
The svnkw package∗

Martin Scharrer
martin@scharrer-online.de

May 29, 2006

1 Introduction

This package lets you typeset keywords of the version control system Subversion1

(svn), which is the successor of the popular CVS, inside your LATEX files anywhere
you like. Unlike the very similar package svn2 the usage of multiple files for one
LATEX document is well supported. The package acquires the keywords of the last
changed file and provides them to the user through macros. The package has to
read all keywords of all files first and writes the most recent values in an axiliary
file with an ’.svn’ extention. This file is read back at the next LATEX run which
introduces a delay like by the table of contents.

The special date features of the svn package are not (yet?) supported. If you
need them you can try to use both packages together which should work but is
not tested by the author.

2 Usage

2.1 Including of the Subversion keywords

To include your Subversion Id keywords use \svnid or \svnidlong. This macros
should be written very early in each file, i.e. in the preamble of the main docu-
ment soon after \documentclass and \usepackage{svnkw} and as first in every
\included subfile before the \chapter macro. They do not create any output.

Macro for the svn Id keyword. Write the macro as \svnid{Id} into your\svnid

files and set the subversion property svn:keywords of them to at least ’Id’. Sub-
version will expand it. A trailing colon with spaces after the Id is also valid but
everything else will cause a TEX parse error.

The keyword content will be interpreted and saved in the variables (ah, macros)
\svnfilerev, \svnfiledate and \svnfileauthor. The most recent values (i.e.
with the highest revision) are written as \svnrev, \svndate and \svnauthor in
a .svn-file which is read back at the next LATEX run. The idea is that the first
variables holding the local values for the current file and the otheris the values
for the complete document. Nevertheless all keywords can also be typeset with

∗This document corresponds to svnkw v1.0, dated 2006/05/27.
1Subversion homepage: http://subversion.tigris.org/
2CTAN: http://www.ctan.org/tex-archive/macros/latex/contrib/svn/

1

\svnkw{〈keyword〉} which returns the latest saved value. This macro is used
internally.

Macro for a ”long Id”. Saves similar values like in ’Id’ but from the keywords\svnidlong

HeadURL, LastChangedDate, LastChangedRevision and LastChangedBy. The
usage of \svnid or \svnidlong is a matter of taste. The second is more readable
inside the code and results in a nicer date and a full URL, not only the filename.
Both can be used together.

Write this as (order of arguments not meaningfull)
\svnidlong
{$HeadURL$}
{$LastChangedDate$}
{$LastChangedRevision$}
{$LastChangedBy$}
in your files and set the subversion property svn:keywords of them to
’HeadURL LastChangedDate LastChangedRevision LastChangedBy’.

This macro lets you set svn keywords directly. The only argument is the svn\svn

keyword in the usual dollars. The dollars will be stripped by the macro and the
rest is typeset as normal text. This macro alone was the very first version of svnkw
and is still included for fast and simple keyword typesetting.

This macro lets you include and save any keyword you like. The only argument\svnkwsave

is the keyword wrapped in dollars. The keyword can be already expanded or not
(no value and only ”:” or nothing after the key name). This macro is also used
internally and does not create any output.

2.2 Access to the keyword values

Keyword values can be typeset by this macro. It takes one argument which must\svnkw

be a subversion keyword name. It then returns the current value of this keyword
or nothing (\relax) when the keyword was not set yet.
Examples:
\textsl{Revision: \svnkw{Revision}}
URL: \url{\svnkw{HeadURL}}
In the second example \url (hyperref package) is used to add a hyperlink and
to avoid problems with underscores (_) inside the URL.

This macro is used to define the keyword values. This is normally only called\svnkwdef

internally but could be used by the user to override single keywords. The values
can then be typeset by \svnkw. Note that \svnid and \svnidlong both sets some
keywords to new values using this macro.

Note that for \svnkw and \svnkwdef all different names for one keyword are
valid and result in the access of the same variable. So e.g. subversion treats
Rev, Revision and LastChangedRev the same way and so does this macros.
You can e.g. say \svnkwdef{Rev} and then typeset it with \svnkw{Revision}
or \svnkw{LastChangedRev} if you like.

2.3 Using full author names

If you like to have the full author3 names, not only the usernames, in your
document you can use the following macros. First you have to register all au-

3This means subversion authors, e.g. the persons who commit changes into the svn reprository.

2

thors of the document with \svnRegisterAuthor and then you can write e.g.
\svnFullAuthor{\svnauthor} or \svnFullAuthor{\svnfileauthor}.

The usage is \svnRegisterAuthor{〈username〉}{〈full name〉} which registers\svnRegisterAuthor

〈full name〉 as full name for 〈username〉.
Takes the username as argument and returns the full name if it was registered\svnFullAuthor

first with \svnRegisterAuthor or nothing (\relax) else. There is also a star
version \svnFullAuthor* which also returns the username in parentheses after
the full name.

3 Implementation

\svn Just calls TeX macro \@svn to strip the dollars.
1 \newcommand{\svn}[1]{\@svn#1}

2 \def\@svn$#1${#1}

\svnkwdef First we check if there is a ’setter’-macro for the keyword called \svnkwdef@〈keyword〉.
3 \newcommand{\svnkwdef}[2]{%

4 \@ifundefined{svnkwdef@#1}

If not we call the general macro \svnkwdef@.
5 {\svnkwdef@{#1}{#2}}

If yes we just call it with the value as argument.
6 {\csname svnkwdef@#1\endcsname{#2}}

7 }

\svnkwdef@ This macro defines the second argument under \svnkw〈2nd argument〉. The \xdef
is used to expand the content first (needed for internal use) and make the definition
globally.
8 \newcommand{\svnkwdef@}[2]

9 {\expandafter\xdef\csname svnkw#1\endcsname{#2}}

Example: \svnkwdef{Revision}{23} will define \svnkwRevision as 23.

\svnkwdef@... ’Setter’-macros for single keywords, used by \svnkwdef.
The keywords Rev, Author and Date are just calling \svnkwdef@ with a fixed first
argument.
10 \def\svnkwdef@Rev#1{\svnkwdef@{Rev}{#1}}

11 \def\svnkwdef@Author#1{\svnkwdef@{Author}{#1}}

12 \def\svnkwdef@Date#1{\svnkwdef@{Date}{#1}}

The long keywords are defined then as aliases of the short,
first for writting
13 \let\svnkwdef@Revision=\svnkwdef@Rev

14 \let\svnkwdef@LastChangedRevision=\svnkwdef@Rev

15 \let\svnkwdef@LastChangedBy=\svnkwdef@Author

16 \let\svnkwdef@LastChangedAt=\svnkwdef@Date

and then for reading.
17 \def\svnkwRevision{\svnkwRev}

18 \def\svnkwLastChangedRevision{\svnkwRev}

19 \def\svnkwLastChangedBy{\svnkwAuthor}

20 \def\svnkwLastChangedAt{\svnkwDate}

3

So e.g. \svnkw{LastChangedRevision} is always be the same as \svnkw{Rev}.

We define default values for normal keywords. Keyword Filename is the name
given by Id and not a real keyword.
21 \svnkwdef{Rev}{0} % must always be numerical

22 \svnkwdef{Date}{}

23 \svnkwdef{Author}{}

24 \svnkwdef{Filename}{}

25 \svnkwdef{HeadURL}{}

\svnkw Macro to get keyword value. Just calls \svnkwARGUMENT where ARGUMENT is the
argument interpreted as text. So e.g. \svnkw{Date} is the same as \svnkwDate
but this could be changed later so always use this interface to get the keyword
values.
26 \newcommand{\svnkw}[1]{\csname svnkw#1\endcsname}

\svn@scanId Scans svn Id (after it got parsed by \svn@readkw). Awaits only Id value without
leading ’Id:’ and a trailing dollar as end marker. It calls \@svn@updateid to
update global Id values and also sets the approbriate keywords.
27 \def\svn@scanId#1 #2 #3 #4 #5${%

28 % #1 is filename, #2 is revision, #3 is date (JJJJ-MM-DD),

29 % #4 is time (HH:MM:SST), #5 is author (username)

30 \@svn@updateid{#2}{#3 #4}{#5}%

31 \svnkwdef{Filename}{#1}%

32 \svnkwdef{Date}{#3 #4}%

33 \svnkwdef{Revision}{#2}%

34 \svnkwdef{Author}{#5}%

35 }

\svn@readkw General macro to read keywords. Saves key in \svn@key and the value in
\svn@value. We have to analyse the argument but need it in full later. So
we use the submacro \svn@readkw@sub to do the scan job. Sets \svn@case to one
of three cases, where the first two cases result in identical code.
36 \def\svn@readkw$#1${%

37 \svn@readkw@sub$#1: $ % call submacro to get case

38 \ifnum\svn@case<3

If there is no value set \svn@value to empty and define \svn@key to the full
argument.
39 \def\svn@key{#1}

40 \let\svn@value=\svn@empty

41 \svn@checkkeyforcolon$#1:$ % needed for case ’$kw:$’

42 \relax

43 \else

If there is a value split the argument again by calling \svn@readkw@def.
44 \svn@readkw@def$#1$ % needed to remove leading space

45 \fi

46 }

47

48 \newcount\svn@case

49 \let\svn@empty=\empty

4

The submacro \svn@readkw@sub checks if the argument ends with ’: ’. In
order to mach always we add a ’: ’ at the macro call and then test here if #2 is
empty. This is the case if there was no ’: ’ before. We return 1 if there was no
colon which means the keyword is not yet expanded by Subversion.
50 \def\svn@readkw@sub$#1: #2${%

51 \def\svn@temp{#2}

52 \ifx\svn@temp\empty

53 \svn@case=1

54 \else

If there was an tailing ’: ’ we check if #2 is now just ’: ’ which would be the ’: ’
we added at the macro call.
55 \svn@checkcolon$#2$

56 \ifx\svn@temp\empty

If we have nothing (empty value) in #2 return 2.
57 \svn@case=2

58 \else

If we have something in #2 return 3.
59 \svn@case=3

60 \fi\fi

61 }

\svn@readkw@def Submacro for \svn@readkw to split argument and to save the parts.
62 \def\svn@readkw@def$#1: #2 ${%

63 \def\svn@key{#1}

64 \def\svn@value{#2}

65 }

\svn@checkcolon Checks whether value is just ’: ’, if yes \svn@temp is empty.
66 \def\svn@checkcolon$#1: ${%

67 \def\svn@temp{#1}

68 }

\svn@checkkeyforcolon Checks whether key includes a trailing ’:’ and removes it. Must be called with an
trailing ’:’ to always mach! So its check actually for tow trailing ’:’.
69 \def\svn@checkkeyforcolon$#1:#2${%

70 \def\svn@temp{#2}

71 \ifx\svn@temp\empty

72 \else

73 \def\svn@key{#1}

74 \fi

75 }

Definition of init values.
76 % Init values

77 \def\svnrev{0} % \

78 \def\svndate{} % > Values for whole project

79 \def\svnauthor{} % /

80 \def\svnfilerev{0} % \

81 \def\svnfiledate{} % > Values for current file

82 \def\svnfileauthor{} % /

83 \def\@svn@rev{0} % \

5

84 \def\@svn@date{} % > Values for packet internal use

85 \def\@svn@author{} % /

\svnid We read the argument with \svn@readkw and provide the value to \svn@scanId.
86 \newcommand{\svnid}[1]{%

87 \svn@readkw#1 % Read keyword

88 \ifx\svn@value\empty % Check if value is empty

89 \else

90 \expandafter\svn@scanId\svn@value$ % Scan Id

91 \fi

92 }

\svnidlong We clear the keyword value first to reduce the risk though bad user input.
93 \newcommand{\svnidlong}[4]{

94 \svnkwdef{HeadURL}{}%

95 \svnkwdef{LastChangedDate}{}%

96 \svnkwdef{LastChangedRevision}{0}%

97 \svnkwdef{LastChangedBy}{}%

Then we save the four keywords/arguments using \svnkwsave.
98 \svnkwsave{#1}\svnkwsave{#2}

99 \svnkwsave{#3}\svnkwsave{#4}

And update the latest values.
100 \@svn@updateid{\svnkw{LastChangedRevision}}{\svnkw{LastChangedDate}}%

101 {\svnkw{LastChangedBy}}

102 }

\svnkwsave Save macro. Takes a dollar wrapped keyword string, reads it though \svn@readkw
and saves it using \svnkwdef.

103 \newcommand{\svnkwsave}[1]{%

104 \def\svn@temp{#1}

105 \ifx\svn@temp\empty

106 %% skip at empty argument

107 \else

108 \svn@readkw#1% read keyword

109 \svnkwdef{\svn@key}{\svn@value}

110 \fi

111 }

\@svn@updateid We first define the expanded arguments to variables for the user. The expansion
is needed because the arguments content is mostly generic like \svn@key and
\svn@value which can change very soon after this macro.

112 \def\@svn@updateid#1#2#3{% #1 = rev, #2 date, #3 author (username)

113 \edef\svnfilerev{#1}

114 \edef\svnfiledate{#2}

115 \edef\svnfileauthor{#3}

Then we check if the revision is non-empty (not yet expanded by subversion?)
and larger then the current maximum value \@svn@rev. If yes we save all value
to save them in the .svn-file later.

116 \ifx\svnfilerev\empty\else % skip rest if rev is empty

117 \ifnum\@svn@rev<\svnfilerev%

118 \edef\@svn@rev{#1}

6

119 \edef\@svn@date{#2}

120 \edef\@svn@author{#3}

121 \else\fi

122 \fi

123 }

\svnRegisterAuthor Saves the author’s name by defining \svn@author@〈username〉 to it.
124 \newcommand{\svnRegisterAuthor}[2]{%

125 \expandafter\def\csname svn@author@#1\endcsname{#2}

126 }

\svnFullAuthor We test if the starred or the normal version is used and call the appropriate
submacro \svnFullAuthor@star or \svnFullAuthor@normal.

127 \newcommand{\svnFullAuthor}{%

128 \@ifnextchar{*}

129 {\svnFullAuthor@star}

130 {\svnFullAuthor@normal}

131 }

Both submacros are calling \svnFullAuthor@ but with different arguments. The
star macro also removes the star of course.

132 \def\svnFullAuthor@star*#1{\svnFullAuthor@{#1}{\ (#1)}}

133 \def\svnFullAuthor@normal#1{\svnFullAuthor@{#1}{}}

\svnFullAuthor@ now sets the author’s full name. Note that #2 is empty when
the normal version is called.

134 \def\svnFullAuthor@#1#2{%

135 \csname svn@author@#1\endcsname #2

136 }

At the end of document we write the values to an auxiliary file.
137 \AtEndDocument{

We first check if we have somthing to save. Revision, date and author must be non-
empty. This suppresses the auxiliary file if the user doesn’t use the appropriate
macros but other provided by this package.

138 \ifx\@svn@rev\empty\else

139 \ifnum\@svn@rev=0\else

140 \ifx\@svn@date\empty\else

141 \ifx\@svn@author\empty\else

Open outfile to write project keywords.
142 \newwrite\svnwrite

143 \immediate\openout\svnwrite=\jobname.svn

144 \immediate\write\svnwrite{\@percentchar\space SVN cache}

145 \immediate\write\svnwrite{\noexpand\def\noexpand\svnrev{\@svn@rev}}

146 \immediate\write\svnwrite{\noexpand\def\noexpand\svndate{\@svn@date}}

147 \immediate\write\svnwrite{\noexpand\def\noexpand\svnauthor{\@svn@author}}

148 \immediate\closeout\svnwrite

149 \fi\fi\fi\fi

150 }

151

Reread output from last compile run if it exists.
152 \InputIfFileExists{\jobname.svn}{}{}

7

