
The ted package

Manuel Pégourié-Gonnard
mpg@math.jussieu.fr

v1.01 (2007/12/12)

Contents

1 Introduction 1

2 Usage 1

3 Implementation 2

1 Introduction

Just like sed is a stream editor, ted is a token list editor. Actually, it is not as
powerfull as sed, but its main feature is that it really works with tokens, not only
characters. At the moment, it can do only two things with token lists: display it
with full information on each token, and perform substitutions (that is, replacing
every occurence of a sublist with another token list).

The ted package can perform substitutions inside groups, and don’t forbid any
token in the lists. Actually, ted is designed to work well even if strange tokens
(that is, unusual (charcode, \catcode) pairs or tokens with a confusing \meaning)
occur in the list.

2 Usage

The ted package provides two user macros: \Substitute and \ShowTokens. The
first one is the primary goal of the package, but to be able to do the second was
the more difficult and interesting part while writing the package. I made it into
a user macro since I believe it can be useful for debugging things, or for learning
TEX.

The syntax of \Substitute is as follows.\Substitute

\Substitute〈*〉[〈output〉]{〈input〉}{〈from〉}{〈to〉}

Let’s begin with the basics. Without star or optional argument, the \Substitute

macro will replace each occurence of the 〈from〉 token list with {〈to〉} in the
〈input〉, and put the result in the \toks register \ted@toks. This macro has a @

in its name, but since I think the \Substitute macro will be essentially be used
by class or package writers, this should be ok.

1

mailto:mpg@math.jussieu.fr


Anyway, if you don’t like this name, you can specify another one as 〈output〉
using the optional argument. Your 〈output〉 should be the name of a \toks register.
If you want the output to be put in a macro, use \def\macro (or \long\def\macro

or. . . ) as the optional argument. Anyway, 〈output〉{〈stuff 〉} must be a legal
syntax for an assignment: using \macro as optional argument will not work (and
may actually result in chaos). Of course, if you want your output to be placed
in a macro, it should not contain unproperly placed hash signs (that is, macro
parameter tokens).

The one-starred form of \Substitute is meant to help you when your 〈input〉
is not an explicit token list, but the contents of either a macro or a \toks register,
by expanding once its first mandatory argument before proceeding. It spares you
the pain of using \expandafters, especially in case you want to use the optional
argument too. This time, things are reversed compared to the optional argument :
using a macro instead of a toks register is easier. Actually, with the starred form,
the first argument can be \macro or \the\toksreg, or anything whose one-time
expansion is the token list you want \Substitute to act upon.

The two-starred form is also meant to avoid you trouble with development. It
expands its three mandatory arguments once before executiing. The remark about
macros and \toks register still holds. I hope this three cases (from zero to two
stars) will suffice for most purpose. For a better handling of arguments expansion,
wait for LATEX3!

The action of \Substitute is pretty obvious most of the time. Maybe a
particular case needs some precision: when 〈from〉 is empty, then the 〈to〉 list gets
inserted between each two tokens of the \input, but not before the first one. For
example, \Substitute{abc}{}{1} puts a1b1c in \ted@toks.

The syntax of \ShowTokens is as follows.\ShowTokens

\ShowTokens〈*〉{〈list〉}

In its simple form, \ShowTokens just shows the list, one token per line. For
characters tokens, its prints the character, and its category code in human-friedly
form (such as “blank space”, “letter”, etc.). For control sequences and active
characters, it also prints (the beginning of) their current \meaning as a bonus.

The default is to show this list both in the terminal and in the log file. If\ShowTokensLogonly

\ShowTokensOnline you don’t want it to be printed on the terminal, just say \ShowTokensLogonly.
If you change your mind latter, you can restore the default behaviour with
\ShowTokensOnline.

The starred form of \ShowTokens works the same as for \Substitute: it
expands its argument once before analysing and displaying it. The same remarks
hold: use \macro or \the\toksreg in the argument.

I would like to conclude with the following remark: I have really tried to make
sure ted’s macros will work fine even with the wierdest token list. In particu-
lar, you can freely use begin-group and end-group characters, hash signs, spaces,
\bgroup and \egroup, \par, \ifs, as well as exotic charcode-\catcode pairs in
every argument of the macros. As far as I am aware, the only restriction is you
should not use some1 of the very private macros of ted (those beginning with
\ted@@) in your token lists.

1Precisely, none of the control sequence in the token lists should be \let-equal to \ted@@end,
\ted@@special, \ted@@active as defined below.

2



3 Implementation

A important problem, when trying to substitute things in token lists, is to handle
begin-group and end-group tokens, since prevent us from to reading the tokens one
by one, and tend to be difficult to handle individually. Two more kinds of tokens
are special: the space tokens, since they2 cannot be grabbed as the undelimited
argument of a macro, and the parameter tokens (hash signs), since they cannot
be part of the delimiters in the parameter text of a macro. From now on, “special
tokens” thus denotes tokens with \catcode 1, 2, 6 or 10.

To get rid of these problems, the \Substitute command procedes in three
steps. First, encode the input, replacing all special tokens with nice control se-
quences representing them, then do the actual substitution, and finally decode the
output, replacing the special control sequences with the initial special tokens.

Encoding is the hard part. The idea is to try reading the tokens one by one;
for this we have two means: using a macro with one undelimited argument, or
something like \let. The former doesn’t work well with \catcode 1, 2 or 10
tokens, and the later do not see the name of the token (its character code, or
its name for a CS). So we need to use both \futurelet, a “grabbing” macro
with argument, and \string in order to scan the tokens. Actually, the encoding
procedes in two passes: in the first, we try and detect the special tokens, storing
their character codes for later use, then do the the actual encoding in the last
pass.

Decoding also processes the tokens one by one, and is simpler, since special
cases are allready detected. There is, however, a trick with groups since, when we
encouter a begin-group character, we have to wait for the corresponding end-group
before adding the whole thing to the output. There is also a simpler version of
decoding, for \ShowTokens, for screen/log output, with no need to use this trick,
since it only outputs \catcode-12 charachters. Finally, the substitution part uses
a macro with delimited argument, defined on the fly, using an idea of Jean-Côme
Charpentier.

The code is divided as follows.

1. Encoding – (a) pre-scan (b) encode

2. Decoding

3. Substitution

4. Screen display for \ShowTokens

5. Definition of the user commands

\ted@toks

\ted@list

\ted@code

Before we begin, just allocate (or give a nice name to) a few registers.

1 \@ifdefinable\ted@toks{\newtoks\ted@toks}

2 \@ifdefinable\ted@list{\let\ted@list\toks@}

3 \@ifdefinable\ted@code{\let\ted@code\count@}

3.1 Encoding

\ted@encloop

\ted@encloop@

The two passes use the same loop for reading the input allmost token by token.
This loop grabs the next token through a \futurelet. . .

2Actually, only tokens with charcode 32 and \catcode 10 (i.e. 3210 tokens) are concerned.
However, we will process all \catcode-10 tokens the same way.

3



4 \newcommand\ted@encloop{%

5 \futurelet\@let@token

6 \ted@encloop@}

. . . then looks at it with some \ifx and \ifcat (non nested, since the token could
be an \if itself), in order to distinguish between three cases: normal token, end
reached, or special token. In the later case, remember wich kind of special token
it is, using a numeric code.

7 \newcommand\ted@encloop@{%

8 \let\next\ted@do@normal

9 \ifx\@let@token\ted@@end

10 \let\next\ted@gobble@end

11 \fi

12 \ifcat\noexpand\@let@token##%

13 \ted@code0

14 \let\next\ted@do@special

15 \fi

16 \ifcat\noexpand\@let@token\@sptoken

17 \ted@code1

18 \let\next\ted@do@special

19 \fi

20 \ifcat\noexpand\@let@token\bgroup

21 \ted@code2

22 \let\next\ted@do@special

23 \fi

24 \ifcat\noexpand\@let@token\egroup

25 \ted@code3

26 \let\next\ted@do@special

27 \fi

28 \next}

\ted@@end

\ted@gobble@end

Here we used the following to detect the end, then gobble it when reached.

29 \newcommand\ted@@end{\ted@@end@}

30 \@ifdefinable\ted@gobble@end{%

31 \def\ted@gobble@end\ted@@end{}}

\ted@sanitize

\ted@@active

Now, this detection method, with \futurelet and \ifcat, is unable to distinguish
the following three cases for potential special tokens: (i) a “true” (explicit) special
token, (ii) a CS \let-equal to a special token, (iii) an active character \let-equal
to a special token. While this is pre-scanning’s job to detect the (ii) case, the (iii)
can be easily got rid of by redefining locally all active characters.

32 \count@\catcode\z@ \catcode\z@\active

33 \newcommand\ted@sanitize{%

34 \count@\z@ \@whilenum\count@<\@cclvi \do{%

35 \uccode\z@\count@

36 \uppercase{\let^^00\ted@@active}%

37 \advance\count@\@ne}}

38 \catcode\z@\count@

39 \newcommand\ted@@active{\ted@@active@}

This sanitizing macro also mark active characters by \let-ing them equal to
\ted@@active in ordrer to detect them easily later, for exemple while displaying
on-screen token analysis. All operations (scanning, replacing, display and decod-
ing) are going to happen inside a group where \ted@sanitize has been executed,
so that active characters are no longer an issue.

4



\ted@encode

\ted@do@normal

\ted@do@special

The \ted@encode macro is the master macro for encoding. It only initialise a few
things and launches the two loops. We select one of the tree stpes by \let-ing
\ted@do@normal and \ted@do@special to the appropriate action.

40 \newcommand\ted@encode[1]{%

41 \ted@list{}%

42 \let\ted@do@normal\ted@gobble@encloop

43 \let\ted@do@special\ted@scan@special

44 \ted@encloop#1\ted@@end

45 \ted@toks{}%

46 \let\ted@do@normal\ted@addtoks@encloop

47 \let\ted@do@special\ted@special@out

48 \ted@encloop#1\ted@@end

49 \ted@assert@listempty}

\ted@assert@listempty After the last loop, \ted@list should be empty. If it’s not, it means something
very weird happened during the encoding procedure. I hope the code below will
never be executed :)

50 \newcommand\ted@assert@listempty{%

51 \edef\next{\the\ted@list}%

52 \ifx\next\@empty \else

53 \PackageError{ted}{%

54 Assertion ‘\string\ted@list\space is empty’ failed}{%

55 This should not happen. Please report this bug to the author.

56 \MessageBreak By the way, you’re in trouble there... I’m sorry.}%

57 \fi}

a Pre-scanning

\ted@gobble@encloop For normal tokens, things are pretty easy: just gobble them!

58 \newcommand\ted@gobble@encloop{%

59 \afterassignment\ted@encloop

60 \let\@let@token= }

\ted@scan@special For special tokens, it’s harder. We must distinguish explicit character tokens from
control sequences \let-equal to special tokens. For this, we use \string, then
grab the next character to see wether its code is \escapechar or not. Actually,
things are not this easy, for two reasons. First, we have to make sure the next
character’s code is not allready \escapechar before the \string, by accident. For
this purpose, we set \escapechar to 0 except if next character’s code is also 0, in
which case we prefer 1.

61 \count@\catcode\z@ \catcode\z@ 12

62 \newcommand\ted@scan@special{%

63 \begingroup

64 \escapechar\if\@let@token^^00 \@ne \else \z@ \fi

65 \expandafter\ted@check@space\string}

66 \catcode\z@\count@

\ted@check@space

\ted@check@space@

Second, we have to handle carefully the case of the next token being the 3210

token, since we cannot grab this one with a macro. We are in this case if and
only if the token we just \stringed was a character token with code 32, and it is
enough to check if next token’s \catcode is 10 in order to detect it, since it will be
12 otherwise. In order to check this, we use \futurelet again for pre-scanning.

67 \newcommand\ted@check@space{%

5



68 \futurelet\@let@token

69 \ted@check@space@}

70 \newcommand\ted@check@space@{%

71 \ifcat\@let@token\@sptoken

72 \endgroup

73 \ted@addlist{32}%

74 \expandafter\ted@gobble@encloop

75 \else

76 \expandafter\ted@list@special

77 \fi}

\ted@list@special Now that we got rid of this nasty space problem, we know for sure that the next
token has \catcode 12, so we can easily grab it as an argument, find its charcode,
and decide wether the original token was a control sequence or not. Note the
\expandafter over \endgroup trick, since we need to add the charcode to the
list outside the group (opened for the modified \escapechar) though it was set
inside.

78 \newcommand*\ted@list@special[1]{%

79 \ted@code‘#1\relax

80 \expandafter\expandafter\expandafter

81 \endgroup

82 \ifnum\ted@code=\escapechar

83 \ted@addlist{\m@ne}%

84 \else

85 \expandafter\ted@addlist\expandafter{\the\ted@code}%

86 \fi

87 \ted@encloop}

\ted@addlist Here we used the following macro to add an element to the list, which is space-
separated.

88 \newcommand*\ted@addlist[1]{%

89 \ted@list\expandafter{\the\ted@list#1 }}

b Actually encoding

Remember that, before this last encoding pass, \ted@encode did the following:

\let\ted@do@normal\ted@addtoks@encloop

\let\ted@do@special\ted@special@out

\ted@addtoks@encloop The first one is very easy : normal tokens are just grabbed as arguments and
appended to the output, then the loop continues.

90 \newcommand\ted@addtoks@encloop[1]{%

91 \ted@toks\expandafter{\the\ted@toks#1}%

92 \ted@encloop}

\ted@special@out Special tokens need to be encoded, but before, just check if they are really special:
they aren’t if the corresponding code is −1.

93 \newcommand\ted@special@out{%

94 \ifnum\ted@list@read=\m@ne

95 \ted@list@advance

96 \expandafter\ted@cs@clean

97 \else

98 \expandafter\ted@special@encode

99 \fi}

6



\ted@cs@clean Even if the potentially special token was not a real one, we have work to do.
Indeed, in the first pass we did break it using a \string, and thus we introduced
some foreign tokens in the stream. Most of them are not important since they
have \catcode 12. Anyway, some of them may be space tokens : in this case we
have extra 32’s in our list. So, we need to check this before going any further.

100 \newcommand\ted@cs@clean[1]{%

101 \expandafter\ted@add@toks{#1}%

102 \expandafter\ted@cscl@loop\string#1 \@nil}

\ted@cscl@loop We first add the CS to the output, then break it with a \string in order to look
at its name with the folowing loop. It first grabs everything to the first space. . .

103 \@ifdefinable\ted@cscl@loop{%

104 \def\ted@cscl@loop#1 {%

105 \futurelet\@let@token

106 \ted@cscl@loop@}}

\ted@cscl@loop@ . . . and carefully look at the next token in order to know if we are finished or not.

107 \newcommand\ted@cscl@loop@{%

108 \ifx\@let@token\@nil

109 \expandafter\ted@gobble@encloop

110 \else

111 \ted@list@advance

112 \expandafter\ted@cscl@loop

113 \fi}

\ted@special@encode Now, let’s come back to the special tokens. As we don’t need the token to encode
it (we allready know its \catcode from \ted@code, and its charcode is stored in
the list), we first gobble it in order to prepare for next iteration.

114 \newcommand\ted@special@encode{%

115 \afterassignment\ted@special@encode@

116 \let\@let@token= }

\ted@special@encode@ Then we encode it in two steps : first, create a control sequence with name
\ted@@〈code〉〈charcode〉, where code is a digit denoting3 the \catcode of the spe-
cial token, . . .

117 \newcommand\ted@special@encode@{%

118 \expandafter\ted@special@encode@@\expandafter{%

119 \csname ted@@\the\ted@code\ted@list@read\endcsname}}

\ted@special@encode@@

\ted@@special

. . . then, mark this CS as a special token encoding, in order to make it easier to
detect later, add it to the output and loop again.

120 \newcommand*\ted@special@encode@@[1]{%

121 \ted@list@advance

122 \let#1\ted@@special

123 \ted@addtoks@encloop{#1}}

124 \newcommand\ted@@special{\ted@@special@}

\ted@list@read

\ted@list@read@

Here we used the folowing macros in order to manage our charcode list. The
reading one is fully expandable.

125 \newcommand\ted@list@read{%

126 \expandafter\ted@list@read@\the\ted@list\@nil}

3I don’t store the \catcode for two reasons : first, having a single digit is easier; second,
having the true catcode would be useless (though it could maybe make the code more readable).

7



127 \@ifdefinable\ted@list@read@{%

128 \def\ted@list@read@#1 #2\@nil{%

129 #1}}

\ted@list@advance

\ted@list@advance@

Since it’s expandable, it cannot change the list, so we need a separate macro to
remove the first element from the list, once read.

130 \newcommand\ted@list@advance{%

131 \expandafter\ted@list@advance@\the\ted@list\@nil}

132 \@ifdefinable\ted@list@advance@{

133 \def\ted@list@advance@#1 #2\@nil{%

134 \ted@list{#2}}}

3.2 Decoding

\ted@add@toks Main decoding macro is \ted@decode. It is again a loop, processing the token list
one by one. For normal tokens, things are easy as allways: just add them to the
output, via

135 \newcommand\ted@add@toks[1]{%

136 \ted@toks\expandafter{\the\ted@toks#1}}

\ted@decode Encoded special tokens are easily recognized, since they were \let equal to
\ted@@special. In order to decode it, we use the name of the CS. The following
macro uses LATEX-style \if in order to avoid potential nesting problems when
\ifs are present in the token list being processed.

137 \newcommand\ted@decode[1]{%

138 \ifx#1\ted@@end \expandafter\@gobble\else\expandafter\@firstofone\fi{%

139 \ifx#1\ted@@special

140 \expandafter\@firstoftwo

141 \else

142 \expandafter\@secondoftwo

143 \fi{%

144 \begingroup \escapechar\m@ne \expandafter\endgroup

145 \expandafter\ted@decode@special\string#1\@nil

146 }{%

147 \ted@add@toks{#1}}%

148 \ted@decode}}

\ted@decode@special The next macro should then gobble the ted@@ part of the CS name, and use the
last part as two numeric codes (here we use the fact that the first one is only a
digit).

149 \@ifdefinable\ted@decode@special{%

150 \begingroup\escapechar\m@ne \expandafter\endgroup\expandafter

151 \def\expandafter\ted@decode@special\string\ted@@#1#2\@nil{%

It then prodeces according to the first code, building back the original token and
adding it to the output. The first two kinds of tokens (macro parameter characters
and blank spaces) are easily dealt with.

152 \ifcase#1

153 \begingroup \uccode‘##=#2 \uppercase{\endgroup

154 \ted@add@toks{##}}%

155 \or

156 \begingroup \uccode32=#2 \uppercase{\endgroup

157 \ted@add@toks{ }}%

158 \or

8



For begin-group and end-group characters, we have a problem, since they are
impossible to handle individually: we can only add a 〈balanced text〉 to the output.
So, when we find a begin-group character, we just open a group (a real one), and
start decoding again inside the group, until we find the correponding end-group
character. Then, we enclose the local decoded list of tokens into the correct begin-
group/end-group pair, and then add it to the output one group level below, using
the \expandafter-over-\endgroup trick (essential here).

159 \begingroup \ted@toks{}%

160 \uccode‘{=#2

161 \or

162 \uccode‘}=#2

163 \uppercase{\ted@toks\expandafter{\expandafter{\the\ted@toks}}}

164 \expandafter\endgroup

165 \expandafter\ted@add@toks\expandafter{\the\ted@toks}%

166 \fi}}

3.3 Substitution

For this part, the idea4 is to use a macro whose first argument is delimited with
the 〈from〉 string, wich outputs the first argument followed by the 〈to〉 string, and
loops. Obviously this macro has to be defined on the fly. All tokens lists need to
be encoded first, and the output decoded at end. Since all this needs to happens
inside a group (for \ted@sanitize and the marking up of special-charaters control
sequences), remember to “export” \ted@toks when done.

\ted@Substitude The main substitution macro is as follows. Arguments are 〈input〉, 〈from〉, 〈to〉.
\ted@output will be discussed later.

167 \newcommand\ted@Substitute[3]{%

168 \begingroup \ted@sanitize

169 \ted@encode{#3}%

170 \expandafter\ted@def@subsmac\expandafter{\the\ted@toks}{#2}%

171 \ted@encode{#1}%

172 \ted@subsmac

173 \ted@toks\expandafter{\expandafter}%

174 \expandafter\ted@decode\the\ted@toks\ted@@end

175 \expandafter\endgroup

176 \expandafter\ted@output\expandafter{\the\ted@toks}}

\ted@def@subsmac The actual iterative substitution macro is defined by the folowing macro, whose
arguments are the 〈to〉 string, encoded, and the plain 〈from〉 string.

177 \newcommand\ted@def@subsmac[2]{%

178 \ted@encode{#2}%

179 \long\expandafter\def\expandafter\ted@subsmac@loop

180 \expandafter##\expandafter1\the\ted@toks##2{%

181 \ted@add@toks{##1}%

182 \ifx##2\ted@@end

183 \expandafter\@gobble

184 \else

185 \expandafter\@firstofone

186 \fi{%

187 \ted@add@toks{#1}\ted@subsmac@loop##2}}%

4for which I am grateful to Jean-Côme Charpentier, who first taught me the clever use
delimited arguments (and lots of other wonderful things) in fr.comp.text.tex

9



188 \expandafter\ted@def@subsmac@\expandafter{\the\ted@toks}}

\ted@def@subsmac@ While we have the encoded 〈from〉 string at hand, define the start-loop macro.

189 \newcommand\ted@def@subsmac@[1]{%

190 \def\ted@subsmac{%

191 \ted@toks\expandafter{\expandafter}%

192 \expandafter\ted@subsmac@loop\the\ted@toks#1\ted@@end}}

3.4 Display

\ted@ShowTokens In order to display the tokens one by one, we first encode the string

193 \newcommand\ted@ShowTokens[1]{%

194 \begingroup \ted@sanitize

195 \ted@toks{#1}%

196 \ted@typeout{--- Begin token decompositon of:}%

197 \ted@typeout{\@spaces \the\ted@toks}%

198 \ted@encode{#1}%

199 \expandafter\ted@show@toks\the\ted@toks\ted@@end

200 \endgroup

201 \ted@typeout{--- End token decomposition.}}

\ted@show@toks Then we proceed, allmost like decoding, iteratively, processing the encoded tokens
one by one. We detect control sequences the same way as in pre-scanning.

202 \count@\catcode\z@ \catcode\z@ 12

203 \newcommand\ted@show@toks[1]{%

204 \ifx#1\ted@@end \expandafter\@gobble\else\expandafter\@firstofone\fi{%

205 \ted@toks{#1}%

206 \begingroup

207 \escapechar\if\noexpand#1^^00 \@ne \else \z@ \fi

208 \expandafter\ted@show@toks@\string#1\@nil

209 \ted@show@toks}}

210 \catcode\z@\count@

\ted@show@toks@ We stored the current token so that it can be used in the next macro, though
previously broken by the \string, and moreover we can nest the \ifs freely since
it is hidden in a register (in case it would be a \if itself). The four cases are : CS
representing a special token, normal CS, active character (since we cannot show
its category with \meaning), and finally normal character token.

211 \@ifdefinable\ted@show@toks@{%

212 \long\def\ted@show@toks@#1#2\@nil{%

213 \expandafter\endgroup

214 \ifnum‘#1=\escapechar

215 \expandafter\ifx\the\ted@toks\ted@@special

216 \ted@show@special#2\@nil

217 \else

It’s time to think about the following: we are inside a group where all active
characters were redefined, but we nonetheless want to display their meaning. In
order to do this, the display need to actually happen after the current group is
finished. For this we use \aftergroup (with specialized macro for displaying each
kind of token).

218 \aftergroup\ted@type@cs

219 \expandafter\aftergroup\the\ted@toks

220 \fi

10



221 \else \expandafter

222 \ifx\the\ted@toks\ted@@active

223 \aftergroup\ted@type@active

224 \expandafter\aftergroup\the\ted@toks

225 \else

226 \aftergroup\ted@type@normal

227 \expandafter\aftergroup\the\ted@toks

228 \fi

229 \fi}}

\ted@show@special Let’s begin our tour of specialized display macro with the most important one:
\ted@show@special. Displaying the special token goes mostly the same way as
decoding them, but is far easier, since we don’t need to care about groups: display
is done with \catcode 12 characters.

230 \@ifdefinable\ted@show@special{%

231 \begingroup\escapechar\m@ne \expandafter\endgroup

232 \expandafter\def\expandafter\ted@show@special\string\ted@@#1#2\@nil{%

233 \ifcase#1

234 \aftergroup\ted@type@hash

235 \or

236 \aftergroup\ted@type@blank

237 \or

238 \aftergroup\ted@type@bgroup

239 \or

240 \aftergroup\ted@type@egroup

241 \fi

242 \begingroup \uccode‘1#2

243 \uppercase{\endgroup\aftergroup1}}}

\ted@type@hash

\ted@type@blank

\ted@type@bgroup

\ted@type@egroup

\ted@type@normal

The four macros for special tokens are obvious. So is the macro for normal tokens.
By the way, \ted@typeout will be discussed in the next section.

244 \newcommand\ted@type@hash[1]{%

245 \ted@typeout{#1 (macro paramater character #1)}}

246 \newcommand\ted@type@blank[1]{%

247 \ted@typeout{#1 (blank space #1)}}

248 \newcommand\ted@type@bgroup[1]{%

249 \ted@typeout{#1 (begin-group character #1)}}

250 \newcommand\ted@type@egroup[1]{%

251 \ted@typeout{#1 (end-group character #1)}}

252 \newcommand\ted@type@normal[1]{%

253 \ted@typeout{#1 (\meaning#1)}}

\ted@type@cs

\ted@type@active

For control sequences and active characters, we use more sophisticated macros.
Indeed, their \meaning can be quite long, and since it is not so important (ted’s
work is lexical analysis, displaying the \meaning is just an add-on), we cut it
so that lines are shorter than 80 colons, in order to save our one-token-a-line
presentation.

254 \newcommand\ted@type@cs[1]{%

255 \ted@type@long{\string#1 (control sequence=\meaning#1}}%

256 \newcommand\ted@type@active[1]{%

257 \ted@type@long{\string#1 (active character=\meaning#1}}%

11



\ted@type@long Lines are cut and displayed by \ted@type@long. This macro uses a loop, conting
down how many columns remain on the current line. The input need to be fully
expanded first, and the output is stored in \ted@toks.

258 \newcommand\ted@type@long[1]{%

259 \ted@toks{}%

260 \ted@code72

261 \edef\next{#1}%

262 \expandafter\ted@tl@loop\next\@nil}

\ted@tl@loop The only difficult thing in this loop is to take care of space tokens. For this we
use again our \futurelet trick:

263 \newcommand\ted@tl@loop{%

264 \futurelet\@let@token

265 \ted@tl@loop@}

\ted@tl@loop@ . . . then check what to do.

266 \newcommand\ted@tl@loop@{%

267 \ifx\@let@token\@nil

268 \let\next\ted@tl@finish

269 \else

270 \advance\ted@code\m@ne

271 \ifnum\ted@code<\z@

272 \let\next\ted@tl@finish

273 \else

274 \ifx\@let@token\@sptoken

275 \let\next\ted@tl@space

276 \else

277 \let\next\ted@tl@add

278 \fi

279 \fi

280 \fi

281 \next}

\ted@tl@add

\ted@tl@space

Normal characters are just grabbed and added without care, and spaces are gob-
bled with a special macro which also add a space to the output.

282 \newcommand*\ted@tl@add[1]{%

283 \ted@toks\expandafter{\the\ted@toks #1}%

284 \ted@tl@loop}

285 \@ifdefinable\ted@tl@space{%

286 \expandafter\def\expandafter\ted@tl@space\space{%

287 \ted@tl@add{ }}}

\ted@tl@finish When the end has been reached (either because a \@nil was encountered or be-
cause the line is allmost full), it’s time to actually display the result. We add \ETC.

at the end when the full \meaning isn’t displayed.

288 \@ifdefinable\ted@tl@finish{%

289 \def\ted@tl@finish#1\@nil{%

290 \ifnum\ted@code<\z@

291 \ted@typeout{\the\ted@toks\string\ETC.)}

292 \else

293 \ted@typeout{\the\ted@toks)}

294 \fi}}

12



3.5 User macros

\ted@typeout Since we just discussed display, let’s see the related user commands. Output is
done with

295 \newcommand\ted@typeout{%

296 \immediate\write\ted@outfile}

\ShowTokensOnline

\ShowTokensLogonly

allowing the user to choose between online display, or log output. Default is online.

297 \newcommand\ShowTokensOnline{%

298 \let\ted@outfile\@unused}

299 \newcommand\ShowTokensLogonly{%

300 \let\ted@outfile\m@ne}

301 \ShowTokensOnline

\ShowTokens

\ted@ShowTokens@exp

The user macro for showing tokens is a simple call to the internal macro, just
expanding its argument once in its stared form.

302 \newcommand\ShowTokens{%

303 \@ifstar{\ted@ShowTokens@exp}{\ted@ShowTokens}}

304 \newcommand\ted@ShowTokens@exp[1]{%

305 \expandafter\ted@ShowTokens\expandafter{#1}}

\Substitute

\ted@Subs@star

Now, the user macro for substitution. First, check how many stars there are, if
any, and set \ted@subs@cmd accordingly.

306 \newcommand\Substitute{%

307 \@ifstar

308 {\ted@Subs@star}

309 {\let\ted@Subs@cmd\ted@Substitute \ted@Subs}}

310 \newcommand\ted@Subs@star{%

311 \@ifstar

312 {\let\ted@Subs@cmd\ted@Subs@exp@iii \ted@Subs}

313 {\let\ted@Subs@cmd\ted@Subs@exp@i \ted@Subs}}

\ted@Subs@exp@i

\ted@Subs@exp@iii

Here are the intermediate macros that expand either the first or all three arguments
before calling \ted@Substitute.

314 \newcommand\ted@Subs@exp@i{%

315 \expandafter\ted@Substitute\expandafter}

316 \newcommand\ted@Subs@exp@iii[3]{%

317 \begingroup

318 \toks0{\ted@Substitute}%

319 \toks2\expandafter{#1}%

320 \toks4\expandafter{#2}%

321 \toks6\expandafter{#3}%

322 \xdef\ted@Subs@cmd{\the\toks0{\the\toks2}{\the\toks4}{\the\toks6}}%

323 \endgroup

324 \ted@Subs@cmd}

\ted@Subs Now, the last macro checks and process the optional argument. Here we set
\ted@output, which will be used at the end of \ted@Substitute.

325 \newcommand\ted@Subs[1][\ted@toks]{%

326 \def\ted@output{#1}%

327 \ted@Subs@cmd}

13



\ted@output Finally set a default \ted@output for advanced users who may want to use
\ted@Substitute directly.

328 \let\ted@output\ted@toks

That’s all folks!

Happy TEXing!

14


