
A Document Class and a Package

for Handling Multi-File Projects

Federico Garcia, Gernot Salzer

2020/10/29 v2.1

Abstract

The subfiles package allows authors to split a document into one main
file and several subsidiary files (subfiles) akin to the \input command, with
the added benefit of making the subfiles compilable on their own. This is
achieved by reusing the preamble of the main file also for the subfiles.

Contents

1 Introduction 2

2 Basic usage 2

3 Advanced usage 3
3.1 Including files instead of inputting them 3
3.2 Fixing pathes . 3
3.3 Conditional execution of commands 4
3.4 Unusual locations for placing definitions and text 4

4 Use cases 5
4.1 Hierarchy of directories . 5
4.2 Cross-referencing between subfiles 6
4.3 Avoiding extra spaces . 6

5 Troubleshooting 6

6 Dependencies 7

7 Version history 7

8 The Implementation 8
8.1 The class . 8
8.2 The package . 9

1

1 Introduction

The LATEX commands \include and \input allow the user to split the TEX source
of a document into several input files. This is useful when creating documents with
many chapters, but also for handling large tables, figures and code samples, which
require a considerable amount of trial-and-errors.

In this process the rest of the document is of little use, and can even interfere.
For example, error messages may indicate not only the wrong line number, but
may point to the wrong file. Frequently, one ends up wanting to work only on the
new file:

• Create a new file, and copy-paste the preamble of the main file into it.

• Work on this file, typeset it alone as many times as necessary.

• Finally, when the result is satisfactory, delete the preamble from the file
(alongside with \end{document}!), and \include or \input it from the
main file.

It is desirable to reduce these three steps to the interesting, middle one. Each
new, subordinate file (henceforth ‘subfile’) should behave both as a self-sufficient
LATEX document and as part of the whole project, depending on whether it is
LATEXed individually or \included/\input from the main document. This is
what the class subfiles.cls and the package subfiles.sty are intended for.

2 Basic usage

The main file, i.e., the file with the preamble to be shared with the subfiles, hassubfiles.sty

to load the package subfiles:

\documentclass[...]{...}

\usepackage{subfiles}

\begin{document}

Subordinate files (subfiles) are loaded from the main file or from other subfiles\subfile

with the command

\subfile{〈subfile name〉}

The subfiles have to start with the linesubfiles.cls

\documentclass[〈main file name〉]{subfiles}

which loads the class subfiles. Its only ‘option’, which is actually mandatory,
gives the name of the main file. This name follows TEX conventions: .tex is the
default extension, the path has to be provided if the main file is in a different
directory, and directories in the path have to be separated by / (not \). Thus, we
have the following structure.

2

main file

\documentclass[...]{...}

〈shared preamble〉
\usepackage{subfiles}

\begin{document}

. . .
\subfile{〈subfile name〉}
. . .
\end{document}

subfile

\documentclass[〈main file name〉]{subfiles}
\begin{document}

. . .
\end{document}

Now there are two possibilities.

• If LATEX is run on the subfile, the line \documentclass[..]{subfiles} is
replaced by the preamble of the main file (including its \documentclass

command). The rest of the subfile is processed normally.

• If LATEX is run on the main file, the subfile is loaded like with an \input

command, except that the preamble of the subfile up to \begin{document}

as well as \end{document} and the lines following it are ignored.

3 Advanced usage

3.1 Including files instead of inputting them

In plain LATEX, you can use either \input or \include to load a file. In most\subfileinclude

cases the first is appropriate, but sometimes there are reasons to prefer the latter.
Internally, the \subfile command uses \input. For those cases where you need
\include, the package provides the command

\subfileinclude{〈subfile name〉}

3.2 Fixing pathes

Whenever an error message of LATEX or an external program indicates that a file\subfix

cannot be found, the reason may be that the missing file has to be addressed by
varying pathes, depending on which file is typeset. In such a case, it may help to
apply the command \subfix to the file or path names. Examples:

package command when used with subfiles

biblatex \addbibresource{\subfix{〈file〉}}
bibunits \putbib[\subfix{〈file1 〉},\subfix{〈file2 〉},. . .]

\defaultbibliography{\subfix{〈file1 〉},. . . }

Some commands already apply the fix on the fly. At the moment these are\bibliography

\graphicspath the standard LATEX command \bibliography and \graphicspath from the
graphics/graphicx package.

3

3.3 Conditional execution of commands

The command \ifSubfilesClassLoaded is useful to execute commands condi-\ifSubfilesClassLoaded

tionally, depending on whether the main file is typeset or a subfile.

\ifSubfilesClassLoaded{% then branch

. . . commands executed when the subfile is typeset . . .
}{% else branch

. . . commands executed when the main file is typeset . . .
}

As an example, this can be used to add the bibliography to the main document
or to the subdocument, whichever is typeset:

main file

\documentclass[...]{...}

\usepackage{subfiles}

\bibliographystyle{alpha}

\begin{document}

. . .
\subfile{〈subfile name〉}
. . .
\bibliography{bibfile}

\end{document}

subfile

\documentclass[〈main file name〉]{subfiles}
\begin{document}

. . .
\ifSubfilesClassLoaded{%

\bibliography{bibfile}%

}{}

\end{document}

3.4 Unusual locations for placing definitions and text

Starting with version 2.0, the subfiles package treats sub-preambles and text
after \end{document} as one would expect: The preamble of subfiles is skipped
when loaded with \subfile, and everything after \end{document} is ignored. In
most cases this is what you want.

For reasons of compatibility, the option v1 restores the behaviour of previous[v1]

versions.

\usepackage[v1]{subfiles}

This will have three effects.
Code after the end of the main document is added to the preamble of the sub-

files, but is ignored when typesetting the main file. Here, one can add commands
that are to be processed as part of the preamble when the subfiles are typeset on
their one. But this also means that any syntax error after \end{document} will
ruin the LATEXing of the subfile(s).

Code in the preamble of a subfile is processed as part of the text when typeset-
ting the main file, but as part of the preamble when typesetting the subfile. This
means that with the option v1, the preamble of a subfile can only contain stuff
that is acceptable for both, the preamble and the text area. One should also keep
in mind that each subfile is input within a group, so definitions made here may
not work outside.

Code after \end{document} in a subfile is treated like the code preceding it
when the subfile is loaded from the main file, but is ignored when typesetting

4

the subfile. The code after \end{document} behaves as if following the \subfile

command in the main file, except that it is still part of the group enclosing the
subfile. As a consequence, empty lines at the end of the subfile lead to a new
paragraph in the main document, even if the \subfile command is immediately
followed by text.

4 Use cases

4.1 Hierarchy of directories

Sometimes it is desirable to put a subfile together with its images and supplemen-
tary files into its own directory. The difficulty now is that these additional files
have to be addressed by different pathes depending on whether the main file or the
subfile is typeset. As of version 1.3, the subfiles package handles this problem
by using the import package.

As an example, consider the following hierarchy of files:

main.tex

mypreamble.tex

dir1/subfile1.tex

dir1/image1.jpg

dir1/text1.tex

dir1/dir2/subfile2.tex

dir1/dir2/image2.jpg

dir1/dir2/text2.tex

where main, subfile1, and subfile2 have the following contents:

main.tex

\documentclass{article}

\input{mypreamble}

\usepackage{graphicx}

\usepackage{subfiles}

\begin{document}

\subfile{dir1/subfile1}

\end{document}

subfile1.tex

\documentclass[../main]{subfiles}

\begin{document}

\input{text1}

\includegraphics{image1.jpg}

\subfile{dir2/subfile2}

\end{document}

subfile2.tex

\documentclass[../../main]{subfiles}

\begin{document}

\input{text2}

\includegraphics{image2.jpg}

\end{document}

Then each of the three files can be typeset individually in its respective directory,
where LATEX is able to locate all included text files and images.

5

4.2 Cross-referencing between subfiles

When working with multiple subfiles under a main file, say main.tex, one may
want to refer in subfile A.tex to labels in subfile B.tex. To make this work, load
the package xr in the preamble of the main file and add an \externaldocument

command after loading the subfiles package:

\usepackage{xr}

\usepackage{subfiles}

\externaldocument[M-]{\subfix{main}}

In the \externaldocument command, main is the name of the main document.
Moreover, M- is an arbitrary sequence of characters that is added as prefix to the
labels. The \subfix command is only needed if the subfiles are not in the same
directory as the main file, but it doesn’t hurt if you add it in any case.

To cross-reference between documents, add labels as usual. Suppose you have
\label{mylabel} in any of the files. Then you can use \ref{M-mylabel} and
\pageref{M-mylabel} to obtain the (page) number that the label refers to in the
main document.

Note that you first have to compile main.tex. This generates main.aux, which
then can be loaded by the subfiles to provide the information for the labels prefixed
with M-.

4.3 Avoiding extra spaces

Sometimes you may want to load the contents of a subfile without white space
separating it from the contents of the main file. In this respect, \subfile behaves
similar to \input. Any space or newline before and after the \subfile command
will appear in the typeset document, as will any white space between the last
character of the subfile and \end{document}. Therefore, to load the contents of
a subfile without intervening spaces, you have either to add comment signs:

main.tex

. . .
text before%

\subfile{sub.tex}%

text after

sub.tex

\documentclass[main.tex]{subfiles}

\begin{document}

contents of subfile%

\end{document}

or to put everything on the same line:

text before\subfile{sub.tex}text after

contents of subfile\end{document}

5 Troubleshooting

Here are some hints that solve most problems.

6

1. Make sure to use the most recent version of the subfiles package, available
from CTAN1 and Github2.

2. Make sure that \usepackage{subfiles} appears near the end of the main
preamble.

3. If some external program that cooperates with TEX, like bibtex or biber,
complains about not being able to find a file, locate the name of the file in
the LATEX source and replace 〈filename〉 by \subfix{〈filename〉}.

4. If nothing of the above helps, ask the nice people on tex.stackexchange3 or
file an issue in the bug tracker of the Github repository4.

6 Dependencies

The import package by Donald Arsenau is needed to load subfiles from differ-
ent directories. When the standalone package is used, the subfiles pack-
age requires the xpatch package by Enrico Gregorio to patch the command
\includestandalone. Both packages are part of the standard TEX distributions.

7 Version history

v1.1: Initial version by Federico Garcia. (Subsequent versions by Gernot Salzer.)

v1.2: • Incompatibility with classes and packages removed that modify the
\document command, like the class revtex4.

v1.3: • Use of import package to handle directory hierarchies.

• \ignorespaces added to avoid spurious spaces.

• Incompatibility with commands removed that expect \document to be
equal to \@onlypreamble after the preamble. Thanks to Eric Domen-
joud for analysing the problem.

v1.4: • Incompatibility with memoir class and comment package removed.

• Bug ‘\unskip cannot be used in vertical mode‘ fixed.

v1.5: • Command \subfileinclude added.

• Basic support for bibtex related bibliographies in subfiles added.
Seems to suffice also for sub-bibliographies with the package chapterbib.

• Support for sub-bibliographies with package bibunits added.

1https://ctan.org/pkg/subfiles
2https://github.com/gsalzer/subfiles
3https://tex.stackexchange.com/
4https://github.com/gsalzer/subfiles/issues

7

https://ctan.org/pkg/subfiles
https://github.com/gsalzer/subfiles
https://tex.stackexchange.com/
https://github.com/gsalzer/subfiles/issues

v1.6: • Support for sub-bibliographies with package bibunits dropped, in fa-
vor of \subfix.

• Command \subfix added.

• Incompatibility with standalone class removed.

• The options of the main class are now also processed when typesetting
a subfile; before they were ignored. Thanks to Ján Kl’uka for analysing
the problem.

v2.0: • Incompatibility with LATEX Oct. 2020 removed. Thanks to Ulrike
Fischer from the LATEX3 team for the timely warning.

• By default, text after \end{document} as well as the preamble of sub-
files, when loaded with \subfile, are ignored now. The old behaviour
is available via the new package option v1.

• Command \ifSubfilesClassLoaded added and documentation re-
garding the use of the \bibliography command corrected. Thanks
to Github user alan-isaac for reporting the issue.

• Subfiles now can have the same name as the main file. Thanks to
Github user June-6th for reporting the issue.

• Problem with the search path for images resolved. Thanks to Github
user maxnick for reporting the issue.

v2.1 • Bugfix: In some situations, the hooks of \begin{document} and
\end{document} were triggered when loading a subfile. This occurred
in particular with packages for handling CJK languages. Thanks to
Github user yuishin-kikuchi for reporting the issue.

• Section about cross-referencing added. Thanks to Github user ndvanforeest
for the input.

8 The Implementation

8.1 The class

1 \NeedsTeXFormat{LaTeX2e}

2 \ProvidesClass{subfiles}[2020/10/29 v2.1 Multi-file projects (class)]

3 \DeclareOption*{%

4 \typeout{Preamble taken from file ‘\CurrentOption’}%

5 \let\preamble@file\CurrentOption

6 }

7 \ProcessOptions

After processing the option of the subfiles class, we reset \@classoptionslist
such that the options in the main file will be processed.
8 \let\@classoptionslist\relax

To handle subfiles in separate directories, we use the import package. We load
it now, since it resets the macro \import@path.

8

9 \RequirePackage{import}

We redefine \documentclass to load the class of the main document.
10 \let\subfiles@documentclass\documentclass

11 \def\documentclass{%

12 \let\documentclass\subfiles@documentclass

13 \LoadClass

14 }

In earlier versions, we used \subimport to load the preamble of the main file,
which has the unwanted effect of undoing changes to the graphics path. Therefore
we use \input and initialize \import@path and \input@path to the path of the
main file. We use the internal LATEX macro \filename@parse to obtain this path.
15 \filename@parse{\preamble@file}

16 \edef\import@path{\filename@area}

17 \edef\input@path{{\filename@area}}

18 \input{\preamble@file}

After loading the preamble of the main file, we reset \import@path. Since the
preamble may have changed the catcode of the @ sign, we make it (again) a letter.
Better safe than sorry.
19 {\makeatletter

20 \gdef\import@path{}

21 }

8.2 The package

22 \NeedsTeXFormat{LaTeX2e}

23 \ProvidesPackage{subfiles}[2020/10/29 v2.1 Multi-file projects (package)]

Auxiliary commands

\ifDOCUMENT{〈string〉}{〈then code〉}{〈else code〉}
If 〈string〉 equals document, then execute 〈then code〉, else 〈else code〉.

24 \def\subfiles@DOCUMENT{document}

25 \def\ifDOCUMENT#1#2#3{%

26 \def\subfiles@tmp{#1}%

27 \ifx\subfiles@tmp\subfiles@DOCUMENT

28 \def\subfiles@tmp{#2}%

29 \else

30 \def\subfiles@tmp{#3}%

31 \fi

32 \subfiles@tmp

33 }

\subfiles@renewDocument{begin}{〈begin-document-code〉}
\subfiles@renewDocument{end}{〈end-document-code〉}
Redefines \begin/\end to execute the given code in place of the next
\begin{document}/\end{document}.

34 \def\subfiles@renewDocument#1#2{%

9

35 \expandafter\def\csname#1\endcsname##1{%

36 \ifDOCUMENT{##1}{%

37 \expandafter\let\csname#1\expandafter\endcsname\csname subfiles@#1\endcsname

38 #2%

39 }{%

40 \csname subfiles@#1\endcsname{##1}%

41 }%

42 }%

43 }

\subfiles@renewDocument{begin}{<code>} is actually the same as

\def\begin#1{%

\ifDOCUMENT{#1}{%

\let\begin\subfiles@begin

<code>

}{%

\subfiles@begin{#1}%

}%

}%

\subfiles@newSkipToDocument\begin〈cmd〉{〈continuation〉}
\subfiles@newSkipToDocument\end〈cmd〉{〈continuation〉}
Defines 〈cmd〉 to skip to the next \begin{document} or \end{document} and to
execute 〈continuation〉.

44 \def\subfiles@newSkipToDocument#1#2#3{%

45 \long\def#2##1#1##2{\ifDOCUMENT{##2}{#3}{#2}}%

46 }

Handling the main document

When the main document is loaded from a subfile, the preamble is read, but the
document itself is skipped. The lines after \end{document} are treated again as
part of the preamble in old versions (1.x), but are ignored in new versions (2.x).

47 \def\subfiles@handleMainDocumentVi{%

48 \let\subfiles@begin\begin

49 \subfiles@renewDocument{begin}{%

50 \subfiles@newSkipToDocument\end\subfiles@skipToEndDocument\ignorespaces

51 \subfiles@skipToEndDocument

52 }%

53 }

54 \def\subfiles@handleMainDocumentVii{%

55 \let\subfiles@begin\begin

56 \subfiles@renewDocument{begin}{%

57 \endinput

58 \ignorespaces

59 }%

60 }

10

Handling subfiles

When a subfile is loaded, the preamble and \end{document} have to be ignored.
More precisely, in older versions (v1.x), the following happens:

• \documentclass[...]{subfiles} is ignored.

• The contents of the preamble becomes part of the text.

• \begin{document} is ignored.

• \end{document} is ignored.

• Any lines after \end{document} are also part of the text.

61 \def\subfiles@handleSubDocumentVi{%

62 \let\subfiles@documentclass\documentclass

63 \def\documentclass{%

64 \@ifnextchar[\subfiles@documentclass@{\subfiles@documentclass@[]}%

65 }%

66 \def\subfiles@documentclass@[##1]##2{%

67 \let\documentclass\subfiles@documentclass

68 \ignorespaces

69 }%

70 \let\subfiles@begin\begin

71 \subfiles@renewDocument{begin}{%

72 \subfiles@saveEnd

73 \subfiles@renewDocument{end}\ignorespaces

74 \ignorespaces

75 }%

76 }

In newer versions (v2.x), the following happens:

• The preamble, up to \begin{document}, is ignored.

• \end{document} as well as any lines after it are ignored.

77 \def\subfiles@handleSubDocumentVii{%

78 \let\subfiles@documentclass\documentclass

79 \subfiles@newSkipToDocument\begin\documentclass{%

80 \let\documentclass\subfiles@documentclass

81 \subfiles@saveEnd

82 \subfiles@renewDocument{end}{%

83 \endinput

84 \ignorespaces

85 }%

86 \ignorespaces

87 }%

88 }

Before redefining \begin and \end, we remember their original definitions in
\subfiles@begin and \subfiles@end. We don’t do this once and for all in the

11

preamble, because there might be other packages also fiddling with these com-
mands. To reset \begin to the definition it had at the point where we modified it,
we do \let\subfiles@begin\begin immediately before redefining it. For \end,
the situation is different. For nested subfiles, \end does not have its original defi-
nition but ours. Therefore we save \end only if \subfiles@end is still undefined
(meaning that we are outside of subfiles).

89 \def\subfiles@saveEnd{%

90 \ifcsname subfiles@end\endcsname

91 \else

92 \let\subfiles@end\end

93 \fi

94 }

Processing the package options

The package has currently only one option, v1, which affects the way how the text
after \end{document} and in the preamble of subfiles is handled. We initialize the
macros for handling main and sub documents with the behavior of version 2.x.

95 \let\subfiles@handleMainDocument\subfiles@handleMainDocumentVii

96 \let\subfiles@handleSubDocument\subfiles@handleSubDocumentVii

When option v1 is present, the macros are set to the behavior of version 1.x.

97 \DeclareOption{v1}{%

98 \let\subfiles@handleMainDocument\subfiles@handleMainDocumentVi

99 \let\subfiles@handleSubDocument\subfiles@handleSubDocumentVi

100 }

101 \DeclareOption*{\PackageWarning{subfiles}{Option ’\CurrentOption’ ignored}}

102 \ProcessOptions\relax

Loading subfiles

To handle subfiles in separate directories, we use the import package. If it has
already been loaded, e.g. by the subfiles class, this line does nothing.

103 \RequirePackage{import}

The \subimport command requires path and filename as separate arguments,
so we have to split qualified filenames into these two components. The internal
LATEX command \filename@parse almost fits the bill, except that it additionally
splits the filename into basename and extension. Unfortunately, concatenating
basename and extension to recover the filename is not clean: Under Unix/Linux,
the filenames base and base. denote different entities, but after \filename@parse
both have the same basename and an empty extension. Therefore we redefine the
command \filename@simple temporarily; it is responsible for this unwanted split.

104 \def\subfiles@split#1{%

105 \let\subfiles@filename@simple\filename@simple

106 \def\filename@simple##1.\\{\edef\filename@base{##1}}%

107 \filename@parse{#1}%

108 \let\filename@simple\subfiles@filename@simple

12

109 }%

E.g., after executing \subfiles@split{../dir1/dir2/file.tex} the macros
\filename@area and \filename@base expand to ../dir1/dir2/ and file.tex,
respectively.

The command \subfile specifies the command \subimport for \inputing the\subfile

subfile, and then calls \subfiles@subfile.

110 \newcommand\subfile{%

111 \let\subfiles@loadfile\subimport

112 \subfiles@subfile

113 }

The command \subfileinclude specifies the command \subincludefrom for\subfileinclude

\includeing the subfile, and then calls \subfiles@subfile.

114 \newcommand\subfileinclude{%

115 \let\subfiles@loadfile\subincludefrom

116 \subfiles@subfile

117 }

The main functionality is implemented in \subfiles@subfile. It sets up the
handling of the sub-preamble, splits the filename and loads the subfile.

118 \def\subfiles@subfile#1{%

119 \begingroup

120 \subfiles@handleSubDocument

121 \subfiles@split{#1}%

122 \subfiles@loadfile{\filename@area}{\filename@base}%

123 \endgroup

124 }

Fixing incompatibilities

If some package provides a command that takes a filename as argument, then it has\subfix

to be prefixed with the current \import@path. This is what the \subfix command
tries to do. In order to succeed, the filename has to be expanded immediately,
such that the current value of \import@path is used.

125 \def\subfix#1{\import@path#1}

For patching a list of file or path names, we define two auxiliary macros, one
iterating over a comma-separated list of names and one processing a sequence of
names enclosed in braces.

126 \def\subfiles@fixfilelist#1{%

127 \def\subfiles@list{}%

128 \def\subfiles@sep{}%

129 \@for\subfiles@tmp:=#1\do{%

130 \edef\subfiles@list{\subfiles@list\subfiles@sep\subfix{\subfiles@tmp}}%

131 \def\subfiles@sep{,}%

132 }%

133 }

134 \def\subfiles@fixpathlist#1{%

13

135 \def\subfiles@list{}%

136 \@tfor\subfiles@tmp:=#1\do{%

137 \edef\subfiles@list{\subfiles@list{\subfix\subfiles@tmp}}%

138 }%

139 }

We patch \bibliography and \graphicspath (from the graphics/graphicx\bibliography

\graphicspath package) such that users don’t have to worry about adding \subfix.

140 \let\subfiles@bibliography\bibliography

141 \def\bibliography#1{%

142 \subfiles@fixfilelist{#1}%

143 \expandafter\subfiles@bibliography\expandafter{\subfiles@list}%

144 }

145 \@ifpackageloaded{graphics}{%

146 \let\subfiles@graphicspath\graphicspath

147 \def\graphicspath#1{%

148 \subfiles@fixpathlist{#1}%

149 \edef\subfiles@list{{\subfix{}}\subfiles@list}%

150 \expandafter\subfiles@graphicspath\expandafter{\subfiles@list}%

151 }%

152 }{}

The command \includestandalone handles subfiles in its own way. Therefore\includestandalone

we modify it to use the original definition of \end.

153 \@ifpackageloaded{standalone}{

154 \RequirePackage{xpatch}

155 \xpretocmd\includestandalone{%

156 \let\subfiles@end@\end

157 \ifcsname subfiles@end\endcsname

158 \let\end\subfiles@end

159 \fi

160 }{}{}

161 \xapptocmd\includestandalone{\let\end\subfiles@end@}{}{}

162 }{}

Do we typeset the main file or a subfile?

To add code or text conditionally, depending on whether the main document or a\ifSubfilesClassLoaded

subfile is typeset, we provide the command \ifSubfilesClassLoaded.

163 \newcommand\ifSubfilesClassLoaded{%

164 \expandafter\ifx\csname ver@subfiles.cls\endcsname\relax

165 \expandafter\@secondoftwo

166 \else

167 \expandafter\@firstoftwo

168 \fi

169 }

14

The end is near

The subfiles package is loaded near the end of the main preamble. If it is loaded
from a subfile, i.e., if subfiles.cls has been loaded, then we prepare for skipping
the main document.

170 \ifSubfilesClassLoaded{%

171 \subfiles@handleMainDocument

172 }{}

15

	Introduction
	Basic usage
	Advanced usage
	Including files instead of inputting them
	Fixing pathes
	Conditional execution of commands
	Unusual locations for placing definitions and text

	Use cases
	Hierarchy of directories
	Cross-referencing between subfiles
	Avoiding extra spaces

	Troubleshooting
	Dependencies
	Version history
	The Implementation
	The class
	The package

