
The tabstackengine Package
Front-end to the stackengine package, allowing tabbed stacking

Steven B. Segletes
steven.b.segletes.civ@mail.mil

November 30, 2016
V2.01

Contents

1 Introduction 1

2 Modes and Styles of tabstackengine 2

3 Tabbing Variations within tabstackengine 2

4 Column Spacing within tabstackengine 3

5 Command Summary 4

5.1 Command Examples . 5

6 Absent Features/Tricky Syntax 13

7 Code Listing 14

1 Introduction

The tabstackengine package provides a front end to the stackengine package
that allows for the use of tabbing characters within the stacking arguments.
Familiarity with the syntax of the stackengine package is assumed.
When invoked, tabstackengine loads the stackengine package and initializes it in
such a way that the end-of-line (EOL) character in certain stacking arguments
will be taken, by default, as \\, rather than a space (which is the default EOL

1

separator in stackengine). The EOL separator can be changed using stackengine’s
\setstackEOL macro.

With tabstackengine, command variations are introduced to allow several vari-
ants of tabbing within the macro arguments. The default tabbing character is
the ampersand (&); however, the tabbing character can be reset to other tokens
using the \setstackTAB macro.

In most cases (where it makes sense), a stackengine macro name may be
prepended with the word tabbed, align, or tabular to create a new tabstack-
engine macro that allows for tabbed arguments.

2 Modes and Styles of tabstackengine

Like the stackengine package which provides the modes \stackText and
\stackMath, the tabstackengine package provides the modes \TABstackText
and \TABstackMath. However, the tabstackengine package honors the underly-\TABstackText

\TABstackMath ing mode of stackengine, and so if either \stackMath or \TABstackMath are set,
all TABstacking arguments will be processed in math mode.1 So what are the
differences?

• \TABstackMath and \TABstackText are local settings, whereas
\stackMath and \stackText are global settings.

• As of version 2.00, tabstackengine provides the means to add additional
styles to a stack, associated with \TABstackMath and \TABstackText. In
particular, the macros \TABstackMathstyle and \TABstackTextstyle\TABstackMathstyle

\TABstackTextstyle can be used to add custom styles to stacks. For example,
\TABstackMathstyle{\displaystyle} will cause all stacked items pro-
cessed in TABstack-math mode to be set in display style. Likewise
\TABstackTextstyle{\scriptsize} will cause all stacked items pro-
cessed in TABstack-text mode to be set in script size. Styles (for both
math and text modes) can be cleared with the command \clearTABstyle.\clearTABstyle

3 Tabbing Variations within tabstackengine

The tabstackengine package syntax allows three types of tabbing variation de-
noted by the words tabbed, align, and tabular in the macro name itself. In
the case of tabbed macros, the tabbed columns all share the same alignment,

1The one exception here is if stackengine macros are embedded (nested) inside tabstack-
engine macro arguments. In this case, the embedded stackengine macro will only respond to
the stackengine mode, and not the tabstackengine mode.

2

as dictated by the \stackalignment setting or perhaps provided as an optional
argument in some macro forms.

In the case of align macros, the alignment in columns is alternately specified
as right, then left, etc., in the manner of the align environment of the amsmath
package.

Finally, in the case of tabular macros, an extra argument is passed to the
macro that specifies the left-center-right alignment for each individual column,
in the manner of {lccr}.

4 Column Spacing within tabstackengine

Intercolumn space can be introduced to tabstackengine output in one of two
ways. First, there is a macro setting to force all columns to be the same\fixTABwidth
width (namely, the width of the widest entry in the stack), using the syntax
\fixTABwidth{T or F}. The default is F. When set true, additional column
space will be introduced to all but the widest column of a stack, so as to make
all columns of a width equal to that of the widest column.

Secondly, each of the tabbing variations has the means to introduce a fixed\setstacktabbedgap
amount of space between columns. By default, the tabbed stacking macros add
no space (0pt) between adjacent columns, but this value can be reset with the
macro \setstacktabbedgap{length}.

In the case of the align stacking macros, there is never any gap introduced after\setstackaligngap
the right-aligned (odd-numbered) columns. However, the default gap introduced
after the left-aligned (even-numbered) columns is, by default, 1em (the same gap
as \quad). It can be reset with the macro \setstackaligngap{length}.

For the tabular stacks, the default intercolumn gap is the value of \tabcolsep.\setstacktabulargap
The default value may be reset with the macro \setstacktabulargap{length}.

Note that these \setstack...gap macros are for setting horizontal gaps be-
tween columns of a stack. They should not be confused with the \setstackgap
macro of stackengine that sets the vertical gap for long and short stacks.

3

5 Command Summary

Below are the new TABstack making commands introduced by tabstackengine.
In the syntax shown below, when there are multiple commands delimited by
braces, any one of the commands within the brace may be selected.

\tabular

\align

\tabbed

Vectorstack
Centerstack

Longunderstack
Longstack

Shortunderstack
Shortstack

{column alignments}

[alignment]
{tabbed EOL-separated string}

$

\vert

\bracket
\brace
\paren

\
Matrixstack[alignment]{tabbed EOL-separated string}$

\tabular

\align

\tabbed

{

stackanchor
stackunder

stackon
}

[stack gap]

{col. alignments}

{tabbed anchor}{tabbed argument}

\setstack

tabular

align

tabbed
gap{length} Initial Defaults:

\tabcolsep

1em

0pt

The macro\ensureTABstackMath

\ensureTABstackMath{commands involving TABstacks}

will force any tabstackengine stacks within its argument to be processed in math
mode, even if the prevailing mode is otherwise \TABstackText. The package
also provides a set of declarations that can be used to define the manner in
which subsequent TABstacks will be processed:

\fixTABwidth{T or F}
\TABstackMath
\TABstackText
\TABstackMathstyle{directive}
\TABstackTextstyle{directive}
\clearTABstyle
\setstackEOL{end-of-line character} (provided by stackengine)
\setstackTAB{tabbing character}
\TABunaryLeft (\TABbinaryRight)
\TABunaryRight (\TABbinaryLeft)
\TABbinary

4

The following macros can be used for parsing tabbed data outside of a TAB-
stack and also provide various stack metrics for the most recently parsed tab-
stackengine data.

\readTABstack{tabbed EOL-separated string}
\TABcellRaw[row,column]
\TABcell{row}{column}
\TABcellBox[alignment]{row}{column}
\getTABcelltoks[row,column] \the\TABcelltoks
\TABcells{row or blank}
\TABstrut{row}
\TABwd{column}
\TABht{row}
\TABdp{row}

5.1 Command Examples

Below we give examples of the various types of commands made available
through the tabstackengine package.

Tabbed End-of-Line (EOL)-delimited Stacks

Here, the optional argument [l] defines the alignment of all the columns as
“left.” The default alignment is [c].

\TABstackTextstyle{\scshape}
\tabbedShortunderstack[l]{This& Is &The\\Time & Of&Man’s\\ Great&Dis&content}

This
Time
Great

Is
Of
Dis

The
Man’s
content

Note that spaces around the arguments are absorbed and discarded. Further-
more, the text style has been set to \scshape.

Align End-of-Line (EOL)-delimited Stacks

In an align-stack, the column alignments will always be rlrl... The gap
following the left-aligned columns is set by \setstackaligngap.

$\ensurestackMath{Z:\left\{\alignCenterstack{%
y=&mx+b,&0=&Ax+By+C \\ y_1=&W_1,&y_2=&W_2}\right.}$

Z :
{

y1 =
y =

W1,
mx + b,

y2 =
0 =

W2

Ax + By + C

5

Tabular End-of-Line (EOL)-delimited Stacks

In a tabular-stack, the alignment of each column is specified in a separate
leading argument.

\stackText\tabularLongstack{rllc}{%
9)& $y_1=mx+b$ &linear&*\\10)& $y_2=e^x$ &exponential&[23]}

10)
9)

y2 = ex
y1 = mx + b

exponential
linear

[23]
*

Matrix Stacks

The Matrix-stacks are tabbed variants of stackengine’s Vector-stacks.

\setstacktabbedgap{1.5ex}
$I = \bracketMatrixstack{1&0&0\\0&1&0\\0&0&1}$

I =

[
0
0
1

0
1
0

1
0
0]

Tabbed Stack

This variant of a tabbed-stack stacks exactly two items. The optional argument
is a stacking gap, as in the syntax of the stackengine package.

\setstacktabbedgap{1ex}
\tabbedstackon[4pt]{Jack&drove&the car&home.}{SN&V&DO&IO}

Jack
SN

drove
V

the car
DO

home.
IO

Align Stack

This is for stacking two items with rlrl... alignment pattern.

\TABstackMath\setstackaligngap{3em}
\alignstackunder[8pt]{y=&mx+b,&0=&Ax+By+C}{y_1=&W_1,&y_2=&W_2}

y =

y1 =

mx + b,

W1,

0 =

y2 =

Ax + By + C

W2

6

Tabular Stack

This is for stacking two items with specifiable alignment pattern.

\TABbinary\TABstackMath\setstacktabulargap{1ex}%
\tabularstackanchor[-1pt]{rcl}%
{\rule{7ex}{1pt}&\belowbaseline[0pt]{\triangle}%

&\rule{7ex}{1pt}}{1 + 3(4-3) &=& 7 - 6/2}

1 + 2(4− 3)
4
= 6− 6/2

Note the use of \TABbinary, which applies a group to the beginning and end
of each cell, in the event a binary treatment of leading/trailing operators is
desired. So, in this case, a cell containing = will be set as {}={}. In the absence
of that declaration, the cell containing the equal sign would have to have been
explicitly defined as {}= in order to override the \unaryLeft default setting of
the package, which only places a group at the end of each cell. Note also the
use of a negative stacking gap, which is a perfectly acceptable syntax and can
be used to achieve overlap, if desired.

Fixed Tab Width (equal width columns, based on largest)

With the \fixTABwidth mode set, the stack will have fixed-width columns,\fixTABwidth
based on the overall widest entry. Compare with versus without fixed width for
the following TABstack.

\setstacktabbedgap{1ex}\fixTABwidth{T}%
$\left(\tabbedCenterstack[r]{1&34&544\\4324329&0&8\\89&123&1}\right)$
versus \fixTABwidth{F}%
$\left(\tabbedCenterstack[r]{1&34&544\\4324329&0&8\\89&123&1}\right)$(

89
4324329

1

123
0

34

1
8

544)
versus

(
89

4324329
1

123
0

34

1
8

544)

Setting the Stack Tabbing Character

By default, for the parsing of columns within a given row, this package em-
ploys the & character to delimit the columns. This value can be changed via
\setstackTAB{tabbing character}, where the argument is the newly desired\setstackTAB
tabbing token. It can be any of various tokens, including a space token, if one
wishes to parse a space-separated list of columns.

7

TABstacks Inside the tabular Environment

When invoking a TABstack inside another tabbed environment, such as tabular,
align, or other similar environments, one must group the TABstacks in their
own braces {}:

\ensureTABstackMath{%
\begin{tabular}{c|c}
Left Eqn. & Right Eqn.\\
\hline
{\tabularCenterstack{lr}{a_1 & 12\\c & 1234}} & \
{\tabularCenterstack{rl}{a_1 & 12\\c & 1234}}\\
\hline
\end{tabular}
}

Left Eqn. Right Eqn.

c
a1

1234
12

c
a1

1234
12

Math Relations/Operators at Cell Left/Right Extrema

There are two things to keep in mind regarding TABstacked content. First,
a TABstack cell has no precise understanding up what content precedes it in
the cell to the immediate left, nor what content follows it in the cell to the
immediate right. It does, however know the overall height/depth of the content
across the whole row and creates a vertical “strut” of that height and depth,
which must, in some way, be applied to every cell in the row.

This vertical strut can be applied to the cell immediately prior to or immediately
following the cell content, as we shall see. However, such an action will have an
effect on math operators and relations found at the leading or trailing ends of
the cell content.

Math operators and relations can be categorized as unary or binary; some may
be both, depending on their usage context, such as the minus sign. When used
as a − b, the relation is binary, because it connects a and b in a mathematical
operation. Note how space appears both before and after the minus sign. Al-
ternatively, when used as −π, the minus sign operates only upon what follows,
in this case π, to produce a negative. Note how no space is introduced between
the minus sign and π. This is the minus used as a unary operator.

Because a TABstack cell has no intimate knowledge of the adjacent cell content,
it is up to the user to employ his tabbing separators in a way that produces
the desired result. By default, tabstackengine will place the strut after the cell
content. This means that any trailing math operator in a cell will present itself

8

in its binary form (regardless of what comes in the cell to the right), because
the strut will appear as trailing data against which the operator can be set.
Similarly, any leading math operator will present itself as unary (regardless of
what content appears in the cell to the left).

Thus, under the default setting \tabbedLongstack{y =&-mx +& b} will present
as y = −mx+ b, by default, with the trailing equal and plus signs as binary, and
the leading minus sign as unary. The package can reverse the default with the
following declarative modes: \TABunaryRight (identical to \TABbinaryLeft);\TABunaryRight

\TABbinaryLeft alternately, one may use \TABbinary, which will present both leading and
\TABbinary trailing operators in their binary form. The default can be restored with

\TABunaryLeft (identical to \TABbinaryRight).
\TABunaryLeft

\TABbinaryRight Without changing any of the package strut modes, an operator, such as minus,
can always be forced into its unary mode by enclosing it in braces: {-}. Likewise,
it can be forced into its binary mode by placing empty braces on both sides of
it: {}-{}.

The Parsing Macros \readTABstack, etc.

As of version 2.00 of the tabstackengine package, the parsing functions of the
package were delegated to the very powerful listofitems package. As such the
\readTABrow macro is no longer supported. For typical parsing function-
ality, therefore, please consult the documentation to the listofitems package and
its \readlist macro. I commend it to your inspection and use for a variety of
parsing tasks.

However, there may still be a need to access the various stacking related data
in either a recently composed TABstack, or even one that is yet to be typeset.
When a TABstack is constructed by the tabstackengine package, a call is made
to the routine \readTABstack, in order to parse the data. This macro may\readTABstack
be independently called by the user to read TABstack data without producing
a constructed TABstack, by passing it the same tabbed, EOL-separated data
that would otherwise be used to construct a stack.2 If the routine is not called
independently by the user, data from the most recent TABstacking operation is
still available for interrogation.

Take the example

\TABstackMath\TABstackMathstyle{\displaystyle}\setstackgap{S}{5pt}%
\alignShortstack{\frac{A}{Q}x=&B\\ C= &\frac{Dx}{2}\\E=&F}

2Alternately, TABstacking data can be read without generating a TABstack by using the
\renewcommand\quietstack{T} setting of stackengine to suppress the stack output, without
suppressing its construction.

9

which presents as

E =

C =

A

Q
x =

F

Dx

2

B

Let us say we were interested in information about the cell in the 1st column of
the 2nd row. I can obtain its dimensions as the column-1 width \TABwd{1}, as\TABwd
well as the row-2 height and depth \TABht{2} and \TABdp{2}. Note that these\TABht

\TABdp macros provide dimensions of the TABstack cell, which in this case is larger
than the mere “C =” content. Those dimensions are as follows, followed by a
\rule depicting the total size of the cell:

Width: 29.35422pt, Height/Depth: 13.59839pt/6.85951pt, Rule:

One can also obtain information about what is in the cell. Here, use the macro
\TABcellRaw[2,1], which will expand to the tokens employed in the stack\TABcellRaw
definition (shown here in an \fbox to show that the leading/trailing spaces
have been discarded):

C=

If one would like to see the cell data presented in the prevailing (tab)stackengine
mode and style3, the macro \TABcell{2}{1} may be used (again shown in an\TABcell
\fbox):

C =

Note, however, that the \TABcell still does not account for three things:

• it is not strutted to reflect the height of the full row content;

• it does not reflect the full column width (nor the alignment within the
column); and

• it does not provide any of the empty group treatments that would other-
wise make leading/trailing math operators perform in a binary fashion.

A strut of the given row height may be obtained with \TABstrut{2}:\TABstrut

←the strut is boxed here to show its vertical extent

3Note that both \TABcell and, as described later, \TABcellBox present in the prevailing
TABstack mode and style. While a recent use of \ensureTABstackMath will be remembered,
intervening declarations of \TABstackMath, \TABstackText and their associated styles will
change the prevailing mode and style in which subsequent \TABcell and \TABcellBox are
processed.

10

However, to obtain the fully rendered cell, as it appears within the actual TAB-
stack, one needs \TABcellBox{2}{1}, shown (in an \fbox) as\TABcellBox

C =

Since the \readTABstack macro, itself, neither knows nor determines the even-
tual cell alignment of a future stack, the actual lcr alignment of a \TABcellBox
will only be known when applied to a previously constructed stack. Therefore, if
\TABcellBox is called following an independent invocation of \readTABstack,
center alignment of the cell content will be provided, by default, which can be
overridden with the optional argment to \TABcellBox.

Note that the height/depth of the \TABcellBox reflects the height and depth of
the row content of the TABstack. For short stacks, the specified gap between
rows is in addition to these strutted boxes. For long stacks, the inter-row spacing
is independent of the box height and depth. However, even for long stacks, the
height of the top row and the depth of the bottom row of a stack still affect the
overall dimensions of the stack.

If one wishes to recover the actual tokens that were employed in a given TAB-
stack cell (rather that just something that will expand to those tokens), that
can be accomplished in one of two ways. The macro \TABcellRaw[,] can be
expanded twice in the manner of

\detokenize\expandafter\expandafter\expandafter{\TABcellRaw[2,2]}

\frac {Dx}{2}

Alternately, the macro \getTABcelltoks[,] will produce a token list named\getTABcelltoks
\TABcelltoks that contains the cell’s tokens:\the\TABcelltoks

\getTABcelltoks[2,2]\detokenize\expandafter{\the\TABcelltoks}

\frac {Dx}{2}

In summary then, tabstackengine cell content can be accessed in a number of
ways:

11

\TABcellRaw[,] – expands into the tokens of the cell
\TABcell{}{} – presents the cell content in the prevailing mode (text or

math) and style set by stackengine and tabstackengine
\TABcellBox{}{} – presents the cell content, in the prevailing mode and

style, strutted to the proper row height/depth, set in a
box of the proper cell width, flanked by the appropri-
ate {} groups defined by tabstackengine’s unary and/or
binary declarations, and (when knowable) set in the
proper lcr alignment

\getTABcelltoks[,] – creates a token list register \TABcelltoks that contains
the actual tokens employed in the cell, accessible by way
of \the\TABcelltoks

TABstack Array Dimensions

Consider the example

\setstacktabbedgap{.5em}
\tabbedLongstack{a & b & c & d\\ e & f & g & h\\ i & j & k & l}

which produces

i
e
a

j
f
b

k
g
c

l
h
d

The macros \TABwd, \TABht, and \TABdp were presented as the means to get
the physical dimensions of various rows and columns of a TABstack. But what
if the information sought is the number of rows and columns?

The macro \TABcells{} performs the function. When passed a blank argument,\TABcells
it returns the number of rows of the most recently constructed TABstack (or
\readTABstack).

Rows = \TABcells{} = 3

On the other hand, pass it a row number for its arguments and it will tell you
how many columns below to that row

Columns = \TABcells{1} = 4

Note that tabstackengine uses the number of columns provided in row 1 to
determine the dimensions of the subsequent TABstack. If the 2nd or 3rd rows
of the above stack were [accidentally] defined with 5 columns of data, the 5th
column of data would be ignored during the TABstack construction, since the

12

1st row only has 4 columns. However, in that case, \TABcells{2} would still,
in fact, yield 5.

6 Absent Features/Tricky Syntax

1. Nothing Equivalent to \hline or |

This is not a bug, but rather a notation of a missing feature. Currently there
is nothing equivalent to \hline available for use in tabstackengine arguments.
Furthermore, vertical lines may not be added to a tabular stack with the use
of | elements in the column specifier.

2. Empty Items Are Not Ignored (by Default)

The listofitems package used to parse TABstack input, does not, by default,
ignore empty items. This can cause parsing errors, if not understood properly.
Take, for example, the well formed TABstack invocation,

\tabularLongstack{rc}{11&12\\21&22\\31&32}.

Adding a trailing \\ to the input, as in:

\tabularLongstack{rc}{11&12\\21&22\\31&32\\},

however, breaks the parsing because 2 columns of data are expected following
the final \\ (even though such syntax is accepted in, for example, the tabular
environment). This syntax can be immediately made acceptable by invoking
the listofitems declaration \ignoreemptyitems, in which case the final [empty]
row is discarded. However, that approach can introduce a new set of problems,
because it will then ignore actual blank input that was intended, as in the case
of this example, in which table cell (2,2) is intentionally left blank:

\tabularLongstack{rc}{11&12\\21&\\31&32\\}.

To make this latter case work, when empty items are ignored, an empty group
would need be explicitly inserted:

\tabularLongstack{rc}{11&12\\21&{}\\31&32\\}.

These problems can be wholly avoided if care is used in the construction of
TABstack input.

13

Acknowledgements

I would like to thank Christian Tellechea for his development of the listofitems
package (which was directly inspired by my deficient getargs package). The
macros provided by Christian were directly implemented for version 2.00 of the
tabstackengine package.

I would also thank the user “Werner” at tex.stackexchange.com for helping me
to understand some of the details of the etoolbox package:

http://tex.stackexchange.com/questions/140372/
loop-multi-contingency-using-etoolbox

7 Code Listing

\def\tabstackengineversionnumber{V2.01}
%
% THIS MATERIAL IS SUBJECT TO THE LaTeX Project Public License
%
% V1.00 -Adopted beta version 0.21 as initial release version 1.0
% V1.10 -Corrected unary/binary problem for left end of tabbed cell content;
% -Added \TABunaryLeft (\TABbinaryRight) for " cell{} ";
% added \TABunaryRight (\TABbinaryLeft) for " {}cell ";
% added \TABbinary for " {}cell{} ";
% The default is \TABunaryLeft (V1.00 wrongly equivalent to \TABbinary)
% This removes need to brace unary negatives at lead of cell.
% -Corrected bug of trailing \frac, noted in V1.00, by adding a
% \relax to definition of \@postTAB in \readTABrow.
% V2.00 -Incorporate listofitems package methodology for parsing, requiring
% some package rewrite, primarily macro \@readMANYrows.
% -Fixed bug in \ensureTABstackMath that had automatically returned to
% \TABstackText mode.
% -Added \Matrixstack macro (equivalent to \tabbedVectorstack)
% -Added \TABstackTextstyle, \TABstackMathstyle, and \clearTABstyle
% to allow things like fontsize, \displaystyle, etc. to be set inside
% a stack, by default.
% -Converted \newlength\maxTAB@width to a \xdef\maxTABwd. Introduced
% \TABwd{}, \TABht{}, and \TABdp{} for obtaining widths of columns
% and heights/depths of rows.
% -\TABstrut now defined at time of parsing, rather than reconstructed after
% the fact. This will prevent any confusions if the math/text stack mode
% settings change.
% -Employed a \toks based approach to parsing the argument, rather than the
% previous \protected@edef approach. The prior approach suffered problems
% when \\ was redefined, as in, for example, \centering or \raggedright.
% V2.01 -Take advantage of listofitems revision to allow global \readlist, via
% \greadlist. This allows \setsepchar to be placed inside of group, thus
% preventing a global change in the listofitems \setsepchar.
% -\TABcell and \TABcellBox modified to remember recent use of
% \ensureTABstackMath, which otherwise changes temporarily the

14

% prevailing mode and style of the TABstack.
\ProvidesPackage{tabstackengine}
[2016/11/30 (\tabstackengineversionnumber) tabbed stacking]
\RequirePackage{stackengine}[2016-10-04]
\RequirePackage{listofitems}[2016/11/18]
\RequirePackage{etoolbox}

\newcounter{TABrowindex@}
\newcounter{TABcolindex@}
\newcounter{TABalignmentindex@}
\newtoggle{fixed@TABwidth}
\newtoks\TABcelltoks
\newtoks\TABcoltoks
\newtoks\LstrutTABtoks
\newtoks\RstrutTABtoks

\def\getTABcelltoks[#1,#2]{%
\TABcelltoks=\expandafter\expandafter\expandafter{\TABcellRaw[#1,#2]}}

\def\@getstruttedTABcelltoks[#1,#2]{%
\getTABcelltoks[#1,#2]%
\edef\TABstack@rownum{#1}%\
\LstrutTABtoks=\expandafter{\expandafter\TAB@strutL\expandafter{\TABstack@rownum}}%
\RstrutTABtoks=\expandafter{\expandafter\TAB@strutR\expandafter{\TABstack@rownum}}%
\prepend@toksto\TABcelltoks\LstrutTABtoks%
\append@toksto\TABcelltoks\RstrutTABtoks}

\def\prepend@toksto#1#2{#1=\expandafter\expandafter\expandafter%
{\expandafter\the\expandafter#2\the#1}}

\def\append@toksto#1#2{#1=\expandafter\expandafter\expandafter%
{\expandafter\the\expandafter#1\the#2}}

\newcommand\setstackTAB[1]{\ifstrempty{#1}{\def\TAB@char{ }}{\def\TAB@char{#1}}}

\newcommand\readTABstack[1]{%
\expandafter\expandafter\expandafter\setsepchar\expandafter\expandafter%

\expandafter{\expandafter\SEP@char\expandafter/\TAB@char}%
\greadlist*\TABcellRaw{#1}%
\edef\TABstack@rows{\TABcellRawlen}%
\edef\TABstack@cols{\listlen\TABcellRaw[1]}%
\def\maxTABwd{0pt}%
\setcounter{TABrowindex@}{0}%
\whileboolexpr{test {\ifnumless{\theTABrowindex@}{\TABstack@rows}}}{% ROW LOOP

\def\@accumulatedTAB{}%
\stepcounter{TABrowindex@}%
\setcounter{TABcolindex@}{0}%
\whileboolexpr{test {\ifnumless{\theTABcolindex@}{\TABstack@cols}}}{% COL LOOP

\stepcounter{TABcolindex@}%
\ifnum\value{TABrowindex@}=1\relax\csxdef{col\theTABcolindex@ TAB@wd}{0pt}\fi%
\getTABcelltoks[\theTABrowindex@,\theTABcolindex@]%
\expandafter\g@addto@macro\expandafter\@accumulatedTAB\expandafter{%

\the\TABcelltoks{}}%
\setbox0=\hbox{\stack@delim\TAB@delim{%

\TAB@strutL{0}\the\TABcelltoks\TAB@strutR{0}}\stack@delim}%
\ifdim\wd0>\csuse{col\theTABcolindex@ TAB@wd}\relax%

\csxdef{col\theTABcolindex@ TAB@wd}{\the\wd0}%

15

\ifdim\wd0>\maxTABwd\relax\xdef\maxTABwd{\the\wd0}\fi\fi%
\csxdef{col\theTABcolindex@ TAB@stackalignment}{c}% DEFAULT, LATER CHANGED

}%
\setbox0=\hbox{\stack@delim\TAB@delim{\@accumulatedTAB}\stack@delim}%
\csxdef{row\theTABrowindex@ TAB@ht}{\the\ht0}%
\csxdef{row\theTABrowindex@ TAB@dp}{\the\dp0}%
\global\let\recent@TAB@delim\TAB@delim%

}%
}

\newcommand\TABwd[1]{\csuse{col#1TAB@wd}}
\newcommand\TABht[1]{\csuse{row#1TAB@ht}}
\newcommand\TABdp[1]{\csuse{row#1TAB@dp}}
\newcommand\TABstrut[1]{\ifnum#1<1\relax{}\else%

\protect\rule[-\TABdp{#1}]{0pt}{\dimexpr\TABdp{#1}+\TABht{#1}\relax}\fi}

\newcommand\TABcell[2]{\stack@delim\recent@TAB@delim{\TABcellRaw[#1,#2]}\stack@delim}

\newcommand\TABcellBox[3][\relax]{\ifx\relax#1\relax%
\TABcellBox@aux{\csuse{col#3TAB@stackalignment}}{#2}{#3}\else
\TABcellBox@aux{#1}{#2}{#3}\fi}

\newcommand\TABcellBox@aux[3]{\makebox[\TABwd{#3}][#1]{\stack@delim%
\recent@TAB@delim{\TAB@strutL{#2}\TABcellRaw[#2,#3]\TAB@strutR{#2}}\stack@delim}}

\newcommand\TABcells[1]{\listlen\TABcellRaw[#1]}

\newcommand\TABunaryLeft{\def\TAB@strutL##1{}%
\def\TAB@strutR##1{\TABstrut{##1}}}

\newcommand\TABunaryRight{\def\TAB@strutL##1{\TABstrut{##1}}%
\def\TAB@strutR##1{}}

\newcommand\TABbinary{\def\TAB@strutL##1{{}}%
\def\TAB@strutR##1{\TABstrut{##1}}}

\let\TABbinaryRight\TABunaryLeft
\let\TABbinaryLeft\TABunaryRight

\newcommand\TABstackMath{\renewcommand\TAB@delim[1]{\ensuremath{\TAB@mathstyle##1}}%
\let\recent@TAB@delim\TAB@delim}

\newcommand\TABstackText{\renewcommand\TAB@delim[1]{\TAB@textstyle##1}%
\let\recent@TAB@delim\TAB@delim}

\newcommand\TABstackMathstyle[1]{\renewcommand\TAB@mathstyle{#1}}
\newcommand\TABstackTextstyle[1]{\renewcommand\TAB@textstyle{#1}}
\newcommand\clearTABstyle{\renewcommand\TAB@textstyle{}\renewcommand\TAB@mathstyle{}}

\newcommand\tabbedShortstack[2][\stackalignment]{%
\@TAB@stack{#1}{#2}{D}{\Shortstack}}

\newcommand\alignShortstack[1]{%
\@TAB@stack{}{#1}{A}{\Shortstack}}

\newcommand\tabularShortstack[2]{%
\@TAB@stack{}{#2}{#1}{\Shortstack}}

\newcommand\tabbedShortunderstack[2][\stackalignment]{%
\@TAB@stack{#1}{#2}{D}{\Shortunderstack}}

\newcommand\alignShortunderstack[1]{%

16

\@TAB@stack{}{#1}{A}{\Shortunderstack}}

\newcommand\tabularShortunderstack[2]{%
\@TAB@stack{}{#2}{#1}{\Shortunderstack}}

\newcommand\tabbedLongstack[2][\stackalignment]{%
\@TAB@stack{#1}{#2}{D}{\Longstack}}

\newcommand\alignLongstack[1]{%
\@TAB@stack{}{#1}{A}{\Longstack}}

\newcommand\tabularLongstack[2]{%
\@TAB@stack{}{#2}{#1}{\Longstack}}

\newcommand\tabbedLongunderstack[2][\stackalignment]{%
\@TAB@stack{#1}{#2}{D}{\Longunderstack}}

\newcommand\alignLongunderstack[1]{%
\@TAB@stack{}{#1}{A}{\Longunderstack}}

\newcommand\tabularLongunderstack[2]{%
\@TAB@stack{}{#2}{#1}{\Longunderstack}}

\newcommand\tabbedCenterstack[2][\stackalignment]{%
\@TAB@stack{#1}{#2}{D}{\Centerstack}}

\newcommand\alignCenterstack[1]{%
\@TAB@stack{}{#1}{A}{\Centerstack}}

\newcommand\tabularCenterstack[2]{%
\@TAB@stack{}{#2}{#1}{\Centerstack}}

\newcommand\tabbedVectorstack[2][\stackalignment]{%
\ensureTABstackMath{\@TAB@stack{#1}{#2}{D}{\Vectorstack}}}

\newcommand\alignVectorstack[1]{%
\ensureTABstackMath{\@TAB@stack{}{#1}{A}{\Vectorstack}}}

\newcommand\tabularVectorstack[2]{%
\ensureTABstackMath{\@TAB@stack{}{#2}{#1}{\Vectorstack}}}

\let\Matrixstack\tabbedVectorstack% ADDED V2.00

\newcommand\parenMatrixstack[2][\stackalignment]{%
\ensureTABstackMath{\left(\@TAB@stack{#1}{#2}{D}{\Vectorstack}\right)}}

\newcommand\braceMatrixstack[2][\stackalignment]{%
\ensureTABstackMath{\left\{\@TAB@stack{#1}{#2}{D}{\Vectorstack}\right\}}}

\newcommand\bracketMatrixstack[2][\stackalignment]{%
\ensureTABstackMath{\left[\@TAB@stack{#1}{#2}{D}{\Vectorstack}\right]}}

\newcommand\vertMatrixstack[2][\stackalignment]{%
\ensureTABstackMath{\left|\@TAB@stack{#1}{#2}{D}{\Vectorstack}\right|}}

\newcommand\@TAB@stack[4]{\bgroup%
\readTABstack{#2}%

17

\edef\stackalignment{#1}%
\setcounter{TABcolindex@}{0}%
\whileboolexpr{test {\ifnumless{\theTABcolindex@}{\TABstack@cols}}}{% COL LOOP

\stepcounter{TABcolindex@}%
\@getstruttedTABcelltoks[1,\theTABcolindex@]%
\TABcoltoks=\expandafter{\expandafter\TAB@delim\expandafter{\the\TABcelltoks}}%
\@getTABalignment{#3}{\theTABcolindex@}%
\ifboolexpr{test {\ifnumgreater{\theTABcolindex@}{1}}}%

{\add@TAB@gap{#3}{\theTABcolindex@}}{}%
\setcounter{TABrowindex@}{1}%
\whileboolexpr{test {\ifnumless{\theTABrowindex@}{\TABstack@rows}}}{% ROW LOOP

\stepcounter{TABrowindex@}%
\@getstruttedTABcelltoks[\theTABrowindex@,\theTABcolindex@]%
\TABcoltoks=\expandafter\expandafter\expandafter\expandafter\expandafter%

\expandafter\expandafter{\expandafter\expandafter\expandafter%
\the\expandafter\expandafter\expandafter\TABcoltoks\expandafter%
\SEP@char\expandafter\TAB@delim\expandafter{\the\TABcelltoks}}%

}%
\iftoggle{fixed@TABwidth}%

{\makebox[\maxTABwd][\stackalignment]{%
\expandafter#4\expandafter{\the\TABcoltoks}}}%

{\expandafter#4\expandafter{\the\TABcoltoks}}%
}%

\egroup}

\newcommand\tabbedstackon[3][\stackgap]{%
\@TABstackonunder{#1}{#2}{#3}{D}{\stackon}}

\newcommand\alignstackon[3][\stackgap]{%
\@TABstackonunder{#1}{#2}{#3}{A}{\stackon}}

\newcommand\tabularstackon[4][\stackgap]{%
\@TABstackonunder{#1}{#3}{#4}{#2}{\stackon}}

\newcommand\tabbedstackunder[3][\stackgap]{%
\@TABstackonunder{#1}{#2}{#3}{D}{\stackunder}}

\newcommand\alignstackunder[3][\stackgap]{%
\@TABstackonunder{#1}{#2}{#3}{A}{\stackunder}}

\newcommand\tabularstackunder[4][\stackgap]{%
\@TABstackonunder{#1}{#3}{#4}{#2}{\stackunder}}

\newcommand\tabbedstackanchor[3][\stackgap]{%
\@TABstackonunder{#1}{#2}{#3}{D}{\stackanchor}}

\newcommand\alignstackanchor[3][\stackgap]{%
\@TABstackonunder{#1}{#2}{#3}{A}{\stackanchor}}

\newcommand\tabularstackanchor[4][\stackgap]{%
\@TABstackonunder{#1}{#3}{#4}{#2}{\stackanchor}}

\newcommand\@TABstackonunder[5]{\bgroup%
\def\TAB@tmp{#2}%
\expandafter\g@addto@macro\expandafter\TAB@tmp\expandafter{\SEP@char#3}%
\readTABstack{\TAB@tmp}%
\setcounter{TABcolindex@}{0}%

18

\whileboolexpr{test {\ifnumless{\theTABcolindex@}{\TABstack@cols}}}{% COL LOOP
\stepcounter{TABcolindex@}%
\@getTABalignment{#4}{\theTABcolindex@}%
\ifboolexpr{test {\ifnumgreater{\theTABcolindex@}{1}}%
}{\add@TAB@gap{#4}{\theTABcolindex@}}{}%
\iftoggle{fixed@TABwidth}%

{\makebox[\maxTABwd][\stackalignment]{%
#5[#1]%

{\TAB@delim{\TAB@strutL{1}\TABcellRaw[1,\theTABcolindex@]\TAB@strutR{1}}}%
{\TAB@delim{\TAB@strutL{2}\TABcellRaw[2,\theTABcolindex@]\TAB@strutR{2}}}}}%

{#5[#1]%
{\TAB@delim{\TAB@strutL{1}\TABcellRaw[1,\theTABcolindex@]\TAB@strutR{1}}}%
{\TAB@delim{\TAB@strutL{1}\TABcellRaw[2,\theTABcolindex@]\TAB@strutR{2}}}}%

}%
\egroup}

\newcommand\@getTABalignment[2]{%
\ifstrequal{#1}{D}{}{% T, DO NOTHING (USE \stackalignment)

\ifstrequal{#1}{A}{%
\ifnumequal{1}{#2}{%

\def\stackalignment{r}}{% A, 1st ELEMENT, SET TO r
\if l\stackalignment%

\def\stackalignment{r}\else% A, SWITCH l TO r
\def\stackalignment{l}\fi}}{% A, SWITCH r TO l
\set@tabularcellalignment{#1}{#2}% tabular, READ #2 location

}%
}%
\csxdef{col\theTABcolindex@ TAB@stackalignment}{\stackalignment}%

}

\newcommand\setstacktabbedgap[1]{\def\tabbed@gap{#1}}
\newcommand\setstackaligngap[1]{\def\align@gap{#1}}
\newcommand\setstacktabulargap[1]{\def\tabular@gap{#1}}

\newcommand\add@TAB@gap[2]{%
\ifstrequal{#1}{D}{\hspace{\tabbed@gap}}{%

\ifstrequal{#1}{A}%
{\if r\stackalignment\hspace{\align@gap}\fi}{\hspace{\tabular@gap}}%

}%
}

\newcommand\set@tabularcellalignment[2]{%
\setcounter{TABalignmentindex@}{1}%
\edef\tabular@settings{#1.}%
\whileboolexpr{test {\ifnumless{\theTABalignmentindex@}{#2}}}{%

\stepcounter{TABalignmentindex@}%
\edef\tabular@settings{\expandafter\@gobble\tabular@settings.}%

}%
\expandafter\@getnextTABchar\tabular@settings\\% GET NEXT TAB ALIGNMENT
\if l\@nextTABchar\edef\stackalignment{l}\else%

\if r\@nextTABchar\edef\stackalignment{r}\else%
\if c\@nextTABchar\edef\stackalignment{c}\fi%

\fi% IGNORE IF NOT l, c, OR r
\fi%

}

\def\@getnextTABchar#1#2\\{\gdef\@nextTABchar{#1}}

19

\newcommand\fixTABwidth[1]{%
\if T#1\toggletrue{fixed@TABwidth}\else\togglefalse{fixed@TABwidth}\fi}

\newcommand\ensureTABstackMath[1]{%
\let\sv@TABmode\TAB@delim\TABstackMath#1\let\TAB@delim\sv@TABmode}

\setstackEOL{\\}% DEFAULT ROW SEP
\setstackTAB{&}% DEFAULT COL SEP
\def\TAB@mathstyle{}% NOTHING ADDED TO DEFAULT TAB MATH STYLE
\def\TAB@textstyle{}% NOTHING ADDED TO DEFAULT TAB TEXT STYLE
\def\TAB@delim{}\TABstackText% INITIALIZE DEFAULT TO TEXT TABSTACKING
\TABunaryLeft% NO DEFAULT EMPTY {} GROUP AT LEFT END OF EACH CELL
\def\tabbed@gap{0pt}% DEFAULT TABBED COL GAP
\def\align@gap{1em}% DEFAULT ALIGN COL GAP
\def\tabular@gap{\tabcolsep}% DEFAULT TABULAR COL GAP
\fixTABwidth{F}% DEFAULT NON-FIXED WIDTH COLUMNS

\endinput

20

