The svn-multi Package

Martin Scharrer
martin@scharrer-online.de

http://www.ctan.org/pkg/svn- multi

Version 2.4c
April 1, 2011

1 Introduction

This package allows to typeset version control (VC) information provided by Subver-
sion! keywords (e.g. $Id: ... $)in BIX documents which can contain of multiple
.tex files included using \include or \input. Subversion is a modern version con-
trol system designed to replace its predecessor CVS and uses integers as revision
numbers.

This package reads the keywords of all files and provides the VC information of
of the most recent changed file of the document to the user through a set of macros.
This information is written to an auxiliary .aux file during the first BIfX run and read
back at the next which introduces the same delay known from the table of contents.
The standard BIEX switch \nofiles can be used to suppress the file generation.

In addition to this basic functionality several more features are provided:

e Macros to typeset the VC information of the current source file.

Access of all parts of the VC date.

Formatting of author names or revision numbers.
e Definition of groups and subgroups.

Including of the VC information of external files.

Table of Revisions.

1.1 Scope of Keywords

This package provides the Subversion keyword data in several different scopes:
document-global, file-local and, new with v2.0, by group.

Document Global

The document global macros, like \svnrev, return the latest version control infor-
mation (keyword data) for the whole multi-file document, i.e. the information of the
latest changed file of the document. To collect, sort and provide this information is
the main functionality of this package.

ISubversion homepage: http://subversion.tigris.org/

mailto:martin@scharrer-online.de
http://www.ctan.org/pkg/svn-multi
http://subversion.tigris.org/

Local to Current File

There are also file-local macros, e.g. \svnfilerev, which return the version control
information of the current file, i.e. the file they are used in. It is assumed here that
every file using this macros calls first either a \svnid or \svnidlong macro or both.
See section 2.2 for more details about the id macros. Please note that the file-local
macros technically actually return the last registered information from the last \svnid
or \svnidlong. As long the filehooks option (new in v2.0) is not enabled (explicit or
implicit) this keyword macros will leak from one file over to the next. This will cause
wrong results if they are used in a file before or without any id macros. With this
option the macros will be reset at the beginning of every source file of the document.

Groups

Version 2.0 introduces the concept of groups. Several files of a multi-file KTgX docu-
ment can be grouped together and the latest version control information of all files
of a group is provided by macros. This works in the same way as the global macros
mentioned above but only with the files in the group. It can also be seen from the
other side: the macros are local like the file-local macros mentioned above but for all
files of the group, not only the current one.

These groups could also be called file groups, keyword groups or, like in pro-
gramming languages, namespaces. In this manual they will be reference as simple
groups most the time. In places where they could be confused with TgX groups ({ 1,
\begingroup \endgroup), e.g. “in the current group” or “group local”, they will be
called keyword groups.

There is no limitation (besides internal BIEX resource limits) for the number of
different groups. The files of one group do not have to be included in a row but
can be included everywhere in the document. The version control information of
the current group can be typeset with macros like \svncgrev (cg for current group).
Also, a general but less robust macro \svng{(group name)}{(key)?} is provided to
access others groups by name everywhere in the document. To avoid some macro
robustness problems the current group can be changed locally for the output macros
using \svnsetcg{(group name)}.

See section 2.3 for further details and usage instructions on group macros.

2 Usage

The version control information are provided by Subversion keywords which first
need to be read in by dedicated macros and can then be typeset using different macros.

2.1 Package Options

Since v2.0 this package provides options to enable only a needed features, e.g. to avoid
problems with other packages or save TgX memory. For backwards compatibility to
pre-2.0 package versions all old features are enabled by default and all new features
are disabled to save a little of TgX memory.

All options except the first two are boolean key=value options (so far) and
await either ‘true’ or ‘false’ as value. A missing value means ‘true’. So e.g.
[groups=true,verbatim=false,externall, enables the external and groups op-
tions but disables the verbatim option.

old

all

verbatim

external

groups

subgroups

graphics

pgfimages

autoload

The available options are:

Only pre-v2.0 features are active. This enables verbatim and disables all other options
below. This is the default for reasons mentioned above.

Activates all features of the package except of the experimental ones.

Controls the verbatim mode of the keyword parser macros. Normally verbatim mode
is very much wanted to support strange characters in URLs and file names, but this
options gives the user a possibility to disable verbatim, e.g. for trouble shooting. Please
note that verbatim mode is needed in order to make svn-multi work with some
packages, like babel with the french option.

Controls the support for keywords from external files described in section 2.10. This
needs either the external script svn-multi.pl or the autokw option.

If the groups option is enabled the macro \svnexternalgroup{(group name)}
can be used to declare a own group which is used for all the external files. Otherwise
they are placed in the currently active group. This macro can be used several times
during the document where an empty argument means no group and a ‘*’ means
current group.

Controls the keyword groups feature described in section 2.3.

Controls the automatic declaration of all input files as subgroups so that there
keyword information can be typeset inside other files. The group name is the file path
without the file extension (‘subdir/filebase’). It is possible to disable and re-enable
this using \svnsubgroupsfalse and \svnsubgroupstrue during the document
preamble or body to exclude certain files. See section 2.3.1 for additional information.

This option allows to automatically declare all images included using the macro
\includegraphics from the graphics/graphicx package as external files (see
section 2.10). The options external and autoload are activated by this option so that
the produced . svx files are loaded automatically. An autoload=false option after
graphics will deactivate this, but then an \svnexternal macro must be included in
all BIgX files which should take the image revisions into account.

The graphics package is loaded if this option is active. If this package is
needed with some special options it should be loaded by the ETgX document before
svn-multi.

Please note that this feature needs to tie itself into the graphics package and
might fail if the internal structure of this package changes in future versions.

If the groups option is enabled the macro \svngraphicsgroup{(group name)?}
can be used to declare a own group which is used for all the graphic files (also
for pgf images, see below). Otherwise they are placed in the group specified by
\svnexternalgroup which defaults to the currently active group. This macro can
be used several times during the document where an empty argument means no group
and a ‘*’ means current group.

Some graphics like logos can appear frequently in a document. Do not count them
as part of each chapter they can be ignored using \svnignoregraphic{(file path)}.
The macro \svnconsidergraphic{(file path)} disables this again. Such graphics
can be then included manually using an explicit \svnexternal macro.

Identical to like the graphics option but for the pgf package (implemented against
the version from 2008/01/15) with the \pgfuseimage and \pgfimage macros. Please
also see the notes about package loading and ties mentioned above.

Controls automatic loading of corresponding . svx files at the begin of files included
using \input or \import. This avoids the need of putting an \svnexternal macro

table

filehooks

autokw

in every file just to load the .svx files created automatically by the graphics option.
The option external is activated by autoload.

Controls the generation of a table of revisions which can be included using the
\tableofrevisions macro. This table shows the revisions of all files and groups.
This needs groups to work which is activated with table. Enable subgroups to include
a list of all files per group. See the section 2.9 for more information.

This option loads the filehook package and installs at-begin-input-file and at-end-
input-file hooks which are needed for many of the options above. While this option
is enabled automatically if needed it can be also enabled manually to ensure that
the file-local macros are reset to empty values at the begin of each input file. This
prevents the keyword from leaking over from one file to the next. After every subfile
the file-local keyword macros are also restored to the value of the parent file. A
\clearpage should be added at the very end of \included files to ensure the last
page is flushed out by TgX before the keyword macros are restored. Otherwise the last
page might display the mainfile keyword values.

This experimental feature allows the automatically extraction of the keyword values
from the hidden Subversion working copy database. The database (a text file called
‘entries’) is located in the hidden Subversion directory . svn’ (or ‘_svn’ on some
Windows installations) inside every directory which is under VC.

This feature makes an external script like svn-multi.pl or even keyword macros
redundant as long the files are inside a Subversion working directory. However, this
feature does not work if the files are exported (e.g. with svn export) or manually
copied and also depends on the used version of Subversion. Only versions starting
with 1.4 (with working copy format version 7) are supported. Earlier version used a
different format for the entries file. Newer versions should be compatible as long
the basic format is not changed again.

The experimental status will be lifted after the feature was tested using different
Subversion versions on different platforms. Please do not hesitate to send error reports
to the package author. Minimal examples and information about the used Subversion
version and platform are very much appreciated.

This option allows the following values:

false Feature is disabled (default).

No value or true or all The keywords of all files are automatically extracted. No
\svnid or \svnidlong macros or external scripts are necessary as long the
files are inside a Subversion working directory and not exported.

ext Only the keywords of external files are extracted. This avoids the need of the
svn-multi.pl script. The option external must be still enabled manually.

2.2 Including Subversion Keywords

Subversion keywords are included using \svnid or \svnidlong. These macros
should be written very early in each file, i.e. in the preamble of the main document
soon after \documentclass and \usepackage{svn-multi} and as first in every
subfile before an \chapter or similar macro. They do not create any output. See
section 2.4 to learn how to typeset the keyword values.

\svnid{$Id: svn-multi.dtx 2431 2011-04-01 23:00:26Z martin $}

The macro is for the Id keyword and must be written like shown. A trailing colon with
or without spaces after the ‘Id’ is also valid but everything else except a valid Sub-
version string will cause a TgX parse error. The subversion property svn:keywords
must be set on all source files and include ‘Id’ so that Subversion will expand it at the
next commit.

\svnidlong

{$HeadURL: svn+ssh://scharrer-online.de/home/martin/svn/src/trunk/latex/svn-multi/dev/svn-multi.dtx $}
{$LastChangedDate: 2011-04-02 00:00:26 +0100 (Sat,02 Apr 2011) $}

{$LastChangedRevision: 2431 $}

{$LastChangedBy: martin $}

Macro for a “long Id”. Saves similar values like in ‘Id’ but from the above four
keywords. The usage of \svnid or \svnidlong is a matter of taste. The second is
more readable inside the code and results in a nicer date and a full URL, not only the
filename. However, both can also be used together. In this case the \svnid macro
should be come last. Because its revision is not higher (but identical) than the revision
of the \svnidlong macro it does not override its values. This way both the full time
zone from the long and the file name from the short id macro can be accessed. Please
note that all features from the 2.x version load the currfile package which lets you
typeset the current file name anyway using \currfilename?. Before v2.3 the fink
package was used to provide the file names.

This macro must be written like seen above while the order of arguments is not
meaningfull. The Subversion property svn:keywords must be set on all source files
with an value which includes ‘HeadURL LastChangedDate LastChangedRevision
LastChangedBy’ or one of their alternative spellings (e.g. ‘URL’, ‘Rev’, ‘Date’, etc.).

Please note that the arguments are read verbatim as long the verbatim option is
not disabled explicitly. Special precaution are taken to allow spaces, newlines and
comments direct after the \svnidlong and after each of the four arguments. In fact
everything not inside braces { 7} is ignored.

\svn{$(keyword)$2}
\svn*{$(keyword)$}

This macro let you typeset svn keywords directly. The dollars will be stripped and
the rest is typeset as normal text. The star version strips also the space before the last
dollar. This macro alone was the very first version of svnkw and is still included for
fast and simple keyword typesetting.

\svnkwsave{$(keyword)$}

This macro lets you include and save any keyword you like. The keyword can be
already expanded or not (no value and only “:” or nothing after the key name). This
macro is also used internally and does not create any output. Please note that the
argument is read verbatim and that there should be no space between the macro and
the argument’s left brace.

2The file name in Id is always the original Subversion file name while the one given by the currfile
package is the current file name. Both could differ if the file got renamed.

2.3 Groups

Starting with v2.0 files can be grouped together and the keyword values of the latest
revision of a group can be accessed. Use the groups option to activate these macros.

\svngroup{(group name)}

This macro declares all following files until the next \svngroup as part of the given
keyword group. It can be placed inside the main file before some \include/\input
macros or inside subfiles before the id macros, i.e. direct at the start of the file.

The changes done by this macro are TgX global, i.e. there can’t be caught using
TgX groups ({ }). However, in order to prevent subfiles to change the group of the
rest of the parent file the group will be restored to the previous one at the end of each
input file.

The latest VC information of a group can be typeset with the \svnvgXXX macros
or the \svng macro shown in section 2.4.

\thesvngroup

Returns the name of the current keyword group.

\svnsetcg{(group name)}

Normally the \svncgXXX macros mentioned below use the last keyword group defined
by \svngroup but this can be changed using the \svnsetcg macro. The idea behind
it is that the currently selected group can be changed locally to the current TgX group
for the keyword output macros \svncgXXX only while the group for the keyword
input macros like \svnid is unaffected.

To reset the used group to the last one defined by \svngroup simply use \svnsetcg
with an ‘*’ as argument.

Example 1: {\svnsetcg{abc}\svnFullAuthor{\svncgauthor}}
would output the full author’s name of group abe.

Example 2: To typeset the three keyword values of group abc somewhere outside
this group use:

{\svnsetcg{abc}Rev: \svncgrev\\Date: \svncgdate\\

Author: \svncgauthor\\}

Example 3: To typeset the date of group abc outside of this group in the format of
\today use: {\svnsetcg{abc}\svncgtoday}

\thesvncg

Returns the name of the current group selected by \svnsetcg.

2.3.1 Files as Subgroups

The group feature could be used to access the version control information of single
files anywhere in the document when these are defined as own groups for themselves.

Because a file can only be in one group this would not be compatible with the normal
usage of the group feature. Therefore a special feature was introduced to automatically
or manually define a file as subgroup for itself which does not influence its membership
in a normal group.

Declaration: This feature is enabled by the subgroups option. All files of the doc-
ument are then automatically declared as extra groups. This can be disabled for parts of
the document using \svnsubgroupsfalse and re-enabled using \svnsubgroupstrue
macros. The current file can be manually declared as extra group with the \svnsubgroup
macro.

\svnsubgroup

This macro declares the current file as subgroup. It is used automatically for every
subfile if subgroups and \svnsubgroupstrue are enabled.

Exclude/Consider files extensions: The above mentioned automatically group decla-
ration uses an hook which is triggered every time another file is read by the document.
This unfortunately includes other packages, some auxiliary files and font, config and
other files read in by this packages. An internal filter is in place to ignore this files by
their file extension. This filter can by modified by the two following macros.

\svnignoreextensions{(comma separated list of extension without leading dot)}

Tells svn-multi to ignore the following file extension and never declare files with
them as extra groups.

\svnconsiderextensions{(comma separated list of extension without leading dot)}

Tells svn-multi to (re-)consider the following file extension and declare files with
them as extra groups if read in.

Typesetting: The keyword information of the subgroups (subfile including any
included external files or subsubfiles) can be typeset using the normal group typeset
macros mentioned below where the group name is the file path without extension.
The keyword information of the . tex file alone can be typeset with the full file path
including extension.

Example: \svnsetcg{subdir/some_file.tex}\svncgrev would typeset the re-
vision of the file some_file.tex while \svnsetcg{subdir/some_file}\svncgrev
would typeset the latest revision of the same file or any subfile or declared external

file included by it.

2.4 Typesetting the Keyword Values

The following macros can be used to typeset the keyword values anywhere in the

[}

document. Please note that not all KIgX fonts have all special characters, e.g. *_
is not provided in the standard roman font. To proper typeset file names and

URLs containing these letters you can use either teletype font (\texttt) or use
{\urlstyle{rm}\svnnolinkurl{...}} which requires the hyperref package.

Like already mentioned svn-multi knows three scopes of keywords. The first
contains of the keywords for the complete document which hold the values of the most
recent committed file and the second contains of the current or file local keywords,
e.g. the keywords of the current file. Only this two are described here while the third
scope is described in section 2.3.

\svnrev
\svndate
\svnauthor

These macros hold the keyword values of the whole document, i.e. of the most recent
revision. They can be used everywhere in every file of the ETgX document, after
\usepackage{svn} of course. Please see section 2.5 how to typeset parts of the date.

\svnfilerev
\svnfiledate
\svnfileauthor

These macros hold the keyword values of the current KIiX file, but only if it contains
a \svnid or \svnidlong macro. Otherwise the macros hold either zero values or
the values of the last file dependent on whether an option is enabled which enabled
the currfile package. Please see section 2.5 how to typeset parts of the date. See
\svnkw below for all other keywords.

\svncgrev
\svncgauthor
\svncgdate

These macros return keyword values of the currently selected keyword group. In order
to hold them robust, which is important to use them in macros like \svnFullAuthor,
they do not provide any arguments to select other groups than the current one. To
access keyword values of other groups use the general macro \svng or change the
locally selected keyword group using the macro \svnsetcg.

\svng{(group name)}{{key)}

This macro is a general form of the \svncgXXX macro mentioned above. The first
argument is the requested keyword group, the second one the requested keyword in
the form of rev, date, author, year, etc.. Please note that this macro can not be used
inside macros like \svnFullAuthor.

\svnmainurl
\svnmainfilename

The macro \svnmainurl and \svnmainfilename hold the URL and the filename
of the main KIgXfile as long the keywords HeadURL or Id were used in it, respec-
tively. These can be used to typeset this information anywhere in the document
which might be more descriptive as the name of the current file (which can be type-

set with \svnkw{HeadURL} or \svnkw{Filename} after \svnid or \svnidlong,
respectively).

\svnsetmainfile

This will declare the current file as the main LaTeX file by defining the above macros.
It will automatically be called at the end of the preamble so the user normally doesn’t
have to use it by him- or herself as long it isn’t needed in the preamble.
Please note that this macro changes the definition of \svnmainurl and \svnmainfilename
directly without going over the auxiliary file. Calling it in several files will make this
two macros inconsistent.

\svnkw{(keyword name)}

All keywords saved with \svnid, \svnidlong or \svnkwsave can be typeset by this
macro which is a holdover from a very early version of this package when multiple
files where not supported. It takes one argument which must be a subversion keyword
name. It then returns the current value of this keyword or nothing (\relax) when
the keyword was not set yet. Examples:

\textsl{Revision: \svnkw{Revision}}

URL: \url{\svnkw{HeadURL}}
In the second example \url (hyperref package) is used to add a hyperlink and to
avoid problems with underscores (_) inside the URL. svn-multi is also providing a
macro \svnnolinkurl which works like \url but doesn’t adds an hyperlink. See the
description of this macro for more details.

If the given keyword doesn’t exists a package warning is given to allow spelling

errors to be tracked down. This doesn’t work well when \svnkw is used inside \url.
In this case the warning code will be typeset(!) verbatim into the document by \url.

\svnkwdef{(keyword name)}{(value)}

This macro is used to define the keyword values. This is normally only called internally
but could be used by the user to override single keywords. The values can then be
typeset by \svnkw. Note that this macro has no influence on the calculation of the
latest revision.

Note that for \svnkw and \svnkwdef all different names for one keyword are
valid and result in the access of the same variable. So e.g. subversion treats Rev,
Revision and LastChangedRev the same way and so does this macros. You can
e.g. say \svnkwdef{Rev}{123} and then typeset it with \svnkw{Revision} or
\svnkw{LastChangedRev} if you like.

New in version 2.2. Will change in future versions:

\ifsvnfilemodified{(case: modified)}{(case: not modified)}
\ifsvnmodified{(case: modified)}{(case: not modified)}

This two macro can be used to check if either the current or any file was modified after
it was last checked into the repository. At the moment (v2.2) a file is marked ‘modified’
if there is either a “*’ or ‘M’ after the revision number, e.g. ‘$Rev: 123M $’. Such an

marker is automatically added for exported files (‘svn export’) if there where locally
modified, but can also be added manually.

Future versions of this package might mark files as modified by use of the autokw
option which can read this information out of the working directory Subversion
entries.

2.5 Accessing Date Values

\svnyear \svnfileyear \svncgyear

\svnmonth \svnfilemonth \svncgmonth

\svnday \svnfileday \svncgday

\svnhour \svnfilehour \svncghour
\svnminute \svnfileminute \svncgminute
\svnsecond \svnfilesecond \svncgsecond
\svntimezone \svnfiletimezone \svncgtimezone
\svntimezonehour \svnfiletimezonehour \svncgtimezonehour
\svntimezoneminute \svnfiletimezoneminute \svncgtimezoneminute

Whenever the date information is read, i.e. by \svnkwsave{LastChangedDate}
\svnkwsave{Date}, \svnidlong or \svnid, the following macros are set to the
appropriate date parts for the current file (the \svnfile. .. versions) and for the
whole document.

Please note that the hour and timezone are dependent on the keyword which de-
fines the date information. The hour will be in UTC aka Zulu-time, i.e. timezone +0000,
when the date comes from the Id keyword. Otherwise the hour and timezone will
be in local time. To avoid confusion the Id and Date/LastChangedDate keywords,
e.g. \svnid and \svnidlong, should not be intermixed and/or the timezone should
always be typeset together with the time.

Starting with v1.4 of svn-multi the timezone macros return the full timezone,
i.e. sign, hour and minute part, e.g. +0100, not only the sign and hour. The new
macros \svntimezonehour/\svnfiletimezonehour and \svntimezoneminute/
\svnfiletimezoneminute can be used to access only the hour including sign or the
minute part, respectively.

Older versions of this manual assumed the minute part as always 00 and suggested
to add it manually if needed: \svnfiletimezone0OO or \svntimezone0O. In order
not to “break” documents which followed this suggestion this two macros now remove
a trailing 00 if present. However, this can be a problem when they are used inside an
argument of another macro. One solution for this is to redefine them without the 00
removal part:
\renewcommand{\svntimezone}{\svntimezonehour\svntimezoneminute}
\renewcommand{\svnfiletimezone}{\svnfiletimezonehour\svnfiletimezoneminute}

To revert to the old (pre-v1.4) definition use:
\renewcommand{\svntimezone}{\svntimezonehour}
\renewcommand{\svnfiletimezone}{\svnfiletimezonehour}

10

\svntime
\svnfiletime
\svncgtime

This macros return the time part of the date only and simply return the corresponding
hour, minute and second macros with a colon as separator.

\svnpdfdate

Returns the last changed date of the whole document in a format needed for \pdfinfo.
Can be used like this:

\pdfinfo{ /CreationDate (D:\svnpdfdate) }
to set the PDF creation date to the last changed date if you use pdflatex to compile
your EIEX document.

\svntoday
\svnfiletoday
\svncgtoday

These macros typeset the document-global, current-file or current-group date, respec-
tively, using the format of \today which depends on the used language. To adjust the
language of your document use the babel package.

2.6 Using Full Author Names

If you like to have the full author® names, not only the usernames, in your document

you can use the following macros. First you have to register all authors of the docu-

ment with \svnRegisterAuthor and then you can write e.g. \svnFullAuthor{\svnauthor}
or \svnFullAuthor{\svnfileauthor}.

\svnRegisterAuthor{(author)}{(full name)}

This macro registers (full name) as full name for (author) (a subversion username) for
later use with \svnFullAuthor.

\svnFullAuthor{(author name or macro)}
\svnFullAuthor*{(author name or macro)}

Takes the username as argument and returns the full name if it was registered first with
\svnRegisterAuthor, otherwise it returns the given username. The star version
returns the username in parentheses after the full name. This is normally used in one
of the following forms:

\svnFullAuthor{\svnauthor}

\svnFullAuthor{\svnfileauthor}

\svnFullAuthor{\svncgauthor}

3This means subversion authors, e.g. the persons who commit changes into the svn repository.

11

2.7 Using Full Revision Names

Like the author’s also revision names/tags can be registered and used later. These
macros were implemented on user request and have the drawback that you have to
guess the next revision number of your document in order to get correct results when
you like to tag the to-be-checked-in revision. Please note that this has nothing to do
with the normal subversion tagging.

\svnRegisterRevision{(revision number)}{(tag name)}

This registers (tag name) as tag name for (revision number) for later use with
\svnFullRevision.

\svnFullRevision{(revision number or macro)}
\svnFullRevision*{(revision number or macro)}

Takes a revision number coming from a macro like \svnrev, \svnfilerev or
a number as argument and returns the full name if it was registered first with
\svnRegisterRevision, otherwise it returns “Revision (revision number)”. The
star version returns also the revision number leaded by ‘r’ in parentheses after the tag
name, e.g. Name (r123).

2.8 Verbatim URLs with and without Hyperlinks

\svnnolinkurl{(macro with returns special text)}

This macro allows you to write \svnnolinkurl{\svnkw{HeadURL}} and get the
Head URL typeset verbatim. However \url{\svnkw{HeadURL}} (hyperref pack-
age) gives you the same result with a hyperlink. Both macros require the hyperref
package which is not automatically loaded by svn-multi. Please load it manually
when you like to use \svnnolinkurl.

Since v1.3 all keywords are read and typeset verbatim so this macro isn’t this
important anymore. However together with hyperref’s \urlstyle macro it can be
used to have keyword values with special characters in roman font, which normally
doesn’t hold letters like ‘_’

Please note that you can’t use hyperref’s \nolinkurl because it won’t expand

\svnkw.

2.9 Table of Revisions

Version 2.0 introduces this new feature which allows a overview table to be typeset
which holds the version control information of all files of the document.

\tableofrevisions

If the table is enabled a table of revision is written into a file called (main BIgX
file) . svt (t for table) which can be included using the \tableofrevisions macro.
The table contains the revision information of the complete document and of all
defined groups. If the subgroups option is set the table will also include the single files
sorted by group.

12

\svnglobalrow
\svngrouprow
\svnsubgrouprow
\svnfilerow

\chapterORsection*{\svnrevisionsname}

\svnbeforetable
\svntable (like \begin{svntable})

\svntablehead

\svntabglobal \svntabdate \endsvnglobalrow
\svntabgroup {(group)} {(year)}{(month)}{(day)} \endsvngrouprow
\svntabsubgroup {(level)}{(name)} \svntabrev{(rev)} \svntabauthor{(username)} {(hour)}{(minute)}{(second)} \endsvnsubgrouprow
\svntabfile {(level)}{(name)} {(TZ hour)}{(TZ minute)} \endsvnfilerow
\svntablefoot

\endsvntable (like \end{svntablel})
\svnaftertable

Figure 1: Table formatting macros and their position.

Table Format Macros

The .svt file is in an general format which uses a lot of macros to format the table
and the different cells. This macros should not be used by the user directly but rather
can be redefined to fit the personal taste. Figure 1 shows this macros in their position
inside the table of revisions.

\svnrevisionsname

Holds the name of the table of revisions which is printed above it. The default is
“Table of Revisions” which can be changed e.g. to another language.

\svnbeforetable

Can hold some content to be placed between the headline and the table.

\svnaftertable

Can hold some content to be placed after the table. By default it holds a macro to force
a new page.

\svntable
\endsvntable

This macros build the table environment and hold a \begin{tabular}{1111} \end{tabular}
group by default. They can be redefined using
\renewcommand{svntable}{...}{...}
In order to support special table packages like tabularx or longtable the content of
this macro is written verbatim into the .svt file. All other table macros are written as
string and will be expanded when the . svt is read back.

13

\svntablehead

Holds the table head row “Name & Rev & Author & Date \\\hline”.

\svntablefoot

Can hold the table foot row but is empty by default.

\svnglobalrow \endsvnglobalrow
\svngrouprow \endsvngrouprow
\svnsubgrouprow \endsvnsubgrouprow
\svnfilerow \endsvnfilerow

This macros are placed at the begin and end of every corresponding row and are
empty be default. They can be used to insert horizontal lines before or after certain
row types.

\svntabglobal

Simply typesets the name for the row holding the information of the whole document,
e.g. “Document”.

\svntabgroup{(group name)}

Formats the group name.

\svntabsubgroup{(nesting level (1,2,3,...)) }{(subgroup name)}

Formats a subgroup name. The name is derived from a file name and therefore
could contain characters like ‘°_’ which should be taken into account. The macro
\svnnolinkurl can be used for this. Because subgroups can be nested a number is
provided to tell the nesting depth. This can be used to produce different indents for
different levels: e.g.: \addtolength{\leftskip}{#1\someindentamount}.

\svntabfile{(nesting level (1,2,3,...)) H(file path/name)}

Same as for the subgroup above but for file names.

\svntabrev{(revision number)}

Allows the formatting of the revision number. If empty the number will be typeset as
normal. Conditional formatting is possible using the ifthen package: e.g. the highest
revision should be bold:

% \renewcommand*{\svntabrev}[1]{\ifthenelse{#1=\svnrev}{\textbf{#1}}{#1}}
%

14

\svntabauthor{(author username)}

Formats the user names in the table. The macro \svnFullAuthor is a good candidate
to be used here.

\svntabdate{{(year)}{{month) (day)H (hour) }{ (minute)}{ (second) }{(TZ hour)}{(TZ minute)}}

Allows the formatting of the date. All values are given as numbers. The year has four
digits and the timezone hour has a + or - sign, but all other values have only two

digits.

2.10 Including Keywords of External Files

Version 2.0 now supports the inclusion of keywords of external files using the following
macros and the Perl script svn-multi.pl.

\svnexternal [{ group name)]{(file 1)H(file 2)}.. .{(filen)}

Subversion keywords of external files (e.g. non-KIgX files like images or even directo-
ries) can be included using this macro which awaits a list of files, each with the full
path relative to the main KX file and each enclosed by { }. The files must be under
version control by Subversion, of course. Use \svnexternalpath to specify paths to
be scanned for this files if they are not located relative to the main file. The requested
filenames are written into the . aux auxiliary file and then processed by the external
script svn-multi.pl which must be executed like described below. The appropriate
keywords are then written in (source file) . svx files (x like eXternal) which are read
in by the same \svnexternal macro at the next KIgX run. If a group name of ‘*’ for
the external files is specified using the optional argument the keywords will be placed
in the same keyword group as this macro. The file local macros like \svnfilerev
which appear in a source file after \svnexternal are affected, i.e. updated if one of
the external revision is higher than the one of the source file. This makes sense if e.g.
the included graphics are taken as logical part of a source file.

\svnexternalpath{{(path 1)}{(path 2)}.. .{(pathn)}}

This macro can be used in the document preamble to declare a set of paths to be
scanned for files specified with \svnexternal. This avoids the need to provide the
path again and again for every file. The paths need to be enclosed in { } and must be
in Unix style, i.e. with °/’ as directory separator and should end with a °/’. Windows
users should just replace all ‘\’ with °/’, e.g. ‘C:\My dir’ gets ‘{C:/My dir/}".

Script svn-multi.pl

The file svn-multi.pl which comes with the svn-multi package is an external
Perl script which has to be run in the command line or by a KIEX development
environment/editor like other tools like BibTEX or Makeindex. A Perl interpreter and
a Subversion command line client (svn) must be installed to execute this script. Both
are available for free for all major operating systems.

The script should be run inside the document folder in the following order:

1. Compile KIgX document, . aux file is generated.

15

2. Run svn-multi.pl script, .svx files are generated.
3. Compile BIEX document, . svx files are read in.

The script can be used with three different sets of arguments and with any com-
bination of them. Please note that the word jobname stands for the main EKIgX file
name without the . tex extension.

svn-multi.pl (jobname) ‘

As already mentioned in the \svnexternal description above this script reads the
requested external filename from the (jobname) .aux file. The Subversion command
line client svn is then used to fetch the needed keywords which are placed in a
\svnidlong macro inside a (source file) . svx file. Every single source file which uses
\svnexternal will become its own . svx file which allows to attach specific external
files to one (or more) specific source files.

svn-multi.pl (jobname) [--group (group name)l (file(s)) ... ‘

The second way to use svn-multi.pl is to call it with a list of external files. A
keyword group can be specified using the ——group (group name) option which can
placed any number of times between the file names. The group is used for all external
files listed after the option until the next group is specified. All keywords of these
files are written in the (jobname).svx file and read in by the main BIfX file if a,
possible empty, \svnexternal macro is included. This allows for easy including of
many external files without specifying them all inside the source file. For example
svn-multi.pl */*.jpg (under Linux/Unix) will include the keywords of all JPG
files in all subdirectories.

It is also possible to do this with a sub-(ETEX)-file by calling the script on it:
svn-multi.pl (sub file) (external files for sub file), which will create/overwrite the
(sub file) . svx file. However the files given by \svnexternal in this sub-file will not
be honoured in this case.

svo-multi.pl (jobname) [--group (group name)] --fls

Instead of providing a list of all non-KIEX/external files the --f1s option can be
used to read this list from the (jobname) .f1s file. This file is produced by the KX
compiler when run with the --recorder option and contains a list of all input and
output files. Only input files with a relative path are used. A corresponding keyword
group can also be specified.

3 Compile Guide

A document which uses svn-multi needs to be compiled by KIEX in the following
ways depending on the used features.

Basic Features — Global and Group Keywords

1. Compile document with BIgX. The . aux file is generated. Document global and
group keyword macros are not valid yet.

16

2. Compile document again with KIEX. The .aux file is read by svn-multi.
Document global and group keyword macros are now valid.

Table of Revisions

1. Compile document with KIEX. Document global and group keyword macros are
calculated and written to the .svt file.

2. Compile document again with ETgX. The . svt file is read and typeset by the
\tableofrevisions macro.

External Files

1. Compile document with BIgX. The . aux file is generated with references to the
external files. Document global and group keyword macros are not valid yet.
External files are not taken into account.

2. Run svn-multi.pl with the main base name (main file name without exten-
sion) as argument. This generates .svx files for each .tex file which used
\svnexternal. This files contain the keywords of the external files.

3. Compile document again with KIgX. The .svx files are read by svn-multi
and the . aux file is updated to take the new keywords into account. Document
global and group keywords macros only hold internal values.

4. Compile document again with BIgX. The .aux file is read by svn-multi.
Document global and group keyword macros are now fully valid.

4 Known Issues

This section lists some known issues of the svn-multi package and tries to provide
some workaround. Please feel free to write svn-multi author if you detect any side
effects or other issues causes by this package.

4.1 Packet 1istings uses \input

Update: Newer versions of svn-multi avoid this issue by changing the catcodes
back to normal while reading the . svx file. If a file (basename).(extension) is typeset
verbatim using \1stinputlisting, which uses \input to read the file, an existing
(basename) . svx file is also included as part of the listing. This can be avoided by
code like this:

% {\makeatletter\let\input\@input

% \lstinputlisting[options]{filename}
o}

A

17

5 Package Dependencies and Acknowledgements

This package uses some features from other packages and/or patches some macros of
them to provide additional related features. This section is used to list this packages,
their internal macro which got used and acknowledge the authors/maintainers of
them. Please send error reports to the author of svn-multi and not to the people
listed below.

All packages (including svn-multi) stand under the ETEX Project Public Licence
(LPPL) which can be found at http://www.latex- project.org/lppl/ and can be freely
downloaded from the Comprehensive TeX Archive Network (CTAN) at http://www.ctan.org/.

Since v2.3 the authors packages currfile and filehook replacing the previous
used (and patched) package fink.

hyperref
The macro \svnnolinkurl is resembling the hyperref macro \nolinkurl and uses
some its internal macros from the \url macro definition.

Used internal macros: \hyper@normalise, \Hurl

Version used: 2008/11/18 v6.78m

Licence: LPPL, any version

Authors/Maintainers: Sebastian Rahtz, Heiko Oberdiek

Location: ~ CTAN: http://tug.ctan.org/pkg/hyperref

graphics
If the graphics option is enabled the following macro is patched to record the file name
and path of the included graphic.

Patched internal macros: \Gin@setfile

Version used: 2006/02/20 v1.00

Licence: LPPL, any version

Author/Maintainer: David Carlisle, KIEX3 Project

Location: ~ CTAN: http://tug.ctan.org/pkg/graphics

pgt

Like the graphics package above a macro of this package is pathed to record the file
names and paths of included images when the option pgfimages is enabled. Because
this images pre-declares images for later use the internal declared ‘image macros’ are
patched as well.

Patched internal macros: \pgf@declareimage, \pgf@image@(image name)!
Used internal macros: \pgf@filename, \pgf@image

Version used: 2008/01/15 v2.00

Licence: LPPL v1.3c and GPL v2

Author&Maintainer: Till Tantau

Location: ~ CTAN: http://tug.ctan.org/pkg/pgf

18

http://www.latex-project.org/lppl/
http://www.ctan.org/
http://tug.ctan.org/pkg/hyperref
http://tug.ctan.org/pkg/graphics
http://tug.ctan.org/pkg/pgf

latex

Parts of the macro definitions of the \tableofcontents macros from the article
and book class of standard EIEX were used to define a similar \tableofrevisions
macro for both this classes and other similar classes.

Version used: 2005/09/16 v1.4f

Licence: LPPL v1.3c

Authors/Maintainers: KIEX3 Project
Location: ~ CTAN: http://tug.ctan.org/pkg/latex

currfile
The file name and path information are taken from the macros of this package. It is
from the same author and with the same license as svn-multi itself.

Version used: 2011/01/03 v0.3

Location: ~ CTAN: http://tug.ctan.org/pkg/currfile

filehook

This package is used to install file hooks to update subversion macros for subfiles etc.
It is from the same author and with the same license as svn-multi itself.

Version used: 2011/01/03 v0.4
Location: ~ CTAN: http://tug.ctan.org/pkg/filehook

6 Further Reading

The svn-multi package (in version 1.3) and its usage got discussed in the following
articles:

[1] Martin Scharrer, “Version Control of LaTeX Documents with svn-multi”, The
PracTgX Journal, (3), 2007. URL: http://www.tug.org/pracjourn/2007- 3/scharrer/

[2] Mark Eli Kalderon, “LaTeX and Subversion”, The PracTiX Journal, (3), 2007. URL:
http://www.tug.org/pracjourn/2007- 3/kalderon- svnmulti/

[3] Uwe Ziegenhagen , “LaTeX Document Management with Subversion”, The
PracTiEX Journal, (3), 2007. URL: http://www.tug.org/pracjourn/2007- 3/ziegenhagen/

7 Implementation

7.1 Package Header

Package Identification

\NeedsTeXFormat{LaTeX2e}[1999/12/01]
\ProvidesPackageSVN
{$Id: svn-multi.dtx 2431 2011-04-01 23:00:26Z .
martin $}
[\svomulti@version\space SVN Keywords for multi-.
file LaTeX documents]

19

http://tug.ctan.org/pkg/latex
http://tug.ctan.org/pkg/currfile
http://tug.ctan.org/pkg/filehook
http://www.tug.org/pracjourn/2007-3/scharrer/
http://www.tug.org/pracjourn/2007-3/kalderon-svnmulti/
http://www.tug.org/pracjourn/2007-3/ziegenhagen/

Options
Declaration of options and internal switches.

\RequirePackage{kvoptions}

\SetupKeyvalOptions{’

family = svn-multi,

prefix = Q@svnmulti@
}
\newif\if@svnmulti@anygraphic
\newif\if@svnmultiQautoload
\newif\if@svnmulti@autokw
\newif\if@svnmulti@autokwall

\DeclareVoidOption{old}{%
\@svnmulti@verbatimtrue
\@svnmulti@groupsfalse
\@svnmulti@externalfalse
\@svnmulti@graphicsfalse
\@svnmulti@pgfimagesfalse
\@svnmultiQautoloadfalse
\@svnmulti@tablefalse
\@svnmulti@filehooksfalse
\@svnmulti@subgroupsfalse

}

\DeclareVoidOption{all}{%
\@svnmulti@verbatimtrue
\@svnmulti@groupstrue
\@svnmulti@externaltrue
\@svnmulti@graphicstrue
\@svnmulti@pgfimagestrue
\@svnmultiQautoloadtrue
\@svnmulti@tabletrue
\@svnmulti@filehookstrue
\@svnmulti@subgroupstrue

}

\DeclareBoolOption[truel{verbatim}

\DeclareBoolOption[false]{groups?}

\DeclareBoolOption[false]{externall}

\DeclareBoolOption[false]{subgroups}

\DeclareBoolOption[false]{graphics}

\DeclareBoolOption[false]l{pgfimages}

\DeclareStringOption{autoload}[truel

\DeclareBoolOption[false]{table}

\DeclareBoolOption[false]{filehooks}

\DeclareStringOption[false]{autokw}[all]

\ExecuteOptions{old}
\ProcessKeyvalOptions{svn-multi}

20

Enable dependent options:

\def\svn@depoption#1{J
\csname if@svnmulti@#1\endcsnamelelse
\message{svn-multi: Required option ’#1’ enabled.}’
\csname @svnmulti@#ltruelendcsname
\fi

}

\if@svnmulti@groups
\svn@depoption{filehooks}

\fi

\if@svnmulti@external
\svn@depoption{filehooks}

\fi

\if@svnmulti@subgroups
\svn@depoption{groups}
\svn@depoption{filehooks}

\fi

\if@svnmulti@graphics
\svn@depoption{external}
\svn@depoption{autoload}
\svn@depoption{filehooks}

\fi

\if@svnmulti@pgfimages
\svn@depoption{external}
\svn@depoption{autoload}
\svn@depoption{filehooks}

\fi

\if@svnmulti@autoload
\svn@depoption{external}
\svn@depoption{filehooks}

\fi

\if@svnmulti@table
\svn@depoption{groups}
\svn@depoption{filehooks}

\fi

Check if autoload was set explicitly and obey the value.

\ifx\@svnmulti@autoload\@undefined

\else

\ifx\@svnmulti@autoload\empty

\else

\def\svn@temp{truel

\ifx\@svnmulti@autoload\svn@temp
\@svnmulti@autoloadtrue
\svn@depoption{external}
\svn@depoption{filehooks}

\else

\def\svn@temp{falsel}

21

\ifx\@svnmulti@autoload\svn@temp

\if@svnmulti@autoload

\PackageWarning{svn-multi}{0Option

disabled.}
\fi
\@svnmulti@autoloadfalse
\else
\PackageError{svn-multil}’

{Invalid value for ’autoload’

Osvnmulti@autoload ’>~"~JY%

! Only ’true’,’false’ or empty (=’true’) are .

allowed !'}{}%
\fi\fi\fi\fi

Set autokw modes:

\def\svn@temp{truel

\ifx\@svnmulti@autokw\svn@temp
\@svnmulti@autokwtrue
\@svnmulti@autokwalltrue
\svn@depoption{filehooks}

\fi

\def\svn@temp{all}

\ifx\@svnmulti@autokw\svn@temp
\@svnmulti@autokwtrue
\@svnmultiQautokwalltrue
\svn@depoption{filehooks}

\fi

\def\svn@temp{ext}

\ifx\@svnmulti@autokw\svn@temp
\@svnmulti@autokwtrue
\@svnmultiQautokwallfalse

\fi

\def\svn@temp{falsel}

\ifx\@svnmulti@autokw\svn@temp
\@svnmulti@autokwfalse
\@svnmultiQautokwallfalse

\fi

General switch if any graphic option is enabled:

\if@svnmulti@graphics
\@svnmulti@anygraphictrue

\fi

\if@svnmulti@pgfimages
\@svnmulti@anygraphictrue

\fi

7.2 General Internal Macros

Some internal used macro which don’t fit in any other section.

22

’autoload’

\svn@ifempty

#1: string
Tests if the given argument is empty. If so the first of the next two token will be
expanded, the second one otherwise.

\def\svn@ifempty#1{Y
\begingroup
\edef\svn@temp{#11}7
\ifx\svn@temp\empty

\endgroup

\expandafter

\@firstoftwo
\else

\endgroup

\expandafter

\@secondoftwo
\fi

\svn@ifequal

#1: string a

#2: string b
Tests if the given arguments are identical, e.g. same strings. If so the first of the next
two token will be expanded, the second one otherwise.

\def\svn@ifequal#1#2{7
\begingroup
\edef\svn@stringa{#1}7/
\edef\svn@stringb{#2}7
\ifx\svn@stringa\svn@stringb

\endgroup

\expandafter

\efirstoftwo
\else

\endgroup

\expandafter

\@secondoftwo
\fi

\svn@ifvalidrev

#1: macro name
Checks if the given macro (by name) is a valid revision, i.e. defined and not equal to
the init value.

23

\def\svn@ifvalidrev#1{’

\begingroup

\@ifundefined{#1}7Y
{\let\svn@temp\svn@revinit}/
{\expandafter\edef
\expandafter\svn@temp\expandafter{\csname #1_

endcsname }}

\ifnum\svn@temp=\svn@revinit\relax
\endgroup
\expandafter
\@secondoftwo

\else
\endgroup
\expandafter
\@firstoftwo

\fi

\svn@ifeof

#1: input file handle
Checks if the input file is at the end-of-file (or not open).

\def\svn@ifeof#1{Y%
\ifeof#1Y
\expandafter\@firstoftwo
\else
\expandafter\@secondoftwo
\fi

\svn@ifonlyone

#1: group name
Checks if there is only one element in the given group file list. It looks whether there
is a comma in the list.

\def\svn@ifonlyone#1{%
\expandafter\expandafter\expandafter
\svn@@ifonlyone\csname Qsvng@#1@files\endcsname,\,

relax

}
\def\svn@@ifonlyone#1l ,#2\relax{/

\svn@ifempty{#2}
}

24

\svn@input

#1: file name/path
Macro to load .svx and .svt files. The current keyword group is saved away and
restored after the .svx file is loaded. The macros \IfFileExists with \@@input
are used because \InputIfFileExists got redefined by the filehook package and
there is no need to use filehook for this files.

\def\svn@input#1{7/
\begingroup
\let\svn@rg\svnQg
\IfFileExists{#1}{\@@input #1\relax}{}7
\globall\let\svn@g\svnOrg
\endgroup
}

\svn@inputsvx

#1: file name/path without extension
Used to save and restore file keywords when reading . svx files. The normal catcodes
are restored to avoid issues in special situations regarding input of verbatim files
(e.g. \1stinputlisting from the listings package) or other cases where catcodes
might have changes (e.g. %’ in .dtx files).

\def\svnQ@inputsvx#1{/
\svn@pushfilestack
\begingroup
\svn@normalcatcodes
\svn@input {#1.svx}/
\endgroup
\svn@popfilestack

\svn@normalcatcodes

Sets the default catcodes.

\def\svn@normalcatcodes{’
\catcode ‘\\=0\relax
\catcode ‘\{=1\relax
\catcode ‘\}=2\relax
\catcode ‘\$=3\relax
\catcode ‘\&=4\relax
\catcode ‘\""M=5\relax
\catcode ‘\#=6\relax
\catcode ‘\"=7\relax
\catcode ‘_=8\relax
\catcode ‘\ =10\relax
\catcode ‘\@=12\relax

25

\catcode ‘\~=13\relax
\catcode ‘\/=14\relax

7.3 Definition of init values

Initialisation of at least the revision to a numeric value is necessary to not break the
\ifnum tests later in this package. The revision is initialised to -2, but will be set to 0
if an unexpanded $Rev:$ keyword is read. This way it can be tested if a file had any
keyword macros or not.

Note that there a two different macros for the document global keywords:

The user level \svn(kw) macros hold the global value and are only valid after a
KIgX run. They are initialised here and defined in the .aux file which is read at the
end of the package if it exists and written at the end of the document.

The internal macros \@svn@(kw) store the oldest (i.e. highest revision) keywords
read so far from the \svnid and \svnidlong macros. They change during the
document and are used to produce the values of the \svn(kw) macros when the .aux
file is written.

Group wide macros are initialised when the group is first defined and have three
different macros: \svng@(group)@(kw) (defined in .aux), \@svng@(group)@{kw)
(accumulator) and also an access macro \svncg(group) which uses \svn@g(current
group)@{kw).

% Init values

\def\svn@revinit{-2}

\let\svnrev\svn@revinit \let\@svn@rev\svn@revinit
\let\ifsvnmodified\@secondoftwo
\def\@svnO@modified{@secondoftwol}

\def\svndate{} \def\@svn@date{}
\def\svnauthor{} \def\@svn@author{}
\def\svnyear {0000} \def\@svn@year {0000}
\def\svnmonth{00} \def\@svn@month{00}
\def\svnday{00} \def\@svn@day {00}
\def\svnhour {00} \def\@svn@hour {00}
\def\svominute {00} \def\@svn@minute{00}
\def\svnsecond{00} \def\@svn@second{00}
\def\svntimezonehour{+00} \def\@svn@timezonehour.,
{+003%}

\def\svntimezoneminute {00} \def\@svn@timezoneminute,

{00}

\def\svnmainurl{NOT SET} \def\svnmainfilename{NOT .
SET}

\def\svnurl{} \def\svnfname<{}

\def\svn@temp{}

\def\svn@pg{} \defl\svn@g{} \deflsvn@cg{\svnOg} \def\,
svnerg{\svn@pg}
\let\@svng@@files\empty

\def\svn@initfile{%

26

264

\globalllet\svnfilerev\svn@revinit
\globalllet\ifsvnfilemodified\@secondoftwo
\gdef\svnfiledate{}’
\gdef\svnfileauthor{}7%
\gdef\svnfileyear{0000}7
\gdef\svnfilemonth{00}7
\gdef\svnfileday{00}7
\gdef\svnfilehour{00}7
\gdef\svnfileminute{00}7
\gdef\svnfilesecond{00}7
\gdef\svnfiletimezonehour {+00}7
\gdef\svnfiletimezoneminute{00}7%
\gdef\svnfileurl{}’
\gdef\svnfilefname{}’
\gdef\svnfiledir{}’

}

\svn@initfile

\newif\ifsvn@modified

7.4 Auto-Keywords

Special care must be taken for the line feed character, otherwise it causes an error if
autokw is disabled.

\begingroup
\@makeother\~"L
\if@svnmulti@autokw
\gdef\svne@ff{""L}
\fi

\endgroup

\if@svnmulti@autokw

\newread\svne@read

\svne@catcodes

Sets the catcodes for verbatim input reading. Also removes the end-of-line character.

\newcommand *{\ svne@catcodes }{
\let\do\@makeother
\endlinechar=-17
\dospecials
\doO\do1\do2\do3\do4/
\do5\do6\do7\do8\do9Y
\do\:\do\""LY%
\do\<\do\>\do*\do\.\do\-Y%
\do\/\do\[\do\]\do\ “‘\do\’\do\"7
\def\do##1{\catcode ‘##1=11\relax}’

27

\do\A\do\B\do\C\do\D\do\E\do\F
\do\G\do\H\do\I\do\J\do\K\do\L

25 \do\M\do\N\do\0\do\P\do\Q\do\R

256 \do\S\do\T\do\U\do\V\do\X\do\Y\do\Z
\do\a\do\b\do\c\do\d\do\e\do\f
\do\g\do\h\do\i\do\j\do\k\do\1l
\do\m\do\n\do\o\do\p\do\g\do\r
\do\s\do\t\do\u\do\v\do\x\do\y\do\z

\svne@readline

#1: macro
Reads the next line to the provided macro and handles the end-of-file case correctly.

\def\svne@readline#1{7
\ifeof\svne@read
\def#1{}%
295 \else
296 \read\svne@read to #1l\relax
2 \fi

\svne@gobblerest

Gobbles the rest of the current entry.

w0 \def\svne@gobblerest{/
300 \ifeof\svne@read
\let\next\relax
\else
503 \read\svne@read to \svnQ@temp
\ifx\svn@temp\svneQ@ff
\let\next\relax
\else
\let\next\svne@gobblerest
\fi
\fi
310 \next

\svne@endread

Stops the reading process of the entries file.

;2 \def\svne@endread{?%
513 \closein\svne@read

SV -

28

\svne@parseentriesfile

#1: file path

\newcommand *{\ svne@parseentriesfile}[1]1{%
\begingroup
\let\next\relax

Open the format file to read the version number. If this file does not exists (true
for recent svn versions) a valid default value is used and the true version number is
read from the entries file.

\def\svne@version{8}

\openin\svne@read=#1format\relax

\ifeof\svne@read\else
\svne@readline\svne@version
\closein\svne@read

\fi

Check the format version:
\ifnum\svne@version>7\relax
Now open the entries file and read the version number from there again.

\openin\svne@read=#lentries\relax
\ifeof\svne@read\else
\svne@readline\svne@version

Check the version and call the parse macros if OK:

\ifnum\svne@version>7\relax
\def\next{\svne@parsedirentry
\svne@parseentries}
\else
\closein\svne@read
\fi
\fi
\fi
\next
\endgroup

\svne@parsedirentry

Reads the first entry which is the directory entry and sets its URL as base URL for all
other entries.

\newcommand*{\svne@parsedirentry}{’
\svne@readline\svne@name
\svne@readline\svne@kind
\svn@ifempty{\svne@namel}

{\svn@ifequal{\svne@kind}{dirl}/

29

{7%
{\svne@readline\svn@templ
\svne@readline\svne@baseurl
\svne@gobblerest
Y%
HY%

\svne@scandate

\svne@scandate@

Parses the date from the svn entries file. Special care is taken to handle the case when
the TeX parsing would fail. The catcode of the characters ’-’, ”:’,’.” used inside the
date is set explicitly to ensure the correct value.

\begingroup

\@makeother\-
\@makeother\:
\@makeother\.

\gdef\svne@scandate#1{
\expandafter\svne@scandate@#1\empty
0000-00-00T00:00:00.00000Z\empty\empty

¥

\gdef\svne@scandateQ#1-#2-#3T#4:#5:#6.#7\ empty#8\
empty{’

\xdef\svnfileyear{#1}7
\gdef\svnfilemonth{#2}7
\gdef\svnfileday{#31}7
\gdef\svnfilehour {#4}7
\gdef\svnfileminute {#5}7
\gdef\svnfilesecond{#61}7
\gdef\svnfiletimezonehour {+00}7
\gdef\svnfiletimezoneminute {00}
\gdef\svnfiledate{#1-#2-#3 #4:#5:#6Z1}/
\def\svne@date{#1-#2-#3 #4:#5:#6Z}7,

}

\endgroup

\svne@parseentries

30

386

\newcommand *{\ svne@parseentries}{’
\svn@ifeof {\svne@readl}’
{}%
{%
\svne@readline\svne@name
\@onelevel@sanitize\svne@name
\svn@ifeof {\svne@readl}’
{}7%
{%
\svne@readline\svne@kind
\svn@ifequal {\svne@kind}{file}’
{%
\svne@readline\svn@temp
\svne@readline\svn@temp
\svne@readline\svn@temp
\svne@readline\svn@temp
\svne@readline\svn@temp
\svne@readline\svn@temp
\svne@readline\svne@date
\svne@readline\svne@rev
\svne@readline\svne@author
%\@onelevel@sanitize\svne@date
\svne@scandate{\svne@datel}/
\edef\svne@url{\svne@baseurl/\svne@namel}’
\svne@handleentry
HY%
\svne@gobblerest
\svne@parseentries
1
%

\svne@handleentry

This macro is called for every entry except the first one which stands for the direc-
tory. The VC data is located in the following macros: \svne@name, \svne@date,
\svne@rev, \svne@author, \svne@url

This implementation sets the correct keywords and calls the update macro to
emulate the behaviour of \svnidlong. Then the \svne@endread macro is used to
stop the file reading.

\def\svne@handleentry{’
\ifx\svne@rev\empty
\let\svne@rev\svn@revinit
\fi
\svn@ifequal {\svne@name}{\svnfilefnamel/
{7
\message{~"J%
Read from ’.svn/entries’ file:""JJ

31

Filename: \svne@name~"JY

Date: \svne@date~"JY
Revision: \svne@rev~"JY
Author: \svne@author~"JY%
HeadURL: \svne@url~"J%
~~J%

I
\svnkwdef{Filename}{\svne@namel}’
\svnkwdef{Date}{\svne@datel}’
\svnkwdef{Revision}{\svne@rev}y
\svnkwdef{Author}{\svne@authorl}y
\svnkwdef {HeadURL}{\svne@url}/
\@svn@updateid{\svne@rev}{\svne@datel}{\.
svne@author}{\svne@url}

\svne@endread

HY

j A

\svnegetfile

#1: file path

\def\svnegetfile#1{’
\begingroup
\svn@getfilename {#1}
\edef\svnfilefname{\svnfilefnamel/
\Q@onelevel@sanitize\svnfilefname
\svne@catcodes
\svne@parseentriesfile{\svnfiledir .svn/}’
\svne@parseentriesfile{\svnfiledir _svn/}’
\endgroup
}

Load keywords of main document at begin of the document body if option is set
to ’all’.

\if@svnmulti@autokwall
\AtBeginDocument {7/
\svnegetfile{\ jobname.\currfile@mainext}/

Iy
\fi
\fi

7.5 Timezone macros

32

\svntimezone

\svnfiletimezone

\svncgtimezone

448

These macros return the global, file-local and current group time zones, respectively.
Since v1.4 the minute part is returned as well and the macro removes manually added
00 after it to support older documents.

\def\svntimezone{\svntimezonehour\svntimezoneminute\,
svn@gobblezeros}

\def\svnfiletimezone{\svnfiletimezonehour\.,
svnfiletimezoneminute\svn@gobblezeros}

\def\svncgtimezone{\svncgtimezonehour\,
svncgtimezoneminute}

\svn@gobblezeros

\svn@gobblezeros@

This two cascaded macros remove a trailing 00 and are used by \svnfiletimezone
and \svntimezone.

\def\svn@gobblezeros{y
\futurelet\svn@nextchar\svn@gobblezeros@
}
\def\svn@gobblezeros@{’
\let\@tempa=\relax
\def\Q@tempb{0}%
\ifxO\svn@nextchar
\let\@tempa=\@gobbletwo
\fi
\@tempa

\svntime

\svnfiletime

33

\svncgtime

This macros simple use the hour, minute and second macros.

\def\svntime{\svnhour:\svnminute:\svnsecond}

\def\svnfiletime{\svnfilehour:\svnfileminute:\
svnfilesecond}

\def\svncgtime{\svncghour:\svncgminute:\svncgsecond}

7.6 Today macros

These macros use the \today macro to typeset the current date using the local
language settings. Thanks and credit goes to Manuel Pégourié-Gonnard for suggesting
this feature and for providing the code.

\svntoday

\newcommand*{\svntoday}{’
\begingroup
\year\svnyear \month\svnmonth \day\svnday
\relax \today
\endgroup
}

\svnfiletoday

\newcommand*{\svnfiletodayl}{’
\begingroup
\year\svnfileyear \month\svnfilemonth \day\.,
svnfileday
\relax \today
\endgroup

}

\svncgtoday

\newcommand *{\svncgtoday}{’
\@ifundefined{svng@\svnlcg Qyear}{?7}{Y%
\begingroup
\year\svncgyear \month\svncgmonth \day\svncgday
\relax \today
\endgroup
Y
Y

34

7.7 Id macros

7.7.1 Normal Id

\svnid

Calls \svnkwsave with \@svnidswtrue so that the Id keyword will be parsed at the
end of \svnkwsave.

\newcommand*{\svnid}{Y%
\@svnidswtrue
\svnkwsave

}

\newif\if@svnidsw

\@svnidswfalse

\svn@scanId

#1: file name

#2: rest of id line
Ensures proper behaviour also for copied but not yet committed files which have no
date, time and author name. The revision is set to -1. So (rest) is simply compared to
‘-1’ and a fall-back text is supplied if needed.

\def\svn@scanId#1l #2\relax{/
\begingroup
\def\@tempa{#23}
\def\@tempb{-1}7
\ifx\Q@tempa\@tempb

\endgroup
\svn@scanId@#1 -1 0000-00-00 00:00:00Z (.
uncommited)\relax
\else
\endgroup
\svn@scanId@#1 #2\relax
\fi

\svn@scanId@

#1: file name

#2: revision

#3: date (YYYY-MM-DD)

#4: time (HH:MM:SSZ)

#5: author (username)
Scans svn Id (after it got parsed by \svnkwsave). Awaits only Id value without leading
‘Id:’ and a trailing \relax as end marker. It calls \@svn@scandate to extract the
date information and \@svn@updateid to update global Id values and also sets the
appropriate keywords.

35

\def\svn@scanId@#1 #2 #3 #4 #5\relax{’

\@svn@scandate{#3 #41}7

\svnkwdef{Filename}{#1}7

\svnkwdef{Date}{#3 #4}7

\svnkwdef{Revision}{#2}7

\svnkwdef {Author }{#5}7
\@svn@updateid{\svnkw{Revision}}{\svnkw{Date}}{\

svnkw{Author}}{\svnkw{URL}}"

\@svnQupdateid

#1: rev

#2: date

#3: author (username)

#4: url
We first define the expanded arguments to variables for the user. The expansion is
needed because the arguments content is mostly generic like \svn@value which can
change very soon after this macro.

\def\@svn@updateid#1#2#3#4{

\begingroup

\let\protect\Qunexpandable@protect

\xdef\svnfilerev{#1}/

\ifsvn@modified
\global\let\ifsvnfilemodified\@firstoftwo

\else
\globalllet\ifsvnfilemodified\@secondoftwo

\fi

\xdef\svnfiledate{#2}7

\xdef\svnfileauthor{#3}7

\xdef\svnfileurl{#4}/

\svn@getfilename\svnfileurly

Then we check if the revision is non-empty (not yet expanded by subversion?)
and larger then the current maximum value \@svn@rev. If yes we save all value to
save them in the . aux-file later.

\ifx\svnfilerev\empty\else
\ifnum\@svn@rev<\svnfilerev
\xdef\@svn@rev{\svnfilerevl}y
\xdef\@svnOmodified{\ifsvnfilemodified{,
@firstoftwo}{@secondoftwo}}’
\xdef\@svn@date{\svnfiledatel}
\xdef\@svn@author{\svnfileauthorl}/
\xdef\@svn@year{\svnfileyear}y
\xdef\@svn@month{\svnfilemonth}/
\xdef\@svn@day{\svnfiledayl}’
\xdef\@svn@hour{\svnfilehourl}/
\xdef\@svn@minute{\svnfileminutel}/

36

}

\xdef\@svn@second{\svnfilesecondl}/
\xdef\@svn@timezonehour{\svnfiletimezonehourly
\xdef\@svn@timezoneminute{\
svnfiletimezoneminutel}Y
\xdef\@svn@url{\svnfileurl}’
\xdef\@svn@fname{\svnfilefnamel}
\fi

\if@svnmulti@groups
\ifx\svnOg\empty\else
\svn@updategroup{\svn@g}’
\fi
\if@svnmulti@subgroups
\ifsvnsubgroups
\svn@updategroup{\currfiledir\currfilebasel}
YA
\fi
\fi
\fi
\fi
\endgroup

\def\@svncgQ@save#1#2{

\expandafter\xdef\csname @svng@\svn@g @#1\endcsname,

{#23}9

}
7.7.2 Longld
\svnidlong

565

We clear the keyword value first to reduce the risk though bad user input.

\newcommand{\svnidlong}{’

\svnkwdef {URL}{}7
\svnkwdef{Date}{}%
\svnkwdef{Revision}{0}7
\svnkwdef {Author}{}’

Read arguments verbatim or non-verbatim.

\if@svomulti@verbatim
\expandafter\svnidlong@readverb
\else
\expandafter\svnidlong@readargs
\fi

37

\svnidlong@readverb

The following macros read the four arguments of \svnidlong one-by-one with verba-
tim mode deactivated between them to ignore all comments. The macro \@ifnextchar
is used to get rid of all spaces (and therefore comments) between the arguments. An
error message is printed if a wrong syntax is discovered.

\def\svnidlong@readverb{’

\@ifnextchar\bgroup
{\svnidlong@readverb@\svnidlong@readverb@aly
{\PackageError{svn-multi}{Wrong syntax for \.,

string\svnidlong}{}}7

Sets up verbatim mode and calls the macro given as an argument.

\def\svnidlong@readverb@#1{/
\begingroup
\svn@catcodes
\catcode ‘\{=1\relax
\catcode ‘\}=2\relax
#17,

Reads first argument, ignores spaces and comments and calls next macro.

\def\svnidlong@readverb@a#1{/
\endgroup
\svnkwsave@read #1l\relax
\@ifnextchar\bgroup
{\svnidlong@readverb@\svnidlong@readverb@bl/
{\PackageError{svn-multi}{Wrong syntax for \.
string\svnidlongl}{}}7

Reads second argument, ignores spaces and comments and calls next macro.

\def\svnidlong@readverb@b#1{7
\endgroup
\svnkwsave@read #1l\relax
\@ifnextchar\bgroup
{\svnidlong@readverb@\svnidlong@readverb@cl}/
{\PackageError{svn-multi}{Wrong syntax for \.
string\svnidlongl}{}}7

Reads third argument, ignores spaces and comments and calls next macro.

\def\svnidlong@readverb@c#1{
\endgroup
\svnkwsave@read #1l\relax
\@ifnextchar\bgroup
{\svnidlong@readverb@\svnidlong@readverb@d}/

38

{\PackageError{svn-multi}{Wrong syntax for \,
string\svnidlong}{}3}7

Reads last argument, scans date if not empty and calls the Id update macro.

\def\svnidlong@readverb@d#1{/
\endgroup
\svnkwsave@read #1l\relax
\ifx\svnkwDate\empty\else

\@svn@scanlongdate{\svnkwDatel}’

\fi
\@svn@updateid{\svnkw{Revision}}{\svnkw{Datel}}’
{\svnkw{Author}}{\ svnkw{URL}}%
\ignorespaces

\svn@catcodes

Changes all TgX-special character to category “other”. The newline aka return is
changed to category “ignore” so line breaks are not taken as part of the verbatim
arguments.

\if@svnmulti@verbatim

\def\svn@catcodes{%
\let\do\@makeother
\dospecials
\catcode ‘\""M9
\catcode ‘\ 10
\catcode ‘\{1
\catcode ‘\}2

}

\else
\def\svn@catcodes{}

\fi

\svnidlong@readargs

#1: Keyword 1

#2: Keyword 2

#3: Keyword 3

#4: Keyword 4
Calls sub macro for all four arguments and ends the catcode changes made by
\svnidlong.

\def\svnidlong@readargs #1#2#3#4{7
\svnkwsave@read #1\relax
\svnkwsave@read #2\relax
\svnkwsave@read #3\relax
\svnkwsave@read #4\relax

\endgroup

39

Now the update macros for date and id are called.

\ifx\svnkwDate\empty\else
\@svn@scanlongdate{\svnkwDatel/

\fi

\@svn@updateid{\svnkw{Revision}}{\svnkw{Datel}}’

{\svnkw{Author }}{\svnkw{URL}}7

\ignorespaces

3

7.8 KeyWord Macros

\svnkwsave

Enabled verbatim mode and uses a sub macro to read the arguments afterwards.

\def\svnkwsave{)
\begingroup
\svn@catcodes
\svnkwsave@readargs

\svnkwsave@readargs

#1: $kw: value$
Reads full argument, calls parse submacro and ends catcode changes. If \svnkwsave

was called by \svnid scans the id keyword by calling the scan macro.

\gdef\svnkwsave@readargs#1{/
\svnkwsave@read#l\relax
\endgroup
\if@svnidsw
\ifx\svnkwId\empty\else
\expandafter
\svn@scanId\svnkwId\relax
\@svnidswfalse
\fi
\fi
\ignorespaces

}

\svnkwsave@read

#1: keyword line without surrounding $ $
Reads the full keyword and strips the dollars.

40

\begingroup

\if@svnmulti@verbatim

\catcode ‘\$=12

\fi

\gdef\svnkwsave@read $#1$\relax{’
\svn@checkcolon#l:\relax

}

\endgroup

\svnkwsave@parse

#1: key
#2: value
Parse the keyword and save it away.

\begingroup

\catcode ‘\$=11

\gdef\svnkwsave@parse$#1:#2${
\expandafter\xdef\csname svnkw#l\endcsname{#2}7,

Y

\endgroup

\svnkwdef

#1: key
#2: value
First we check if there is a ‘setter’-macro for the keyword called \svnkwdef@(keyword).

\newcommand{\svnkwdef }[2]{%
\@ifundefined{svnkwdef@#11}7

If not we call the general macro \svnkwdef@.
{\svnkwdef@{#1}{#2}}/
If yes we just call it with the value as argument.

{\csname svnkwdef@#1\endcsname{#2}1}7%

\svnkwdef@

#1: key

#2: value
This macro defines the second argument under \svnkw(st argument). The \xdef
is used to expand the content first (needed for internal use) and make the definition
globally.

41

\newcommand{\svnkwdef@}[2]{%
\begingroup
\let\protect\@unexpandable@protect
\expandafter\xdef\csname svnkw#l\endcsname{#2}7,
\endgroup

Example: \svnkwdef{Revision}{23} will define \svnkwRevision as 23.

\svnkwdef@Rev

\svnkwdef@Author

\svnkwdef@Date

\svnkwdef@URL

#1: value
‘Setter’-macros for single keywords, used by \svnkwdef.
These are needed to have have a common value for all alternative keyword names ala
Rev, Revision, LastChangedRevision.

The keywords Author and Date are just calling \svnkwdef@ with a fixed first
argument. For the revision the value is checked if empty and then a 0 is substituted.
Also a temp counter is used to strip any trailing characters like ‘M’ which indicate an
exported and modified file.

\def\svnkwdef@Rev#1{J
\svn@ifempty{#1}%
{\svnkwdef@{Rev}{0}}7
{%
\afterassignment\svnkwdef@Rev@
\@tempcnta=#1\relax
Y

}

\def\svnkwdef@Rev@#1\relax{’
\svnkwdef@{Rev}{\the\@tempcntaly
\def\svn@temp{#1}

\if M\svn@temp\relax
\global\svn@modifiedtrue
\else
\if *\svn@temp\relax
\global\svn@modifiedtrue
\else
\global\svn@modifiedfalse
\fi
\fi

42

}
\def\svnkwdef@Author#1{\svnkwdef@{Author}{#1}}
\def\svnkwdef@Date#1{\svnkwdef@{Date}{#1}}
\def\svnkwdefQURL#1{\svnkwdef@{HeadURL}{#1}}

The long keywords are defined then as aliases of the short,
first for writing

\let\svnkwdef@Revision=\svnkwdef@Rev
\let\svnkwdef@LastChangedRevision=\svnkwdef@Rev
\let\svnkwdef@LastChangedBy=\svnkwdef@Author
\let\svnkwdef@LastChangedDate=\svnkwdef@Date

and then for reading.

\def\svnkwRevision{\svnkwRev}
\def\svnkwLastChangedRevision{\svnkwRev}
\def\svnkwLastChangedBy{\svnkwAuthor}
\def\svnkwLastChangedDate{\svnkwDate}
\def\svnkwURL{\svnkwHeadURL}

So e.g. \svnkw{LastChangedRevision} is always be the same as \svnkw{Rev}.

We define default values for normal keywords. Keyword Filename is the name
given by Id and not a real keyword.

\svnkwdef{Rev}{0}
\svnkwdef{Date}{}
\svnkwdef {Author }{}
\svnkwdef{Filename}{}
\svnkwdef {HeadURL }{}

\svnkw

#1: keyword name
Macro to get keyword value. Just calls \svnkw(ARGUMENT) where the argument
interpreted as text. So e.g. \svnkw{Date} is the same as svnkwDate but this could
be changed later so always use this interface to get the keyword values.

\newcommand{\svnkwl}[1]{%
\@ifundefined{svnkw#1}7
{\PackageWarning{svn-multi}{SVN keyword ’#1’ not .
defined (typo?)}}%
{\csname svnkw#l\endcsnamel

}

7.9 Keyword check and strip macros

The following macros are used to test whether the given keywords are fully expanded
or not. Subversion supports unexpanded keywords as input with or without colon
and with or without trailing space(s), i.e. a: KW, b: $KW:$ or c: $KW: $. To avoid
KX syntax errors in this pre-commit state the keyword is checked by the following

43

macros. Unexpanded keywords result in an empty value. Also leading and trailing
spaces are removed.

\svn@checkcolon

#1: key

#2: potential value, might be empty
Checks if the keyword contains a colon. It is called by \svnkwsave@read with a
trailing :\relax so that #2 will be empty if there is no earlier colon or will hold the
value with this trailing colon otherwise. The first case means that the keyword is
unexpanded without colon (case a) which leads to an empty value. In the second case
\svn@stripcolon is called to strip the colon and surrounding spaces. The final value
is returned by \svn@value.

\def\svn@checkcolon#1:#2\relax{/
\svn@ifempty{#2}Y%
{\svnkwdef {#1}{}}%
{\svn@stripcolon#2\relax\svnkwdef {#1}{\svn@value,
j A

\svn@stripcolon

#1: potential value
Strips the previous added colon (for \svn@checkcolon). The remaining argument
is checked if it’s empty (case b) or only a space (case c). Otherwise the keyword is
expanded and \svn@stripspace is called to strip the spaces.

\def\svn@stripcolon#l:\relax{)
\svn@ifempty{#1}%
{\gdef\svn@value{}}’
{\svn@ifequal {#1}{ }%
{\gdef\svn@value{}}%
{\svn@stripspace#l\relax\relax}
Y

\svn@stripspace

#1: first character

#2: rest of string
Strips leading space if present and calls \svn@striptrailingspace to strip the
trailing space.

\def\svn@stripspace#1#2\relax{/
\svn@ifequal{#1}{ }’
{\gdef\svn@value{#23}}%
{\svn@striptrailingspace#1#2\relax}/

44

\svn@striptrailingspace

#1: string
Strips trailing space using the macros parameter text. Must be called with \relax as
end marker.

\def\svn@striptrailingspace#1l \relax{/
\gdef\svn@value{#1}
}

\svn@gdefverb

#1: macro

\def\svn@gdefverb#1{/
\begingroup
\def\svnQ@temp{#11}Y%
\begingroup
\if@svnmulti@verbatim
\svn@catcodes

\fi
\svn@gdefverb®
}
\svn@defverb@

#1: verbatim stuff

\def\svn@gdefverb@#1{/
\endgroup
\expandafter\gdef\svn@temp{#1}7
\endgroup

}

\svn@namegdefverb

#1: macro name

\def\svn@namegdefverb#1{’
\begingroup
\expandafter\def
\expandafter\svn@temp
\expandafter{\csname #1\endcsnamel}/,
\begingroup
\if@svnmulti@verbatim
\svn@catcodes
\fi
\svn@gdefverb®

45

7.10 Date Macros

\@svn@scandate

#1: date
Scans data information in Id keyword and saves them in macros.

\def\@svn@scandate#1{\@svn@scandate@#1\relax}

\def\@svn@scandateQ@#1-#2-#3 #4:#5:#6#7#8\relax{)
\gdef\svnfileyear{#1}/
\gdef\svnfilemonth{#2}7
\gdef\svnfileday{#33}/
\gdef\svnfilehour {#4}7
\gdef\svnfileminute {#5}7
\gdef\svnfilesecond{#6#71}7
\gdef\svnfiletimezonehour {+00}7
\gdef\svnfiletimezoneminute{00}/), #8 always ’Z’ for .

Zulu-time (UTC)

\@svn@scanlongdate

#1: Year
#2: Month
#3: Day
#4: Hour
#5: Minute
#6: Second
#7: Timezone
#8: Date description string (ignored)
Scans date information in Date keyword and saves them in macros.

\def\@svn@scanlongdate#1l{\expandafter\
@svn@scanlongdate@#l\relax}
YA
\def\@svn@scanlongdate@#1-#2-#3 #4:#5:#6 #7 #8\relax{
b
\gdef\svnfileyear{#11}7
\gdef\svnfilemonth{#2}7
\gdef\svnfileday{#31}7
\gdef\svnfilehour{#4}7
\gdef\svnfileminute{#5}7
\gdef\svnfilesecond {#61}7
\@svn@parsetimezone#7\relax’

46

\@svn@parsetimezone

#1: sign (+/-)
#2: hour first digit
#3: hour second digit
#4: minute first digit
#5: minute second digit
Scans timezone and splits hour and minute part.

\def\@svn@parsetimezone #1#2#3#4#5\relax{)
\gdef\svnfiletimezonehour {#1#2#3}7,
\gdef\svnfiletimezoneminute {#4#5}7

}

\svnpdfdate

Returns date in a format needed for \pdfinfo.

\def\svnpdfdate{Y
\svnyear\svnmonth\svnday

\svnhour\svnminute\svnsecond\svntimezonehour ’\ .

svntimezoneminute ’ Y

7.11 Mainfile Makros

\svnsetmainfile

Saves the current HeadURL and Filename keywords to macros. Will be called auto-

matically in the preamble.

\newcommand{\svnsetmainfile}{J
\xdef\svnmainurl{\svanfileurl?}y
\xdef\svnmainfilename{\svnfilefnamel}’

}

\AtBeginDocument{\svnsetmainfile}

7.12 Register and FullName Macros

\svnRegisterAuthor

#1: author username
#2: Full Name
Saves the author’s name by defining svn@author@(username) to it.

47

\newcommand {\ svnRegisterAuthor}[2]{%
\expandafter\def\csname svnQ@author@#1\endcsname{#2}

A

\svnFullAuthor

\svnFullAuthor*

We test if the starred or the normal version is used and call the appropriate submacro
svnFullAuthor@star or svnFullAuthor@normal.

\newcommand{\ svnFullAuthor}{%
\@ifnextchar{*x}
{\svnFullAuthor@star}y
{\svnFullAuthor@normall}’,
j A

\svnFullAuthor@star

#1: username
Both submacros are calling svnFullAuthor@ but with different arguments. The star
macro also removes the star of course.

\def\svnFullAuthor@star*#1{Y
\edef\svn@temp{#1}7
\svnFullAuthor@{\svn@temp}{~(\svn@temp) }’

Y

\svnFullAuthor@normal

#1: username

\def\svnFullAuthor@normal#1{Y
\edef\svn@temp{#1}7
\svnFullAuthor@{\svn@temp}{}’

Y

\svnFullAuthor@

#1: username

#2: previous defined trailing string
svnFullAuthor@ now sets the author’s full name. Note that #2 is empty when the
normal version is called.

48

\def\svnFullAuthor@#1#2{Y%
\@ifundefined{svn@author@#1}J
{#13}7%

{\csname svn@author@#1\endcsname #21}

\svnRegisterRevision

#1: revision number
#2: tag name
Saves the revision’s name or tag by defining svn@revision@(revisionnumber) to it.

\newcommand{\svnRegisterRevision}[2]{7
\expandafter\def\csname svn@revision@#1\endcsname,

{#2%}9

\svnFullRevision

\svnFullRevision*

We test if the starred or the normal version is used and call the appropriate submacro
svnFullRevision@star or svnFullRevision@normal.

\newcommand{\svnFullRevision}{’
\@ifnextchar{*}
{\svnFullRevision@starl}/
{\svnFullRevision@normally

\svnFullRevision@star

#1: revision number
Both submacros are calling svnFullRevision® but with different arguments. The
star macro also removes the star of course.

\def\svnFullRevision@star*#1{7
\edef\svn@temp{#1}7
\svnFullRevision@{\svn@temp}{~(r\svn@temp)l}’

}

\svnFullRevision@normal

#1: revision number

49

\def\svnFullRevision@normal#1{7
\edef\svn@temp{#1}7
\svnFullRevision@{\svn@temp}{}7

}

\svnFullRevision@

#1: revision number

#2: previous defined trailing string
svnFullRevision@ now sets the revision name. Note that #2 is empty when the
normal version is called.

\def\svnFullRevision@#1#2{7
\@ifundefined{svn@revision@#1}7
{Revision #1}Y
{\csname svn@revision@#1\endcsname #2}7,

7.13 Input File Name

The currfile package is used to get the input file names. AtBegin/AtEnd hooks are
installed which will be used later.

\if@svnmulti@filehooks
Load filehook and currfile packages.

\RequirePackage{filehook}[2011/01/03]
\RequirePackage{currfile}[2011/01/03]

The following code installs the necessary hooks for subfiles. It installs an own file
stack currfile does. The macro \svn@pg for the parent group needs to be set before
\currfilepath etc. is updated, so the internal filehook macros are used to install
the code before the currfile code. This means that the file name macros below still
hold the values of the parent file.

\filehook@prefixwarg\filehook@every@atbegin{
\svn@pushfilestack
\if@svnmulti@groups
\svn@ifequal{\currfilepath}{\ jobname.\,
currfile@mainext}’

{\xdef\svne@pg{\svn@gl}}’
{\xdef\svn@pg{\currfiledir\currfilebasel}}’

\fi

The file stack is popped at the end of the file hook to keep the macros valid for
normal hook code.

\filehook@appendwarg\filehook@every@atend{’
\svn@popfilestack
}

50

\def\svn@filestack{{}}

«; \def\svn@pushfilestack{)
864 \xdef\svn@filestack{{%

865 {\svnfilerev}y

866 {\svnfiledatel}%

86 {\svnfileauthorl}y

868 {\svnfileyearl}y

560 {\svnfilemonthl}Y

870 {\svnfiledayl}’

g {\svnfilehour}y
{\svnfileminutel}

873 {\svnfilesecondl}

874 {\svnfiletimezonehourl}y

875 {\svnfiletimezoneminutel}/

876 {\svnfileurl}y

8 {\svnfilefnamel}/

- {\svne@gly

479 {\svne@pgl}%

881 {\ifsvnfilemodified{@firstoftwo}{@secondoftwol}}¥
81 }\svn@filestackl}
}

s« \def\svn@restorefilekws#1#2\relax{/
85 \svn@restorefilekws@#1\empty
886 \empty \empty \empty \empty

8 \empty \empty \empty \empty
858 \empty \empty \empty \empty \empty
9 \svn@ifempty {#23}7

500 {\gdef\svn@filestack{{}}}7
501 {\gdef\svn@filestack{#2}}%
o}

s \def\svn@restorefilekwsQ#1#2#3#4#5#6#7#8#9{7
94 \gdef\svnfilerev{#1}

95 \gdef\svnfiledate{#2}/

896 \gdef\svnfileauthor {#33}Y

3 \gdef\svnfileyear {#4}7

08 \gdef\svnfilemonth{#5}7

59 \gdef\svnfileday{#6}/

900 \gdef\svnfilehour{#7}7

901 \gdef\svnfileminute {#8}7

902 \gdef\svnfilesecond{#9}7

903 \svn@restorefilekws@®@

0w \def\svn@restorefilekwsQQO#1#2#3#4#5#6#7{/,
907 \gdef\svnfiletimezonehour{#1}J

908 \gdef\svnfiletimezoneminute{#2}7

000 \gdef\svnfileurl{#3}7

10 \gdef\svnfilefname{#4}/

51

\gdef\svn@g{#5}7

\gdef\svn@pg{#6}Y%
\expandafter\global\expandafter\let
\expandafter\ifsvnfilemodified\csname#7\endcsname’,

}

\def\svnQ@popfilestack{’
\ifx\svn@filestack\empty
\PackageWarning{svn-multi}{Underflow of file .
keyword stack!}
\else
\svn@ifequal{\svn@filestack}{{}}%
{\PackageWarning{svn-multi}{Underflow of file .
keyword stack!}}%
{\expandafter\svn@restorefilekws\svn@filestack\,
relax}
\fi
}

h

\fi

7.14 Keyword Group Macros

These macros implement the user interface for the keyword group functionality
introduced with v2.0.

The list of keyword groups \svn@glist is initial set empty and will be filled by
\svngroup.

\if@svnmulti@groups
\let\svn@glist=\empty

\svngroup

931

#1: group name
Saves the group to \svn@g and initiates \svn@g@(group name)@rev and \@svng@(group
name)@rev if this is the first time the group got used.
The current group symbol ‘*’ is invalid here because there is no way to change to
a current group.

\def\svngroup#1{’
\svn@ifequal {#1}{*}7
{\PackageError{svn-multil}y
{The group name ’x*’ is invalid for ’\string\.
svngroup ’}{}%
3%
\xdef\svn@g{#1}7
\let\svn@pg\svnQg

52

938 \svn@checkgroup{#11}7
939 }

o0 \def\svn@checkgroup#1{/
941 \begingroup

202 \edef\svneg{#1}

Only initialise the group at first usage:

943 \ifx\svn@g\empty\else’

944 \expandafter

945 \ifx\csname @svng@\svn@g Qrev\endcsname\relaxy
%46 \svn@initgroup{\svn@gly

Now save new group to list. The list is checked if its empty to avoid an unwanted
leading comma.

947 \ifx\svn@glist\empty
948 \xdef\svn@glist{#1}
0i0 \else
950 \xdef\svn@glist{\svn@glist ,#13}%
951 \fl
\fi

\fi
954 \endgroup
s}

\thesvngroup

Returns the current group name to the user.

s \def\thesvngroup{\svnQg}

\svnsetcg

#1: group name
Defines \svn@cg to the given argument or to \svn@g if the argument was “*’.

s \def\svnsetcg#1{%

955 \svn@ifequal {#1}{*}7

959 {\def\svn@cg{\svnogl}l}y
o0 {\def\svn@cg{#1}}%

\svncg@def

#1: key name, e.g. ‘rev’, ‘date’
Defines a \svncgXXX macro, e.g. svncgrev, which returns the requested keyword
values of the current keyword group.

53

\def\svncg@def#1{7
\expandafter
\def\csname svncg#l\endcsname{/
\@ifundefined{svng@\svn@cg Q#1}{77}{%
\csname svng@\svn@cg @#1l\endcsnamel}’

Y

\svncgrev

\svncgdate

\svncgauthor

\svncgyear

\svncgmonth

\svncgday

\svncghour

\svncgminute

\svncgsecond

\svncgtimezonehour

\svncgtimezoneminute

54

\svncgurl

\svncgfname

Define all \svncgXXX macros by calling \svncg@def in a for loop.

w \@for\@tempa:=7
970 rev ,author ,date,year ,month,day,hour ,minute,second,’
97 timezonehour ,timezoneminute ,url, fname/,
oz \do{%
\expandafter\svncg@def\expandafter {\Q@tempaly
}

\thesvncg

Simply return the internal macro.

\def\thesvncg{\svn@cg}

\svng

#1: group name
#2: keyword name
Simply returns svng@#10#2 if defined, *??’ otherwise.

v \def\svng#1#2{Y
o \@ifundefined{svng@\svn@temp Q#2}7
078 {?7}%

{\csname svng@\svn@temp @#2\endcsnamel}’,

\svn@addfiletogroup

#1: file name
#2: group name
Adds the given file to the given group. If the group list doesn’t exist yet it is initialised.
A extra macro for each file is used to remember that the file is already in the group.
This could be avoided using a list search.
This is an internal macro so no ‘*’ substitution for the group name.

s \def\svnQaddfiletogroup#1#2{7
52 \svn@ifequal {#1}{#2}{}{%
983 \expandafter
954 \ifx\csname @svngO#2@files@#1\endcsnamel\relax/
\expandafter\gdef\csname Qsvng@#2@files@#1\,
endcsname {1}

[
986 o

55

\expandafter\ifx\csname @svng@#2Q@files\endcsname,
empty’
\expandafter\xdef\csname Qsvng@#20@files\.,
endcsname{#11}7
\else
\@ifundefined{@svng@#2@files}’
{\expandafter\xdef\csname Qsvng@#20@files\,
endcsname {#1}}7%
{\expandafter\xdef\csname Q@svng@#2@files\.,
endcsname {%
\csname Q@svng@#2@files\endcsname ,#1
Y
B A
\fi
\fi
Y

The input files are added to the list of the current group at their begin to have
them before the included graphics and other external files. Special care is taken
to not re-initialise the main file which could happen in some special cases (e.g.
\1lstinputlisting{\jobname .tex}).

\AtBeginOfFiles{Y%

101

\svn@ifequal{\currfilepath}{\ jobname.\
currfile@mainext}
{}7%
{\svn@initfilel}
\svn@ifequal{\currfileext}{\currfile@mainext}/
{\svn@addfiletogroup{\currfiledir\currfilebase}{\.
svn@pg {1}’
\svn@ifequal{\currfileext}{styl}’
{\svn@addfiletogroup{\currfiledir\currfilebase}{\.
svn@pg}}{}7%
\svn@ifequal{\currfileext}{cls}’
{\svn@addfiletogroup{\currfiledir\currfilebase}{\
svn@pg}}{}7%
\svn@addfiletogroup{\currfilepath}{\currfiledir\,
currfilebasel}

\svn@writegroup

#1: group name

Writes group to \svn@urite file.
\def\svn@uritegroup#1{’

\def\svnQuritekw##1{/
\immediate\write\svnQurite{%
\string\global\string\@namedef {svng@#10##1}{\
csname QsvngO#1Q##1\endcsnamel,

56

1017

1018

1019

o
o
\svn@writekw{revl}
\svn@uwritekw{datel}
\svn@uwritekw{author}y
\svn@writekw{yearl}/
\svn@writekw{monthl}J
\svn@writekw{dayl}’
\svn@uwritekw{hourl}/
\svn@uwritekw{minutel}J
\svn@uwritekw{secondl}
\svn@uwritekw{timezonehourl}/
\svn@writekw{timezoneminutel}
\@ifundefined{@svng@#1@files}{}{%
\immediate\write\svn@urite{
\noexpand
\svn@namegdefverb{svng@#1@files}{\csname @svng@,
#1@files\endcsnamel}’,
jA
hA
\immediate\write\svn@urite{
\noexpand
\svn@namegdefverb{svng@#1Qurl}{\csname Q@svngO#1,
@url\endcsname}~"JY
\noexpand
\svn@namegdefverb{svng@#1@fname}{\csname QsvngQ@#1l,
@fname\endcsname}”"JY%

Y

\svn@writeallgroups

#1: macro holding a list of groups

\def\svn@writeallgroups#1{’

\begingroup
\ifx\relax#1l\relax\else
\@for\svn@temp:=#1\do{%
\svn@ifvalidrev{@svng@\svn@temp Qrevl}/
{%
\expandafter
\svn@cleanfilelist\csname @svng@\svnQ@temp.
@files\endcsname
\svn@writegroup{\svnQtempl}’
\@ifundefined{@svng@\svn@temp @files}{l}%
{\expandafter\svn@uriteallgroups
\csname O@svng@\svn@temp @files\.,
endcsname

Y

57

1055 HY%
1056 Y

1057 \fl

1058 \endgroup

\svn@updategroup

#1: group name
Updates group with \svnfile. .. macro values.

wo \def\svn@updategroup#1{%

106 \@ifundefined{@svng@#1@revl}y

062 {\svn@initgroup{#1}}%

1063 {}7%

\expandafter

1065 \ifnum\csname Q@svng@#l@rev\endcsname<\svnfilerev

1066 \svn@gkwset{#1}{rev}{\svnfilerevl}y

1067 \svnO@gkwset {#1}{date}{\svnfiledatel’

1068 \svn@gkwset{#1}{author}{\svnfileauthorl}y

1069 \svn@gkwset{#1}{year}{\svnfileyearl}

1070 \svn@gkwset {#1}{month}{\svnfilemonthl}

107 \svn@gkwset{#1}{day}{\svnfiledayl}V

1072 \svn@gkwset {#1}{hour}{\svnfilehourl}y

1073 \svn@gkwset{#1}{minute}{\svnfileminutel}y

1074 \svn@gkwset{#1}{second}{\svnfilesecond}’

1075 \svn@gkwset{#1}{timezonehour}{\
svnfiletimezonehourly

1076 \svn@gkwset {#1}{timezoneminute }{\
svnfiletimezoneminutel}

10 \svn@gkwset {#1}{url}{\svnfileurl}y

1078 \svn@gkwset{#1}{fname}{\svnfilefnamel}/

1079 \fi

\svn@definegroup

#1: group name
Defines group value so that they are available for the user, e.g. instead of the in-
ternal @svng@. .. macros it sets the svng@. .. macros. This is done by calling
\svn@updategroup with a modified version of \svn@gkwset.

o \def\svn@definegroup#1{/
1082 \svn@gkwdef {#1}{revl})
1083 \svn@gkwdef {#1}{datel}’
1084 \svn@gkwdef {#1}{authorl}
1085 \svn@gkwdef {#1}{year}y
1086 \svn@gkwdef {#1}{monthl}/
1087 \svn@gkwdef {#1}{dayl}’

58

\svn@gkwdef {#1}{hour}y
\svn@gkwdef {#1}{minutel}’
\svnOgkwdef {#1}{second}’
\svn@gkwdef {#1}{timezonehour}y
\svn@gkwdef {#1}{timezoneminutel}
\svn@gkwdef {#1}{urll}’
\svn@gkwdef {#1}{fnamel’

\svn@initgroup

#1: group name
Initialises group.

\def\svn@initgroup#1{/
\svn@gkwset{#1}{rev}{\svn@revinit}
\svnOgkwset {#1}{date}{}’
\svn@gkwset {#1}{author}{}%
\svn@gkwset {#1}{year}{0000}7%
\svn@gkwset {#1}{month}{00}7%
\svn@gkwset{#1}{day}{00}%
\svn@gkwset {#1}{hour}{00}%
\svn@gkwset {#1}{minute}{00}7
\svnOgkwset {#1}{second }{00}7%
\svn@gkwset{#1}{timezonehour}{+00}7
\svn@gkwset{#1}{timezoneminute }{00}7
\svn@gkwset {#1}{url}{}’
\svn@gkwset{#1}{fname}{}%

\svn@gkwset

#1: group name
#2: keyword name
#3: value
Sets (value) for (keyword) in (group).

\def\svn@gkwset #1#2#3{

\expandafter

\xdef\csname @svng@#1@#2\endcsname{#3}7
}

\svn@gkwdef

#1: group name

#2: keyword name
Defines svng@. .. macros used by the user macros to the value of the internal
@svngQ@. .. macros

59

\def\svn@gkwdef #1#2{7
\expandafter
\xdef\csname svng@#1@#2\endcsname{\csname Qsvng@#1Q,
#2\endcsnamel}

\svn@cleanfilelist

#1: macro holing a file list
Takes a macro which holds a file list and removes all files from the list which don’t
have a valid revision number.

\def\svn@cleanfilelist#1{
\begingroup
\def\svn@tmplist{}Y%
\ifx\relax#1l\relax\else
\@for\svn@temp :=#1\do{%
\expandafter\svn@ifvalidrev
\expandafter{@svng@\svn@temp Qrevl}y
{\edef\svn@tmplist{\svn@tmplist ,\svn@templ}}.
YA
{37
b5
\xdef#1{\expandafter\@gobble\svn@tmplist\empty}.
b
\fi
\endgroup
}

\fi

7.15 Files as extra groups

Macros which allow single files to be declared as extra groups so that their keywords
can be accessed in the whole document like with normal groups. This special groups
are not added to the list of groups.

A user-level switch is declared to enable or disable the automatic declaration of
every file as own group. This causes \svnsubgroup to be called for all input files. The
if macro is defined outside the \if@svnmulti@subgroups because \newif inside
\1if is not a good idea.

\newif\ifsvnsubgroups
\svnsubgroupsfalse

\if@svnmulti@subgroups
\svnsubgroupstrue

60

\svnsubgroup

User level and internal macro to declare the current file as extra group. It produces
the current file path and calls \svn@subgroup. Creates two groups one with and
one without the file extension. The one without holds the latest revision of all files
included in this file.

\def\svnsubgroup{’

\begingroup
\svn@subgroup{\currfiledir\currfilebase}’
\svn@subgroup{\currfilepathl}’

\endgroup

}

\svn@subgroup

#1: file name
Macro to write a file as group to .aux file. After checking if the filename was not
already written, the .aux file is checked if it is open and then the file keyword
information is written.

\def\svn@subgroup#1{%
\ifnum\svnfilerev=\svn@revinit\else
\expandafter\ifx\csname svn@g@#1\endcsnamel\relax/
\expandafter\gdef\csname svnQ@g@#l\endcsname{1}
\svn@updategroup{#1}7/
\fi
\fi

\svnignoreextensions

#1: A comma separated list of file name extensions (without leading dot) to ignore
for automatic \svnsubgroup.
A special macro is defined for all extensions. The existents of this macro is then tested
later to check if this extension should be ignored.

\def\svnignoreextensions#1{/
\@for\svn@temp :=#1\do{’
\expandafter\def\csname svn@ignore@ext@\svn@temp\.,
endcsname{}

3

\svnconsiderextensions

#1: A comma separated list of file name extensions (without leading dot) to consider
for automatic \svnsubgroup.

61

The special macro defined by \svnignoreextentions is deleted, ie. \let to
\relax.

17 \def\svnconsiderextensions#1{

1158 \@for\svn@temp:=#1\do{’

1159 \expandafter\let\csname svn@ignore@ext@\svnOtemp\,
endcsname\relax}

1160 Y

The following extensions are ignored by default.

\svnignoreextensions{aux,bbl,fd,enc,fls,glo,idx,ilg,
ind,ist, Y%
1163 1of,log,lot,out,svn,svt,svx,toc}

Check at the end of every input file if files should be extra groups and declare this
file as group if its extension is not configured to be ignored.

e \AtEndOfFilesq{

1165 \if@svnmulti@subgroups

1166 \ifsvnsubgroups

16 \expandafter\ifx\csname svn@ignore@ext@\,
currfileext\endcsname\relax

1es \svnsubgroup

1169 \fi

1170 \fi

1171 \fl

The main file is added to the main base name (\jobname) subgroup here. This
subgroup is added as first element to the active group at begin of the document body.

w5 \if@svnmulti@subgroups
174 \ifsvnsubgroups
\svn@addfiletogroup{\jobname .\currfile@mainext,
}{\ jobname}’
e \svnsubgroup
1177 \fi
1178 \fl
w9 \AtBeginDocument{/
\if@svnmulti@subgroups
ns \ifsvnsubgroups
g2 \@ifundefined{@svng@\svn@g @files@\jobnamel’
1183 {%
\@namedef{@svng@\svn@g @files@\jobnamel}{1}
s \@ifundefined{@svng@\svn@Gg @files}’
1186 {7
1187 \expandafter
s \xdef\csname @svng@\svn@g @files\endcsname,
{\jobname}
1189 Y
1100 {7

62

\expandafter
\xdef\csname @svng@\svnQ@g Q@files\endcsname
{\jobname ,\csname @svng@\svn@g @files\.,
endcsname },
Y
Y%
\svnsubgroup
\fi
\fi
}

\fi

7.16 External Files

Macros to declare external files and load the keywords from . svx files generated by
svn-multi.pl

\if@svnmulti@external

\svnexternalgroup

#1: group name
Defines the default group of external files. The default is to always use the current
group. An empty argument puts the external files in no group. A ‘*’ switches back to
always use the current group.

\if@svnmulti@groups
\def\svnexternalgroup#1{/

\svn@ifequal {#1}{*}7
{\def\svn@externalgroup{\svn@pgl}}’%
{\def\svn@externalgroup{#1}1}%

}
\def\svn@externalgroup{\svn@pg}
\else

\def\svn@externalgroup{}

\fi

\svnexternal

#1: group name
#2: list of filenames in { }

\if@svnmulti@autokw
\newcommand*\svnexternal [2] [I1{"
\svn@pushfilestack

\svn@ifequal {#1}{*}%
{\edef\svn@eg{\svnlpgl}l}y

63

1246

{\svnQ@ifempty{#11}Y%
{\edef\svn@eg{\svn@externalgroupl}}’
{\edef\svnGeg{#1}}7

i

\svn@checkgroup{\svn@egl/
\svne@@external#2\relax
\svn@popfilestack

}

\def\svne@@external#1{’
\ifx\relax#1l\empty\else
\svnegetfile{#1}Y
\begingroup\svn@externalfile{\svnQeg}{#13}
\expandafter\svne@@external
\fi
}

\else

Writes the current input file path and its argument as arguments of \@svnexternal
into the .aux file.

\newcommand*\svnexternal [2] [1{7
\ifefilesw
\begingroup
\svn@ifequal {#1}{*}7
{\def\svn@temp{\svn@pgl}}’
{\svn@ifempty{#1}/
{\def\svn@temp{\svn@externalgroupl}}’
{\def\svnQ@temp{#1}}7
Y
\let\protect\@unexpandable@protect
\immediate\write\svnQurite{’
\noexpand\@svnexternal [\svn@temp]{\.
currfilepath}{#23}7
Y
\endgroup
\fi
\svn@inputsvx{\currfiledir\currfilebasel}’

\fi

\svnexternalpath

#1: list of paths in { }
Writes its argument as argument of \@svnexternalpath into the .aux file.

\def\svnexternalpath#1{/
\if@filesw

64

\begingroup
\let\protect\Q@unexpandable@protect
\immediate\write\svnQ@urite{’
\noexpand\@svnexternalpath{#1}
Y
\endgroup
\fi

\@svnexternal

\@svnexternalpath

Discards the argument(s). These macros and their arguments are only used by the
external svn-multi.pl script.

\newcommand *\@svnexternal [3] [1{}
\def\@svnexternalpath#1{}

\svnexternalfile

This macro is generated by svn-multi.pl and should not be used by the user. If files-
as-group is enabled some special characters are disabled and the \svn@externalfile
is called to read the file name. Otherwise the argument is simply removed.

\newcommand*\svnexternalfile[1] [\currfiledir\,
currfilebase]{’
\begingroup . TODO: maybe use \svn@catcodes
\catcode ‘_=12
\catcode ‘\&=12
\catcode ‘\"=12
\catcode ‘\$=12
\catcode ‘\#=12
\svn@externalfile{#1}7

\svn@externalfile

#1: group name
#2: file name
Ends group which began in \svnexternalfile and calls the appropriate macros.

\def\svn@externalfile#1#2{7
\endgroup
\if@svnmulti@subgroups

\ifsvnsubgroups
\svn@ifequal {#1}{\svn@rgly

65

{\svn@addfiletogroup{#2}{\currfiledir\,
currfilebasel}}’
{\svn@addfiletogroup{#2}{#13}}%
\svn@subgroup{#2}7
\fi
\fi

If external option is not enabled a placeholder macro is defined which simply
ignores its argument.

\else
\def\svnexternalfile#1{}
\fi

7.17 Auto loading of .svx files

Auto loading of .svx files at the begin of \input or \include files using the
\AtBeginOfFiles hook. The macros \svn@addfiletogroup and \svnsubgroup
are used to do the actual work.

\if@svnmulti@autoload
\AtBeginOfFiles{Y
\svn@ifequal{\currfileext}{tex}

{\svn@inputsvx{\currfiledir\currfilebasel}l}’

{3%

The main . svx is loaded at the end of the package.

%%\AtEndOfPackage{%
\AtBeginDocument{%
\svn@inputsvx{\jobname}

}

\fi

7.18 Support for Graphic Packages

7.18.1 Common Code

\if@svnmulti@anygraphic

\svngraphicsgroup

#1: graphic group name
Defines the default group of graphics files. The default is empty which means the
current group.

66

\def\svngraphicsgroup#1{’

\svn@ifequal {#1}{*}%
{\def\svn@graphicsgroup{\svn@pgl}’
{\def\svn@graphicsgroup{#13}1}/

}
\def\svn@graphicsgroup{\svn@externalgroup}

\svnignoregraphic

#1: file name/path
Ignores the given graphic file by defining a special macro.

\def\svnignoregraphic#1{/
\expandafter\def\csname svn@ignoregraphic@#1_
endcsname{}/

\svnconsidergraphic

#1: file name/path
Deletes the special ignore macro to consider the graphic again.

\def\svnconsidergraphic#1{J
\expandafter\let\csname svn@ignoregraphic@#1_
endcsname\relax/

}

\fi

7.18.2 Package graphics

Automatic declaration of all images included by \includegraphics from the graphics
package as external files. We use the \Gin@setfile macro from that package which
receives the image file name as third argument.

\if@svnmulti@graphics
\RequirePackage{graphics}[2006/02/20]

\Gin@setfile

#1: ??, not used
#2: ?? not used
#3: graphic file name/path

\message{Package svn-multi: patching macro ’\string\.
Gin@setfile’ from the

’graphics’ package!}’

\let\svnmulti@Gin@setfile\Gin@setfile

67

s \renewcommand *{\Gin@setfile}[31{7
\expandafter\ifx\csname svn@ignoregraphic@#3\
endcsname\relax/
\svnexternal [\svn@graphicsgroup] {{#3}}%
\fi
\svnmulti@Gin@setfile {#1}{#2}{#3}7
}

s \fi

7.18.3 Package pgf

The pgf macro \pgf@declareimage which is called by the user macro \pgfdeclareimage
is used.

\if@svnmulti@pgfimages
\RequirePackage{pgf}[2008/01/15]

\pgf@declareimage

#1: ??, not used
#2: image label
#3: ??, not used

\message{Package svn-multi: patching macro ’\string\.
pgf@declareimage’ and will
patch generated macros ’\string\pgf@image@<name>!’ .
from the ’pgf’ package!l}
v \let\svnmulti@pgf@declareimage\pgf@declareimage
w0 \renewcommand*{\pgf@declareimage} [3] [1{%
1331 \svomulti@pgf@declareimage [#1]{#2}{#3}7

At this point the used image filename is defined by \pgf@f ilename and the image
itself is defined by \pgf@image@#2! which is a \1et copy of temporary \pgf@image.
An own copy of this is created and the old name \pgf@image®@#2! is used to execute
\svnexternal every time the image is included using \pgfuseimage.

1332 \ifx\pgf@filename\empty\else
\expandafter\ifx\csname svn@ignoregraphic@\,
pgf@filename\endcsname\relax’,
\expandafter\global\expandaftery
\let\csname svnmulti@pgf@image@#2!\endcsname=_
pgf@image’
\expandafter\xdef\csname pgf@imageQ@#2!_
endcsname{/
\noexpand\svnexternal [\noexpand\
svn@graphicsgroupl {{\pgf@filenamel}}’
1338 \csname svnmulti@pgf@image@#2!\endcsname
19 Yo
\fi
\fi

68

1344

\fi

7.19 Table of Revisions

\if@svnmulti@table
\ifx\tableofcontents\relax\else

\svnrevisionsname

Simple definition for now. Language support over ‘babel’s \languagename possible.

\def\svnrevisionsname{Table of Revisionsl}/

\svn@svt

File ending for table of revision auxiliary file. A macro is used to allow redefinition by
the user if another package is uses the same ending.

\def\svn@svt{svt}

\tableofrevisions

The \tableofcontents macro from standard BIgX is adapted for this macro. Classes
which provide chapters will get a different table then one which not.

The external (i.e. non-svn-multi) if-switches are masked using \ifx and \csname
to avoid TgX if-parsing errors when they are not defined.

\AtBeginDocument{%
\ifx\chapter\relax
\let\chapter\@undefined
\fi
\ifx\chapter\@Qundefined

%% Adapted from the \tableofcontents macro, LaTeX ¢,
article’ class [2005/09/16]

\newcommand\tableofrevisions{)
\section*{\svnrevisionsname
\@mkboth{\MakeUppercase\svnrevisionsname }{\

MakeUppercase\svnrevisionsname}1}7

\svn@input{\ jobname .\svn@svtl}/

}

\else
%% Adapted from the \tableofcontents macro, LaTeX ¢,

book’ class [2005/09/16]
\newcommand\tableofrevisions{J

69

\expandafter\ifx
\csname if@twocolumn\expandafter\endcsname
\csname iftruelendcsname
\@restonecoltrue\onecolumn
\else
\@restonecolfalse
\fi
\chapter*{\svnrevisionsname
\@mkboth{\MakeUppercase\svnrevisionsname}{\
MakeUppercase\svnrevisionsnamel}}7
\svn@input{\ jobname .\svn@svtl})
\expandafter\ifx
\csname if@restonecol\expandafter\endcsname
\csname iftruelendcsname
\twocolumn
\fi

\fi
by

\fi % defined \tableofcontents

\svn@writerow

#1: row type (group’, file’, global’, ...)

#2: row type specific argument

#3: row type specific argument
Writes a table row by using \svn@tabcell and \svn@tabcellarg defined by the
\svn@writeXXXrow macro below.

\def\svn@uwriterow#1#2#3{/
\immediate\write\svn@svtwrite{’
\expandafter\noexpand\csname svn#lrow\endcsname
\expandafter\noexpand\csname svntab#1l\endcsname,
{#2}{#3}\space

\@ampersamchar\space
\svn@tabcell{rev}\space\@ampersamchar\space
\svn@tabcell{author}\space\@ampersamchar\space
\noexpand\svntabdate/
\svn@tabcellarg{yearly
\svn@tabcellarg{month}/
\svn@tabcellarg{dayl}/
\svn@tabcellarg{hourl}/

\svn@tabcellarg{minutel}’
\svn@tabcellarg{second}’
\svn@tabcellarg{timezonehour}
\svn@tabcellarg{timezoneminutel}
\space\@backslashchar\@backslashchar

70

\expandafter\noexpand\csname endsvn#lrow\,
endcsname

B

\svn@writegrouprow

#1: current group

\def\svnQ@uwritegrouprow#1{7
\begingroup
\def\svn@tabcellarg##1{{\ csname Qsvng@#1Q##1\
endcsname }}%
\def\svn@tabcell##1{\expandafter\noexpand\csname .
svntab##1\endcsname/
\svn@tabcellarg{##1}7
Y
\svn@writerow{group }{#1}{}%
\endgroup
}

\svn@writesubgrouprow

#1: grouping level
#2: subgroup name

\def\svnQwritesubgrouprow#1#2{J
\begingroup
\def\svn@tabcellarg##1{{\csname Q@svngQ@#2Q##1\,
endcsname}}
\def\svn@tabcell##1{\expandafter\noexpand\csname .
svntab##1\endcsname/
1418 \svn@tabcellarg{##1}7

Y
\svn@writerow{subgroup}{#1}{#2}7
\endgroup
}
\svnQuritefilerow

#1: grouping level

#2: file name

ws \def\svn@writefilerow#1#2{Y

1424 \begingroup

\def\svn@tabcellarg##1{{\ csname Qsvng@#2Q##1\
endcsname }}%

71

1429

\def\svn@tabcell##1{\expandafter\noexpand\csname .
svntab##1\endcsname/,
\svn@tabcellarg{##13}7
Y
\svnOuwriterow{file}{#1}{#2}Y
\endgroup
}

\svn@writeglobalrow

\def\svn@uriteglobalrow{’
\begingroup
\def\svn@tabcellarg##1{{\ csname Q@svn@##1\endcsname,
Y3
\def\svn@tabcell##1{\expandafter\noexpand\csname .
svntab##1\endcsname’,
\svn@tabcellarg{##13}7
Y
\svn@writerow{global }{}{}7
\endgroup

7.19.1 Table Format Macros

Generic format macro used in the . svt file. Can be redefined by the user to change
table format. TODO: More documentation needed!

\svntable

\def\svntable{’
\begin{tabular}{p{0.425\textwidth}rll}
\hline

\endsvntable

\def\endsvntable{\hline\end{tabularl}}

\svntablehead

\def\svntablehead{’
Name & Rev & Last Author & Last Changed At \\\.
hline

72

\svntablefoot

\def\svntablefoot{}

\svnbeforetable

\def\svnbeforetable{}

\svnaftertable

\def\svnaftertable{\clearpage}

\svnglobalrow

\def\svnglobalrow{}

\endsvnglobalrow

\def\endsvnglobalrow{}

\svngrouprow

\def\svngrouprow{}

\endsvngrouprow

\def\endsvngrouprow{}

\svnsubgrouprow

\def\svnsubgrouprow{}

\endsvnsubgrouprow

\def\endsvnsubgrouprow{}

73

\svnsubgrouprow

\def\svnfilerow{}

\endsvnfilerow

\def\endsvnfilerow{}

\svntabglobal

\def\svntabglobal{Document}

\svntabgroup

\def\svntabgroup#1{Group ‘#1°}

\svntabfile

1469

\def\svntabsubgroup#1{’
\raggedright
\addtolength{\leftskip}{#1\medskipamount}
\begingroup
\catcode ‘_=12
\catcode ‘\&=12
\catcode ‘\"=12
\catcode ‘\$=12
\catcode ‘\#=12
\svn@tabsubgroup
}
\def\svn@tabsubgroup#1{\endgroup Subgroup ‘\texttt{\,
small #1}°%}

\svntabfile

\def\svntabfile#1{%
\raggedright
\addtolength{\leftskip}{#1\medskipamount}
\begingroup
\catcode ‘_=12
\catcode ‘\&=12
\catcode ‘\"=12

74

\catcode ‘\$=12
\catcode ‘\#=12
1483 \svn@tabfile
s}
\def\svn@tabfile#1{\endgroup File ‘\texttt{\small .
#1}°%

\svntabrev

\def\svntabrev{}

\svntabauthor

\def\svntabauthor#1{\svnFullAuthor{#1}}

\svntabdate

ws \def\svntabdate#1#2#3#4#5#6#7#8{Y
1489 #1-#2-#3 #4:#5:#679 #7#8Y
1490 }

149 \fl

7.20 Other macros

This section contains macros which don’t fit in any other section.

\svn

\svnx*

After *-testing, the intermediate macros \svn@s and \svn@n are called to strip the
{ } from \svn[*]{$. . .$} and to remove the *. Then the actual macros are called to
strip the dollars with or without the space before the last dollar.

w: \newcommand{\svn}{\@ifnextchar{*}{\svn@s}{\svn@nl}}
ws \def\svnOn#1{\@svn@n#1}

w: \def\svn@s*#1{\@svn@s#1}

ws \def\@svnOn$#1${#1}

o \def\@svn@s$#1 ${#13}

75

\svnnolinkurl

#1: URL
This code is taken from the hyperref package and is the definition of \url just with-
out the part which creates the actual hyperlink. This needs of course the hyperref
package. A warning is given if it isn’t loaded.

%% Adapted from the \url macro of the ‘hyperref ‘¢ .
package.

\DeclareRobustCommand*{\svnnolinkurl}{’

\@ifundefined{hyper@normalisel’
{\PackageWarning{svn-multi}{Package hyperref is .
needed for \noexpand
\svnnolinkurl.}}Y%

{\hyper@normalise\svnnolinkurl@l}y

3

\def\svnnolinkurl@#1{\Hurl{#13}1}7

\svn@getfilename

#1: URL
This macro expands the content using the temporary macro and sets it in front of the
\svn@getfilename sub-macro together with /{} to make sure the macro does not
break at values without directories. A \relax is used as end marker.

\def\svn@getfilename#1{
\begingroup
\gdef\svnfiledir{}7
\edef\svn@temp{#1}7
\expandafter\@svn@getfilename\svn@temp/{}\relax
Y

\@svn@getfilename

#1: URL part before first slash

#2: URL part after first slash
Splits the content at the first slash (/) and checks if the remainder is empty. If so the
end marker got reached and the part before the slash is the filename which is returned.
Otherwise the macro recursively calls itself to split the remainder.

\def\@svn@getfilename#1/#2\relax{’
\svn@ifempty{#2}%

{7
\endgroup
\gdef\svnfilefname{#1}7

Y

{7
\xdef\svnfiledir{\svnfiledir#1/}
\@svn@getfilename#2\relax

76

Y
+

7.21 Write to Auxiliary File

\svn@write

Simply an alias for the main aux file write handle.

\let\svn@write\@mainaux

\svn@writesvn

This macro writes the . aux auxiliary file and is called from a \AtEndDocument macro
later on.

{\catcode ‘\&=12
\gdef\@ampersamchar{&}
}

\def\svn@uritesvn{Y

Remove all files which do not have a revision number from list:

\if@svnmulti@groups
\fi

Write document global values:

\immediate\write\svn@urite{~"JJ
\@percentchar\space Global values:~~JJ
\noexpand\gdef\noexpand\svnrev{\@svn@rev}~"JJ
\noexpand\global\noexpand\let\noexpand\.

ifsvnmodified\@backslashchar\@svn@modified™",
J%
\noexpand\gdef\noexpand\svndate{\@svn@datel}~"JJ
\noexpand\gdef\noexpand\svnauthor{\@svn@author
}="J%
\noexpand\gdef\noexpand\svnyear{\@svn@year}~"J/
\noexpand\gdef\noexpand\svonmonth{\@svn@monthl}~"
J%
\noexpand\gdef\noexpand\svnday{\@svn@day}~"JJ
\noexpand\gdef\noexpand\svnhour{\@svn@hour}~"J%
\noexpand\gdef\noexpand\svaminute{\@svn@minute,

Y=~ J%
\noexpand\gdef\noexpand\svnsecond{\@svn@second,
}~"J%

\noexpand\gdef\noexpand\svntimezonehour{\
@svn@timezonehour}~"J

\noexpand\gdef\noexpand\svntimezoneminute {\
@svn@timezoneminutel}~"J%

77

\noexpand\svn@gdefverb\noexpand\svnurl{\
@svn@url}~"JY
\noexpand\svn@gdefverb\noexpand\svnfname{\
@svn@fname}~"JY
o
Write group keyword macro definitions. Remove all files which do not have a
revision number from list:

\if@svnmulti@groups
\svn@cleanfilelist\@svng@@files
\immediate\write\svn@uwrite{’

\noexpand\gdef\noexpand\svng@@files{\
@svng@@files}~"JJ
Y
\svn@writeallgroups\@svng@@files
Write keyword group values if groups were specified:

\ifx\svn@glist\empty\else
\begingroup
\immediate\write\svn@urite{"~JJ
\@percentchar\space SVN File Groups: \.

svn@glist
Y
\svn@writeallgroups\svn@glist
\endgroup
\fi
\else
\immediate\write\svn@write{~"J}J
\fi

\svn@writegroupfiles

#1: group name
Writes all files of a group to the . svt file. If the file is actually a subgroup it calls itself
recursively.

\def\svnQwritegroupfiles#1{/
\begingroup
\advance\svn@grouplevel by 1\relax
\expandafter\let
\expandafter\svn@files\csname @svng@#1@files\,
endcsname

Stop if no files in list.

\ifx\svn@files\relax\else
\svn@cleanfilelist\svn@files
\@for\svn@file:=\svn@files\do{’

78

Check if VC data is set and then if it is a (sub)group or not by looking at the file
list.

1572 \svn@ifvalidrev{@svng@\svn@file Qrevl}y

1573 {7

15 \@ifundefined{@svng@\svn@file @filesl}’

1575 {\svnOwritefilerow{\the\svn@grouplevel

}{\svn@filel}}

If subgroup only contains out of a TeX file with the same name print it as file
and only as subgroup otherwise. If the subgroup file list is empty the subgroup was
generated in error and is not printed at all.

1576 {\svn@ifonlyone{\svn@file}y
15 {\svnOwritefilerow{\the\.
svn@grouplevell}’
1578 {\csname @svng@\svn@file @files\.,
endcsname }} 7
1579 {\svn@ifempty{\csname @svng@\svn@file,
@files\endcsnamel
1580 {}7%
1581 {%
1582 \svn@writesubgrouprow{\the\
svn@grouplevel }{\svn@file}’
1583 \svn@uritegroupfiles{\svn@filel}y
1584 Y
1585 }%
1586 }%
1587 Y%
1588 Y
1589 \fi
1590 \endgroup
1591 }%

\svn@writesvt

This macro writes the . svt auxiliary file and is called from a \AtEndDocument macro
later on.

52 \def\svn@uritesvt{Y
Write table of revisions if enabled.
1593 \if@svnmulti@table
Open .svt file and write table header:

1594 \newwrite\svn@svtwrite
1505 \immediate\openout\svn@svtwrite=\jobname.\svn@svt,
\relax
1596 \@onelevel@sanitize\svntable’,
\immediate\write\svn@svtwrite{’
159 \noexpand\svnbeforetable~"JJ

79

\svntable
\noexpand\svntablehead~"JY
}
Group rows:

\let\svn@grouplevel\@tempcnta
\svn@grouplevel=0\relax
\svn@writeglobalrow{}’
\svn@writegroupfiles{}/
YA
\@for\svn@g:=\svn@glist\do{’
\@ifundefined{@svng@\svn@g G@revl}{}’
{%
\expandafter
\ifnum\csname @svng@\svn@g Qrev\endcsname >0\,
relax
\svn@writegrouprow{\svn@gl}y
\svn@writegroupfiles{\svn@gly
\fi
Y
Y
Write table footer and close file:

\Q@onelevel@sanitize\endsvntable

\immediate\write\svn@svtwrite{Y
\noexpand\svntablefoot~"J)
\endsvntable~"JY%
\noexpand\svnaftertable

1

\immediate\closeout\svn@svtwrite

\fi

Load the keywords of every subfile if the autokw option is enabled and the
extension is not on the ignore list.
This code is placed here because it has to come after the at-begin-input-file code.

\if@svnmulti@autokwall

\AtBeginOfFiles{Y
\expandafter
\ifx\csname svn@ignore@ext@\currfileext\endcsname\,
relax
\svnegetfile{\currfilepathl}/
\fi
}

\fi

At the end of document the values are written to the auxiliary file.

80

63

1638

\AtEndDocument {7
\ifefilesw
\ifx\@svn@rev\empty\else
\ifnum\@svn@rev<ilelse
\begingroup
\let\protect\@unexpandable@protect
\svn@writesvn
\svn@writesvt
\endgroup
\fi
\fi
\fi

7.22 Backward compatibility wrapper svnkw.sty

For backward compatibility a wrapper file with the old package name svnkw is
provided. Newer documents should use the name svn-multi.

\NeedsTeXFormat{LaTeX2e}[1999/12/01]
\ProvidesPackage{svnkw}
[2009/03/27 v2.1 Backward compatibility wrapper for .

svn-multi]

\PackageWarning{svnkw}{The package ’svnkw’ got .
renamed to ’svn-multi’ and is now

only a backward compatibility wrapper which loads ’.
svn-multi’. Please adjust

your document preamble to use the new name.}

\RequirePackage{svn-multi}

81

	Introduction
	Scope of Keywords

	Usage
	Package Options
	Including Subversion Keywords
	Groups
	Files as Subgroups

	Typesetting the Keyword Values
	Accessing Date Values
	Using Full Author Names
	Using Full Revision Names
	Verbatim URLs with and without Hyperlinks
	Table of Revisions
	Including Keywords of External Files

	Compile Guide
	Known Issues
	Packet listings uses input

	Package Dependencies and Acknowledgements
	Further Reading
	Implementation
	Package Header
	General Internal Macros
	Definition of init values
	Auto-Keywords
	Timezone macros
	Today macros
	Id macros
	Normal Id
	Long Id

	KeyWord Macros
	Keyword check and strip macros
	Date Macros
	Mainfile Makros
	Register and FullName Macros
	Input File Name
	Keyword Group Macros
	Files as extra groups
	External Files
	Auto loading of .svx files
	Support for Graphic Packages
	Common Code
	Package graphics
	Package pgf

	Table of Revisions
	Table Format Macros

	Other macros
	Write to Auxiliary File
	Backward compatibility wrapper svnkw.sty

