to use them, but in case you
wanted. . .

These results are obtained by means of the following macros.

\ifCMLM The \ifCMLM processes the necessary test in order to set the auxiliary macro
\ifFamily \n@xt to be an alias to \iftrue or iffalse depending on the fact that the CM
(or EC) fonts or the LM fonts are the default Latin ones, in this case it sets the

\n@xt macro equivalent to \iftrue, otherwise it sets it to \iffalse. In order to

succeed, it requires to analize the first two letters of the default family name; if

these letters form one of the sequences cm or 1m, the CM or LM fonts have been

loaded, otherwise some other fonts are in force. We need therefore a macro with

delimited arguments in order to extract the ffirst two letters of the family name.

94 \def\if CMLM#1#2#3!{\edef\fCmilyprefix{#1#2}J

95 \ifthenelse{\(\equal{\f@milyprefix}{cm}\OR\equal{\f@milyprefix}{1m}\)1}%
96 {\let\n@xt\iftrue}{\def\fOmilyprefix{cmr}\let\n@xt\iffalse}\n0xt}

97

The other macro \ifFamily uses the previous macro and according to the test
result, possibly runs the \substitutefontfamily macro that, if necessary, creates
the description file that map the specified family font description file to the second
specified font family, both connected to the LGR encoding. Therefore, after these

11

font definition files exist, I¥TEX can fetch the Greek fonts by way of substitution.
Let’s explain again: if you specify

\Lispsiantrue\ifFamuly{pxr}{Ilmr}\Lipsianfalse

you state that you want to run the macro on the serifed Palatino font family, by
associating the pxr family to the 1mr one®; by specifying \Lipsiantrue you state
that you want to create entries also for the Lipsian series and shape; afterwards you
reset \Lipsianfalse in order to avoid that other call of that macro on non serifed
or monospaced fonts try to create entries that in any case do not exist: the Lipsian
font comes only as a serifed font!. In this way, if you are using Palatino fonts
through the pxpackage, the teubner macros provide to create the necessary font
description files so that while you are typesetting in medium normal Latin Palatino
and you switch to Greek, the built in macros change the encoding to LGR; The
LGR Palatino serifed medium normal Greek font does not exist, but that family,
series and shape are mapped by the font description file to the corresponding
LGR encoded Latin Modern CB fonts in medium series and normal shape, and
typesetting goes on with the rigth Greek fonts.

98 \newcommand*\ifFamily [2]{%

99 \expandafter\ifCMLM#1!\else\substitutefontfamily{LGR}{#1}{#2}\fi}

100

You don’t actually need to use that macro for the Times or the Palatino eXtended
fonts loaded by means of the corresponding packages txfonts or pxfonts, because a
hook is set up so that “at begin document” the loading of those packages is tested,
and if the test is true, the necessary font description files are possibly created. If
you load the Tymes or the Palatino or any other non standard font by means of
other packages, it’s up to you to issue the \substitutefontfamily macro right
after calling that font package and by using the correct family names; similarly
you might substitute the new Latin font family names to other Greek font family
names, if you have other fonts available. At the same time at begin document we
memorize the name and encoding of the Latin font used for the default language,
so that when returning to Latin font typesetting after Greek font typesetting, the
proper language typesetting rules and encoding are restored.

101 \AtBeginDocument{¥%

102 \@ifpackageloaded{pxfonts}{\typeout{Palatino fonts loadedl}/,

103 \Lipsiantrue\ifFamily{pxr}{cmr}\Lipsianfalse

104 \ifFamily{pxss}{cmss}\ifFamily{pxtt}{cmtt}}{\relax}}

105

106 \AtBeginDocument{},

107 \@ifpackageloaded{txfonts}{\typeout{Times fonts loaded}’

108 \RequirePackage{teubnertx}}{}}

109

5If you have the full CB Greek font collection it’s more convenient to map the missing fonts
to the Latin Modern Greek ones, while if you need to use the 10pt option, you’d better map the
missing family to the ordinary Computer Modern ones; the actual fonts are the same, but the
latter font definition files cope with the 10pt option, while the former don’t.

12

\Lipsiakostext
\lishape
\textli

\textLipsias

110 \AtBeginDocument{%

111 \edef\previouslanguage{\languagename}y,

112 \edef\previousencoding{\f@encoding}}

Nevertheless all this requires a minimum of attention in specifying the options
for the babel package and in the order extensions packages are read in. The
teubner.sty package should be read after any other package that sets or resets
the Latin font encoding; for example if the T1 encoding is selected as the default
one, in place of the OT1 encoding, then this choice must be made before this
package is read in. Similarly when the babel options are specified, remember that
the last language name becomes the default language at begin document; never
specify greek as the last language option!

\lishape is the normal declaration, modeled on the other similar macros in the
ETEX kernel, made up to chose the Lipsian shape. Nevertheless since it is a
light character, if it must blend well with the other PostScript fonts, not only
the CM and LM, but also the other ones available for typesetting with the TEX
system, it is necessary to chose the b (bold) series in place of the m (medium)
one, while maintaining the bx (bold extended) series when the other fonts are set
with the blacker and larger series. This is why the \1ishape declaration is a little
more complicate than normal, since it has to test the value of the current series.
The text command \textli matches the similar commands for Latin fonts. But
the \lishape declaration is used also within the more complicated macros for
declaring or setting the Lipsian font.

\Lipsiakostext is a declaration stating that from now on typesetting will
be done with the Lipsian fonts; notice that the encoding and the language name
in force before this declaration are memorized, then the current Greek version
is selected; the \let\~\GRcirc is required because swithching on and off may
reset, the active tilde and connected macros definitions. \~ in Greek must set the
circumflex accent, so we make sure that this really occurs.

113 \DeclareRobustCommand{\1lishape}{’

114 \not@math@alphabet\lishape\relax

115 \ifthenelse{\equal{\f@encoding}{\GRencoding@namel}}{’
116 \ifboldLipsian

117 \ifthenelse{\equal{\f@series}{m}}%

118 {\fontseries{b}\fontshape{li}\rmfamily}%
119 {\fontshape{li}\rmfamily}\else

120 \fontshape{liF\rmfamily\fi}},

121 {\fontshape{it}\selectfont}}/,

122

123 \DeclareTextFontCommand{\textli}{\1lishapel}%
124 \DeclareRobustCommand\Lipsiakostext{/

125 \expandafter\select@language\expandafter{\GreekNamel}’
126 \let\~"\GRcirc\let~\greek@tilde\lishape}
127

\textLipsias is a command that typesets its argument with the \Lipsiakostext
declaration in force. The IETEX command declaration used here makes sure that

13

\NoLipsiakostext

\textDidot

possible italic corrections are taken into account; hte actual font switching is made
through the same \Lipsiakostext declaration, but the innner working maintain
local this declaration, so non grouping is explicitly required; for this reason we
suggest to use this text command rather than the font declaration.

128 \DeclareTextFontCommand{\textLipsias}{\Lipsiakostext}
129

\NoLipsiakostext is the opposite declaration that undoes everything that was
done with \Lipsiakostext. Probably it is superfluous, but it has been asked for.
If \Lipsiakostext is delimited within a scope by means of an explicit group or
an environment, it stops its effectiveness with the end of its scope.

It is worth noting that, in order to delimit within a scope the action of this
and of the other declarations, it is possible to use them as environments with the
same name without the backslash. for example one might input in the source file
something as:

\begin{Lipsiakostext}
(Greek text to be typeset with the Lipsian font)
\end{Lipsiakostext}
Remember also that these Greek text declarations may be issued while typesetting

with Latin fonts; they provide also the language switch, so that they do not require
the typesetter to first switch to Greek and then to choose a certain Greek font.

130 \DeclareRobustCommand\NoLipsiakostext{%

131 \ifthenelse{\equal{\f@series}{b}}{\fontseries{m}}{\relax}/,
132 \fontshape{n}\selectfont

133 \expandafter\select@language\expandafter{\previouslanguagel}’
134 \rmfamily\bbl@activate{~}}

135

\textDidot is a similar macro where the common upright Greek characters are
selected; it goes by itself that if \textit is specified within the \textDidot argu-
ment, the typesetting is or becomes identical with what one can obtain with the
\textLipsias command.

136 \DeclareRobustCommand\textDidot [1]{{%

137 \expandafter\select@language\expandafter{\GreekName}J,
138 \let\~"\GRcirc\let~\greek@tilde

139 \fontencoding{LGR}\rmfamily#1}}

140

\textlatin \textlatin is a redefinition of the standard babel macro that is adapted to the

present situation, where it may be called behind the scenes in certain situations
that are beyond the control of the typesetter. Therefore every precaution is taken
in order to be sure that the composition of the command argument is really done
with the default encoding and font families, but maintaining the current series and
shape; of course, if the shape is that related to the Lipsian font, then the italic
shape is temporarily restored (local definition). Moreover, with the (default) Latin

14

\uishape
\textui
\rsshape
\textrs

\strip@pt

\lift@accent

fonts the tilde is restored to a non breaking space by simly making it an active
character.

141 \DeclareRobustCommand\textlatin[1]{\edef\externalencoding{\f@encoding}{%
142 \def\itdefault{it}\def\@tempA{li}\ifx\@tempA\f@shape\def\f@shape{it}\fi%

143 \expandafter\select@language\expandafter{\previouslanguage}’

144 \fontencoding{\previousencoding}’

145 \fontfamily{\rmdefault}\selectfont

146 \bbleactivate{ }#1}Y

147 \expandafter\fontencoding\expandafter{\externalencoding}\rmfamily}
148

The other switching foont macros for using the other shaps that are available with
the CB fonts are working only when tyesetting in Greek and the default encoding
is therefore LGR.

149 \DeclareRobustCommand\uishape{%

150 \ifthenelse{\equal{\f@encoding}{\GRencoding@name}}’

151 {\fontshape{ui}\selectfont}{\relax}}

152 \DeclareTextFontCommand{\textui}{\uishape}

153

154 \DeclareRobustCommand\rsshape{’

155 \ifthenelse{\equal{\f@encoding}{\GRencoding@name}}%

156 {\fontshape{rs}\selectfont}{\relax}}

157 \DeclareTextFontCommand{\textrs}{\rsshape}

158

5.3 Service macros

Now we start the specific additions introduced with this package.

The IATEX kernel has the macro \strip@pt that strips off the pt part from the
expanded value of a dimension register name and makes available the measure
in pt of the contained length (the register contains the length measure in scaled
points; the expansion performed by TEX with the command \the converts the
scaled points to printer points and shows the result with a string of decimal digits
with, possibly, a decimal fraction); its argument is supposed to be a dimension
register name, not its expanded contents. The \strip@pt command eliminates
the decimal point and the fractional part if the latter is nought. With the help of
such service macro we are going to define a certain number of “lift accent” macros
or “put cedilla” macros that work with both upright and slanted fonts, although
they contain different parameters for Latin compared to Greek alphabets.

The first “lift accent” macro just puts an accent over a letter, without inserting any
space between them; the first argument is the accent code (decimal, hexadecimal
or octal; I prefer decimal), while the second argument is the letter — any letter,
even if it is not a vowel!

159 \newcommand*\1lift@accent [2] {\leavevmode

160 {\edef\slant@{\strip@pt\fontdimeni\font}y,
161 \dimen@=\z@\setbox\z@\hbox{\char#1}\advance\dimen@-.5\wd\z@

15

\Lift@accent

\LIFT@accent

162 \setbox\tw@\hbox{i}\setbox\z@\hbox{#2}J,

163 \ifdim\wd\z@>\wd\tw@\advance\dimen@ .5\wd\z@

164 \else\advance\dimen@ .3\wd\z@\fi

165 \ifx#2a\advance\dimen@-.1\wd\z@\fi

166 \ifx#2h\advance\dimen@.05\wd\z@\fi

167 \@tempdima\ht\z@\advance\@tempdima-lex\relax

168 \advance\dimen@\slant@\Q@tempdima

169 \raise\@tempdima\hbox to\z@{\kern\dimen@\char#1i\relax\hss}\box\z@}}
170

The second “lift accent” macro behaves as the first one except it interposes a small
vertical distance between the accent and the letter:

171 \newcommand*\Lift@accent [2]{\1leavevmode

172 {\edef\slant@{\strip@pt\fontdimeni\font}}

173 \dimen@=\z@\setbox\z@\hbox{\char#1i}\advance\dimen®-.5\wd\z@

174 \setbox\tw@\hbox{i}\setbox\z@\hbox{#2}%

175 \ifdim\wd\z@>\wd\tw@\advance\dimen@ .5\wd\z@

176 \else\advance\dimen@ .3\wd\z@\fi

177 \ifx#2a\advance\dimen®@-.1\wd\z@\fi

178 \ifx#2h\advance\dimen@.05\wd\z@\fi

179 \@tempdima\ht\z@\advance\@tempdima-lex\advance\@tempdima. lex\relax
180 \advance\dimen@\slant@\@tempdima

181 \raise\@tempdima\hbox to\z@{\kern\dimen®@\char#1\relax\hss}\box\z@}}
182

The third “lift accent” macro behaves as the first one, except it interposes a
specified vertical space between the letter and the accent; this space is specified
as the second argument:

183 \newcommand*\LIFTQaccent [3]{\leavevmode

184 {\edef\slant@{\strip@pt\fontdimeni\font}’

185 \dimen@=\z0@\setbox\z@\hbox{\char#1}\advance\dimen@-.5\wd\z@
186 \setbox\tw@\hbox{i}\setbox\z@\hbox{#3}%

187 \ifdim\wd\z@>\wd\tw@\advance\dimen®@ .5\wd\z@

188 \else\advance\dimen@ .3\wd\z@\fi

189 \ifx#2a\advance\dimen®-.1\wd\z@\fi

190 \ifx#2h\advance\dimen@.05\wd\z@\fi

191 \@tempdima\ht\z@\advance\@tempdima-lex\relax

192 \def\@tempA{#2}\ifx\@tempA\undefined\else

193 \advance\@tempdima#2\fi\let\@tempA\undefined

194 \advance\dimen@\slant@\@tempdima

195 \raise\@tempdima\hbox to\z@{\kern\dimen@\char#1\relax\hss}\box\z@}}
196

All these macros will be used in subsequent “put accent” macros, that will
stack also several accents one above the other; the necessity arises for example
when the macron or breve diacritical marks have to be put over accented letters;
according to typographical practice the accents must go over the macron or the
breve. In a similar way philologists often must use other diacritical marks in
addition to the traditional Greek ones, therefore these macros will be used, for

16

\cap®@

\cap

\cap@cedilla

example, for setting the Scandinavian ring (from a Latin font) over a Greek letter
(from a Greek font).

The first such unusual diacritical mark is a small cap, a small upside down breve
sign, that is in position 1 of the Greek font table.

197 \DeclareRobustCommand{\cap@} [1]{\leavevmode

198 {\edef\slant@{\strip@pt\fontdimeni\fontl}}

199 \setbox\tw@\hbox{\fontencoding{\GRencoding@name}\selectfont

200 \char1}\dimen®@-.5\wd\tw@

201 \setbox\z@\hbox{#11}J,

202 \advance\dimen@ .5\wd\z@

203 \@tempdima\ht\z@\advance\@tempdima.55ex\relax

204 \advance\dimen®@\slant@\Q@tempdima

205 \ifx\cf@encoding\GRencoding@name\else

206 \ifx#1k\advance\dimen®@-.3\wd\tw@\fi\fi

207 \raise\@tempdima\hbox to\z@{\kern\dimen@\box\tw@\relax\hss}\box\z@}}
208

The \ifx\cf@encoding\GRencoding@name conditional construct shows that this
macro behaves differently with different font encodings; the following \ifx#1k
checks the argument against the Greek letter kappa, which shows very clearly
that these macros operate on any letter, not only on vowels.

By means of the above \cap@ macro we can define three equivalent commands
to be used either when the Greek encoding is in force, or when one of the Latin
encodings is in force:

209 \DeclareTextCommand{\cap}{\GRencoding@name}{\cap@}

210 \DeclareTextCommand{\cap}{0T1}{\cap@}

211 \DeclareTextCommand{\cap}{T1}{\cap@}

212

Probably one definition would be sufficient, but on one side the presence of three
encoding dependent macros are the remains of initial works, while on the other
side they prevent to use these macros with encodings for which the macro might
not work well, because it was not tested with them.

Similarly a small cap can be put under another letter as it was a cedilla; for this
task another macro is defined, which makes use of the same glyph in position 1 in
the Greek font table:

213 \newcommand*\cap@cedilla[1]{\leavevmode

214 {\setbox4\hbox{\fontencoding{\GRencoding@name}\selectfont\charil}y,
215 \dimen@-.5\wd4

216 \setbox\z@\hbox{#1}%

217 \ifx\cf@encoding\GRencoding@name

218 \ifx#1i\advance\dimen@ .65\wd\z@\else\advance\dimen@ .5\wd\z@\fi

219 \else

220 \ifx#1i\advance\dimen@ .55\wd\z@\else\advance\dimen@ .5\wd\z@\fi
221 \fi

222 \hbox to\z@{\kern\dimen@\box4\hss}\unhbox\z@}}

223

17

\ring@cedilla Another cedilla like diacritical mark is the Scandinavian ring put under a letter;
the ring is taken from the metrics font, so its slot position does not depend on the
various Latin encodings; the correct positioning requires careful examination of
the letter under which it is to be placed, distinguishing the Greek from the Latin
encodings:

224 \newcommand*\ring@cedilla[1]{\leavevmode

225 {\setbox4\hbox{\metricsfont\char26}/,

226 \edef\slant@{\strip@pt\fontdimenl\fontl}y,

227 \dimen®@-.5\wd4\ifdim\slant@\p@>\z@\advance\dimen@-.04ex\fi
228 \setbox\z@\hbox{#1}/,

229 \ifx\cf@encoding\GRencoding@name

230 \advance\dimen@ .45\wd\z@

231 \ifx#1h\advance\dimen®@-.13\wd\z@\fi
232 \ifx#1a\advance\dimen@-.07\wd\z@\fi
233 \ifx#1lo\advance\dimen@-.07\wd\z@\fi
234 \ifx#1u\advance\dimen@+.07\wd\z@\fi
235 \ifx#1w\advance\dimen@+.03\wd\z@\fi
236 \else

237 \ifx#1i\advance\dimen@.55\wd\z@\else
238 \ifx#1r\advance\dimen@.38\wd\z@\else
239 \ifx#1lo\advance\dimen@.47\wd\z@\else
240 \advance\dimen®@0.5\wd\z@

241 \fi\fi\fi

242 \fi

243 \hbox to\z@{\kern\dimen@\box4\hss}\unhbox\z@}}
244

\dot@cedilla Even the standard IXTEX macro dot must be redefined with a cedilla like macro,
so as to make use of a special dot from the metric symbols font:

245 \newcommand#*\dot@cedilla[1]{\leavevmode
246 {\setbox4\hbox{\metricsfont\char27}%
247 \dimen@-.5\wd4

248 \setbox\tw@\hbox{i}\setbox\z@\hbox{#1}/,
249 \ifx\cf@encoding\GRencoding@name

250 \advance\dimen@ .5\wd\z@

251 \ifx#1h\advance\dimen@-.13\wd\z@\fi

252 \else

253 \ifdim\wd\z@>\wd\tw@\advance\dimen@.55\wd\z@
254 \else\advance\dimen@.5\wd\tw@\fi

255 \fi

256 \setbox\tw@\hbox{o}\ifdim\wd\z@=\wd\tw@\advance\dimen®@-.05\wd\z@\fi
257 \hbox to\z@{\kern\dimen@\box4\hss}\unhbox\z@}}
258

\tie@cedilla IKTEX has the macro \t for placing a “tie” over two letters; philologists require
also a tie under two letters; this is why another cedilla like macro is needed:
259 \newcommand*\tie@cedilla[1]{\leavevmode

260 {\setbox4\hbox{\fontencoding{\GRencoding@namel}\selectfont\char20}/,
261 \dimen®-.5\wd4

18

262 \setbox\tw@\hbox{i}\setbox\z@\hbox{#11}%
263 \ifx\cf@encoding\GRencoding@name

264 \advance\dimen@.5\wd\z@

265 \ifx#1h\advance\dimen®@-.1\wd\z@\fi

266 \ifx#1u\advance\dimen@. 15\wd\z@\fi

267 \else

268 \ifdim\wd\z@>\wd\tw@\advance\dimen@ .55\wd\z@
269 \else\advance\dimen@ .5\wd\tw@\fi

270 \fi

271 \setbox\tw@\hbox{o}\ifdim\wd\z@=\wd\tw@\advance\dimen®@-.05\wd\z0\fi
272 \hbox to\z@{\kern\dimen@\box4\hss}\unhbox\z@}}
273

5.4 Extended accent definitions

We will use those service macros in the definition of several accent like macros that
keep all the intricacies away from the user. Meanwhile we input from a separate
file LGRaccent-glyph.def a whole set of extended accent macros slightly adapted
from those contained in Giinter Milde’s definition file. In particular the KTEX
kernel macros are used in order to declare accents, composite glyphs, composite
commands, and the like; these are used as the default definitions; afterwards other
definitions will be given that work when these composite macros don’t work. In
other words, while \~ and u in Greek form the composite glyph “upsilon with
circumflex” that exists in the Greek font table, the same macro \~ and the letter
k produce the superposition of a circumflex on top of a “kappa” glyph, since this
glyph does not exist in the Greek font table. Notice that all these declarations are
restricted to the Greek font encoding so they are usable only when such font is in
force. See the teubner-doc.pdf file for more details concerning the usefulness of
the extended accent macros vs. the ligature mechanism.

274 \input{LGRaccents-glyphs.def}

5.5 Special accent macros

Now we come back to the “accent like” and “cedilla like” general macros we defined
above, and that will be extensively used in the following definitions. Note that
for what the circumflex is concerned, when teubner is in effect it is not defined
as an active character and does not work as a non breaking space. The command
\~ and its equivalent \GRcirc is just an accent macro; how do you put a non
breaking space in a Greek context? By simply using the KTEX kernel macro
\nobreakspace; when typesetting with non-Greek fonts the ~ is certainly handy
to insert a non breaking space (a tie), but for polytonic Greek spelling in the past
15 years or so the Greek language definition file has always used the ~ sign a a
letter, not as an active character. If you look in the babel package documentation
related to the Greek language, you find that for what concerns the ~ with polytonic
spelling a number ot “dirty tricks” have been used, but nothing has been done
to replace the “tie” function of this character when typesetting in languages that
use the Latin script; the only action related to this point has been to redefine

19

the kernel macros for typesetting figure and table captions so as to substitute the

~ character with its explicit definition \nobreakspace. It is necessary to do the
same when this package is used, although a shorter command \nbs is provided in
order to simplify the input keying.

275 \1let\nbs\nobreakspace

276 % \end{macrocode

277 %

278 % Having defined the Greek accents with the extended macroso input with the
279 % |LGRaccents-glyphs.def| file, we can let some equivalences so that such accents
280 % may be used with shorter control sequences that are coherent with the
281 %, corresponding ligatures.

282 % \begin{macrocode}

283 %, grave

284 \DeclareTextCommand{\ ‘}{\GRencoding@name} [1]{\1ift@accent{96}{#1}}

285 % acute

286 \DeclareTextCommand{\’}{\GRencoding@name} [1]{\1lift@accent{39}{#1}}

287 % circumflex

288 \DeclareTextCommand{\~"}{\GRencoding@name} [1]1{\1lift@accent{126}{#1}}

289 \let\GRcirc\Perispomeni

290
291 % \end{mcrocode}
292 %, But we have to provide also the means for disabling the |~| shorthand that is

293 %, reset every time the Greek language is selected again in a multilanguage document
294 % where language shifts take place quite often; we must also counteract the
295 %, resetting of the |\”| definition performed by the |greek.ld| file in every
296 % language shift; it is not important to add the accent re-definition to the
297 % |\extrasgreek| macro, because when this macro is executed the last definition
298 %, given is the one that lasts until the next language shift.

299 % \begin{macrocode}

300 \addto\extrasgreek{\shorthandoff{"}\let\~\Perispomeni}

301 \addto\noextrasgreek{\shorthandon{~}}

302

For the diaeresis we need to put an invisible character (v in the LGR encoded CB
fonts) in order to avoid any ligature with an implied end of word (boundarychar)
that turns the diaeresis into an apostrophe.

303 % diaeresis

304 \DeclareTextCommand{\"}{\GRencoding@name} [1]{\1ift@accent{34v}{#1}}

305 % breve

306 \DeclareTextCommand{\u}{\GRencoding@name} [1]1{\1ift@accent{30}{#1}}

Besides the normal \u command for setting a breve command, another “large
breve” is required by philologists, who need to mark a diphthong, or in general
two letters; the macro \U does the job, but it is the typesetter’s responsibility to
input the macro argument as made of two letters (possibly with their own accents):

307 \DeclareTextCommand{\U}{\GRencoding@name} [1]{\1ift@accent{151}{#1}}

308 % macron

309 \DeclareTextCommand{\=}{\GRencoding@name} [1]{\1ift@accent{31}{#1}}

310 % rough
311 \DeclareTextCommand{\r}{\GRencoding@name} [1]{\1ift@accent{60}{#1}}

20

312 % smooth

313 \DeclareTextCommand{\s}{\GRencoding@name} [1]{\1ift@accent{62}{#1}}
314 % acute+diaeresis

315 \DeclareTextCommand{\Ad}{\GRencoding@name} [1] {\1lift@accent{35}{#1}}
316 % gravetdiaeresis

317 \DeclareTextCommand{\Gd}{\GRencoding@namel} [1] {\1lift@accent{36}{#1}}
318 % circumflex+diaeresis

319 \DeclareTextCommand{\Cd}{\GRencoding@name} [1]{\1lift@accent{32}{#1}}
320 %, acute+rough

321 \DeclareTextCommand{\Ar}{\GRencoding@name} [1]{\1lift@accent{86}{#1}}
322 %, grave+trough

323 \DeclareTextCommand{\Gr}{\GRencoding@namel} [1] {\1lift@accent{67}{#1}}
324 ¥, circumflex+rough

325 \DeclareTextCommand{\Cr}{\GRencoding@name} [1]{\1lift@accent{64}{#1}}
326 % acute+smooth

327 \DeclareTextCommand{\As}{\GRencoding@name} [1]{\1lift@accent{94}{#1}}
328 % grave+smooth

329 \DeclareTextCommand{\Gs}{\GRencoding@namel} [1] {\1lift@accent{95}{#1}}
330 % circumflex+smooth

331 \DeclareTextCommand{\Cs}{\GRencoding@name} [1]{\1lift@accent{92}{#1}}

Most of the above accent commands are used again in order to tie a text symbol
meaning to certain combinations, that is when they receive as argument a vowel
whose accented glyph is present in the font; in this way in order to type “alpha with
rough breath, acute accent and iota subscript” you can type <’al, or \Ar{a}| or
\arai or \<’al, if you use Milde’s accent macros; the advantage of using the first
notation is its short string; the advantage of the second is that it does not break
kerning commands with a preceeding letter; the advantage of the third is that it
does not break any kerning either before or after; the fourth solution produces
the same result as the third, but it’s easier to make up and you don’t have to
memorize any specific naming rule for accented glyphs. With the Lipsian font this
trick is particularly useful for any sequence of alpha and upsilon each one with its
own accents and/or diaresis.

In Greek the regular cedilla is meaningless, so that \c may be redefined as a
semivowel command; at the same time the typesetter might be more comfortable
if he could use always the same, although longer, macro for marking a vowel as a
semivowel one; therefore \c plays the same role in Greek as \semiv.

332 %, cap cedilla

333 \DeclareTextCommand{\c}{\GRencoding@name} [1]{\cap@cedilla{#1}}

334 \DeclareTextCommand{\semiv}{\GRencoding@name} [1]{\cap@cedilla{#1}}
335 \DeclareTextCommand{\semiv}{0T1} [1]{\cap@cedilla{#1}}

336 \DeclareTextCommand{\semiv}{T1} [1]{\cap@cedilla{#1}}

337 % ring cedilla

338 \DeclareTextCommand{\ring}{\GRencoding@name} [1] {\ring@cedilla{#1}}
339 \DeclareTextCommand{\ring}{0T1}[1]1{\ring@cedilla{#1}}

340 \DeclareTextCommand{\ring}{T1}[1]1{\ring@cedilla{#1}}

341 % dot cedilla

342 \DeclareTextCommand{\Dot}{\GRencoding@name} [1]{\dot@cedilla{#1}}
343 \DeclareTextCommand{\Dot}{0T1}[1]{\dot@cedilla{#1}}

21

344 \DeclareTextCommand{\Dot}{T1}[1]{\dot@cedilla{#1}}
345 % tie cedilla

346 \DeclareTextCommand{\ut}{\GRencoding@namel} [1]{\tie@cedilla{#1}}
347 \DeclareTextCommand{\ut}{0T1} [1]1{\tie@cedilla{#1}}
348 \DeclareTextCommand{\ut}{T1}[1]{\tie@cedilla{#1}}
349 %

350 % Acute breve

351 \DeclareTextCommand{\Ab}{\GRencoding@name} [1]%

352 {\LIFT@accent{39}{-.15ex}{\1lift@accent{30}{#1}}}
353 %, Grave breve

354 \DeclareTextCommand{\Gb}{\GRencoding@name} [1]%

355 {\LIFT@accent{96}{-.15ex}{\1lift@accent{30}{#1}}}
356 %, Acute rough breve

357 \DeclareTextCommand{\Arb}{\GRencoding@name} [1]7,

358 {\LIFT@accent{86}{-.15ex}{\1lift@accent{30}{#1}}}
359 %, Grave rough breve

360 \DeclareTextCommand{\Grb}{\GRencoding@name} [1]7

361 {\LIFT@accent{67}{-.15ex}{\1ift@accent{30}{#1}}}
362 %, Acute smooth breve

363 \DeclareTextCommand{\Asb}{\GRencoding@namel}[1]%

364 {\LIFT@accent{94}{-.15ex}{\lift@accent{30}{#1}}}
365 % Grave smooth breve

366 \DeclareTextCommand{\Gsb}{\GRencoding@namel}[1]7

367 {\LIFT@accent{95}{-.15ex}{\lift@accent{30}{#1}}}
368 %

369 % Acute macron

370 \DeclareTextCommand{\Am}{\GRencoding@name} [1]7%

371 {\Lift@accent{39}{\1lift@accent{31}{#1}}}

372 %, Grave macron

373 \DeclareTextCommand{\Gm}{\GRencoding@name} [1]7%

374 {\Lift@accent{96}{\1lift@accent{31}{#1}}}

375 % Circumflex macron

376 \DeclareTextCommand{\Cm}{\GRencoding@name} [1]7%

377 {\Lift@accent{126}{\1ift@accent{31}{#1}}}

378 % Acute rough macron

379 \DeclareTextCommand{\Arm}{\GRencoding@name}[1]%

380 {\Lift@accent{86}{\1lift@accent{31}{#1}}}

381 % Grave rough macron

382 \DeclareTextCommand{\Grm}{\GRencoding@name} [1]%

383 {\Lift@accent{67}{\lift@accent{31}{#1}}}

384 % Circumflex rough macron

385 \DeclareTextCommand{\Crm}{\GRencoding@name}[1]%

386 {\Lift@accent{64}{\lift@accent{31}{#1}}}

387 % Acute smooth macron

388 \DeclareTextCommand{\Asm}{\GRencoding@name}[1]%

389 {\Lift@accent{94}{\lift@accent{31}{#1}}}

390 % Grave smooth macron

391 \DeclareTextCommand{\Gsm}{\GRencoding@name}[1]%

392 {\Lift@accent{95}{\1lift@accent{31}{#1}}}

393 % Circumflex smooth macron

22

394 \DeclareTextCommand{\Csm}{\GRencoding@name} [1]%
395 {\Lift@accent{92}{\lift@accent{31}{#1}}}

396 % smooth macron

397 \DeclareTextCommand{\Sm}{\GRencoding@name} [1]7%

398 {\Lift@accent{62}{\lift@accent{31}{#1}}}

399 % rough macron

400 \DeclareTextCommand{\Rm}{\GRencoding@name} [1]7%

401 {\Lift@accent{60}{\lift@accent{31}{#1}}}

402 % breve and dieresis

403 \DeclareTextCommand{\bd}{\GRencoding@name} [1]%

404 {\LIFTQaccent{30}{-.1lex}{\lift@accent{34v}{#1}}}
405 %

406 %, iota subscript

407 \DeclareTextCommand{\iS}{\GRencoding@name} [1]

408 {\ooalign{#1\crcr\hidewidth\char124\hidewidth}}
409

\d The \d macro must be made available also with the Greek encoding

410 \DeclareTextCommand{\d}{\GRencoding@name} [1]7%
411 {\leavevmode\bgroup\o@lign{\relax#1\crcr
412 \hidewidth\sh@ft{10}.\hidewidth}\egroup}
413

Some other philologist diacritical marks are needed.

\Open The \Open macro sets a special sign under a letter in order to mark it with an
open pronunciation.

414 \DeclareRobustCommand{\Open}[1] {\1leavevmode

415 {\setbox4\hbox{\raise-.33ex\hbox{\metricsfont\char14}}J,

416 \dimen@-.5\wd4

417 \setbox\tw@\hbox{i}\setbox\z@\hbox{#11}%

418 \ifx\cf@encoding\GRencoding®@name

419 \advance\dimen@ .5\wd\z@

420 \setbox\tw@\hbox{h}\ifdim\wd\z@=\wd\tw@\advance\dimen®@-.13\wd\z@\fi
421 \else

422 \ifdim\wd\z@>\wd\tw@\advance\dimen@ .55\wd\z@

423 \else\advance\dimen@ .5\wd\tw@\fi

424 \fi

425 \setbox\tw@\hbox{o}\ifdim\wd\z@=\wd\tw@\advance\dimen@-.05\wd\z@\fi
426 \hbox to\z@{\kern\dimen@\box4\hss}\unhbox\z@}}

427

\nasal The macro \nasal marks a letter for a nasal pronunciation.

428 \DeclareRobustCommand{\nasal}[1]{\leavevmode
429 {\setbox4\hbox{\raise-1.7ex\hbox{\GEcq}}%
430 \dimen@-.5\wd4

431 \setbox\tw@\hbox{i}\setbox\z@\hbox{#11}%

432 \ifx\cf@encoding\GRencoding®@name

433 \advance\dimen@ .5\wd\z@

23

\tenaspir

\palat

\greekquoteleft
\greekquoteright
\textguillemotleft
\textguillemotright
\textcompwordmark
\textemdash

emdash

\textendash

434 \setbox\tw@\hbox{h}\ifdim\wd\z@=\wd\tw@\advance\dimen®@-.13\wd\z@\fi
435 \else

436 \ifdim\wd\z@>\wd\tw@\advance\dimen®@ .55\wd\z@
437 \else\advance\dimen®@ .5\wd\tw@\fi
438 \fi

439 \setbox\tw@\hbox{o}\ifdim\wd\z@=\wd\tw@\advance\dimen@-.05\wd\z@\fi
440 \hbox to\z@{\kern\dimen@\box4\hss}\unhbox\z@}}
441

Similarly \tenaspir marks a “tenuis aspiratio”

442 \DeclareRobustCommand{\tenaspir} [1]{#1\/%
443 {\fontencoding{\GRencoding@name}\selectfont<v}}

\palat marks a palatal pronunciation of some consonants.
444 \DeclareRobustCommand{\palat} [1]{#1{%

445 \expandafter\fontencoding\expandafter{\GRencoding@name}\selectfont
446 \anwtonos}}
447

With the help of some of the previous macros some new commands get defined
so as to use a simple more or less mnemonic macro instead of having the type-
setter type in nested macros; these macros are valid only in the Greek and Latin
encodings.

448 % dot and breve

449 \DeclareTextCommand{\Ud}{\GRencoding@name} [1]{\d{\u{#1}}}
450 % dot and macron

451 \DeclareTextCommand{\md}{\GRencoding@name} [1]{\d{\={#1}}}
452 % open and breve

453 \DeclareTextCommand{\UO}{\GRencoding@name} [1] {\Open{\u{#1}}}
454 ¥, open and macron

455 \DeclareTextCommand{\m0}{\GRencoding@name} [1]{\Open{\={#1}}}
456

457 %

458 \DeclareTextCommand{\Ud}{T1} [1]{\d{\u{#1}}}

459 \DeclareTextCommand{\md}{T1} [1]{\d{\={#1}}}

460 \DeclareTextCommand{\UO}{T1} [1]{\Open{\u{#1}}}

461 \DeclareTextCommand{\m0}{T1} [1]{\Open{\={#1}}}

462 %

463 \DeclareTextCommand{\Ud}{0T1} [1]{\d{\u{#1}}}

464 \DeclareTextCommand{\md}{0T1} [1]{\d{\={#1}}}

465 \DeclareTextCommand{\U0O}{0T1} [1] {\Open{\u{#1}}}

466 \DeclareTextCommand{\m0}{0T1} [1]{\Open{\={#1}}}

467

5.6 Some text commands

Several macros are traditionally defined for every encoding; we do not make ex-
ceptions. Actually all the symbols defined here can be obtained with the regular
CB font ligatures so the macros are sort of superfluous. Nevertheless, in case any

24

\stigma
\varstigma
\koppa
\coppa
\varkoppa
\sampi
\Coppa
\Stigma
\Sampi
\Euro
\permill

\textdollar
\textsection
\textsterling
\textunderscore
\textvisiblespace

of the component symbols is made active and defined to perform something dif-
ferent, these macros can overcome the difficulty of producing the ligated glyphs.
Even the \textcompwordmark macro, although the compound word mark is sort
of unusual, could have been omitted, because with a Latin keyboard this symbol
gets input by pressing the “v” key (“v” stands for “void”); all the hyphenation
pattern files for the Greek language recognize “v” as a letter, an invisible one,
that breaks any ligature, that hides the end of the word, that allows hyphenation
(if the rest of the word is taken as a word by TEX itself, which does not always
happens!...).

468 \DeclareTextSymbol{\greekquoteleft}{\GRencoding@name}{123}

469 \let\textguillemotleft\greekquoteleft

470 \DeclareTextSymbol{\greekquoteright}{\GRencoding@name}{125}

471 \let\textguillemotright\greekquoteright

472 \DeclareTextSymbol{\textcompwordmark}{\GRencoding@name}{118}

473 \DeclareTextSymbol{\textemdash}{\GRencoding@name}{1273}

474 \let\emdash\textemdash

475 \DeclareTextSymbol{\textendash}{\GRencoding@name}{0}

476

Some other Greek symbols are defined; some deal with the lowercase and upper
case Milesian numerals, that are not accessible in the font matrix with a normal
keyboard stroke, and some deal with the Euro symbol and the permill symbol,
that are unlikely to be used in a philological text, but, who knows. . .

May be the standard names starting with text should be used; It would not be
too difficult a task, but these names should be defined in the greek.fd language
description file; I know tha Werner Lemberg ha written a paper on Eutypon on
this subject, also in order to make use of the CB fonts with Unicode support. But
this is just an extension to that package, so I am not going to redefine things that
are already there or that will be there in a next version of that file.

477 \DeclareTextSymbol{\stigma}{\GRencoding@name}{006}

478 \DeclareTextSymbol{\varstigmal}{\GRencoding@name}{007}

479 \DeclareTextSymbol{\koppa}{\GRencoding@name}{18}

480 \DeclareTextSymbol{\varkoppa}{\GRencoding@name}{19}\1let\coppa\varkoppa
481 \DeclareTextSymbol{\sampi}{\GRencoding@name}{27}

482 \DeclareTextSymbol{\Coppa}{\GRencoding@name}{21}\1let\Koppa\Coppa
483 \DeclareTextSymbol{\Stigma}{\GRencoding@name}{22}

484 \DeclareTextSymbol{\Sampi}{\GRencoding@name}{23}

485 \DeclareTextSymbol{\Euro}{\GRencoding@name}{24}

486 \DeclareTextSymbol{\permill}{\GRencoding@name}{253}

487

More important, although unlikely to be found in a philological text, is the ques-
tion of standard I¥TEX commands that are defined with reference to some encod-
ing; if Greek text is being typeset, the Greek encoding is being used and such
symbols would not be available any more; IXTEXwould issue warning messages
complaining for their absence. Therefore we redefined them also for the Greek
encoding.

25

488 \DeclareTextCommand{\textdollar}{\GRencoding@namel}y,

489 {{\fontencoding{T1}\selectfont\char36}}

490 \DeclareTextCommand{\textsection}{\GRencoding@name},
491 {{\fontencoding{T1}\selectfont\char159}}

492 \DeclareTextCommand{\textsterling}{\GRencoding@name}%
493 {{\fontencoding{T1i}\selectfont\char191}}

494 \DeclareTextCommand{\textunderscore}{\GRencoding@namel}y,
495 {{\fontencoding{T1}\selectfont\char95}}

496 \DeclareTextCommand{\textvisiblespace}{\GRencoding@name},
497 {{\fontencoding{T1}\selectfont\char32}}
498

5.7 Accent macros and glyph names

Now come dozens of macros that allow to access Greek accented vowels (plus rho
with rough and smooth breaths) with macros instead of ligatures; such macros
allow the kerning information to be used by TEX, while the ligature mechanism
would sometimes impeach the use of such kerning information. Notice that the
same glyphs are often accessed with a “text symbol” or a “text composite symbol”;
as explained above the opportunity of using either one derives from the necessity
of maintaining the kerning mechanism embedded in the font; if the CB fonts had
a postfixed accent notation, instead of a prefixed one, none of these macros would
be necessary (probably...!), but there would be other inconveniences.

Notice that the following code is subject to the boolean variabale GlyphNames
which is set to true by default, just fort compatibility with the past; I suggest
to use the NoGlyphNames when typesetting new documents, since the glyphs are
more asily specified by means of the extended accent macros that are also less
restricted in their names; for a letter marked with a smooth breath and an acute
accent you can indifferently type before the letter one of the following \>\’, \>’,
\’\>, \’> at your choice. Moreover you can always postfix the mark for the iota
subscribed at the right of the letter, without any need o memorising complicated
names.

499 \1fGlyphNames

500 \DeclareTextSymbol{\ag}{\GRencoding@name}{128}

501 \DeclareTextSymbol{\ar}{\GRencoding@name}{129}

502 \DeclareTextComposite{\r}{\GRencoding@name}{a}{129}
503 \DeclareTextSymbol{\as}{\GRencoding@name}{130}

504 \DeclareTextComposite{\s}{\GRencoding@name}{a}{130}
505 \DeclareTextSymbol{\aa}{\GRencoding@name}{136}

506 \DeclareTextSymbol{\ac}{\GRencoding@name}{144}

507 \DeclareTextSymbol{\ai}{\GRencoding@name}{248}

508 \DeclareTextSymbol{\aai}{\GRencoding@name}{140}

509 \DeclareTextSymbol{\aci}{\GRencoding@name}{148}

510 \DeclareTextSymbol{\agi}{\GRencoding@name}{132}

511 \DeclareTextSymbol{\ara}{\GRencoding@name}{137}

512 \DeclareTextComposite{\Ar}{\GRencoding@name}{a}{137}
513 \DeclareTextSymbol{\arc}{\GRencoding@name}{145}

514 \DeclareTextComposite{\Cr}{\GRencoding@namel}{a}{145}

26

515 \DeclareTextSymbol{\arg}{\GRencoding@name}{131}

516 \DeclareTextComposite{\Gr}{\GRencoding@name}{a}{131}
517 \DeclareTextSymbol{\ari}{\GRencoding@name}{133}

518 \DeclareTextSymbol{\asa}{\GRencoding@name}{138}

519 \DeclareTextComposite{\As}{\GRencoding@name}{a}{138}
520 \DeclareTextSymbol{\asc}{\GRencoding@name}{146}

521 \DeclareTextComposite{\Cs}{\GRencoding@namel}{a}{146}
522 \DeclareTextSymbol{\asg}{\GRencoding@name}{139}

523 \DeclareTextComposite{\Gs}{\GRencoding@name}{a}{139}
524 \DeclareTextSymbol{\asi}{\GRencoding@name}{134}

525 \DeclareTextSymbol{\argi}{\GRencoding@name}{135}

526 \DeclareTextSymbol{\arai}{\GRencoding@name}{141}

527 \DeclareTextSymbol{\arci}{\GRencoding@name}{149}

528 \DeclareTextSymbol{\asai}{\GRencoding@name}{142}

529 \DeclareTextSymbol{\asgi}{\GRencoding@name}{143}

530 \DeclareTextSymbol{\asci}{\GRencoding@name}{150}

531 \DeclareTextSymbol{\hg}{\GRencoding@name}{152}

532 \DeclareTextSymbol{\hr}{\GRencoding@name}{153}

533 \DeclareTextComposite{\r}{\GRencoding@name}{h}{153}
534 \DeclareTextSymbol{\hs}{\GRencoding@name}{154}

535 \DeclareTextComposite{\s}{\GRencoding@name}{h}{154}
536 \DeclareTextSymbol{\hrg}{\GRencoding@name}{163}

537 \DeclareTextComposite{\Gr}{\GRencoding@name}{h}{163}
538 \DeclareTextSymbol{\hgi}{\GRencoding@name}{156}

539 \DeclareTextSymbol{\hri}{\GRencoding@name}{157}

540 \DeclareTextSymbol{\hsi}{\GRencoding@name}{158}

541 \DeclareTextSymbol{\hrgi}{\GRencoding@name}{167}

542 \DeclareTextSymbol{\ha}{\GRencoding@name}{160}

543 \DeclareTextSymbol{\hra}{\GRencoding@name}{161}

544 \DeclareTextComposite{\Ar}{\GRencoding@name}{h}{161}
545 \DeclareTextSymbol{\hsa}{\GRencoding@name}{162}

546 \DeclareTextComposite{\As}{\GRencoding@name}{h}{162}
547 \DeclareTextSymbol{\hsg}{\GRencoding@name}{171}

548 \DeclareTextComposite{\Gs}{\GRencoding@name}{h}{171}
549 \DeclareTextSymbol{\hai}{\GRencoding@name}{164}

550 \DeclareTextSymbol{\hrai}{\GRencoding@name}{165}

551 \DeclareTextSymbol{\hsai}{\GRencoding@name}{166}

552 \DeclareTextSymbol{\hsgi}{\GRencoding@name}{175}

553 \DeclareTextSymbol{\hc}{\GRencoding@name}{168}

554 \DeclareTextSymbol{\hrc}{\GRencoding@name}{169}

555 \DeclareTextComposite{\Cr}{\GRencoding@name}{h}{169}
556 \DeclareTextSymbol{\hsc}{\GRencoding@name}{170}

557 \DeclareTextComposite{\Cs}{\GRencoding@name}{h}{170}
558 \DeclareTextSymbol{\hci}{\GRencoding@name}{172}

559 \DeclareTextSymbol{\hrci}{\GRencoding@name}{173}

560 \DeclareTextSymbol{\hsci}{\GRencoding@name}{174}

561 \DeclareTextSymbol{\hi}{\GRencoding@name}{249}

562 \DeclareTextSymbol{\wg}{\GRencoding@name}{176}

563 \DeclareTextSymbol{\wr}{\GRencoding@name}{177}

564 \DeclareTextComposite{\r}{\GRencoding@name}}{w}{177}

27

565 \DeclareTextSymbol{\ws}{\GRencoding@name}{178}

566 \DeclareTextComposite{\s}{\GRencoding@name}{w}{178}
567 \DeclareTextSymbol{\wrg}{\GRencoding@name}{179}

568 \DeclareTextComposite{\Gr}{\GRencoding@name}{w}{179}
569 \DeclareTextSymbol{\wgi}{\GRencoding@name}{180}

570 \DeclareTextSymbol{\wri}{\GRencoding@name}{181}

571 \DeclareTextSymbol{\wsi}{\GRencoding@name}{182}

572 \DeclareTextSymbol{\wrgi}{\GRencoding@name}{183}

573 \DeclareTextSymbol{\wa}{\GRencoding@name}{184}

574 \DeclareTextSymbol{\wra}{\GRencoding@name}{185}

575 \DeclareTextComposite{\Ar}{\GRencoding@name}{w}{185}
576 \DeclareTextSymbol{\wsa}{\GRencoding@name}{186}

577 \DeclareTextComposite{\As}{\GRencoding@name}{w}{186}
578 \DeclareTextSymbol{\wsg}{\GRencoding@name}{187}

579 \DeclareTextComposite{\Gs}{\GRencoding@name}{w}{187}
580 \DeclareTextSymbol{\wai}{\GRencoding@name}{188}

581 \DeclareTextSymbol{\wrai}{\GRencoding@name}{189}

582 \DeclareTextSymbol{\wsai}{\GRencoding@name}{190}

583 \DeclareTextSymbol{\wsgi}{\GRencoding@name}{191}

584 \DeclareTextSymbol{\wc}{\GRencoding@name}{192}

585 \DeclareTextSymbol{\wrc}{\GRencoding@name}{193}

586 \DeclareTextComposite{\Cr}{\GRencoding@name}{w}{193}
587 \DeclareTextSymbol{\wsc}{\GRencoding@name}{194}

588 \DeclareTextComposite{\Cs}{\GRencoding@name}{w}{194}
589 \DeclareTextSymbol{\wci}{\GRencoding@name}{196}

590 \DeclareTextSymbol{\wrci}{\GRencoding@name}{197}

591 \DeclareTextSymbol{\wsci}{\GRencoding@name}{198}

592 \DeclareTextSymbol{\wi}{\GRencoding@name}{250}

593 \DeclareTextSymbol{\ig}{\GRencoding@name}{200}

594 \DeclareTextSymbol{\ir}{\GRencoding@name}{201}

595 \DeclareTextComposite{\r}{\GRencoding@name}{i}{201}
596 \DeclareTextSymbol{\is}{\GRencoding@name}{202}

597 \DeclareTextComposite{\s}{\GRencoding@name}{i}{202}
598 \DeclareTextSymbol{\irg}{\GRencoding@name}{203}

599 \DeclareTextComposite{\Gr}{\GRencoding@name}{i}{203}
600 \DeclareTextSymbol{\ia}{\GRencoding@name}{208}

601 \DeclareTextSymbol{\ira}{\GRencoding@name}{209}

602 \DeclareTextComposite{\Ar}{\GRencoding@name}{i}{209}
603 \DeclareTextSymbol{\isa}{\GRencoding@name}{210}

604 \DeclareTextComposite{\As}{\GRencoding@name}{i}{210}
605 \DeclareTextSymbol{\isg}{\GRencoding@name}{211}

606 \DeclareTextComposite{\Gs}{\GRencoding@name}{i}{211}
607 \DeclareTextSymbol{\ic}{\GRencoding@name}{216}

608 \DeclareTextSymbol{\irc}{\GRencoding@name}{217}

609 \DeclareTextComposite{\Cr}{\GRencoding@name}{i}{217}
610 \DeclareTextSymbol{\isc}{\GRencoding@name}{218}

611 \DeclareTextComposite{\Cs}{\GRencoding@name}{i}{218}
612 \DeclareTextSymbol{\id}{\GRencoding@name}{240}

613 \DeclareTextSymbol{\idg}{\GRencoding@name}{241}

614 \DeclareTextComposite{\Gd}{\GRencoding@name}{i}{241}

28

615 \DeclareTextSymbol{\ida}{\GRencoding@name}{242}
616 \DeclareTextComposite{\Ad}{\GRencoding@name}{i}{242}
617 \DeclareTextSymbol{\idc}{\GRencoding@name}{243}
618 \DeclareTextComposite{\Cd}{\GRencoding@name}{i}{243}
619 \DeclareTextSymbol{\ug}{\GRencoding@name}{204}
620 \DeclareTextSymbol{\ur}{\GRencoding@name}{205}
621 \DeclareTextComposite{\r}{\GRencoding@name}{u}{205}
622 \DeclareTextSymbol{\us}{\GRencoding@name}{206}
623 \DeclareTextComposite{\s}{\GRencoding@name}{u}{206}
624 \DeclareTextSymbol{\urg}{\GRencoding@name}{207}
625 \DeclareTextComposite{\Gr}{\GRencoding@name}{u}{207}
626 \DeclareTextSymbol{\ua}{\GRencoding@name}{212}
627 \DeclareTextSymbol{\ura}{\GRencoding@name}{213}
628 \DeclareTextComposite{\Ar}{\GRencoding@name}{u}{213}
629 \DeclareTextSymbol{\usa}{\GRencoding@name}{214}
630 \DeclareTextComposite{\As}{\GRencoding@name}{u}{214}
631 \DeclareTextSymbol{\usg}{\GRencoding@name}{215}
632 \DeclareTextComposite{\Gs}{\GRencoding@name}{u}{215}
633 \DeclareTextSymbol{\uc}{\GRencoding@name}{220}
634 \DeclareTextSymbol{\urc}{\GRencoding@name}{221}
635 \DeclareTextComposite{\Cr}{\GRencoding@name}{u}{221}
636 \DeclareTextSymbol{\usc}{\GRencoding@name}{222}
637 \DeclareTextComposite{\Cs}{\GRencoding@name}{u}{222}
638 \DeclareTextSymbol{\ud}{\GRencoding@name}{244}
639 \DeclareTextSymbol{\udg}{\GRencoding@name}{245}
640 \DeclareTextComposite{\Gd}{\GRencoding@name}{u}{245}
641 \DeclareTextSymbol{\uda}{\GRencoding@name}{2463}
642 \DeclareTextComposite{\Ad}{\GRencoding@name}{u}{246}
643 \DeclareTextSymbol{\udc}{\GRencoding@name}{247}
644 \DeclareTextComposite{\Cd}{\GRencoding@name}{u}{247}
645 \DeclareTextSymbol{\eg}{\GRencoding@name}{224}
646 \DeclareTextSymbol{\er}{\GRencoding@name}{225}
647 \DeclareTextComposite{\r}{\GRencoding@name}{e}{225}
648 \DeclareTextSymbol{\es}{\GRencoding@name}{226}
649 \DeclareTextComposite{\s}{\GRencoding@name}{e}{226}
650 \DeclareTextSymbol{\erg}{\GRencoding@name}{2273}
651 \DeclareTextComposite{\Gr}{\GRencoding@name}{e}{227}
652 \DeclareTextSymbol{\ea}{\GRencoding@name}{232}
653 \DeclareTextSymbol{\era}{\GRencoding@name}{233}
654 \DeclareTextComposite{\Ar}{\GRencoding@name}{e}{233}
655 \DeclareTextSymbol{\esa}{\GRencoding@name}{234}
656 \DeclareTextComposite{\As}{\GRencoding@name}{e}{234}
657 \DeclareTextSymbol{\esg}{\GRencoding@name}{235}
658 \DeclareTextComposite{\Gs}{\GRencoding@name}{e}{235}
659 \DeclareTextSymbol{\oR}{\GRencoding®@name}{229}
660 \DeclareTextComposite{\r}{\GRencoding@name}{0}{229}
661 \DeclareTextSymbol{\og}{\GRencoding@name}{228}
662 \DeclareTextSymbol{\os}{\GRencoding@name}{230}
663 \DeclareTextComposite{\s}{\GRencoding@name}{0}{230}
664 \DeclareTextSymbol{\org}{\GRencoding@name}{231}

29

\h

\q

\yod
\iod

\f
\F
\digamma
\Digamma

665 \DeclareTextComposite{\Gr}{\GRencoding@name}{0}{231}
666 \DeclareTextSymbol{\oa}{\GRencoding@name}{236}

667 \DeclareTextSymbol{\ora}{\GRencoding@name}{237}

668 \DeclareTextComposite{\Ar}{\GRencoding@name}{0}{237}
669 \DeclareTextSymbol{\osa}{\GRencoding@name}{238}

670 \DeclareTextComposite{\As}{\GRencoding@name}{0}{238}
671 \DeclareTextSymbol{\osg}{\GRencoding@name}{239}

672 \DeclareTextComposite{\Gs}{\GRencoding@name}{0}{239}
673 \DeclareTextSymbol{\rr}{\GRencoding@name}{251}

674 \DeclareTextComposite{\r}{\GRencoding@name}{r}{251}
675 \DeclareTextSymbol{\rs}{\GRencoding@name}{252}

676 \DeclareTextComposite{\s}{\GRencoding@name}{r}{252}
677 \DeclareTextSymbol{\Id}{\GRencoding@name}{219}

678 \DeclareTextSymbol{\Ud}{\GRencoding@name}{223}

679 \DeclareTextComposite{\"}{\GRencoding@name}{U}{223}
680 \fi

681

682 %

5.8 Text philological symbols and macros

Next come some short macros for inserting special symbols that philologists use
quite often in Greek.

Macro \h is used to insert a Latin “h” while typesetting in Greek.
Macro \q is used to insert a Latin “q” while typesetting in Greek.

Macros \yod and \iod are used to insert a Latin “j” while typesetting in Greek;
the control sequence \ jod was avoided in order to reduce the possibility of typing
\jot which is a TEX internal dimension.

683 \DeclareTextCommand{\h}{\GRencoding®@name},

684 {{\fontencoding{0T1}\selectfont h}}

685 \DeclareTextCommand{\q}{\GRencoding@namel}’
686 {{\fontencoding{0T1}\selectfont q}}

687 \DeclareTextCommand{\yod}{\GRencoding@namel/,
688 {{\fontencoding{0T1}\selectfont j}}%

689 \let\iod\yod

690

At the same time it was believed that for inserting lower and upper case
“digamma” it was preferable to use short macros and to avoid the dilemma be-
tween the \ddigamma and the \digamma macros, the former being the one defined
in the greek extension to babel, the latter being a standard mathematical symbol;
initially I believed that philologists do not use mathematical symbols so we made
\digamma an alias for \f; afterwards I found out that mathematicians, physicists,
engineers, ... use the teubner.sty package and that the \digamma is a symbol al-
ready defined in the package amssymb.sty; therefore I made a conditional creation

30

of this alias; this trick is delayed to the beginning of the document, so as to make

it independent on the order with which packages are loaded.

691 \DeclareTextSymbol{\f}{\GRencoding@name}{1472}

692 \AtBeginDocument{\@ifpackageloaded{amssymbl}’

693 {\let\AMSdigamma\digamma\def\digamma{\textormath{\f}{\AMSdigammal}}}% amssymb loaded
694 {\let\digamma\f}), amssymb not loadedloaded

695 }

696 \DeclareTextSymbol{\F}{\GRencoding@name}{195}\1et\Digamma\F

697

\fLow The digamma glyphs set forth another question because, according to Paolo Ciac-
\fHigh chi, a different glyph should be used for typesetting text compared with the one
that is used as a variant in Milesian numerals in place of the standard stigma
symbol. By means of macros \fLow or \fHigh it is possible to chose the raised or
the lowered digamma glyphs; Greek numerals always use the lowered one, while
when text is being typeset the typesetter can chose the version he likes best.
698 \DeclareRobustCommand{\fLow}/
699 {{\setbox\z@\hbox{\f}\dimen@\ht\z@
700 \advance\dimen@-lex\raise-\dimen@\hbox{\box\z@}}}
701 \DeclareRobustCommand{\fHighl}7
702 {{\setbox\z@\hbox{\f}\dimen@\dp\z@\raise\dimen@\hbox{\box\z@}}}
703

\gmark Here we start a set of miscellaneous macros. We begin with some parentheses that
\lpar should turn out in upright shape, even if the default font is the Lipsian one which
\rpar is oblique; its parentheses are oblique as in all oblique fonts, therefore we need to

\frapar quietly change fonts behind the scenes. The same is true with the question mark
that, philologically speaking, represents an uncertain element, not the termination
of a real question; it should therefore always come out between parentheses and
in upright shape from a Latin font. While the parenthesized question mark comes
from the OT1 Latin upright font, the parentheses obtained with \1par and \rpar
are taken from the metric symbols font, as well as the parentheses used in the
parenthesized text processed with macro \frapar.

704 \DeclareRobustCommand\gmark{\hskip.16ex{\fontencoding{0T1}\upshape(?)}}
705 \DeclareRobustCommand\lpar{{\metricsfont (}}

706 \DeclareRobustCommand\rpar{{\metricsfont)}}

707 \DeclareRobustCommand\frapar [1] {\1par#1\rpar}

708

\ap The apex/superscript macro \ap does not differ much from the plain standard
ETEX macro \textsuperscript, the only difference being the italic correction
that precedes \textsuperscript.

709 \DeclareRobustCommand{\ap} [1]{\/#1}
710

\Dots Four macros are defined so as to insert a certain number of dots or dashes as
\DOTS specified in the optional command argument; \Dots and \Dashes fit the dots or
\Dashes
\DASHES

31

\:
\;
\7
\MutPers

\
\dBar
\tBar

\negthinspace
\posthinspace
\posthindspace
\,

\!

the dashes pretty close together, while \DOTS and \DASHES fit them more loosely
apart.
711 \newcommand\Dots [1] [1]{{\count255=#1\@whilenum\count255>\z@

712 \do{\kern.4ex\d{v}\kern.4ex\advance\count255\m@ne}}}
713 \newcommand\DOTS [1] [1]{{\count255=#1\@whilenum\count255>\z@
714 \do{\kern.8ex\d{v}\kern.8ex\advance\count255\m@ne}}}
715 \newcommand\Dashes [1] [1]{{\count255=#1\@whilenum\count255>\z@
716 \do{\kern.4ex--\kern.4ex\advance\count255\m@ne}}}

717 \newcommand\DASHES [1] [1] {{\count255=#1\@whilenum\count255>\z@
718 \do{\kern.8ex--\kern.8ex\advance\count255\m@ne}}}

719

Greek text or poetry sometimes requires some stacked dots; here we prepared
macros for two (\:), three (\;), and four (\?) stacked dots. Two stacked dots
in a row indicate that the speaker of a drama or comedy has changed (mutatio
personae). For \: and \; it is necessary to preserve the mathematical meaning,
while \7 apparently does not have any previous use in standard IXTEX. The real
macros are \tw@dots, \thre@dots, and \fQurdots.

720 \DeclareRobustCommand{\:}{\textormath{\tw@dots}{\mskip\medmuskip}}

721 \DeclareRobustCommand{\;}{\textormath{\thre@dots}{\mskip\thickmuskip}}
722 \DeclareRobustCommand{\?}{\f@urdots}

723 \DeclareRobustCommand{\mutpers}{\makebox [1ex]{\:\hfill\: }\spacel}

724 \let\MutPers\mutpers\let\antilabe\mutpers

725 \def\tw@dots{\mbox{\kernl\p@\vbox tolex{\hbox{.}\vss\hbox{.}}}}

726 \def\thre@dots{\mbox{\kerni1\p@\vbox to 2ex{\hbox{.}\vss

727 \hbox{.}\vss\hbox{.}}}}

728 \def\f@urdots{\mbox{\kernl\p@\vbox to 2ex{\hbox{.}\vss

729 \hbox{.}\vss\hbox{.}\vss\hbox{.}}}}

730

Similarly Greek text and poetry require certain cesurae indicated with vertical
bars; we provided commands for one (\|), two (\dBar), and three (\tBar) vertical
bars.

731 \DeclareRobustCommand{\ | }{\relax\ensuremath{\mskip2mu\vert}}

732 \DeclareRobustCommand{\dBar}{\ensuremath{\vert\vert}}

733 \DeclareRobustCommand{\tBar}{\ensuremath{\vert\vert\vert}}

734

The following are mostly service macros for adjusting the spacing within macro def-
initions. Nevertheless they are available also to the typesetter, because sometimes
certain glyph combinations require a little adjustment. Of course the typesetter
will not use them at the very beginning, but only during proof revision, so as to
introduce them only where really necessary.

735 \def\negthinspace{\nobreak\hskip-0.07em}

736 \def \posthinspace{\nobreak\hskip0.07em}

737 \def \posthindspace{\nobreak\hskip0O. 14em}

738 \renewcommand{\, }{\textormath{\posthinspace}{\mskip\thinmuskip}}

739 \renewcommand{\ ! }{\textormath{\negthinspace}{\mskip-\thinmuskip}}

740

32

\1brk
\rbrk
\1mqi
\rmqi
\1mgs
\rmgs
\mqi
\mgs
\Ladd
\LLadd
\ladd
\1ladd
\lesp
\1ldel

\itopenquotes
\itclosedquotes
\itoq

\itcq

Philologists require a certain number of special parentheses in order to enclose
parts of text that are doubtful or that have been added although they are missing
from the original manuscripts; even letter strings that have been modified under
the assumption that the copyist made some error. Such enclosing marks include
angle brackets, square brackets, upper part of square brackets, lower part of square
brackets. Such symbols may even appear doubled. Most of these glyphs have been
designed anew, because they are missing or are inadequate if they are taken from
the usual CM fonts (either text or math fonts). Brackets for example have been
designed as to be higher and deeper than the font total height, so as not to interfere
with Greek accents and to accomodate for at least one level of nesting (for example
square brackets enclosing lower part of square brackets. The single glyphs may be
used directly by the typesetter, but we think that the commands requiring some
text are far more useful. \Ladd and its double version \LLadd enclose text that
should be added for sure. \ladd and its double version \1ladd enclose text that
probably should be added. \lesp and its synonymous \ldel enclose text that
should be deleted. \mqi surrounds some text with the lower part of open and
closed square brackets. \mgs surrounds some text with the upper part of open
and closed square brackets. See teubenr-doc.pdf for samples of such commands.

741 \DeclareRobustCommand{\1brk}{{\metricsfont\posthindspace [\negthinspace}}
742 \DeclareRobustCommand{\rbrk}{{\metricsfont]}}

743 \DeclareRobustCommand\1lmqi{{\metricsfont!}}

744 \DeclareRobustCommand\rmqi{{\metricsfont:}}

745 \DeclareRobustCommand\1lmgs{{\metricsfont?}}

746 \DeclareRobustCommand\rmgs{{\metricsfont;}}

747 \DeclareRobustCommand\mqi [1] {\posthinspace\lmgi\negthinspace

748 {#1\/F\rmqiF\let\mezzeq\mqi

749 \DeclareRobustCommand\mqgs [1] {\1mgs{#1\/}\rmgs}

750 \DeclareRobustCommand{\Ladd} [1]{{\metricsfont<}{\!\!#1\/3}},

751 {\metricsfont>}}/, litterae certe addendae
752 \DeclareRobustCommand{\LLadd} [1] {{\metricsfont<\kern-.3ex<}

753 A\ !#1\/I{\metricsfont>\kern-.3ex>}}/ litterae certe addendae
754 \DeclareRobustCommand{\ladd}[1]{{\metricsfont\kern.15ex[\negthinspacel/
755 {#1\/}{\metricsfont] \kern-.15ex}}/ litterae addendae

756 \DeclareRobustCommand{\11ladd} [1]{{\metricsfont\kern.15ex [\kern-.3ex[%
757 \negthinspace}{#1\/}{\metricsfont]\kern-.3ex]%

758 \kern-.15ex}}% litterae addendae
759 \DeclareRobustCommand{\lesp}[1]1%

760 {\mbox{$\{\kern-.20ex$#1\kern. 16ex$\}$}}) litterae delendae
761 \let\ldel\lesp

762

5.9 Greek, English, and German quotes

The following macros allow to set Italian/English high quotes even while typing
in Greek; such quotes are standard in Italian and in English typesetting and
their commands preserve the font family shape and series of the surrounding font.
In French typography, as well in the typographic traditions of other countries,

33

\GEodq
\GEcdq
\GEdqtext
\GEoq
\GEcq
\GEqtext
\ENodq
\ENcdq
\ENdqtext

\LitNil
\1litnil

\sva
\shva
\shwa

different quotes are used. In that case the typesetter must resort to a change
of language, for example returning to German, inputting the German quotes,
then turning back to Greek. He might as well define his own macros, or he
might clone the following definitions and change them according to his country
typographic traditions. If he decides to modify these definitions he should either
rename this file or he should put his redefinitions in a private package to be input
after teubner.sty.

763 \DeclareTextCommand{\itopenquotes}{\GRencoding@name}y,

764 {{\fontencoding{0T1}\selectfont\char92}}/,

765 \DeclareTextCommand{\itclosedquotes}{\GRencoding@namel}y,

766 {{\fontencoding{0T1}\selectfont\char34}}/,

767 \let\itoq\itopenquotes

768 \let\itcq\itclosedquotes

769

On the opposite the following German and English quotes are redesigned and
included in the metric symbols font. Since this font is in one shape and one
series, these quotes do not change as the outside font does, but remain fixed;
the most useful commands are \GEdgtext for enclosing some text within German
double quotes, \GEqtext for enclosing some text within German single quotes,
and \ENdqtext for enclosing some text in English double quotes. Apparently
while setting Greek poetry in stacked, possibly enumerated, verses, German double
or single quotes are often used, since they cannot be misunderstood with Greek
diacritical marks. Modern Greek double quotes apparently are not appreciated by
philologists, at least outside Greece.

770 \newcommand\GEodq{\bgroup\futurelet\Q@tempA\GE@dq}

771 \def\GE@dg{{\metricsfont\char18}\ifx\@tempA m\posthinspace\fi\egroup}

772 \newcommand\GEcdq{{\metricsfont\char16}}

773 \newcommand\GEdqgtext [1] {\GEodqg\posthinspace#1\/\posthinspace\GEcdq}

774 \newcommand\GEoq{\bgroup\futurelet\@tempA\GEQq}

775 \def \GE@q{{\metricsfont\char13}\ifx\@tempA m\posthinspace\fi\egroup}

776 \newcommand\GEcq{{\metricsfont\char19}}

777 \newcommand\GEqtext [1]{\GEoq\posthinspace#1\/\posthinspace\GEcq}

778 \newcommand\ENodq{{\metricsfont\char16}}

779 \newcommand\ENcdq{{\metricsfont\char17}}

780 \newcommand\ENdqtext [1] {\ENodg\negthinspace#1\/\posthinspace\ENcdq}

781

5.10 Other philological symbols and macros

The next synonymous macros indicate the littera nihil.

782 \DeclareRobustCommand\LitNil{\textbullet}
783 \let\1litnil\LitNil

The CB fonts include also the letter “shwa”, the glyph that appears as a ro-
man “e” rotated 180° around its center. Philologists need it even when writing
Greek. In order to make it available also when the Latin encodings are in force,

34

\skewstack

\hv
\gw
\gw
\gusv
\qusv
\qu

suitable definitions have been given so that the suitable CB font was changed be-
hind the scenes without any intervention by the typesetter. With this version of
teubner.sty a new definition is made up that uses the \rotatebox facility of the
graphicx package; In a future revision of the CB fonts the \schwa slot shall be
freed so that Greek glyphs only populate it, without extraneous presences. The
\schwa glyph is made available also with the Latin encodings.

784 % \DeclareTextSymbol{\sva}{\GRencoding@name}{26}

785 \DeclareTextCommand{\sva}{\GRencoding@name}{/,

786 \rotatebox [origin=c]{180}{\def\@tempA{1i}%

787 \fontencoding{0T1}\ifx\f@shape\Q@tempA\fontshape{it}\fi\selectfont e}}

788 \DeclareTextCommand\sva{0T1}{{\expandafter\fontencoding

789 \expandafter{\GRencoding@name}\selectfont\sval}

790 \DeclareTextCommand\sva{T1}{{\expandafter\fontencoding

791 \expandafter{\GRencoding@name}\selectfont\sva}}

792 \let\shva\sva\let\shwa\sva

793

The \skewstack command stacks two arguments not one on top of the other,
but the second argument is placed to the right and upwards relative to the first
argument. The second argument is set in script font size. Although there are
similarities with the \textsuperscript command, the exact placement of the
second argument depends on the shape (height and depth) of both arguments.
This command will be used for creating some philologist’s symbols, but is readily
available to the typesetter both for direct use and for writing macros defining new
symbols.

794 \DeclareRobustCommand\skewstack [2] {{%

795 \edef\slant@{\strip@pt\fontdimeni\font}Y

796 \setbox\z@\hbox{#1}\dimen@\ht\z@\box\z@

797 \kern-.045em\setbox\@ne\hbox{\scriptsize#2}}

798 \ifdim\dimen@>1.2ex\advance\dimen@-\ht\@ne\else

799 \dimen@ilex\advance\dimen@-.5\ht\@ne\fi
800 \kern\slant@\dimen@\raise\dimen@\hbox{\box\@nel}}}
801

Matter of fact some common Latin stacked symbols are defined here in terms of
\skewstack. As it may bee seen, the second argument (the first as well, but here
there are no examples) may in turn contain other macros for composite symbols.

802 \DeclareRobustCommand\hv{{\fontencoding{0T1}\selectfont
803 \skewstack{h}{v}}}

804 \DeclareRobustCommand\qw{{\fontencoding{0T1}\selectfont
805 \skewstack{q}{w}}}

806 \DeclareRobustCommand\gw{{\fontencoding{0T1}\selectfont
807 \skewstack{g}{w}}}

808 \DeclareRobustCommand\gusv{{\fontencoding{0T1}\selectfont
809 \skewstack{g}{\semiv{u}}}}

810 \DeclareRobustCommand\qusv{{\fontencoding{0T1}\selectfont
811 \skewstack{q}{\semiv{u}}}}

812 \DeclareRobustCommand\qu{{\fontencoding{0T1}\selectfont

35

\dz

\Utie

\siner
\siniz

\upfill

\downfill

813 \skewstack{q}{u}}}
814

Without using \skewstack other symbols may be defined; here \dz is just an
example, where the kerning between ‘d’ and ‘z’ has been found by cut and try.
With other glyphs may be different kerning is necessary.

815 \DeclareRobustCommand\dz{{\fontencoding{0T1}\selectfont d\kern-.33ex z}}
816

Now we come to another set of commands like the ones needed to mark the
syneresis or the zeugma and other similar marks.

This first macro sets a “smile” symbol under a couple of letters. The glyph is
fine but is good only for two adjacent letters, therefore it is necessary to have a
stretchable symbol.

817 \DeclareRobustCommand\Utie [1]{/

818 \mbox{\vtop{\ialign{##\crcr

819 \hfil#1\hfil\crcr

820 \noalign{\kern.3ex\nointerlineskip}’%

821 \hfil\smile\hfil\crcr}}}}

822

This is why the \siner and \siniz synonymous commands have been defined;
in place of or in addition to the “smile” symbol; they contain a stretchable filler
\upfill that behaves almost as the stretchable horizontal brace that is used in
the definition of the IXTEX commands \underbrace or \overbrace.

823 \DeclareRobustCommand{\siner} [1]{/

824 \mbox{\vtop{\ialign{##\crcr

825 \hfil#1\hfil\crcr

826 \noalign{\kern.6ex\nointerlineskipl}’

827 \upfill\crcr}}}}

828 \let\siniz\siner

829

The \upfill is defined as a leader, the same way as the corresponding KTEX
stretchable horizontal brace.

830 \def\upfill{$\m@th \scriptstyle\setbox\z@\hbox{$\scriptstyle\bracelu$l}y
831 \kern.16ex\bracelu\ifPDF\kern-.15ex\fi

832 \leaders\vrule \@height\ht\z@ \@depth\z@\hfill

833 \braceru\kern.16ex$}

834

The \downfill arc is totally similar to the \upfill one, except for its terminating
elements that change the shape of the arc from “up” to “down”.

835 \def\downfill{$\m@th\scriptstyle\setbox\z@\hbox{$\scriptstyle\braceld$}’
836 \kern.16ex\braceld\ifPDF\kern-.15ex\fi

837 \leaders\vrule \@height\ht\z@ \@depth\z@\hfill

838 \bracerd\kern.16ex$}

839

36

\zeugma

\slzeugma
\rszeugma

\nexus
\nesso

Similarly \zeugma puts a stretchable arc over its argument; it must take into
account the slant of the argument font so as to skew the placement of the arc.

840 \newcommand*\zeugma [1]{{\vbox{\setbox\z@\hbox{#1}\dimen@=\ht\z@

841 \edef\@slant{\strip@pt\fontdimeni\font}’

842 \dimen\tw@=\wd\z@

843 \dimen@=\0@slant\dimen@\ifmetricsfont\dimen@=\z@

844 \advance\dimen\tw@-.5ex\fi

845 \kern-.2ex\ialign{##\crcr

846 \hbox to\z@{\ifmetricsfont\kern.25ex\fi\kern\dimen®@
847 \hbox to\dimen\tw@{\hss\downfill\kern.2\dimen@\hss}\hss}\crcr
848 \noalign{\ifmetricsfont\kern.6ex

849 \else\kern.4ex\fi\nointerlineskipl}¥%

850 \hfil{#1}\hfil\crcr}}}%

851 }

852

Although the shape of oblique zeugma arcs cannot be changed depending on the
width and height of the zeugma argument, in certain circumstances the philolo-
gists want to use oblique zeugma marks. This is why we defined a “sloping zeugma
arc” \slzeugma, and a “rising zeugma arc” \rszeugma that can be used with poor
results, if such arcs are superimposed over the “wrong” letters. There is nothing
automatic in the choice of the oblique arc and is totally on the typesetter responsi-
bility to use the correct command. These slanted zeugma signs are possibly useful
only for two letters since they are not stretchable.

853 \newcommand*\slzeugma[1]{{\leavevmode

854 \setbox\tw@\hbox{\metricsfont\char120}},

855 \setbox\z@\hbox{#1}\dimen@.5\wd\z@\advance\dimen@-.5\wd\tw@
856 \edef\@slant{\strip@pt\fontdimeni\font}y,

857 \advance\dimen@\@slant\ht\z@

858 \hbox to\z@{\kern\dimen@\box\tw@\hss}\box\ze@

859 Y

860 }

861

862 \newcommand*\rszeugma[1] {{\leavevmode

863 \setbox\tw@\hbox{\metricsfont\char122}},

864 \setbox\z@\hbox{#1}\dimen@.5\wd\z@\advance\dimen@-.5\wd\tw@
865 \edef\@slant{\strip@pt\fontdimeni\fontl}},

866 \advance\dimen@\@slant\ht\z@

867 \hbox to\z@{\kern\dimen@\box\tw@\hss}\box\ze@

868 o

869 }

870

Originally I had two different macros for marking a nexus; one made use of a “up
stretchable turtle bracket”, and the user used a leader of Latin circumflex signs.
Both were unsatisfactory; the latter was really ugly, but I kept the macro name as
a synonym for compatibility with the past. The good looking marker is obtained
from a mathematical \widehat sign by stretching it to the width of the string

37

the marcher should mark; the new macro \nexus (that replaces the stretchable
turtle bracket) relies on the facilities offered by the \resizebox of the package

graphicx.

871 \newcommand*{\nexus} [1]{{\setbox\tw@\hbox{#1\/}%

872 \edef\slant@{\strip@pt\fontdimeni\font}}

873 \@tempdima=\slant@\ht\tw@\advance\Q@tempdima.45ex
874 \setbox4\hbox{\resizebox{\wd\tw@}{\height}{$\widehat{}$}}%
875 \setbox4\hbox{\smash{\lowerl.35ex\hbox{\box4}}}%
876 \vbox{\ialign{##\crcr,

877 \kern\@tempdima\box4}

878 \crcr

879 \noalign{\kern.15ex\nointerlineskip}y,

880 \hfil{#1}\hfil\crcr}}}}

881 \let\nesso\nexus

882

\coronis While setting poetry it is necessary to mark the end of paragraphs, which do not
\Coronis necessarily coincide with the ends of stanzas. After the verse that concludes a
\paragr logical paragraph philologists insert a mark called “coronis” (synonymous of para-
\dpar graph, therefore the command \paragr) or a “stronger” mark called “Coronis”,
which differs from the common “coronis” because it bears an inverted semilunar
sign on its left. Both marks are input by means of their respective commands
\paragr (preferred to \coronis) or \Coronis inserted at the beginning of the
paragraph terminating verse. The command \dparagr inserts a double coronis
mark, which is sometimes required in place of the ordinary single mark.
883 \def\C@rule{\vrule\@height.45ex\Q@depth-.35ex\Qwidthl.5em}
884 \def\coronis@rule{\hbox to\z@{\hss\C@rule\hss}}
885 \def\Coronis@rule{\hbox to\z@
886 {\hss\hbox to\z@{\hss$\scriptstyle)$\kern-1.5\p@}\CO@rule\hssl}}
887 \DeclareRobustCommand\paragr{\raisebox{-1ex} [\z@] [\z@]{\coronis@rule}}
888 \let\coronis\paragr
889 \DeclareRobustCommand\Coronis{\raisebox{-1ex}[\z@] [\z@] {\Coronis@rulel}}
890 \DeclareRobustCommand{\dparagr}y,

891 {\raisebox{-1.3ex}[\z@] [\z@]{\coronis@rulel}y
892 \raisebox{-1.6ex}[\z@] [\z@]{\coronis@rulel}}
893

\sinafia The next group of commands are intended to insert special symbols in the philo-
\crux logical text; just the command \apici requires an argument, a block of text that
\FinisCarmen shall be enclosed within straight vertical apices, irrespective of the font slant. The
\apici command \FinisCarmen although very descriptive, is long to type, therefore a
\positio shorter alias \FinCar has been defined. \apex was the initial name given to the
\Int command, but on a second time it was changed to \positio, and the latter should
\star always be used in place of the former. For what concerns \star which is a stan-
\dstar dard KTEX math command, the original definition is saved in the service macro
\tstar \m@thst@r and the command is redefined so as to perform as it should both in
\responsio text and in math mode. The symbol [, on the contrary, was redefined so as not
to mix math with text, even if its rendering resorts to mathematics.

38

\thorn
\Thorn

\dracma
\hemiobelion
\tetartemorion
\stater
\denarius
\etos

\cut
\dcutbar
\bcutbar
\gcutbar

894 \DeclareRobustCommand*\sinafia{{\metricsfont s}}

895 \DeclareRobustCommand*{\crux}{{\metricsfont\char’171}}

896 \DeclareRobustCommand*{\FinisCarmen}{\ensuremath{\otimes}}
897 \let\FinCar\FinisCarmen

898 \DeclareRobustCommand*{\apici}[1]1%

899 {\posthinspace{\metricsfont\char96}\negthinspace#17
900 \posthinspace{\metricsfont\char39}\negthinspace}

901 \DeclareRobustCommand*{\apex1}/

902 {\/\hskip.5ex\vrule\@heightl.7ex\@depth-1lex\hskip.2ex}

903 \let\positio\apex

904 \DeclareRobustCommand*{\Int}{\ensuremath{\int}}

905 \let\m@thst@r\star

906 \DeclareRobustCommand*{\star}{\textormath{{{\upshape *}}}{\m@thst@r}}
907 \DeclareRobustCommand*{\dstar}{{\upshape **}}

908 \DeclareRobustCommand*{\tstar}{{\upshape **x}}

909 \DeclareRobustCommand*{\responsio}{{\boldmath\ensuremath{\sim}}}

910

\thorn and \Thorn are the exact equivalents of \th and \Th that are defined only
for the T1 encoding. Therefore such encoding is selected in an implicit way.

911 \DeclareRobustCommand{\thorn}{{\fontencoding{T1}\selectfont\th}}

912 \DeclareRobustCommand{\Thorn}{{\fontencoding{T1}\selectfont\TH}}

913

5.11 Ancient Greek monetary unit symbols

This set of symbols, taken from the metrics symbol font (which by this time is
evident does not contain only metrics symbols) represents the unit symbols of
some coins of ancient Greece, as they were found on many “ostraka” in several
archeological sites.

914 \DeclareRobustCommand{\dracma}{{\metricsfont D}}

915 \DeclareRobustCommand{\hemiobelion}{{\metricsfont A}}

916 \DeclareRobustCommand{\tetartemorion}{{\metricsfont B}}

917 \DeclareRobustCommand{\stater}{{\metricsfont C}}

918 \DeclareRobustCommand{\denarius}{{\metricsfont E}}

919 \DeclareRobustCommand{\etos}{{\metricsfont G}}

920

5.12 Another set of philological symbols and macros

The following set of macros are all connected with the principal macro \cut,
which should position a horizontal tie or bar across a certain number of latin
letters, specifically ‘d’, ‘b’, and ‘g’; due to their different shapes, such bars are
of different length and located at different heights; if they are in italics the bar
position must change again. Therefore even if the user command \cut is the same
for all these letters, its action must change depending on different circumstances.
It merely checks its argument (it must be one letter and unpredictable results are
obtained if more that one token is passed as an argument to \cut) and selects the

39

\0SN

\splus
\stimes
\kclick

proper bar. The specific bar commands \dcutbar, \bcutbar, and \gcutbar, are
defined in such a way as to cope only with the their initial letter.

921 \DeclareRobustCommand{\cut} [1]{%

922
923
924
925
926
927

928 %

\ifx#1d\dcutbar\else
\ifx#1b\bcutbar\else
\ifx#1g\gcutbar
\fi
\fi
\fi}

929 \def\dcutbar{{\edef\slant@{\strip@pt\fontdimeni\font}/,

930
931
932

d\dimen@1.2ex\kern\slant@\dimen®
\1lap{\vrule\@height1l.3ex\@depth-\dimen@
\ifdim\slant@\p@>\z@\@width.35em\else\Qwidth.4em\fi\kern.03em}}}

933 \def\bcutbar{{\edef\slant@{\strip@pt\fontdimenl\font}%

934
935
936
937

\rlap{\dimen@1.2ex\kern\slant@\dimen®
\ifdim\slant@\p@=\z@\kern.03em\fi
\vrule\@heightl.3ex\@depth-\dimen@
\ifdim\slant@\p@>\z@\Qwidth.3em\else\@width.4em\fi}b}}

938 \def\gcutbar{{\edef\slant@{\strip@pt\fontdimeni\font}/,

939
940
941
942
943
944
945
946

\ifdim\slant@\p@>\z@
g\kern-.55ex\dimen@.2ex\kern-\slant@\dimen®
\vrule\@height-.1lex\Q@depth\dimen@\@width.6ex

\else
\dimen@.2ex\kern\slant@\dimen®@\vrule\@height.3ex\Q@depth-\dimen®@
\@width.6ex\kern-.55ex\relax g

\fi}}

The next macro is just a shortcut instead of using \oldstylenums.

947 \1et\0SN\oldstylenums

948

The next three macros are used in glottology; the first two ones are used to mark
special pronunciations of the sibilant, while the last one is used to mark a special
pronunciation of the guttural that produces a “click”.

949 \newcommand\splus{\leavevmode{/,

950
951
952
953
954
955
956
957
958

\edef\slant@{\strip@pt\fontdimeni\font}/
\setbox\z@\hbox{s}%
\dimen@=\wd\z@
\setbox\tw@\hbox{$\scriptscriptstyle+$}/
\advance\dimen@.35\ht\tw@
\raisebox{\dimen@} [\z@] [\z@]{%
\makebox [\z@] [1]{\kern.5\wd\z@
\kern\slant@\dimen@\kern-.5\wd\tw@\box\tw@}}%
\box\z@}}/,

959 \newcommand\stimes{\leavevmode{%

960
961

\edef\slant@{\strip@pt\fontdimeni\font}y,
\setbox\z@\hbox{s}%

40

962 \dimen@=\wd\z@

963 \setbox\tw@\hbox{$\scriptscriptstyle\times$}/%

964 \advance\dimen@.2\ht\tw@

965 \raisebox{\dimen@} [\z@] [\z@]{%

966 \makebox [\z@] [1]{\kern.5\wd\z@

967 \kern\slant@\dimen@\kern-.5\wd\tw@\box\tw@}}

968 \box\z@}}7,
969 \newcommand\kclick{\leavevmode{%

970 \edef\slant@{\strip@pt\fontdimeni\font}/

971 \setbox\z@\hbox{k}/

972 \setbox\tw@\hbox{\fontencoding\GRencoding@name\selectfont\s{v}}%
973 \dimen@\wd\z@

974 \ifdim\slant@\p@=\z@

975 \advance\dimen@-.1\wd\z0@\else\advance\dimen@\wd\tw@

976 \fi

977 k\makebox [\z@] [r]{\unhcopy\tw@\kern.5\dimen@}/

978 Y4

979

5.13 Poetry environments and macros

\verso Here we start with verse environments; we already explained that we defined three
versi new verse environments that typeset poetry in “in-line” verses, “numbered by five”

verses, and “numbered by five and subnumbered” verses. For the environment
versi we first need a counter and a little macro for generating the short bar that
has to receive the verse number as a “limits” superscript.
980 \newcounter{verso}\setcounter{verso}{0}
981 \newcommand{\smallvert}{\vrule\@height.6ex\@depth.4ex}
982

Next we define the macro \verso that sets the small bar with the verse number
on top. Since the initial numbering might be different from 1, \verso accepts
an optional argument, which is intended to be the initial counter value. Since
\verso steps up the counter a different action must be taken if the optional ar-
gument is present; in order to be able to reference such verse by means of the
\label-\ref cross reference mechanism, this stepping up must be done by means
of \refstepcounter; therefore we have to leave \refstepcounter outside the
conditional code, and step down the counter by one unit only in case the initial
value is specified.

983 \DeclareRobustCommand\verso[1] [1{%
984 \def\@tempA{#1}\ifx\QtempA\empty

985 \else

986 \setcounter{verso}{#1}\addtocounter{verso}{\m@nel},

987 \fi

988 \refstepcounter{verso}/,

989 \@killglue\space

990 \ensuremath{\mathop{\smallvert}\limits"{\scriptscriptstyle\theversol}}/,
991 \space\ignorespaces}

992

41

Versi

\BreakVersotrue

Now that the verse separation macro is ready we can define the environment; the
required opening statement argument represents a short text whose width is taken
as a measure for indentation, so that verses are typeset with a left margin that
leaves out this short text. Substantially this environment is a 1ist one, and the
left margin variable width is totally similar to the one used in thebibiography
environment. Also the \makelabel command has been modified accordingly.

993 \newenvironment{versi} [1]{%

994 \def\makelabel##1{##1}

995 \setbox\z@\hbox{#11}7

996 \list{}{\labelwidth\wd\z@\leftmargin\labelwidth

997 \advance\leftmargin\labelsepl}
998 \item[\box\z@]
999 H%

1000 \endlist
1001 }
1002 \let\versus\versi \let\endversus\endversi

The second environment Versi accepts an optional starting number in the open-
ing, statement, whose default value is 1: verses are composed as in the standard
KTEX verse environment (with one minor difference) except they are numbered
in the left margin with a progression of five; only verse numbers that are integer
multiples of five are displayed. The minor difference is that stanzas cannot be
marked with a blank line in the input .tex file, as it is customary with the stan-
dard environment, but if a visual mark is desired, such as extra vertical space, it
is necessary to resort to the optional spacing parameter that can be specified to
the \\ command. This environment uses the same verse counting counter, defined
for use with the versi environment.

For specific purposes it is necessary to have a boolean variable for allowing or

\BreakVersofalse prohibiting verses to split up at the end of line; the default is not to split.

1003 \newif\ifBreakVersi
1004 \BreakVersifalse
1005 \newenvironment{Versi} [1] [1]1{%

1006

\setcounter{verso}{#1}%

An internal macro \writ@verso does not actually write out the complete, possi-
bly numbered verse, but provides for checking that the verse counter contains a
multiple of 5, and to write it out using old stile numbers; in case the number is

not an integer multiple of 5 the number is written out as the \empty macro.

1007
1008
1009
1010
1011
1012
1013
1014
1015

\def\writ@verso{%

\count255=\value{verso}\divide\count255by5\relax

\multiply\count255by5\relax

\advance\count255-\value{verso}y,

\ifnum\count255=\z@
{\fontseries{m}\small\expandafter\oldstylenums\expandafter{\the\c@versol}}/

\else
\empty

\£i}

42

Since the \\ command should provide the same functionality as the regular IXTEX
command, while in this environment it should provide other functionalities, such as
triggering the display of the verse number. It is necessary to define an intermediate
command \v@rscr, that examines the possible optional arguments, such as the
optional star or the brackets enclosing vertical spacing

1016 \def\\{\@ifstar{\verscr{\@M}}{\v@rscr{\z@}}}/

1017 \def\vO@rscr##1{\Q@ifnextchar [{\wr@teverse{##1}1}/,

1018 {\wr@teverse{##1}[\z@] }}%
Finally the \wr@teverse macro does the actual typesetting of the verse. Notice
that the environment opening statement and every succeeding previous verse starts
an horizontal box where the contents of the current verse is stored. Therefore the
first thing to do is to close the box with the \egroup command, then a line of text is
output that contains a possibly empty box or the verse number and the command
for stepping up the verse counter, followed by the verse box number 0 and an end
of paragraph; in this way the \\ operates always in vertical mode, contrary to what
happens in the verse standard IXTEX environment. Even in this environment the
actual typesetting is done within a list environment, whose parameters are set
differently from what they are in the verse environment. Notice in any case that
the command \wr@teverse reopens the 0 box, so on the last verse, upon closing
the environment, it is necessary to remember to close such box, whose contents is
irrelevant and can be thrown away.

I have experienced some problems in typesetting verses in two-column format;
the column width might be too short for setting up verses even if verses are not
that long, because in the left margin there must be room for the verse numbering;
for homogeneity the spacing must conform also with the following environment
VERSI that has a secondary verse numbering, therefore it can’t be too small. The
result is that there might be a test for controlling the two-column format, but
I think that it is more useful for the typesetter to be able to switch on and off
the possibility of breaking long verses on more lines. On two-column format in
any case it is better to leave the right margin to coincide with the column right
margin.

1019 \def\wr@teverse#i#l [##2] {\egroup

1020 \makebox [3em] [r]{%

1021 \writ@verso\refstepcounter{verso}\kernl.5em}
1022 \ifBreakVersi

1023 \begingroup\raggedright

1024 \hyphenpenalty \@M

1025 \unhbox\z@\par

1026 \endgroup

1027 \else

1028 \rlap{\box\z@}\par

1029 \fi

1030 \penalty##1\vskip##2\relax

1031 \setbox\z@\hbox\bgroup\ignorespaces}
1032 \list{}{\itemsep\z@\parsep\z@

1033 \if@twocolumn

1034 \itemindent -5.3em}

43

VERSI

\SubVerso
\NoSubVerso

1035 \listparindent\itemindent
1036 \rightmargin\z@

1037 \advance\leftmargin 3.3em
1038 \else

1039 \itemindent -1.5em%

1040 \listparindent\itemindent
1041 \rightmargin \leftmargin
1042 \advance\leftmargin 1.5em
1043 \fi

1044 Y

1045 \item\leavevmode\setbox\z@\hbox\bgroup\ignorespaces
1046 %

Upon closing it is necessary to activate the writing out of the last verse that is
still in the 0 box, but since this box is immediately reopened, it is necessary to

close it again before exiting the environment.

1047 \\%

1048 \egroup
1049 \endlist
1050 }

1051 \let\Versus\Versi \let\endVersus\endVersi

1052

The third environment VERSI set verses in the traditional way, but numbers them
with two different enumerations; the principal one is by multiples of five, while the
secondary one counts by units, and may be turned on and off, or reset at will. We
therefore need another counter for the secondary enumeration and commands for
turning it on and off and for resetting the counter. We need also a new length and
a new boolean variable in order to manage the secondary enumeration. The new
length represents an indentation of those verses that do no have the secondary
enumeration, while secondary enumerated verses are not indented. For VERSI
there is the same possibility of turning on and off the possibility of breaking verses
at the end of line as it happens for the environment Versi.

Macro \NoSubVerso turns off the secondary enumeration; macro \SubVerso turns
on the secondary enumeration, but it accepts an optional argument for resetting
the secondary counter; the default value is 0; if no optional argument is specified,
and therefore if the optional argument has its default value 0, no resetting is per-
formed and the enumeration keeps going from the last contents of the secondary
counter; if the first use of \SubVerso does not contain the optional argument, the
secondary enumeration keeps going from the old contents of the secondary counter
which is unpredictable, depending upon the previous occurrences of the environ-
ment VERSI. The typesetter, therefore, must remember to specify the optional
argument to \SubVerso the first time he uses it in this environment.

1053 \newcounter{subverso} \setcounter{subverso}{0}
1054 \newif\ifSubVerso

1055 \newlength{\versoskip}

1056 \newcommand*\NoSubVerso{\global\SubVersofalse
1057 \global\versoskipl.3em\ignorespaces}

44

1058 \newcommand*\SubVerso[1] [0] {\global\SubVersotrue

1059 \ifnum#1=0\else

1060 \setcounter{subverso}{#1}/,

1061 \global\protected@edef\Qcurrentlabel{\the\c@subversol}y,
1062 \fi

1063 \global\versoskip.3em\ignorespaces}

1064

The opening environment statement accepts an optional argument (default
equals 1) which represents the primary enumeration starting number:

1065 \newenvironment{VERSI} [1] [1]{%

1066 \setcounter{verso}{#1}/,
We need two macros \writ@verso and \writ@subverso, that typeset the primary
and secondary enumeration; the first one is similar to the one used in the Versi
environment, while the second one has no special features except the conditional
construct needed to check if the secondary enumeration has to be printed out.

1067 \def\writ@verso{’

1068 \count255=\value{verso}\divide\count255by5\relax

1069 \multiply\count255by5\relax

1070 \advance\count255-\value{verso}y,

1071 \ifnum\count255=0\relax

1072 {\fontseries{m}\small\expandafter\oldstylenums\expandafter{\the\c@verso}}/
1073 \else

1074 \empty

1075 \£i}V

1076 \NoSubVerso

1077 \def\writ@subverso{/,

1078 \ifSubVerso

1079 {\fontseries{m}\scriptsize\expandafter\oldstylenums
1080 \expandafter{\the\c@subverso}}/,

1081 \fi}%

Similarly to the previous environment, the \\ command must be redefined so as
to perform more or less as the standard one, while doing all the necessary actions
needed in this environment. It must check the presence of the optional star and
of the optional vertical skip and it has to pass control to a service macro \v@rscr
that does the actual job; actually it passes control to a third macro \writ@verse
that effectively outputs the current verse.

1082 \def\\{\@ifstar{\verscr{\@M}}{\ve@rscr{\z@}}}%

1083 \def\vO@rscr##1{\Q@ifnextchar [{\writ@verse{##1}1}/

1084 {\writ@verse{##1}[\z@] }}%

1085 \def\writ@verse##1 [##2] {\egroup

1086 \makebox [1.5em] [r]{\writ@verso\refstepcounter{verso}}/

1087 \makebox [1.5em] [r]{\writ@subverso\refstepcounter{subversol}}/,
1088 \kernl.5ex\hskip\versoskip

1089 \ifBreakVersi

1090 \begingroup

1091 \hyphenpenalty \@M

1092 \unhbox\z@\par

45

1093 \endgroup

1094 \else

1095 \rlap{\box\z@}\par

1096 \fi

1097 \penalty##1\vskip##2\relax

1098 \setbox\z@\hbox\bgroup\ignorespaces}y,

For the remaining part, the environment is a normal 1ist environment with spe-
cific initial parameters.

1099 \1list{}{\parsep\z@\itemsep\z@
1100 \if@twocolumn

1101 \itemindent -5.3em}

1102 \listparindent\itemindent
1103 \rightmargin\z@

1104 \advance\leftmargin 3.3em
1105 \else

1106 \itemindent -1.5em

1107 \listparindent\itemindent
1108 \rightmargin \leftmargin
1109 \advance\leftmargin 1.5em
1110 \fi

1111 iy

1112 \item\leavevmode\setbox\z@\hbox\bgroup\ignorespaces
1113 H%

The closing statement must output the last verse, which is still contained in box 0;
since box 0 is automatically reopened, it must be closed again and its contents, of
no significance now, can be lost upon closing the environment group.

1114 \\%

1115 \egroup\endlist}

1116 \1et\VERSUS\VERSI \let\endVERSUS\endVERSUS
1117

5.14 Metrics symbols, macros and environmnets

Now we start defining many macros concerned with metrics; the metric symbol
font has been developed mainly for this purpose. We start defining some macros
for inputting specific symbols; many such macros have their own aliases in Latin.

\lunga The following definitions are straightforward; a small comment on \breve: since
\longa it is also a math command in standard I¥TEX, its meaning is saved in a service
\breve macro \br@ve and the \breve macro is redefined taking into account whether the
\brevis typesetting is being done in text or in math mode. The unusual letters that appear
\bbreve in the definitions of the various metric symbols have no mysterious meaning; they
\bbrevis might have been specified by \char(number), but it seemed shorter to specify the
\barbreve corresponding letters that would occupy the same slots in literal fonts.
\barbrevis 1115 \DeclareRobustCommand\lunga{{\metricsfont 1}}
\barbbrev 1119 \let\longa\lunga
\barbbrevis 1120 \let\br@ve\breve
\ubarbreve
\ubarbrevis
\ubarbbreve 46
\ubarbbrevis
\ubarsbreve
\ubarsbrevis
\ubrevelunga
\ubrevislonga

\corona
\ElemInd
\coronainv
\catal
\ipercatal
\hiatus
\Hiatus

\X

\anceps
\banceps
\ancepsdbrevis
\aeolicbii
\aeolicbiii

1121 \DeclareRobustCommand\breve{\textormath{{{\metricsfont b}}}{\br@vel}}

1122 \let\brevis\breve

1123 \DeclareRobustCommand\bbreve{{\metricsfont c}}
1124 \let\bbrevis\bbreve

1125 \DeclareRobustCommand\barbreve{{\metricsfont il}}
1126 \let\barbrevis\barbreve

1127 \DeclareRobustCommand\barbbreve{{\metricsfont j}}
1128 \let\barbbrevis\barbbreve

1129 \DeclareRobustCommand\ubarbreve{{\metricsfont d}}
1130 \let\ubarbrevis\ubarbreve

1131 \DeclareRobustCommand\ubarbbreve{{\metricsfont e}}
1132 \let\ubarbbrevis\ubarbbreve

1133 \DeclareRobustCommand\ubarsbreve{{\metricsfont f}}
1134 \let\ubarsbrevis\ubarsbreve

1135 \DeclareRobustCommand{\ubrevelunga}{{\metricsfont\char107}}

1136 \let\ubrevislonga\ubrevelunga
1137

Similarly the following symbols have straightforward definitions. Only \hiatus
and \Hiatus require a small explanation; \hiatus inserts a small capital ‘H’ in
superscript position; in a first moment it was chosen the solution of designing
a specific sans serif glyph in superscript position directly in the metric symbol
font (actually this symbol is still part of the font), but while testing it, Paolo
Ciacchi observed that a regular ‘H’ with serifs was better looking than the sans
serif counterpart. Therefore the definition was changed in order to use the current
font upright shape; by specifying ‘H’, it is irrelevant if the current one is a Latin
font, and the letter is a capital ’h’, or if the current one is a Greek font and the
letter is a capital ‘eta’. \Hiatus displays the same symbol in a zero width box
so that it does not occupy any horizontal space; it is useful while writing down
complicated metric sequences. Macro\X may be considered, thanks to its shape,
a mnemonic shortcut in place of the full name \anceps.

\aeolicbiv 1138 \DeclareRobustCommand\corona{{\metricsfont\char20}}

\stripsl@sh
\2
\3
\4

1139 \let\ElemInd\corona

1140 \DeclareRobustCommand\coronainv{{\metricsfont\char21}}

1141 \DeclareRobustCommand\catal{{\metricsfont g}}
1142 \DeclareRobustCommand\ipercatal{{\metricsfont h}}

1143 \DeclareRobustCommand\hiatus{\upshape H}

1144 \DeclareRobustCommand\Hiatus{\makebox [\z@]{\hiatus}}
1145 \DeclareRobustCommand\X{{\metricsfont X}}

1146 \let\anceps\X

1147 \DeclareRobustCommand\banceps{{\metricsfont Y}}

1148 \DeclareRobustCommand\ancepsdbrevis{{\metricsfont Z}}

1149 \DeclareRobustCommand{\aeolicbii}{{\metricsfont I}}
1150 \DeclareRobustCommand{\aeolicbiii}{{\metricsfont J}}
1151 \DeclareRobustCommand{\aeolicbiv}{{\metricsfont K}}
1152

Here we prepare for the definition of a very useful macro, \newmetrics, that
should ease quite a lot writing complicated and repetitive metric sequences. We

47

shall define \newmetrics by means of the internal I¥TEX macro \@namedef which
accepts a macro name containing any character, provided this name does not
contain the initial back slash (if it does this back slash becomes part of the macro
name; see the TEXbook where there is an example for the definition of \\TeX).
Therefore we need a service macro \stripsl@sh that strips the first token from
the control sequence, so that the naif user does not have to treat the new metrics
control sequence differently from the control sequences it uses for example with
\newcommand. Next we define three numeric control sequences that should be
followed by the rest of the macro name. The naif user can then type in something
like \2iamb, in order to activate a macro whose name is formed by the tokens
2iamb, which is normally impossible in I¥TEX. Notice, though, the compulsory
space after the macro name.

1153 \newif\ifmetricsfont\metricsfontfalse

1154 \def\stripsl@sh#1{\expandafter\@gobble\string#1}

1155 \def\2#1 {\csname2#1\endcsname}

1156 \def\3#1 {\csname3#1\endcsname}

1157 \def\4#1 {\csname4d#1\endcsname}

1158

\newmetrics Here is the user macro \newmetrics, to be used just as \newcommand, except it
accepts a macro name starting with one of the digits ‘2’; ‘3’, or ‘4’, and sets the
suitable boolean variable to true so that in a long metric sequence the metric font
might be selected just once.

1159 \newcommand\newmetrics [2]{%

1160 \expandafter\@namedef\expandafter{\stripsl@sh#1}J,
1161 {{\metricsfonttrue#2}}}
1162

\iam Here some common metric sequences are defined; some define single measures,
\chor such as the ‘iambus’ or the ‘choriambus’, while some define complete verses such
\enopl as the ‘hexameter’ or the ‘pentameter’.
\4MACRO 1163 \newmetrics\iam{\barbreve\lunga\breve\lunga}
\aeolchorsor 1164 \newmetrics\chor{\lunga\breve\breve\lunga}
\hexam 1165 \newmetrics\enopl{\breve\lunga\breve\breve\lunga\breve\breve\lunga}
\pentam 1166 \newmetrics{\4MACRO}{\lunga\lunga\lunga\lunga}
\2tr 1167 \newmetrics{\aeolchorsor}{\lunga\zeugma{\breve\breve}\breve

1168 \breve\zeugma{\breve\breve}}

1169 \newmetrics{\hexam}{\lunga\breve\breve\lunga\breve\breve

1170 \lunga\breve\breve\lunga\breve\breve\lunga\breve\breve

1171 \lunga\lunga}

1172 \newmetrics{\pentam}{\lunga\barbbreve\lunga\barbbreve\lunga\dBar
1173 \lunga\breve\breve\lunga\breve\breve\lunga}

1174 \newmetrics{\2tr}{\lunga\breve\lunga\X\ \lunga\breve\lunga\X\ }
1175

As it may be seen, the definition of such metric sequences may contain almost
anything; here \zeugma was used as well as \.,, but almost every macro defined in
the previous parts may be freely used.

48

\metricstack

\svert

\textoverline

\verseskip
bracedmetrics

\metricstack is a command similar to \shortstack used to stack something
over something else; specifically the second argument over the third one; it was
specifically designed for use while typesetting metric sequences, but actually there
is nothing that forbids to use it with any base character (typeset in text LR mode)
and any superscript character belonging to a math alphabet (which is being set
in script—script style, not in script style, as it happens with \shortstack.

1176 \DeclareRobustCommand*{\metricstack}[2]%

1177 {$\mathord{\mathop{\hbox{#1\rule{\z@}{1ex}}}%
1178 \limits~{\scriptscriptstyle\relax#2\relax}}$}
1179

\svert is a short vertical rule that may be used, for example, with \metricstack
for putting a small number over a dividing vertical bar in metric sequences.

1180 \newcommand*{\svert}{\vrule\@height.8ex\@depth.2ex\relax}

KTEX has macro \underline that can be used in both text and math mode; there
is nothing similar for overlining, therefore we defined a new command for this task.

1181 \DeclareRobustCommand*{\textoverline} [1]1{%

1182 \leavevmode\vbox{\setbox\z@\hbox{#1}
1183 \ialign{##\crcr

1184 \hbox to\wd\z@{\hrulefill}\crcr

1185 \noalign{\kern.4ex\nointerlineskipl}
1186 \hfil\box\z@\hfil\crcr}}}

1187

The environment bracedmetrics is used primarily for setting some metric se-
quences one atop the other, with a certain alignment and grouped together with
a right brace. We need therefore a length name \br@cedmetrics for measuring
the width of this large metrics sequence stack; we need a command \verseskip
for inserting a blank space before, after or in the middle of a metric sequence,
that more or less is as wide as an integer number of metric symbols, and, last but
not least, the environment itself for typesetting this large object containing the
said metric sequences; see the documentation file teubner-doc.pdf for examining

some examples.

1188 \newlength{\br@cedmetrics}
1189 \newcommand*{\verseskip} [1]{{%

1190
1191

\setbox\z@\hbox{\longa}\dimen®@\wd\z@\leavevmode\hbox to#1\dimen@{}}}

1192 \newenvironment{bracedmetrics}[1]{\def\Hfill{\leavevmode\hfill}
1193 \settowidth{\br@cedmetrics}{#1}/,

1194 \ifvmode\vskiplex\fi

1195 $\displaystyle\left.%

1196 \vcenter\bgroup\hsize\br@cedmetrics\parindent\z@\parskip\z@

1197 H{\egroup\right\}$}

1198

49

\TRON
\GTRON
\TROF
\GTROF
\treceon
\traceoff

\Greeknumeral
\greeknumeral
\@ifStar
\grtoday

5.15 Debugging commands

Here there are some macros for turning on and off the tracing facilities of TEX,
that turn out to be useful while debugging; they are accessible also to the end
user. Global settings must be turned on and off globally; local settings die out by
themselves when a group is closed, but it is a good habit to explicitly turn them
out regardless of groups. Attention that when the tracing facilities are on and a
page ship out takes place, the .1log file receives a lot of material, and this file gets
very large. In order to avoid logging too much information the trace package is
loaded; this package give access to the macros \traceon and \traceoff that log a
lot of information, except the redundant one, specifically all the macros executed
during any font change. Users don’t realize the amount of processing done behind
the scenes when with the New Font Selection Scheme (NFSS) a font change takes
place; luckily enough modern processors are quite fast so that the compilation
CPU time does not become too heavy. But if the TEX processing is logged, this
amount of work implies thousands of lines of almost meaningless information when
the purpose of logging depends on errors that are difficult to spot; Font changes
are almost exempt from errors, so the processing of the inner workings need not
be logged down.

If the user needs to trace something in order to spot errors, s/he is invited
to use the commands \traceon and \traceoff; commands \TRON and \TROF
do log much more material, in particular font changes, but at least they action
may be confined within groups or environments; \GTRON and \GTROF are global
settings and can’t be confined within groups or environments; sometimes they are
necessary, but it’s important to turn off global tracing as soon as possible.

1199 \RequirePackage{trace}

1200 \def\GTRON{\global\tracingcommands=\tw@ \global\tracingmacros=\tw@}
1201 \def\GTROF{\global\tracingcommands=\z@ \global\tracingmacros=\z@}
1202 \def\TRON{\tracingcommands=\tw@ \tracingmacros=\tw@}

1203 \def\TROF{\tracingcommands=\z@ \tracingmacros=\zQ}

1204

5.16 Classical Greek numerals

When typesetting Greek it may occur to specify numbers written out as Milesian
numerals; the greek option to the babel package defines a couple of macros for
transforming explicit arabic numerals or counter contents as Milesian numerals.
Since this package offers more possibilities in the choice of those “non alphabetic”
characters used in the Milesian notation, such macros have to be redefined. On
the occasion we changed some little internal details so as to make such macros a
little faster and more robust.

Both \gereeknumeral and \Greeknumeral, the latter producing upper case Greek
numerals, while the former produces lower case ones, resort to a service macro
\gr@@numeral. But the new definition accepts the starred version; without the
star the digit value 6 is represented with a “stigma”, while with the star that
value is represented with a lowered “digamma”. The upper case version requires

a0

intermediate macros before using \MakeUppercase on the result in order to convert
lower to upper case Milesian value symbols. This means that \gr@@numeral may
work only with lower case symbols. It turned out that the normal redefinition
command \renewcommand produced fragile commands that broke out when used
as arguments of other commands, specifically the Greek date was broken when it
was passed as the argument to the \date command of the class memoir; therefore
I decided to redefine the \@ifstar macro into another \@ifStar one so as not
to fiddle with EXTEX kernel commands. I defined also the lowercase version of the
\grtoday date, since the babel package provides only the \today command with
no control over the use of which type of numerals; \grtoday uses the lowercase
Milesian numerals through the redefined \greeknumeral macro.

1205 \def\@ifStar#1#2{\def\@tempA{#1}\def\@tempB{#2}\futurelet\@tempC\QtestStar}

1206 \def\@testStar{\ifx\@tempC*\bbl@afterelse\expandafter\@tempA\@gobble\else

1207 \bbl@afterfi\@tempB\fi}

1208 \DeclareRobustCommand*{\Greeknumeral}{’

1209 \let\n@vanta\Coppa\let\n@vecento\Sampi

1210 \@ifStar{\Gr@@kn@meral}{\Gr@@knum@ral}}

1211 \DeclareRobustCommand*{\greeknumerall}{/,

1212 \let\n@vanta\varkoppa\let\n@vecento\sampi

1213 \@ifStar{\let\s@i\stigma\gr@@numeral}{\let\s@i\fLow\gr@@numeral}}
1214 \def\Gr@@kn@meral#1{\let\s@i\Stigma

1215 \expandafter\MakeUppercase\expandafter{\gr@@numeral{#1}}}

1216 \def\Gr@@knum@ral#1{\let\s@i\Digamma

1217 \expandafter\MakeUppercase\expandafter{\gr@@numeral{#1}}}

1218 \def\grtoday{{\expandafter\greeknumeral\expandafter{\the\day}}\space
1219 \gr@c@month\space{\expandafter\greeknumeral\expandafter{\the\year}}}
1220

\gr@@numeral \gr@@numeral must do most of the processing; it must check that the argument
is within the allowable range 1 ~ 999999 and issue suitable warnings if not. On
the other side, if the number is within the correct range, it must check in which
decade it falls and must call other macros so as to produce the correct decimal
digit «» Milesian symbol. Six such macros are needed because the allowable range
contains at maximum six decimal places. Apparently Milesian symbology allows
to go beyond one million, but Apostolos Syropoulos, who originally wrote the
code thought (correctly) that Milesian numbers would not be used for “acrobatic
performances” but possibly for writing the Greek date with the AD year; six
decimal places are more than enough for this purpose. \gr@ill@value was not
redefined from Apostolos Syropoulos’ babel definition; it simply issues a warning
message about an argument out of range. The presence of the primitive command
number in these macros is for two purposes: (a) transforms a counter contents into
a sequence of digits tokens, and (b) if the argument is already a digit string, it
removes any leading zeros. No braces are present because this string is examined
sequentially one digit at a time from the leading position to the least significant
position; of course this means that the decimal zero is treated correctly even if
Milesian symbols do not have the equivalent of a zero.

1221 \def\gr@@numeral#1{y

ol

\grénum@i
\grénum@ii
\grénum@iii
\gronum@iv
\gronum@v
\grénum@vi

1222 \ifnum#1<\@ne\space\gr@ill@value{#1}/,
1223 \else

1224 \ifnum#1<10\relax\expandafter\grOnum@i\number#1y,

1225 \else

1226 \ifnum#1<100\relax\expandafter\grenum@ii\number#17,
1227 \else

1228 \ifnum#1<\@m\relax\expandafter\gronum@iii\number#17
1229 \else

1230 \ifnum#1<\@M\relax\expandafter\grOnum@iv\number#1y,
1231 \else

1232 \1fnum#1<100000\relax\expandafter\grénum@v\number#17,
1233 \else

1234 \ifnum#1<1000000\relax\expandafter\grOnum@vi\number#17
1235 \else

1236 \space\gr@ill@value{#1}/,

1237 \fi

1238 \fi

1239 \fi

1240 \fi

1241 \fi

1242 \fi

1243 \fi

1244 }

The next six macros transform single decimal digits into Milesian symbols. The
argument to each macro is a single decimal digit; their positional value is de-
termined by the calling a macro that invokes a different transformation routine
for every position. To the right of the least significant position there must be
the symbol “anwtonos”, similar to an apostrophe, while to the left of each most
significant symbol whose value is greater than 999 there must be a “katwtonos”
symbol, similar to a lowered and inverted apostrophe. Zeros are examined in all
macros, except the one for “units”, because their value cannot be printed but there
still is the possibility that there are no more digits higher than zero, so that the
anwtonos must be set. Macros \n@vanta and \n@vecento are set by the calling
macros so as to be the correct lower or upper case ‘qoppa’ or sampi’ respectively.

1245 \def\grenum@i#1{},

1246 \ifcase#l\or a\or b\or g\or d\or e/

1247 \or \s@ilor z\or h\or j\fi

1248 \ifnum#1=\z0\else\anw@true\fi\anw@print}

1249 \def\gronum@ii#1i{%

1250 \ifcase#1\or ilor k\or 1l\or m\or nj

1251 \or x\or o\or p\or \n@vanta\fi

1252 \ifnum#1=\z@\else\anw@true\fi\grénum@i}

1253 \def\gr@num@iii#1{y

1254 \ifcase#l\or r\or s\or t\or u\or £,

1255 \or gq\or y\or w\or \n@vecento\fi

1256 \ifnum#1=\z@\anw@false\else\anw@true\fi\gr@num@ii}

1257 \def\grénum@iv#1{%

1258 \ifnum#1=\z@\else\katwtonos\fi

92

\AtticNumeral
\AtticCycl@

1259 \ifcase#l\or a\or b\or g\or d\or e,
1260 \or \s@ilor z\or h\or j\fi
1261 \gr@num@iii}

1262 \def\grOnumov#1{J,

1263 \ifnum#1=\z@\else\katwtonos\fi

1264 \ifcase#1\or i\or k\or 1l\or m\or nj,
1265 \or x\or o\or p\or \n@vanta\fi

1266 \gr@num@iv}

1267 \def\gr@num@vi#1{y

1268 \katwtonos

1269 \ifcase#1\or r\or s\or t\or u\or fJ,
1270 \or g\or y\or w\or \n@vecento\fi
1271 \gr@num@v}

1272

5.17 Attic numerals

It’s true that Apostolos Siropoulos wrote also the athnum. sty extension package
in order to typeset integer numbers with the Athenian or Attic notation; this
representation of integer strictly positive integers was similar in a way to the
Roman notation, based on a biquinalry representation of decimal digits (taking
into account that there was not a symbol for zero) so as the Romans had the
symbols for 1, 5, 10, 50, 100, 500 and 1000 (I, V, X, L, C, D, M) the Attic
notation has symbols for the same sequence of decimal values extended with 10 000
and 50000. While typesetting philological texts in Greek it might be necessary
to use also the Attic notation. As the original Roman notation used to be purely
additive (i.e. 9= VIIII), so is the Attic notation.

Therefore another conversion macro was devised that receives the value to be
converted as its argument and checks that it falls between the boundaries; actually
the lower boundary is zero, while the upper boundary was chosen to be 99 999,
for no other reason that the lack of further symbols, beyond the value 50 000,
would force to long sequences of identical symbols that are difficult to read. The
athnum. sty package allows to extend this range to 249 9999; should it be necessary,
the user is invited to load that package and its transformation command \athnum.

The user command \AtticNumeral is very simple, but it must be preceded by
the definitions of the quinary symbols for 50, 500, 5000, and 50 000; such symbols
are present in all the CB Greek fonts in all sizes, series and shapes; therefore the
definitions must be subject to the LGR enconding:

1273 \DeclareTextSymbol{\Vmiria}{\GRencoding@name}{5}
1274 \DeclareTextSymbol{\Vkilo}{\GRencoding@name}{4}
1275 \DeclareTextSymbol{\Vetto}{\GRencoding@name}{3}
1276 \DeclareTextSymbol{\Vdeka}{\GRencoding@name}{2}

The we need a command for issuing a warning message if the number to be trans-
formed is out of range:

1277 \newcommand*\attic@ill@value [1] {\PackageWarning{teubner}{
1278 I1legal value (\number#1) for \string\ActicNumeral\space}}

33

Finally the robust definition of the \AtticNumeral command”

1279 \DeclareRobustCommand*\AtticNumeral [1]{%

1280 \ifnum#1<\@ne \attic@ill@value{#1}\else

1281 \ifnum#1>99999\relax \attic@ill@value{#1}\else
1282 \AtticCycle{#1}

1283 \fi
1284 \fi}
1285

The real transformation algorithm is transfered to the auxiliary macro \AttiCyc1l@,
where successive division by 10 allow to extract the various decimal digits of vari-
ous weights maintaining the remainder in the original counter; each decimal digit
is possibly divided into the quinary value and the remaining units up to 4; the
the cycle is repeated untile the decimal units, that do not require the computa-
tion of the remainder and terminate the cycle. Notice that we use also the e-TEX
extended commands for integer computations; this implies that teubner mus be
run with a suitably recent version of the typesetting engine that embeds the above
extensions.

1286 \def\AtticCycle#1{/,

1287 \bgroup
1288 \countdef\valore=252\countdef\cifra=250\relax
1289 \valore=#1\relax
1290 \cifra=\valore\divide\cifra10000\relax
1291 \valore=\numexpr\valore-\cifra*10000\relax
1292 \ifnum\cifra>4\relax\Vmiria \advance\cifra-5\fi
1293 \@whilenum\cifra>\z@\do{M\advance\cifra\m@ne}/,
1294 \cifra=\valore\divide\cifral1000\relax
1295 \valore=\numexpr\valore-\cifra*1000\relax
1296 \ifnum\cifra>4\relax\Vkilo \advance\cifra-5\fi
1297 \@whilenum\cifra>\z@\do{Q\advance\cifra\m@nel}’,
1298 \cifra=\valore\divide\cifral00\relax
1299 \valore=\numexpr\valore-\cifra*100\relax
1300 \ifnum\cifra>4\relax\Vetto \advance\cifra-5\fi
1301 \@vhilenum\cifra>\z@\do{H\advance\cifra\m@nel}
1302 \cifra=\valore\divide\cifralO\relax
1303 \valore=\numexpr\valore-\cifra*10\relax
1304 \ifnum\cifra>4\relax\Vdeka \advance\cifra-5\fi
1305 \@whilenum\cifra>\z@\do{D\advance\cifra\m@ne}/,
1306 \cifra=\valore
1307 \ifnum\cifra>4\relax P\advance\cifra-5\relax\fi
1308 \@whilenum\cifra>\z@\do{I\advance\cifra\m@ne}/,
1309 \egroup}
1310

]/package&

i*defs;,

1311 \ProvidesFile{LGRaccents-glyphs.def},
1312 [2010/05/08 v.2.0a Definitions of accents and glyphs for LGR encoded Greek fonts]

o4

5.18 First set of extended accent definitions

These macros were originally defined by Guenter Milde in his file lgrenc-accents.def
version 3.2 dated 2008-06-17 and released under the LPPL LaTeX Project Public
License version 1.3 or ay later version.

These macros were slightly modified by Claudio Beccari in this file, version 1.0
of 2010-04-13, in order to adapt them to the teubner.sty package, but they can be
used independently of this package.

This modified version is released again under the LPPL license version 1.3c or
any later version.

These definitions are a modest variation of the standard LGR encoded ligature
set, in the sense that they don’t rely on ligatures but on accent and composite
text macros that address directly the accented glyphs.

For example, if alpha with smooth spirit, acute accent and iota subscribed
has to be inserted in the Greek text, the user can use either one of the following
solutions:

1) >’al
2) \>’al

Solution 1) saves hitting one key but breaks the kerning mechanism; Solution 2)
requires hitting one more key but preserves the kerning mechanism.

Onuly the diacritics that involve the breve () and the macron () are regular TeX
accent macros and behave as ordinary OT1-like accents. There is no addressing of
the marked glyphs, because the 256 font table can’t accommodate so many glyphs.

This file should be usable by inputting it even without requiring the polutoniko
language attribute of the Greek language.

For more details read the teubner.pdf and the teubner-doc.pdf files that are
part of the teubner package documentation.

1313 \providecommand*\GRencoding@name{LGR}

1314 \DeclareTextAccent{\u}{\GRencoding@name}{"1E} % breve

1315 \DeclareTextAccent{\=}{\GRencoding@name}{"1F} % macron

1316

1317 \DeclareTextAccent{\Dialytika}{\GRencoding@name}{"22} % dialytika

1318 \DeclareTextAccent{\Oxia}{\GRencoding@name}{"27} % oxia

1319 \DeclareTextAccent{\Varia}{\GRencoding@name}{"60} % varia

1320 \DeclareTextAccent{\Perispomeni}{\GRencoding@name}{"7E} 7, perispomeni

1321 \DeclareTextAccent{\Dasia}{\GRencoding@name}{"3C} % rough breath/spirit

1322 \DeclareTextAccent{\Psili}{\GRencoding@name}{"3E} % smooth breath/spirit

1323 \DeclareTextCommand{\<}{\GRencoding@name}{\Dasia} % alias coomand

1324 \DeclareTextCommand{\>}{\GRencoding@name}{\Psili} % alias command

1325 %

1326 \DeclareTextAccent{\DialytikaOxia}{\GRencoding®@name}{"23} % oxiat+dialytika
1327 \DeclareTextAccent{\DialytikaVaria}{\GRencoding@name}{"24} % variatdialytika
1328 \DeclareTextAccent{\DialytikaPerispomeni}{\GRencoding@name}{"20} % perisp.+dial.
1329

1330 \DeclareTextAccent{\DasiaOxia}{\GRencoding@name}{"56} % oxiatrough

1331 \DeclareTextAccent{\DasiaVaria}{\GRencoding@name}{"43} % variatrough

%)

1332 \DeclareTextAccent{\DasiaPerispomeni}{\GRencoding@name}{"40}} perisp.+rough
1333

1334 \DeclareTextAccent{\PsiliOxia}{\GRencoding@name}{"5E} % oxiat+smooth
1335 \DeclareTextAccent{\PsiliVaria}{\GRencoding@name}{"5F} ¥ variat+smooth

1336 \DeclareTextAccent{\PsiliPerispomeni}{\GRencoding@name}{"5C}}, perisp/+smooth
1337 %, composite commands

1338 \DeclareTextCompositeCommand{\"}{\GRencoding@name}{’}{\DialytikaOxia}

1339 \DeclareTextCompositeCommand{\"}{\GRencoding@name}{\’}{\DialytikaOxia}

1340 \DeclareTextCompositeCommand{\"}{\GRencoding@name}{ ‘}{\DialytikaVaria}

1341 \DeclareTextCompositeCommand{\"}{\GRencoding@name}{\ ‘}{\DialytikaVaria}

1342 \DeclareTextCompositeCommand{\"}{\GRencoding@name}{~}{\DialytikaPerispomeni}
1343 \DeclareTextCompositeCommand{\"}{\GRencoding@name}{\~}{\DialytikaPerispomeni}
1344

1345 \DeclareTextCompositeCommand{\’}{\GRencoding@name}{"}{\DialytikaOxia}

1346 \DeclareTextCompositeCommand{\’}{\GRencoding@name}{\"}{\DialytikaOxia}

1347 \DeclareTextCompositeCommand{\’}{\GRencoding@name}{<}{\DasiaOxia}

1348 \DeclareTextCompositeCommand{\’}{\GRencoding@name}{\<}{\DasiaOxia}

1349 \DeclareTextCompositeCommand{\’}{\GRencoding@name}{>}{\PsiliOxia}

1350 \DeclareTextCompositeCommand{\’}{\GRencoding@name}{\>}{\PsiliOxia}

1351

1352 \DeclareTextCompositeCommand{\ ‘ }{\GRencoding@name}{"}{\DialytikaVaria}

1353 \DeclareTextCompositeCommand{\ ‘}{\GRencoding@name}{\"}{\DialytikaVaria}

1354 \DeclareTextCompositeCommand{\ ‘}{\GRencoding@name}{<}{\DasiaVaria}

1355 \DeclareTextCompositeCommand{\ ‘}{\GRencoding@name}{\<}{\DasiaVaria}

1356 \DeclareTextCompositeCommand{\ ‘}{\GRencoding@name}{>}{\PsiliVaria}

1357 \DeclareTextCompositeCommand{\ ‘}{\GRencoding@name}{\>}{\PsiliVaria}

1358

1359 \DeclareTextCompositeCommand{\~}{\GRencoding@name}{"}{\DialytikaPerispomeni}
1360 \DeclareTextCompositeCommand{\~}{\GRencoding@name}{\"}{\DialytikaPerispomeni}
1361 \DeclareTextCompositeCommand{\~}{\GRencoding@name}{<}{\DasiaPerispomeni}
1362 \DeclareTextCompositeCommand{\~}{\GRencoding@name}{\<}{\DasiaPerispomeni}
1363 \DeclareTextCompositeCommand{\~}{\GRencoding@name}{>}{\PsiliPerispomeni}
1364 \DeclareTextCompositeCommand{\~}{\GRencoding@name}{\>}{\PsiliPerispomeni}
1365

1366 \DeclareTextCompositeCommand{\Psili}{\GRencoding@name}{’}{\PsiliOxia}

1367 \DeclareTextCompositeCommand{\Psili}{\GRencoding@name}{\’}{\PsiliOxia}

1368 \DeclareTextCompositeCommand{\Psili}{\GRencoding@name}{‘}{\PsiliVaria}

1369 \DeclareTextCompositeCommand{\Psili}{\GRencoding@name}{\ ‘}{\PsiliVaria}

1370 \DeclareTextCompositeCommand{\Psili}{\GRencoding@name}{ " }{\PsiliPerispomeni}
1371 \DeclareTextCompositeCommand{\Psili}{\GRencoding@name}{\~}{\PsiliPerispomeni}
1372

1373 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{’}{\DasiaOxia}

1374 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{\’}{\DasiaOxia}

1375 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{‘}{\DasiaVaria}

1376 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{\ ‘}{\DasiaVaria}

1377 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{~}{\DasiaPerispomeni}
1378 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{\~}{\DasiaPerispomeni}
1379

96

5.19 Second set of extended accent definitions

Now come another bunch of Milde’s macros for composite glyphs; none of them
involves glyphs containing the subscript or adscript iota; this symbol, in facts
is postfixed to the previous glyph macro description, so its ligature takes place
after the previous glyph macro has been expanded; remember also that with the
“high accents” you can use both input strings, for example: >’ and \>’; therefore
you can use the simple ligature input and, if kerning is not working well with
certain glyphs, you can just add a backslash in front of the ligature sequence and
everything gets fixed with proper ligatures. So, if a>’u with certain fonts results
in broken kerning, you just change it to a\>’u and the kerning gets fixed.

1380 \DeclareTextComposite{\‘}{\GRencoding@name}{a}{128}

1381 \DeclareTextComposite{\Dasia}{\GRencoding@name}{a}{129}

1382 \DeclareTextComposite{\Psili}{\GRencoding@name}{a}{130}

1383 \DeclareTextComposite{\’}{\GRencoding@name}{a}{136}

1384 \DeclareTextComposite{\~"}{\GRencoding@name}{a}{144}

1385 \DeclareTextComposite{\DasiaOxia}{\GRencoding@name}{a}{137}

1386 \DeclareTextComposite{\DasiaPerispomenil}{\GRencoding@name}{a}{145}
1387 \DeclareTextComposite{\DasiaVaria}{\GRencoding@name}{a}{131}

1388 \DeclareTextComposite{\PsiliOxia}{\GRencoding@name}{a}{138}

1389 \DeclareTextComposite{\PsiliPerispomenil}{\GRencoding@name}{a}{146}
1390 \DeclareTextComposite{\PsiliVaria}{\GRencoding@name}{a}{139}

1391 \DeclareTextComposite{\ ‘}{\GRencoding@name}{h}{152}

1392 \DeclareTextComposite{\Dasia}{\GRencoding@name}{h}{153}

1393 \DeclareTextComposite{\Psili}{\GRencoding@name}{h}{154}

1394 \DeclareTextComposite{\DasiaVaria}{\GRencoding@name}{h}{163}

1395 \DeclareTextComposite{\’}{\GRencoding@name}{h}{160}

1396 \DeclareTextComposite{\DasiaOxia}{\GRencoding@name}{h}{161}

1397 \DeclareTextComposite{\PsiliOxia}{\GRencoding@name}{h}{162}

1398 \DeclareTextComposite{\PsiliVaria}{\GRencoding@name}{h}{171}

1399 \DeclareTextComposite{\"}{\GRencoding@name}{h}{168}

1400 \DeclareTextComposite{\DasiaPerispomeni}{\GRencoding@name}{h}{169}
1401 \DeclareTextComposite{\PsiliPerispomenil}{\GRencoding@name}{h}{170}
1402 \DeclareTextComposite{\ ‘}{\GRencoding@name}{w}{176}

1403 \DeclareTextComposite{\Dasia}{\GRencoding@name}{w}{177}

1404 \DeclareTextComposite{\Psili}{\GRencoding@name}{w}{1783}

1405 \DeclareTextComposite{\DasiaVaria}{\GRencoding@name}{w}{179}

1406 \DeclareTextComposite{\’}{\GRencoding@name}{w}{184}

1407 \DeclareTextComposite{\DasiaOxia}{\GRencoding@name}{w}{185}

1408 \DeclareTextComposite{\PsiliOxia}{\GRencoding@name}{w}{186}

1409 \DeclareTextComposite{\PsiliVaria}{\GRencoding@name}{w}{187%}

1410 \DeclareTextComposite{\"}{\GRencoding@name}{w}{192}

1411 \DeclareTextComposite{\DasiaPerispomeni}{\GRencoding@name}{w}{193}
1412 \DeclareTextComposite{\PsiliPerispomeni}{\GRencoding@name}{w}{194}
1413 \DeclareTextComposite{\ ‘}{\GRencoding@name}{i}{2003}

1414 \DeclareTextComposite{\Dasia}{\GRencoding@name}{i}{201}

1415 \DeclareTextComposite{\Psili}{\GRencoding@name}{i}{202}

1416 \DeclareTextComposite{\DasiaVaria}{\GRencoding@name}{i}{203}

1417 \DeclareTextComposite{\’}{\GRencoding@name}{i}{208}

o7

1418 \DeclareTextComposite{\DasiaOxia}{\GRencoding@name}{i}{209}

1419 \DeclareTextComposite{\PsiliOxia}{\GRencoding@name}{i}{210}

1420 \DeclareTextComposite{\PsiliVaria}{\GRencoding@name}{i}{211}

1421 \DeclareTextComposite{\"}{\GRencoding@name}{i}{2163}

1422 \DeclareTextComposite{\DasiaPerispomeni}{\GRencoding@name}{i}{217}
1423 \DeclareTextComposite{\PsiliPerispomenil}{\GRencoding@name}{i}{218}
1424 \DeclareTextComposite{\"}{\GRencoding@name}{i}{2403}

1425 \DeclareTextComposite{\DialytikaVaria}{\GRencoding@name}{i}{241}
1426 \DeclareTextComposite{\DialytikaTonos}{\GRencoding@name}{i}{242}
1427 \DeclareTextComposite{\DialytikaPerispomeni}{\GRencoding@name}{i}{243}
1428 \DeclareTextComposite{\ ‘}{\GRencoding@name}{u}{204}

1429 \DeclareTextComposite{\Dasia}{\GRencoding@name}{u}{205}

1430 \DeclareTextComposite{\Psili}{\GRencoding@name}{u}{206}

1431 \DeclareTextComposite{\DasiaVaria}{\GRencoding@name}{u}{207}

1432 \DeclareTextComposite{\’}{\GRencoding@name}{u}{212}

1433 \DeclareTextComposite{\DasiaOxia}{\GRencoding@name}{u}{213}

1434 \DeclareTextComposite{\PsiliOxia}{\GRencoding@name}{u}{214}

1435 \DeclareTextComposite{\PsiliVaria}{\GRencoding@name}{u}{215}

1436 \DeclareTextComposite{\~}{\GRencoding@name}{u}{220}

1437 \DeclareTextComposite{\DasiaPerispomeni}{\GRencoding@name}{u}{221}
1438 \DeclareTextComposite{\PsiliPerispomenil}{\GRencoding@name}{u}{222}
1439 \DeclareTextComposite{\"}{\GRencoding@name}{u}{244}

1440 \DeclareTextComposite{\DialytikaVaria}{\GRencoding@name}{u}{245}
1441 \DeclareTextComposite{\DialytikaTonos}{\GRencoding@name}{u}{246}
1442 \DeclareTextComposite{\DialytikaPerispomeni}{\GRencoding@name}{u}{247}
1443 \DeclareTextComposite{\ ‘}{\GRencoding@name}{e}{224}

1444 \DeclareTextComposite{\Dasia}{\GRencoding@name}{e}{2253}

1445 \DeclareTextComposite{\Psili}{\GRencoding@name}{e}{226}

1446 \DeclareTextComposite{\DasiaVaria}{\GRencoding@name}{e}{227}

1447 \DeclareTextComposite{\’}{\GRencoding@name}{e}{232}

1448 \DeclareTextComposite{\DasiaOxia}{\GRencoding@name}{e}{233}

1449 \DeclareTextComposite{\PsiliOxia}{\GRencoding@name}{e}{234}

1450 \DeclareTextComposite{\PsiliVaria}{\GRencoding@name}{e}{235}

1451 \DeclareTextComposite{\Dasia}{\GRencoding@name}{0}{229}

1452 \DeclareTextComposite{\ ‘}{\GRencoding@name}{0}{228}

1453 \DeclareTextComposite{\Psili}{\GRencoding@name}{0}{230}

1454 \DeclareTextComposite{\DasiaVaria}{\GRencoding@name}{o}{231}

1455 \DeclareTextComposite{\’}{\GRencoding@name}{0}{236}

1456 \DeclareTextComposite{\DasiaOxia}{\GRencoding@name}{0}{237}

1457 \DeclareTextComposite{\PsiliOxia}{\GRencoding@name}{0}{238}

1458 \DeclareTextComposite{\PsiliVaria}{\GRencoding@name}{o}{239}

1459 \DeclareTextComposite{\Dasia}{\GRencoding@name}{r}{251}

1460 \DeclareTextComposite{\Psili}{\GRencoding@name}{r}{252}

1461

With capital letters the dialytika (diaeresis) is maintained on top of the letters
‘I” and ‘U’, while for the other capital letters the diacritics are typeset in front of
them, not on top of them, as it is customary with Greek typesetting best practice;
the Unicode capital accented glyphs do exist, but they should never be used; the
CB fonts don’t even contain them. There is no concern with kerning because the

98

diacritics preceding the capital letters are not preceded by something else; what
follows is kerned the usual way. With ITand U specific kernings are provided, if the
dialytika macro \" is used, while kerning dith the dialytika ligature temporarily
work with kludges that should not be present in any font, but the CB fonts have
because the AU and A’U kerning was terrible without them; now, with Milde’s
macros and or the pre-existing \Id and \Ud macros, should not be of any concern.

1462 \DeclareTextComposite{\"}{\GRencoding@name}{I}{219}

1463 \DeclareTextComposite{\"}{\GRencoding@name}{U}{223}

1464

1465 % Greek Extended

1466 \DeclareTextCompositeCommand{\Psili}{\GRencoding@name}{A}{>A}

1467 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{A}{<A}

1468 \DeclareTextCompositeCommand{\Perispomeni}{\GRencoding@name}{A}{A}
1469 \DeclareTextCompositeCommand{\Varia}{\GRencoding@name}{A}{A}

1470 \DeclareTextCompositeCommand{\Oxia}{\GRencoding@name}{A}{A}

1471 \DeclareTextCompositeCommand{\PsiliVaria}{\GRencoding@name}{A}{> A}
1472 \DeclareTextCompositeCommand{\DasiaVaria}{\GRencoding@name}{A}{< A}
1473 \DeclareTextCompositeCommand{\PsiliOxia}{\GRencoding@name}{A}{>’A}
1474 \DeclareTextCompositeCommand{\DasiaOxia}{\GRencoding@name}{A}{<’A}
1475 \DeclareTextCompositeCommand{\PsiliPerispomeni}{\GRencoding@name}{A}{>\char126A}
1476 \DeclareTextCompositeCommand{\DasiaPerispomeni}{\GRencoding@name}{A}{<\char126A}
1477 \DeclareTextCompositeCommand{\>}{\GRencoding@name}{A}{>A}

1478 \DeclareTextCompositeCommand{\<}{\GRencoding@name}{A}{<A}

1479

1480 \DeclareTextCompositeCommand{\Psili}{\GRencoding@name}{E}{>E}

1481 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{E}{<E}

1482 \DeclareTextCompositeCommand{\Varia}{\GRencoding@name}{E}{E}

1483 \DeclareTextCompositeCommand{\Oxia}{\GRencoding@name}{E}{E}

1484 \DeclareTextCompositeCommand{\PsiliVaria}{\GRencoding@name}{E}{>‘E}
1485 \DeclareTextCompositeCommand{\DasiaVaria}{\GRencoding@name}{E}{<‘E}
1486 \DeclareTextCompositeCommand{\PsiliOxia}{\GRencoding@name}{E}{>’E}
1487 \DeclareTextCompositeCommand{\DasiaOxia}{\GRencoding@name}{E}{<’E}
1488 \DeclareTextCompositeCommand{\>}{\GRencoding@name}{E}{>E}

1489 \DeclareTextCompositeCommand{\<}{\GRencoding@name}{E}{<E}

1490

1491 \DeclareTextCompositeCommand{\Psili}{\GRencoding@name}{H}{>H}

1492 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{H}{<H}

1493 \DeclareTextCompositeCommand{\Perispomeni}{\GRencoding@name}{H}{H}
1494 \DeclareTextCompositeCommand{\Varia}{\GRencoding@name}{H}{H}

1495 \DeclareTextCompositeCommand{\Oxia}{\GRencoding@name}{H}{H}

1496 \DeclareTextCompositeCommand{\PsiliVaria}{\GRencoding@name}{H}{>‘H}
1497 \DeclareTextCompositeCommand{\DasiaVaria}{\GRencoding@name}{H}{< ‘H}
1498 \DeclareTextCompositeCommand{\PsiliOxia}{\GRencoding@name}{H}{> H}
1499 \DeclareTextCompositeCommand{\DasiaOxia}{\GRencoding@name}{H}{< H}
1500 \DeclareTextCompositeCommand{\PsiliPerispomeni}{\GRencoding@name}{H}{>\char126H}
1501 \DeclareTextCompositeCommand{\DasiaPerispomeni}{\GRencoding@name}{H}{<\char126H}
1502 \DeclareTextCompositeCommand{\>}{\GRencoding@name}{H}{>H}

1503 \DeclareTextCompositeCommand{\<}{\GRencoding@name}{H}{<H}

1504

99

1505 \DeclareTextCompositeCommand{\Psili}{\GRencoding@name}{I}{>I}

1506 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{I}{<I}

1507 \DeclareTextCompositeCommand{\Perispomeni}{\GRencoding@name}{I}{I}

1508 \DeclareTextCompositeCommand{\Varia}{\GRencoding@name}{I}{I}

1509 \DeclareTextCompositeCommand{\Oxia}{\GRencoding@name}{I}{I}

1510 \DeclareTextCompositeCommand{\PsiliVaria}{\GRencoding@name}{I}{>‘I}

1511 \DeclareTextCompositeCommand{\DasiaVaria}{\GRencoding@name}{I}{<‘I}

1512 \DeclareTextCompositeCommand{\PsiliOxia}{\GRencoding@name}{I}{>’I}

1513 \DeclareTextCompositeCommand{\DasiaOxia}{\GRencoding@name}{I}{<’I}

1514 \DeclareTextCompositeCommand{\PsiliPerispomeni}{\GRencoding@name}{I}{>\char1261}
1515 \DeclareTextCompositeCommand{\DasiaPerispomeni}{\GRencoding@name}{I}{<\char1261}
1516 \DeclareTextCompositeCommand{\>}{\GRencoding@name}{I}{>I}

1517 \DeclareTextCompositeCommand{\<}{\GRencoding@name}{I}{<I}

1518

1519 \DeclareTextCompositeCommand{\Psili}{\GRencoding@name}{0}{>0}

1520 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{0}{<0}

1521 \DeclareTextCompositeCommand{\Varia}{\GRencoding@name}{0}{0%}

1522 \DeclareTextCompositeCommand{\Oxia}{\GRencoding@name}{0}{0}

1523 \DeclareTextCompositeCommand{\PsiliVaria}{\GRencoding@name}{0}{>‘0}

1524 \DeclareTextCompositeCommand{\DasiaVaria}{\GRencoding@name}{0}{< 0}

1525 \DeclareTextCompositeCommand{\PsiliOxia}{\GRencoding@name}{0}{>’0}

1526 \DeclareTextCompositeCommand{\DasiaOxia}{\GRencoding@name}{0}{<’0}

1527 \DeclareTextCompositeCommand{\>}{\GRencoding@name}{0}{>0}

1528 \DeclareTextCompositeCommand{\<}{\GRencoding@name}{0}{<0}

1529

1530 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{U}{<U}

1531 \DeclareTextCompositeCommand{\DasiaVaria}{\GRencoding@name}{U}{<‘U}

1532 \DeclareTextCompositeCommand{\Perispomeni}{\GRencoding@name}{U}{U}

1533 \DeclareTextCompositeCommand{\Varia}{\GRencoding@name}{U}{U}

1534 \DeclareTextCompositeCommand{\Oxia}{\GRencoding@name}{U}{U}

1535 \DeclareTextCompositeCommand{\DasiaOxia}{\GRencoding@name}{U}{<’U}

1536 \DeclareTextCompositeCommand{\DasiaPerispomeni}{\GRencoding@name}{U}{<\char126U}
1537 \DeclareTextCompositeCommand{\<}{\GRencoding@name}{U}{<U}

1538

1539 \DeclareTextCompositeCommand{\Psili}{\GRencoding@name}{W}{>W}

1540 \DeclareTextCompositeCommand{\Dasia}{\GRencoding@name}{W}{<W}

1541 \DeclareTextCompositeCommand{\Perispomeni}{\GRencoding@name}{W}{W}

1542 \DeclareTextCompositeCommand{\Varia}{\GRencoding@name}}{W}{wW}

1543 \DeclareTextCompositeCommand{\Oxia}{\GRencoding@name}{W}{W}

1544 \DeclareTextCompositeCommand{\PsiliVaria}{\GRencoding@name}{W}{> W}

1545 \DeclareTextCompositeCommand{\DasiaVaria}{\GRencoding@name}{W}{< W}

1546 \DeclareTextCompositeCommand{\PsiliOxia}{\GRencoding@name}{W}{>’W}

1547 \DeclareTextCompositeCommand{\DasiaOxia}{\GRencoding@name}{W}{<’W}

1548 \DeclareTextCompositeCommand{\PsiliPerispomeni}{\GRencoding@name}{W}{>\char126W}
1549 \DeclareTextCompositeCommand{\DasiaPerispomeni}{\GRencoding@name}{W}{<\char126W}
1550 \DeclareTextCompositeCommand{\>}{\GRencoding@name}{W}{>W}

1551 \DeclareTextCompositeCommand{\<}{\GRencoding@name}{W}{<W}

1552 (/defs)

i*tbtx,

60

6 Accessing the CBgreek fonts when the TX fonts
are selected

During the year 2010 this package teubner.sty was upgraded in order to allow using
the CBgreek fonts eve when other Latin font, different from the “standard” CM
and LM ones are selected for typesetting text with the Latin script.

At the same time Antonis Tsolomitis uploaded a new package in order to
let Greek users use some Greek fonts that match the Times eXtended ones. In
order to use the de facto default encoding LGR for Greek fonts, he produced the
necessary lgrtxr.fd, lgrtxss.fd, lgrtxtt.fd, font definition files that allow
the font switching implied by the greek option to the babel package. These files
take precedence over the mechanism outlined in section 5.2, because command
\substitutefontfamily first tests the existence of lgrtxr.fd, and, if this is
not available, it may generate a specific one suitable for working smoothly with
teubner.sty.

Now it Tsolomitis’ files are available on the main system tree, these take prece-
dence and the teubner compatible files are not generated. Unfortunately Tsolomi-
tis’ fonts, although better suited to match the TX fonts, are well adapted to typeset
common Greek text, but they are not adapted to typeset philological texts.

We therefore avoid this clash by creating a teubnertx.sty file. This extension
defines the families and shapes available with the familiar fond definition files, but
the information gets input by teubner.sty at the “begin document” time, without
resorting to any .fd file. May be more information is loaded than is strictly
necessary, but it better to do this way than to clash with other packages.

1553 \ProvidesPackage{teubnertxl}’

1554 [2010/11/02 v.1.0 Access to the LGR encoded Greek fonts when TX fonts are used]
1555 \DeclareFontFamily{LGR}{txr}{}

1556 \DeclareFontShape{LGR}Htxr}Hm}{n}{<->ssub * cmr/m/n}{}
1557 \DeclareFontShape{LGR}{txr}{m}{it}{<->ssub * cmr/m/it}{}
1558 \DeclareFontShape{LGR}{txr}{m}{s1}{<->ssub * cmr/m/s1}{}
1559 \DeclareFontShape{LGR} txr}{m}{sc}{<->ssub * cmr/m/sc}{}
1560 \DeclareFontShape{LGR}{txr}{b}{n}{<->ssub * cmr/bx/n}{}
1561 \DeclareFontShape{LGR}{txr}{b}{it}{<->ssub * cmr/bx/it}{}
1562 \DeclareFontShape{LGR} txr}{b}{sl}{<->ssub * cmr/bx/s1}{}
1563 \DeclareFontShape{LGR}{txr}{b}{sc}{<->ssub * cmr/bx/sc}{}
1564 \DeclareFontShape{LGR} txr}{bx}{n}{<->ssub * cmr/bx/n}{}
1565 \DeclareFontShape{LGR}Htxr}{bx}{it}{<->ssub * cmr/bx/it}{}
1566 \DeclareFontShape{LGR}{txr}{bx}{sl}{<->ssub * cmr/bx/s1}{}
1567 \DeclareFontShape{LGR}{txr}{bx}{sc}{<->ssub * cmr/bx/sc}{}
1568

1569 \DeclareFontShape{LGR} txr}Hm}{li}{<->ssub * cmr/m/1i}{}
1570 \DeclareFontShape{LGR}{txr}{b}{1i}{<->ssub * cmr/b/1i}{}
1571 \DeclareFontShape{LGR}{txr}{bx}{li}{<->ssub * cmr/bx/1i}{}
1572 \DeclareFontShape{LGR}H txrHm}{uit{<->ssub * cmr/m/uil{}
1573 \DeclareFontShape{LGR}{txr}{b}{ui}{<->ssub * cmr/m/uil{}
1574 \DeclareFontShape{LGR}{txr}{bx}{ui}{<->ssub * cmr/bx/uil{}
1575 \DeclareFontShape{LGR}H txrHm}{rs}{<->ssub * cmr/m/rs}{}

61

1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606

\DeclareFontShape{LGR}{txr}{b}{rs}{<->ssub * cmr/m/rs}{}
\DeclareFontShape{LGR}{ txr}{bx}{rs}{<->ssub * cmr/bx/rs}{}

\DeclareFontFamily{LGR}{txss}{}
\DeclareFontShape{LGR}{txss}{m}{n}{<->ssub * cmss/m/n}{}
\DeclareFontShape{LGR}{txsst{m}{it}{<->ssub * cmss/m/it}{}
\DeclareFontShape{LGR}{txss}{m}{s1}{<->ssub * cmss/m/s1}{}
\DeclareFontShape{LGR}{txss}{m}{sc}{<->ssub * cmss/m/sc}{}
\DeclareFontShape{LGR}{txss}{b}{n}{<->ssub * cmss/bx/n}{}
\DeclareFontShape{LGR}{txss}{b}{it}{<->ssub * cmss/bx/it}{}
\DeclareFontShape{LGR}{txss}{b}{s1}{<->ssub * cmss/bx/s1}{}
\DeclareFontShape{LGR}{txss}{b}{sc}{<->ssub * cmss/bx/sc}{}
\DeclareFontShape{LGR}{txss}{bx {n}{<->ssub * cmss/bx/n}{}
\DeclareFontShape{LGR}{ txss}{bx}Hit}{<->ssub * cmss/bx/it}{}
\DeclareFontShape{LGR}{txss}{bx}{s1l}{<->ssub * cmss/bx/s1}{}
\DeclareFontShape{LGR}{txss}{bx}{sc}{<->ssub * cmss/bx/sc}{}

\DeclareFontFamily{LGR}{txtt}{\hyphenchar=-1}
\DeclareFontShape{LGR}txtt}H{m}IH{n}{<->ssub * cmtt/m/n}{}
\DeclareFontShape{LGR}txtt}{m}{it}{<->ssub * cmtt/m/it}{}
\DeclareFontShape{LGR}txtt} {m}{s1l}{<->ssub * cmtt/m/s1}{}
\DeclareFontShape{LGR}{txtt}I{m}{sc}H{<->ssub * cmtt/m/sc}{}
\DeclareFontShape{LGR}txtt}Hb}{n}{<->ssub * cmtt/bx/n}{}
\DeclareFontShape{LGR}{txtt}{b}{it}{<->ssub * cmtt/bx/it}{}
\DeclareFontShape{LGR}{txtt}{b}{s1}{<->ssub * cmtt/bx/s1}{}
\DeclareFontShape{LGR}txtt}{b}{sc}{<->ssub * cmtt/bx/sc}{}
\DeclareFontShape{LGR}{txtt}{bx}{n}{<->ssub * cmtt/bx/n}{}
\DeclareFontShape{LGR}{txtt}{bx}{it}{<->ssub * cmtt/bx/it}{}
\DeclareFontShape{LGR}txtt}{bx}{sl}{<->ssub * cmtt/bx/s1}{}
\DeclareFontShape{LGR}{txtt}{bx}{sc}{<->ssub * cmtt/bx/sc}{}

i/tbhtxy

62

