The testhyphens package

*

Claudio Beccarif

Abstract

This small file implements some code that was already published on
TUGDboat, but it is adapted to 'TEX and it is enriched with other commands.
It helps those who create hyphenation patterns, as well normal ETEX users,
to test the correctness of the hyphenations of words lists. It works also with
xelatex.

1 Introduction

This small package introduces the declaration \testhyphens and the environment
checkhyphens. The declaration, to be used within a group where the hyphenation
parameters may be optionally set to any specific value, and process a list of one
or more space delimited words typesetting the one per line with hyphens between
every syllable.

The language, its hyphenation rules that are to be checked, may be the de-
fault language before entering the group, or can be a language specified with
\selectlanguage within the group before activating the declaration: this decla-
ration could be set within a \foreignlangeuage{(language)} argument or within
the body of an otherlanguage environment.

The environment checkhyphens accepts an optional argument to set the hy-
phenation parameters, and a body consisting of a list of one or more words; again
words are separated by spaces, and if the user just pastes a text copied from some-
where that included punctuation, the punctuation signs are ignored, but are not
taken off from the text.

The main code was published long ago by Victor Eijkout, in “The bag of tricks”,
TUGboat 14.4 (1993), p. 424. He himself states that that code was created by
Jonathan Kew; Victor Eijkout just added an empty \discretionary{}{}{}; the
idea came to him from the code created by Oliver Schoett that is used for the
hyphenation exception list of TUGboat. Credit for the code goes completely to
the persons mentioned above; I just added some sugar to use that code in N TEX
documents for the benefit of hyphenation pattern creators, and of regular users

*This file has version number v.0.5, last revised on 2014/07/07.
fclaudio dot beccari at gmail dot com



who want to know how a certain word or the words of a certain sentence would
be hyphenated by TEX and friends.

Of course this package does not tell the whole truth: in fact TEX and friends
hyphenate words only when certain conditions are met; these conditions are stated
in Appendix H of the TEXbook, which is and remains the primary reference for
understanding the hyphenation process used by TEX and friends.

Sometimes the user complains that certain words are not hyphenated; the user
might use this package and find out that her/his words are regularly hyphenated;
then what’s happening? Simply those conditions are not met. Therefore the
full understanding of the above mentioned Appendix H is fundamental before
complaining about TEX not working properly with hyphenations and possibly
before raising a bug notice.

2 Usage

This package has been tested with pdflatex and xelatex; it should work also
with lualatex but it was not tested with this engine.

Remember that Normal Plain TEX and IMTEX have available the command
\showhyphens but, differently from this package, that command works only when
the typesetting engine is tex or pdftex and the result appears on the console
window and in the .log file — no written record remains available to the user;
for xelatex there was a workaround provided by another package, but for some
reasons it did not work in every circumstance. This package prints the result in
the output document and works also with xelatex.

This simple package is loaded simply with the usual statement

\usepackage{testhyphens}

The package defines for the end user one declaration \testhyphens and one
environment checkhyphens the syntax of which is the following:

\begin{checkhyphens} [{{hyphenation parameters)}]
{{word list)}
\end{checklist}

where (hyphenation parameters) is a colon separated list of two decimal digits that
in order will be assigned by the environment respectively to \lefthyphenmin and
\righthyphenmin, and (word list) is self explanatory. Nevertheless it good to re-
member that the environment isolates single words by using a space as a word sep-
arator; this requires that the list is preceded and followed by spaces; setting the en-
vironment with the opening and closing statements on single lines, as shown above,
is sufficient, while a source line such as \begin{checkhyphens} [{{hyphenation pa-
rameters) Y] {{word list)}\end{checklist} might not produce the desired result.



3 Using hyphenation parameters

The hyphenation parameters are just \lefthyphenmin and \righthyphenmin;
they represent the minimum number of characters that the first and, respectively,
the last word fragment must have before or until hyphenation takes place; in
English the default values are 2 and 3; in Italian the default values are 2 and 2;
in Greek the default values are 1 and 1.

Let us make an example: the word idea is spelt the same in English and Italian,
although it is pronounced differently; but in both cases the word is not hyphenated
at all in both languages. According to the Italian hyphenation rules its grammat-
ical hyphenation is i-de-a; in English possibly the grammatical hyphenation is the
same; in any case the initial and the terminal syllables are too short to comply
with the above mentioned TEX hyphenation parameters, and TEX refrains from
hyphenating this word. In Greek, on the opposite, 16éa it is divided into -0é-a.

If you use checkhyphens with the optional hyphenation parameters specified
to 1 and 1 in Italian or in English, as in

checkhyphens[1:1]{idea}

you don’t get any useful result in English, and the word remains un-hyphenated;
but in Italian is turns out to be i-de-a as in Greek.

This happens ecause the Italian patterns were created by hand and tested with
parameters 1 and 1, even if for typesetting purposes the parameters are set to 2
and 2. In English the patterns were created by means of the program patgen
where parameters 2 and 3 were set. Typographically speaking the values 1 and 1
for italian are almost useless, but in certain difficult narrow-measure texts the user
has the possibility to locally set the first and/or the second parameter to 1, and
solve that particular instance of problematic narrow-measure typesetting.

4 Examples

Here we show some actual examples using either the declaration or the environ-
ment. While typesetting in English we might verify the hyphenation of some
words. We set in the source file the following lines (notice the \par command is a
reminder that the group containing the declaration must be used in vertical mode;
a blank line would be equivalent):

\par

{\testhyphens

manifests instruments

he analyses the samples and submits the analyses to the federal office

}

The result produced by this package is:
man-i-fests
in-stru-ments

he



anal-y-ses
the
sam-ples
and
sub-mits
the
anal-y-ses
to
the
fed-eral
of-fice
Notice the two instances of the word analyses; TEX hyphenates them the same
way in English, but one of the two is hyphenated in a wrong way; unfortunately
there is no way for TEX to distinguish homographic words that are not homophonic
ones. In plain terms the verb “analyses” is stressed on the ‘y’, while the noun
“analyses” is stressed on the second ‘a’; the standard phonetic hyphenation rules
for English probably should hyphenate the verb as “an-a-lyses”, but TEX works
only on the spelling and not on the sound and does not make any logical analysis
of the test to find out if a word plays the réle of a noun or of a verb. In this and
similar situations (for example: “the record” and “to record”) the user should check
a good reliable dictionary and possibly use an explicit discretionary hyphen \-.
While typesetting in Italian it is possible to insert in the source file a set of
lines such as these:

\begin{checkhyphens}
ebbe la bell’idea di viaggiare in scooter
\end{checkhyphens}

that produces the following result:
eb-be
la
bel-l’i-dea
di
viag-gia-re
in
scoo-ter

Notice that “idea” cannot be hyphenated by TEX when it is an isolated word;
but in Italian the apostrophe is used (also) to mark a vocalic elision, therefore for
hyphenation purposes, event it it not a letter, it is assigned a lowercase code, and
it legally becomes part of a word, in our case the word “bell’idea”. Therefore the
patterns that involve the apostrophe produce the result shown above, where the
first grammatical hyphen shows up again.

While typesetting in Greek we might insert in the source file the following code:

\begin{checkhyphens}

eneepydleTal opyeio T OMOLA MEPLEXOUY TOUT XOPAKTHPEC TOL
UTIGOYOUY OTO TMANKTPOASYLO TOU UTOAOYLOTH 0OC
\end{checkhyphens}



and we would get:
e-ne-Eep-yale-Ton

ap-ye-lo

T

o-To-iat
TE-pL-EYOUV
TOUo

Y O-pa-XTHPES
ToU
U-TliE- Y OUV
oTo
TAN-XTEO-AOYLO
Tou
U-TO-AO-Y1I-G TN
oog

while, had we set the hyphenation parameters different from the default values
1 and 1, as in:

\begin{checkhyphens}[2:2]

eneepydleTal apyeio To omoia MEPLEXOLUY TOUT XAUPAUKTVPEG TOU
UTEPYXOUY OTO TANKTPOASYLO TOU UTOAOYLOTY) 0OC
\end{checkhyphens}

the result would be
ene-Eep-yale-tan
ap-ye-fa
T
OTO-lol
TE-pL-EYOUV
TOUG
Y O-a-XTHPES
pivoll)
UTEE-Y 0LV
oto
TAN-XTEO-AOYLO
Tou
UTO-AO-YI-OTH|
ooc

Notice that as things are at the moment of writing this documentations, the
monotonic Greek hyphenation Patterns fail to hyphenate after an accented vowel
followed by a consonant; the grammar allows to hyphenate in that position; but
it correctly recognises the hiathus between an unaccented vowel and an accented
one; at the same time the first Greek example shows very clearly the effect of
\lefthyphenmin=1 compared to the second example where \lafthyphenmin=2.
On the other hand, missing some hyphen points is certainly a feature that pre-
cludes full hyphenation, but it does not produce hyphenation errors.



5 The code

The following code has very few modifications compared to the original code pub-
lished by Victor Eijkout. For my own benefit I changed the declaration name
from \printhyphens to \t@sthyphens; with an at-sign internal name it is less
likely that the declaration is redefined by a user. I also moved the commend
\offinterlineskip from its penultimate position in the original code to the first
command to be executed within the \vbox; in this way I avoided certain cases in
which the lack of interline skip would remain active after the environment closure.

The code is based on treating the interword space as an active character that
plays different roles according to its position; it lets the declaration isolate the
words to ne hyphenated and open suitable boxes, that are closed at the moment
of processing the following word; the \everypar token list distinguishes the various
actions to be performed at each step.

But the trick is to set each word within a vertical box where the measure (the
text width \hsize is zero; in this way each word is hyphenated at the first hyphen
point, but the word fragment that remains ins the following line is still too long
and gets hyphenated again; the process is repeated again and again until the initial
string is exhausted. The contents of the \vbox, that now contains the syllables one
per line, is reassembled to form une line, and this line is output within an \hbox
and is therefore the box typeset in vertical mode; this is why the declaration must
be issued in vertical mode, so as to strat processing the word list with the right
foot; this is also why the word list must start and end with spaces; the first one
before the first word opens the first box, and the last space after the last word
closes and outputs the last box.

1 \def\t@sthyphens{\everypar{\setbox0O\lastbox \setboxl\hbox{\strut}\vbox\bgroup
2 \offinterlineskip

3 \everypar{\setbox0O\lastbox \nobreak\hskip\z@}\dimenO=\hsize

4 \hsize=\z@ \hfuzz\maxdimen \def\par{\endgraf \hsize=\dimenO\getlastline
5 \egroup\endgraf}}\breakafterword}

6

7 \def\breakafterword{\catcode‘\""M\active\catcode‘\ \active}

8

9 {\breakafterword\gdef~"M{\par}\globalllet ~"M}
10

11 \def\getlastline{\setbox0O\lastbox\ifvoidO\let\next\nomorelines

12 \else\unskip\unpenalty\setbox1l\hbox{\unhboxO\strut\discretionary{}{}{}%
13 \unhbox1}\let\next\getlastline\fi\next}

14

15 \def\nomorelines{\unhbox1}

The above code is substancially the original one; now we define the user declara-
tion control sequence \testhyphens by letting it to assume the meaning of the
internal control sequence. The we define the checkhyphens environment where
we make sure that the whole process of the word list contained in its body takes
place in vertical mode. In oder to process the optional argument for setting the
hyphenation parameters, we define a delimited argument macro \s@thyphenpars



that uses the colon as argument delimiter.

16 \let\testhyphens\t@sthyphens

17

18 \newenvironment{checkhyphens}[1] [\lefthyphenmin:\righthyphenmin] {J
19 \@tempcnta=\lefthyphenmin

20 \@tempcntb=\righthyphenmin

21 \s@thyphenpars [#1] \par\bgroup\t@sthyphens

22 H%

23 \egroup\par

24 }

25

26 \def\s@thyphenpars [#1:#2]{/,

27 \@tempcnta=#1\relax

28 \@tempcntb=#2\relax

29 \unless\ifnum\@tempcnta=\lefthyphenmin \lefthyphenmin=\@tempcnta\fi
30 \unless\ifnum\@tempcntb=\righthyphenmin \righthyphenmin=\@tempcntb\fi
31}

That’s all. Happy TEXing.



