The SI'EX3 Manual *

Michael Kohlhase, Dennis Miiller
FAU Erlangen-Niirnberg
http://kwarc.info/

2022-05-24

Abstract

gIEX is a collection of TEX packages that allow to markup documents seman-
tically without leaving the document format.
Running ‘pdflatex‘ over sTeX-annotated documents formats them into normal-
looking PDF. But sTeX also comes with a conversion pipeline into semantically
annotated HTML5, which can host semantic added-value services that make the
documents active (i.e. interactive and user-adaptive) and essentially turning ETEX
into a document format for (mathematical) knowledge management (MKM).

STEX augments BTEX with

e semantic macros that denote and distinguish between mathematical concepts,
operators, etc. independent of their notational presentation,

o a powerful module system that allows for authoring and importing individual
fragments containing document text and/or semantic macros, independent of
— and without hard coding — directory paths relative to the current document,
and

e a mechanism for exporting §TEX documents to (modular) XHTML, preserving
all the semantic information for semantically informed knowledge management
services.

This is the user manual for the SIEX package and associated software. It is primarily
directed at end-users who want to use §IEX to author semantically enriched documents.
For the full documentation, see the SIEX documentation.

*Version 3.1 (last revised 2022-05-24)


http://kwarc.info/
https://github.com/slatex/sTeX/blob/main/doc/stex-doc.pdf

Contents

1 What is STEX?

2 Quickstart

2.1 Setup . ... e
2.1.1  Minimal Setup for the PDF-only Workflow . . ... .. ... ...
2.1.2  GIT-based Setup for the §IEX Development Version . . . ... ..
2.1.3  dIEX Archives (Manual Setup) . . . .. ... ... ... ......
214 ThedlEXIDE . ... . .
2.1.5 Manual Setup for Active Documents and Knowledge Management
Services . . ... e

2.2 A First SIEX Document . . . . . . ... .
2.2.1 OMDoc/xhtml Conversion . . . ... ... ... ... .......
2.2.2 MmT/OMDOC Conversion . . . . . . . ... ...,

3 Creating §STEX Content

3.1  How Knowledge is Organized in §IgX . . . . . . . ... ... ... ...
3.2 GIEX Archives . . . . . . . .
3.2.1 The Local MathHub-Directory . . . . ... ... ... ... ....
3.2.2  The Structure of §IEX Archives . . . . . . .. .. ... ... ...
3.2.3 MANIFEST.MF-Files . . . . .. ... ... ... ... ......
3.2.4 Using Files in X Archives Directly . . . . ... ... ... ...

3.3 Module, Symbol and Notation Declarations . . . ... .. ... ... ..
3.3.1 The smodule-Environment . . ... .. ... ... .. .......
3.3.2 Declaring New Symbols and Notations . . . . . .. ... ... ...
Operator Notations . . . . .. . ... ... ... ...

3.3.3 Argument Modes . . . . . ...
Mode-b Arguments . . . . . . .. ...

Mode-a Arguments . . . . . . ...

Mode-B Arguments . . . . . .. Lo

3.3.4 Type and Definiens Components . . . . . . ... ... ... ....
3.3.5  Precedences and Automated Bracketing . . . ... ... ... ...
3.3.6 Variables . . . .. ...
3.3.7 Variable Sequences . . . . . . . .. ...

3.4 Module Inheritance and Structures . . . .. ... ... ... ... ....
3.4.1 Multilinguality and Translations . . . . ... ... ... ... ...
3.4.2 Simple Inheritance and Namespaces . . . . . .. .. .. ... ...
3.4.3 The mathstructure Environment . . . .. ... ... ... ....
3.4.4 The copymodule Environment . . .. ... ... ... .......
3.4.5 The interpretmodule Environment . . . ... ... .. ... ...

3.5 Primitive Symbols (The <X Metatheory) . . . .. . ... ... ... ..

4 Using STEX Symbols
4.1  \symref and its variants . . . . . ... ... oL o oL
4.2 Marking Up Text and On-the-Fly Notations . . . . ... ... ... ...
4.3 Referencing Symbols and Statements . . . . . ... ... ... ...

5 JIEX Statements
5.1  Definitions, Theorems, Examples, Paragraphs . . . . ... ... .. ...

ii

=R W W w W

© 00 Ut W~

37
37
38
40

41



6 Highlighting and Presentation Customizations 48

7 Additional Packages 50
7.1  Tikzinput: Treating TIKZ code as images . . ... ... ... ... ... 50
7.2 Modular Document Structuring . . . . .. .. ... oL oL 51
7.3 Slides and Course Notes . . . . . . .. ... .. . .. 53
7.4  Representing Problems and Solutions . . . . . ... ... ... ...... 57

7.5  Homeworks, Quizzes and Exams

iii



Boxes like this one contain implementation details that are mostly relevant for
more advanced use cases, might be useful to know when debugging, or might be
good to know to better understand how something works. They can easily be
skipped on a first read.

LMQ
_Mé

—'\/T./\)

Boxes like this one explain how some §IEX concept relates to the MMT/OMDoOC
system, philosophy or language; see [MMT; Koh06] for introductions.




Chapter 1

What is STEX?

Formal systems for mathematics (such as interactive theorem provers) have the potential
to significantly increase both the accessibility of published knowledge, as well as the confi-
dence in its veracity, by rendering the precise semantics of statements machine actionable.
This allows for a plurality of added-value services, from semantic search up to verifica-
tion and automated theorem proving. Unfortunately, their usefulness is hidden behind
severe barriers to accessibility; primarily related to their surface languages reminiscent
of programming languages and very unlike informal standards of presentation.

§IEX minimizes this gap between informal and formal mathematics by integrating
formal methods into established and widespread authoring workflows, primarily KTEX,
via non-intrusive semantic annotations of arbitrary informal document fragments. That
way formal knowledge management services become available for informal documents,
accessible via an IDE for authors and via generated active documents for readers, while
remaining fully compatible with existing authoring workflows and publishing systems.

Additionally, an extensible library of reusable document fragments is being devel-
oped, that serve as reference targets for global disambiguation, intermediaries for content
exchange between systems and other services.

Every component of the system is designed modularly and extensibly, and thus lay
the groundwork for a potential full integration of interactive theorem proving systems
into established informal document authoring workflows.

The general SIEX workflow combines functionalities provided by several pieces of soft-
ware:
e The SIEX package collection to use semantic annotations in I TEX documents,

o RudlEX [RT] to convert tex sources to (semantically enriched) xhtml,

o The MMT system | ], that extracts semantic information from the thus gen-
erated xhtml and provides semantically informed added value services. Notably,
MMT integrates the RusIEX system already.



Chapter 2

Quickstart

2.1 Setup

There are two ways of using SIEX: as a

1. way of writing BTEX more modularly (object-oriented Math) for creating PDF
documents or

2. foundation for authoring active documents in HTML5 instrumented with knowledge
management services.

Both are legitimate and useful. The first requires a significantly smaller tool-chain, so
we describe it first. The second requires a much more substantial (and experimental)
toolchain of knowledge management systems. Both workflows profit from an integrated
development environment (IDE), which (also) automates setup as far as possible (see
subsection 2.1.4).

2.1.1 Minimal Setup for the PDF-only Workflow

In the best of all worlds, there is no setup, as you already have a new version of TEXLive
on your system as a IWTEX enthusiast. If not now is the time to install it; see [T1]. You
can usually update TpXLive via a package manager or the TEXLive manager tlmgr.

Alternatively, you can install STEX from CTAN, the Comprehensive TEX Archive
Network; see [ST] for details.

2.1.2 GIT-based Setup for the STEX Development Version

If you want use the latest and greatest SIEX packages that have not even been released to
CTAN, then you can directly clone them from the §IEX development repository | ]
by the following command-line instructions:

cd <stexdir>
git clone https://github.com/slatex/sTeX.git

and keep it updated by pulling updates via git pull in the cloned §IEX directory. Then
update your TEXINPUTS environment variable, e.g. by placing the following line in your
.bashrc:

export TEXINPUTS="$(TEXINPUTS) :<sTeXDIR>//:"



2.1.3 dIEX Archives (Manual Setup)

Writing semantically annotated §IEX becomes much easier, if we can use well-designed
libraries of already annotated content. SIEX provides such libraries as SIEX archives —
i.e. GIT repositories at https://gl.mathhub.info — most prominently the SMGLoM
libraries at https://gl.mathhub.info/smglom.

To do so, we set up a local MathHub by creating a MathHub directory <mhdir>.
Every SIEX archive as an archive path <apath> and a name <archive>. We can clone
the dIEX archive by the following command-line instructions:

cd <mhdir>/<apath>
git clone https://gl.mathhub.info/smglom/<archive>.git

Note that SIEX archives often depend on other archives, thus you should be prepared to
clone these as well — e.g. if pdflatex reports missing files. To make sure that §IEX too
knows where to find its archives, we need to set a global system variable MATHHUB, that
points to your local MathHub-directory (see section 3.2).

export MATHHUB="<mhdir>’’

2.1.4 The §TEX IDE

We are currently working on an SIEX IDE as an STEX plugin for VScode; see [SIa]. It
will feature a setup procedure that automates the setup described above (and below).
For additional functionality see the (now obsolete) plugin for §IEX 1 [SLS; SIb].

2.1.5 Manual Setup for Active Documents and Knowledge Man-
agement Services

Foregoing on the STEX IDE, we will need several additional (on top of the minimal setup
above) pieces of software; namely:

e The Mmt System available here. We recommend following the setup routine
documented here.

Following the setup routine (Step 3) will entail designating a MathHub-directory
on your local file system, where the MMT system will look for §TEX/MMT content
archives.

e §TgX Archives If we only care about BTEX and generating pdfs, we do not
technically need MMT at all; however, we still need the MATHHUB system variable to
be set. Furthermore, MMT can make downloading content archives we might want
to use significantly easier, since it makes sure that all dependencies of (often highly
interrelated) §IEX archives are cloned as well.

Once set up, we can run mmt in a shell and download an archive along with all of
its dependencies like this: 1mh install <name-of-repository>, or a whole group
of archives; for example, Imh install smglom will download all smglom archives.

¢ RysIEX The MMT system will also set up RuslEX for you, which is used to generate
(semantically annotated) xhtml from tex sources. In lieu of using MMT, you can
also download and use RusIEX directly here.


https://gl.mathhub.info
https://gl.mathhub.info/smglom
https://github.com/uniformal/MMT/tree/sTeX
https://uniformal.github.io//doc/setup/
https://github.com/slatex/RusTeX

2.2 A First SIEX Document

Having set everything up, we can write a first SIEX document. As an example, we will
use the smglom/calculus and smglom/arithmetics archives, which should be present in
the designated MathHub-folder, and write a small fragment defining the geometric series:

1 \documentclass{article}

2 \usepackage{stex,xcolor,stexthm}

3

4 \begin{document}

5 \begin{smodule}{GeometricSeries}

6 [smglom/calculus]{series}

7 [smglom/arithmetics]{realarith}

8

9 \symdef{geometricSeries}[name=geometric-series]{\comp{S}}
10

11 \begin{sdefinition} [for=geometricSeries]

12 The \definame{geometricSeries} is the \symname{7series}
13 \[\defeq{\geometricSeries}{\definiens{

14 \infinitesum{\svar{n}}{1}{

15 \realdivide[frac]{1}{

16 \realpower{2}{\svar{n}}

17 3}

18 A

19 \end{sdefinition}

20

21 \begin{sassertion}[name=geometricSeriesConverges,type=theorem]
22 The \symname{geometricSeries} \symname{converges} towards $1$.
23 \end{sassertion}

24 \end{smodule}

25 \end{document}

Compiling this document with pdflatex should yield the output

Definition 0.1. The geometric series is the series

Theorem 0.2. The geometric series converges towards 1.

Move your cursor over the various highlighted parts of the document — depending
on your pdf viewer, this should yield some interesting (but possibly for now cryptic)
information.

Remark 2.2.1:

Note that all of the highlighting, tooltips, coloring and the environment headers
come from stexthm — by default, the amount of additional packages loaded is kept
to a minimum and all the presentations can be customized, see chapter 6.

Let’s investigate this document in detail to understand the respective parts of the
§IEX markup infrastructure:



smodule

\importmodule

\usemodule

\symdef

\comp

\begin{smodule}{GeometricSeries}

\end{smodule}
First, we open a new module called GeometricSeries. The main purpose of the smodule
environment is to group the contents and associate it with a globally unique identifier
(URI), which is computed from the name GeometricSeries and the document context.
(Depending on your pdf viewer), the URI should pop up in a tooltip if you hover
over the word geometric series.

[smglom/calculus] {series}
[smglom/arithmetics]{realarith}

Next, we import two modules — series from the SIEX archive smglom/calculus,
and realarith from the dIEX archive smglom/arithmetics. If we investigate these
archives, we find the files series.en.tex and realarith.en.tex (respectively) in their
respective source-folders, which contain the statements \begin{smodule}{series} and
\begin{smodule}{realarith} (respectively).

The -statements make all STEX symbols and associated semantic
macros (e.g. \infinitesum, \realdivide, \realpower) in the imported module avail-
able to the current module GeometricSeries. The module GeometricSeries “exports”
all of these symbols to all modules imports it via an {GeometricSeries}
instruction. Additionally it exports the local symbol \geometricSeries.

If we only want to use the content of some module Foo, e.g. in remarks or examples,
but none of the symbols in our current module actually depend on the content of Foo,
we can use instead — like , this will make the module content
available, but will not export it to other modules.

\symdef{GeometricSeries} [name=geometric-series]{\comp{S}}
Next, we introduce a new symbol with name geometric-series and assign it the seman-
tic macro \geometricSeries. \symdef also immediately assigns this symbol a notation,
namely S.

The macro \comp marks the S in the notation as a notational component, as op-
posed to e.g. arguments to \geometricSeries. It is the notational components
that get highlighted and associated with the corresponding symbol (i.e. in this case
geometricSeries). Since \geometricSeries takes no arguments, we can wrap the whole
notation in a \comp.

\begin{sdefinition} [for=geometricSeries]

\end{sdefinition}
\begin{sassertion} [name=geometricSeriesConverges,type=theorem]

\end{sassertion}



What follows are two STEX-statements (e.g. definitions, theorems, examples, proofs, ...).
These are semantically marked-up variants of the usual environments, which take addi-
tional optional arguments (e.g. for=, type=, name=). Since many IWTEX templates prede-
fine environments like definition or theorem with different syntax, we use sdefinition,
sassertion, sexample etc. instead. You can customize these environments to e.g. sim-
ply wrap around some predefined theorem-environment. That way, we can still use
sassertion to provide semantic information, while being fully compatible with (and
using the document presentation of) predefined environments.

In our case, the stexthm-package patches e.g. \begin{sassertion}[type=theorem]
to use a theorem-environment defined (as usual) using the amsthm package.

\symname ... is the \symname{7series}

The \symname-command prints the name of a symbol, highlights it (based on customiz-
able settings) and associates the text printed with the corresponding symbol.

Note that the argument of \symref can be an imported symbol (here the series
symbol is imported from the series module). SIEX tries to determine the full symbol
URI from the argument. If there are name clashes in or with the imported symbols,
the name of the exporting module can be prepended to the symbol name before the ?
character.

If you hover over the word series in the pdf output, you should see a tooltip showing
the full URI of the symbol used.

\symref The \symname-command is a special case of the more general \symref-command, which
allows customizing the precise text associated with a symbol. \symref takes two ar-
guments: the first ist the symbol name (or macro name), and the second a variant
verbalization of the symbol, e.g. an inflection variant, a different language or a synonym.
In our example \symname{?series} abbreviates \symref{?series}{series}.

\definame The \definame{geometricSeries} ...

\definiendum The sdefinition-environment provides two additional macros, \def iname and \definiendum
which behave similarly to \symname and \symref, but explicitly mark the symbols as be-
ing defined in this environment, to allow for special highlighting.

\[\defeq{\geometricSeries}{\definiens{

\infinitesum{\svar{n}}{1}{

\realdivide[frac]{1}{
\realpower{2}{\svar{n}}

3
A
The next snippet — set in a math environment — uses several semantic macros imported
from (or recursively via) series and realarithmetics, such as \defeq, \infinitesum,
etc. In math mode, using a semantic macro inserts its (default) definition. A semantic
macro can have several notations — in that case, we can explicitly choose a specific nota-
tion by providing its identifier as an optional argument; e.g. \realdivide[frac]l{a}{b}
will use the explicit notation named frac of the semantic macro \realdivide, which

a

yields ¢ instead of a/b.



\svar The \svar{n} command marks up the n as a variable with name n and notation n.

\definiens The sdefinition-environment additionally provides the \definiens-command, which
allows for explicitly marking up its argument as the definiens of the symbol currently
being defined.

2.2.1 OMDoc/xhtml Conversion

So, if we run pdflatex on our document, then §IEX yields pretty colors and tooltips'.
But §IEX becomes a lot more powerful if we additionally convert our document to xhtml
while preserving all the §IEX markup in the result.

TODO VSCode Plugin

Using RudlEX [R1], we can convert the document to xhtml using the command
rustex -i /path/to/file.tex -o /path/to/outfile.xhtml. Investigating the re-
sulting file, we notice additional semantic information resulting from our usage of se-
mantic macros, \symref etc. Below is the (abbreviated) snippet inside our \definiens

block:
<mrow resource="" property="stex:definiens">
<mrow resource="...7series?infinitesum" property="stex:0MBIND">
<munderover displaystyle="true">
<mo resource="...7series?infinitesum" property="stex:comp">¥</mo>
<mrow>

<mrow resource="1" property="stex:arg">
<mi resource="var://n" property="stex:0MV">n</mi>

</mrow>
<mo resource="...7series?infinitesum" property="stex:comp">=</mo>
<mi resource="2" property="stex:arg">1</mi>
</mrow>
<mi resource="...7series?infinitesum" property="stex:comp">oc0o</mi>
</munderover>
<mrow resource="3" property="stex:arg">
<mfrac resource="...7realarith?division#frac#" property="stex:0MA">

<mi resource="1" property="stex:arg">1</mi>
<mrow resource="2" property="stex:arg">
<msup resource="...realarith?exponentiation" property="stex:0MA">

<mi resource="1" property="stex:arg">2</mi>
<mrow resource="2" property="stex:arg">
<mi resource="var://n" property="stex:0MV">n</mi>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mrow>
</mrow>

...containing all the semantic information. The MMT system can extract from this the
following OPENMATH snippet:
<OMBIND>

<0MID name="...7series?infinitesum"/>
<0MV name="n"/>

1...and hyperlinks for symbols, and indices, and allows reusing document fragments modularly, and...



<OMLIT name="1"/>

<OMA>
<OMS name="...7realarith?division"/>
<OMLIT name="1"/>
<0OMA>
<OMS name="...realarith?exponentiation"/>

<OMLIT name="2"/>
<0MV name="n"/>
</0MA>
</0MA>
</0MBIND>

...giving us the full semantics of the snippet, allowing for a plurality of knowledge man-
agement services — in particular when serving the xhtml.

Remark 2.2.2:

Note that the html when opened in a browser will look slightly different than the
pdf when it comes to highlighting semantic content — that is because naturally
html allows for much more powerful features than pdf does. Consequently, the
html is intended to be served by a system like MMT, which can pick up on
the semantic information and offer much more powerful highlighting, linking and
similar features, and being customizable by readers rather than being prescribed
by an author.

Additionally, not all browsers (most notably Chrome) support MATHML na-
tively, and might require additional external JavaScript libraries such as MathJax
to render mathematical formulas properly.

2.2.2 Mmt/OMDoc Conversion

Another way to convert our document to actual MMT/OMDOC is to put it in an §TEX
archive (see section 3.2) and have MMT take care of everything.

Assuming the above file is source/demo.tex in an SIEX archive MyTest, you
can run MMT and do build MyTest stex-omdoc demo.tex to convert the document
to both xhtml (which you will find in xhtml/demo.xhtml in the archive) and formal
MwmT/OMDoOc, which you can subsequently view in the MMT browser (see https://
uniformal.github.io//doc/applications/server.html#the-mmt-web-site for de-
tails).


https://uniformal.github.io//doc/applications/server.html#the-mmt-web-site
https://uniformal.github.io//doc/applications/server.html#the-mmt-web-site

Chapter 3

Creating SITpX Content

We can use SIEX by simply including the package with \usepackage{stex}, or — pri-
marily for individual fragments to be included in other documents — by using the §IEX
document class with \documentclass{stex} which combines the standalone document
class with the stex package.

Both the stex package and document class offer the following options:

lang ({language)x) Languages to load with the babel package.

mathhub ((directory)) MathHub folder to search for repositories — this is not necessary
if the MATHHUB system variable is set.

writesms ((boolean)) with this package option, STEX will write the contents of all exter-
nal modules imported via or into a file \ jobname . sms
(analogously to the table of contents .toc-file).

usems ((boolean)) subsequently tells STEX to read the generated sms-file at the beginning
of the document. This allows for e.g. collaborating on documents without all
authors having to have all used archives and modules available — one author can
load the modules with writesms, and the rest can use the the modules with usesms.
Furthermore, the sms file can be submitted alongside a tex-file, effectively making
it “standalone”.

image ((boolean)) passed on to tikzinput.

debug ((log-prefiz)*) Logs debugging information with the given prefixes to the terminal,
or all if all is given. Largely irrelevant for the majority of users.

3.1 How Knowledge is Organized in SIEX

SIEX content is organized on multiple levels:
1. dIEX archives (see section 3.2) contain individual . tex-files.

2. These may contain STEX modules, introduced via \begin{smodule}{ModuleName}.

10



3. Modules contain §IFX symbol declarations, introduced via \symdecl{symbolnamel,
\symdef{symbolname} and some other constructions. Most symbols have a nota-
tion that can be used via a semantic macro \symbolname generated by symbol
declarations.

4. SIEX expressions finally are built up from usages of semantic macros.

o SIEX archives are simultaneously MMT archives, and the same directory
structure is consequently used.

o dIEX modules correspond to OMDoOC/MMT theories. s (and
“M— similar constructions) induce MMT includes and other theory morphisms,
M thus giving rise to a theory graph in the OMDOC sense | ].

~Tr> ¢ Symbol declarations induce OMDOC/MMT constants, with optional (formal)
type and definiens components.

¢ Finally, SIEX expressions are converted to OMDOC/MMT terms, which use
the abstract syntax (and XML encoding) of OPENMATH | ]

3.2 dIEX Archives
3.2.1 The Local MathHub-Directory

, , etc. allow for including content modularly
without having to specify absolute paths, which would differ between users and ma-
chines. Instead, SIEX uses archives that determine the global namespaces for symbols
and statements and make it possible for §IEX to find content referenced via such URIs.

All §TEX archives need to exist in the local MathHub-directory. SIEX knows where
this folder is via one of four means:

1. If the §IEX package is loaded with the option mathhub=/path/to/mathhub, then
STEX will consider /path/to/mathhub as the local MathHub-directory.

2. If the mathhub package option is not set, but the macro \mathhub exists when the
SIEX-package is loaded, then this macro is assumed to point to the local MathHub-
directory; i.e. \def\mathhub{/path/to/mathhub}\usepackage{stex} will set the
MathHub-directory as path/to/mathhub.

3. Otherwise, SIEX will attempt to retrieve the system variable MATHHUB, assuming it
will point to the local MathHub-directory. Since this variant needs setting up only
once and is machine-specific (rather than defined in tex code), it is compatible with
collaborating and sharing tex content, and hence recommended.

4. Finally, if all else fails, SITEX will look for a file ~/.stex/mathhub.path. If this file
exists, STEX will assume that it contains the path to the local MathHub-directory.
This method is recommended on systems where it is difficult to set environment
variables.

11



3.2.2 The Structure of IEX Archives

An dIEX archive group/name is stored in the directory /path/to/mathhub/group/name;
e.g. assuming your local MathHub-directory is set as /user/foo/MathHub, then in order
for the smglom/calculus-archive to be found by the §IEX system, it needs to be in
/user/foo/MathHub/smglom/calculus.

Each such archive needs two subdirectories:

e /source — this is where all your tex files go.

e /META-INF — a directory containing a single file MANIFEST . MF, the content of which
we will consider shortly

An additional 1lib-directory is optional, and is where STEX will look for files included via
Additionally a group of archives group/name may have an additional archive

group/meta-inf. If this meta-inf-archive has a /lib-subdirectory, it too will be
searched by from all tex files in any archive in the group/*-group.

We recommend the following additional directory structure in the source-folder of an
STEX archive:

e /source/mod/ — individual §IEX modules, containing symbol declarations, nota-
tions, and \begin{sparagraph} [type=symdoc,for=...] environments for “ency-
clopaedic” symbol documentations

e /source/def/ — definitions
e /source/ex/ — examples

e /source/thm/ — theorems, lemmata and proofs; preferably proofs in separate files
to allow for multiple proofs for the same statement

e /source/snip/ — individual text snippets such as remarks, explanations etc.

e /source/frag/ — individual document fragments, ideally only ing snip-
pets, definitions, examples etc. in some desirable order

e /source/tikz/ — tikz images, as individual .tex-files

e /source/PIC/ — image files.

3.2.3 MANIFEST.MF-Files

The MANIFEST.MF in the META-INF-directory consists of key-value-pairs, informing
SIEX (and associated software) of various properties of an archive. For example, the
MANIFEST.MF of the smglom/calculus-archive looks like this:

id: smglom/calculus

source-base: http://mathhub.info/smglom/calculus

narration-base: http://mathhub.info/smglom/calculus

dependencies: smglom/arithmetics,smglom/sets,smglom/topology,
smglom/mv,smglom/linear-algebra, smglom/algebra

responsible: Michael.KohlhaseQFAU.de

title: Elementary Calculus

12



teaser: Terminology for the mathematical study of change.
description: desc.html

Many of these are in fact ignored by SIEX, but some are important:

id: The name of the archive, including its group (e.g. smglom/calculus),

source-base or

ns: The namespace from which all symbol and module URIs in this repository are
formed, see (TODO),

narration-base: The namespace from which all document URIs in this repository are formed, see

(TODO),

url-base: The URL that is formed as a basis for external references, see (TODO),

dependencies: All archives that this archive depends on. SIEX ignores this field, but MMT can

\mhinput

\inputref

\ifinput

\addmhbibresource

pick up on them to resolve dependencies, e.g. for 1mh install.

3.2.4 Using Files in §IEX Archives Directly

Several macros provided by §IEX allow for directly including files in repositories. These
are:

[Some/Archive] {some/file} directly inputs the file some/file in the source-
folder of Some/Archive.

[Some/Archive] {some/file} behaves like , but wraps the input in
a \begingroup ... \endgroup. When converting to xhtml, the file is not input at all,
and instead an html-annotation is inserted that references the file, e.g. for lazy loading.
In the majority of practical cases is likely to be preferred over
because it leads to less duplication in the generated xhtml.

Both and set \ifinput to “true” during input. This allows for
selectively including e.g. bibliographies only if the current file is not being currently
included in a larger document.

[Some/Archive] {some/file} searches for a file like does,
but calls \addbibresource to the result and looks for the file in the archive root directory
directly, rather than the source directory. Typical invocations are

e \addmhbibresource{lib/refs.bib}, which specifies a bibliography in the 1ib
folder in the local archive or

e \addmhbibresource[HW/meta-inf]{lib/refs.bib} in another.

13



\libinput

\libusepackage

smodule

{some/file} searches for a file some/file in
e the lib-directory of the current archive, and

o the lib-directory of a meta-inf-archive in (any of) the archive groups containing
the current archive

and include all found files in reverse order; e.g. {preamble} in a .tex-file in
smglom/calculus will first input .../smglom/meta-inf/lib/preamble.tex and then
../smglom/calculus/lib/preamble.tex.

will throw an error if no candidate for some/file is found.

[package-options]{some/file} searches for a file some/file.sty in
the same way that does, but will call
\usepackage [package-options]{path/to/some/file} instead of \input.
throws an error if not ezactly one candidate for some/file is found.

Remark 3.2.1:

A good practice is to have individual §IEX fragments follow basically this docu-
ment frame:

1 \documentclass{stex}
2 {preamble}
3 \begin{document}

4 ...

5 \else {postamble} \fi
6 \end{document}

Then the preamble.tex files can take care of loading the generally required pack-
ages, setting presentation customizations etc. (per archive or archive group or
both), and postamble.tex can e.g. print the bibliography, index etc.

is particularly useful in preamble.tex when we want to
use custom packages that are not part of TEXLive. In this case we commit the
respective packages in one of the 1ib folders and use to load
them.

3.3 Module, Symbol and Notation Declarations

3.3.1 The smodule-Environment
A new module is declared using the basic syntax
\begin{smodule} [options] {ModuleName}. . .\end{smodule}.

A module is required to declare any new formal content such as symbols or notations
(but not variables, which may be introduced anywhere).

The smodule-environment takes several keyword arguments, all of which are op-
tional:

title ((token list)) to display in customizations.

14



type ((string)*) for use in customizations.

deprecate ({module)) if set, will throw a warning when loaded, urging to use {module) instead.

((

((
id ((string)) for cross-referencing.
ns ((

URI)) the namespace to use. Should not be used, unless you know precisely what you’re
doing. If not explicitly set, is computed using \stex_modules_current_namespace:.
lang ((language)) if not set, computed from the current file name (e.g. foo.en.tex).

sig ((language)) if the current file is a translation of a file with the same base name but a
different language suffix, setting sig=<lang> will preload the module from that language
file. This helps ensuring that the (formal) content of both modules is (almost) identical
across languages and avoids duplication.

creators ((string)*) names of the creators.
contributors ((string)*) names of contributors.

srccite ((string)) a source citation for the content of this module.

“M— An <IEX module corresponds to an MwMT/OMDoOC theory. As such it
M—> gets assigned a module URI (universal resource identifier) of the form
—~T'~> <namespace>?<module-name>.

By default, opening a module will produce no output whatsoever, e.g.:

Example 1
Input:

1 \begin{smodule}[title={This is Some Module}]{SomeModule}
2 Hello World

3 \end{smodule}

Output:

Hello World

\stexpatchmodule We can customize this behavior either for all modules or only for modules with a specific
type using the command \stexpatchmodule [optional-type] {begin-code}{end-code}.
Some optional parameters are then available in \smodule*-macros, specifically \smoduletitle,
\smoduletype and \smoduleid.
For example:

Example 2
Input:

15



\symdecl

1 \stexpatchmodule [display]

2 {\textbf{Module (\smoduletitle)}\par}

i {\par\noindent\textbf{End of Module (\smoduletitle)l}}

5 \begin{smodule} [type=display,title={Some New Modulel}]{SomeModule2}
[§ Hello World

7 \end{smodule}

Output:

Module (Some New Module)
Hello World
End of Module (Some New Module)

3.3.2 Declaring New Symbols and Notations

Inside an smodule environment, we can declare new SIEX symbols.

The most basic command for doing so is using \symdecl{symbolname}. This introduces
a new symbol with name symbolname, arity 0 and semantic macro \symbolname.

The starred variant \symdecl*{symbolname} will declare a symbol, but not intro-
duce a semantic macro. If we don’t want to supply a notation (for example to introduce
concepts like “abelian”, which is not something that has a notation), the starred variant
is likely to be what we want.

“M—> \symdecl introduces a new OMDoOC/MMT constant in the current mod-
M— ule (=OMDoc/MMT theory). Correspondingly, they get assigned the URI
—~T'~> <module-URI>?<constant-name>.

Without a semantic macro or a notation, the only meaningful way to reference a
symbol is via \symref, \symname etc.
Example 3
Input:

1 \symdecl*{foo}
2 Given a \symname{foo}, we can...

Output:

Given a foo, we can...

Obviously, most semantic macros should take actual arguments, implying that the
symbol we introduce is an operator or function. We can let \symdecl know the arity (i.e.
number of arguments) of a symbol like this:

16



Example 4
Input:

1 \symdecl{binarysymbol} [args=2]
2 \symref{binarysymbol}{this} is a symbol taking two arguments.

Output:

this is a symbol taking two arguments.

So far we have gained exactly ... nothing by adding the arity information: we cannot
do anything with the arguments in the text.
We will now see what we can gain with more machinery.

\notation We probably want to supply a notation as well, in which case we can finally actually use
the semantic macro in math mode. We can do so using the \notation command, like
this:

Example 5

Input:

1 \notation{binarysymbol}{\text{First: }#i\text{; Second: }#2}
2 $\binarysymbol{a}{b}$

Output:

First: a; Second: b

N

“—M—> Applications of semantic macros, such as \binarysymbol{a}{b} are translated to
—M— MmMT/OMDOC as 0MA-terms with head <OMS name="...?binarysymbol"/>.
—~T ~> Semantic macros with no arguments correspond to OMS directly.

\comp  For many semantic services e.g. semantic highlighting or wikification (linking user-
visible notation components to the definition of the respective symbol they come from),
we need to specify the notation components. Unfortunately, there is currently no way
the IEX engine can infer this by itself, so we have to specify it manually in the notation
specification. We can do so with the \comp command.

We can introduce a new notation highlight for \binarysymbol that fixes this flaw,
which we can subsequently use with \binarysymbol[highlight]:

Example 6
Input:

17



\symdef

1 \notation{binarysymbol} [highlight]
2 {\comp{\text{First: }}#1\comp{\text{; Second: }}#2}
3 $\binarysymbol[highlight]{a}{b}$

Output:

First: a; Second: b

Ideally, \comp would not be necessary: Everything in a notation that is not an
argument should be a notation component. Unfortunately, it is computationally
expensive to determine where an argument begins and ends, and the argument
markers #n may themselves be nested in other macro applications or TEX groups,
making it ultimately almost impossible to determine them automatically while also
remaining compatible with arbitrary highlighting customizations (such as tooltips,
hyperlinks, colors) that users might employ, and that are ultimately invoked by
\comp.

Note that it is required that
1. the argument markers #n never occur inside a \comp, and
2. no semantic arguments may ever occur inside a notation.

Both criteria are not just required for technical reasons, but conceptionally mean-
ingful:

The underlying principle is that the arguments to a semantic macro represent
arguments to the mathematical operation represented by a symbol. For example, a
semantic macro \addition{a}{b} taking two arguments would represent the actual
addition of (mathematical objects) a and b. It should therefore be impossible for
a or b to be part of a notation component of \addition.

Similarly, a semantic macro can not conceptually be part of the notation of
\addition, since a semantic macro represents a distinct mathematical concept
with its own semantics, whereas notations are syntactic representations of the
very symbol to which the notation belongs.

If you want an argument to a semantic macro to be a purely syntactic parameter,
then you are likely somewhat confused with respect to the distinction between
the precise syntaz and semantics of the symbol you are trying to declare (which
happens quite often even to experienced SIEX users), and might want to give those
another thought - quite likely, the macro you aim to implement does not actually
represent a semantically meaningful mathematical concept, and you will want to
use \def and similar native WTEX macro definitions rather than semantic macros.

In the vast majority of cases where a symbol declaration should come with a semantic
macro, we will want to supply a notation immediately. For that reason, the \symdef
command combines the functionality of both \symdecl and \notation with the optional
arguments of both:

18



Example 7
Input:

1 \symdef{newbinarysymbol}[hl,args=2]
2 {\comp{\text{1.: }}#i\comp{\text{; 2.: }}#2}
3 $\newbinarysymbol{a}{b}$

Output:

1:a;2:b

We just declared a new symbol newbinarysymbol with args=2 and immediately
provided it with a notation with identifier hl. Since hl is the first (and so far, only)
notation supplied for newbinarysymbol, using \newbinarysymbol without optional ar-
gument defaults to this notation.

But one man’s meat is another man’s poison: it is very subjective what the “default
notation” of an operator should be. Different communities have different practices. For
instance, the complex unit is written as ¢ in Mathematics and as j in electrical engineering.
So to allow modular specification and facilitate re-use of document fragments §IEX allows
to re-set notation defaults.

\setnotation The first notation provided will stay the default notation unless explicitly changed — this
is enabled by the \setnotation command: \setnotation{symbolname}{notation-id}
sets the default notation of \symbolname to notation-id, i.e. henceforth, \symbolname
behaves like \symbolname[notation-id] from now on.

Often, a default notation is set right after the corresponding notation is introduced
— the starred version \notation* for that reason introduces a new notation and immedi-
ately sets it to be the new default notation. So expressed differently, the first \notation
for a symbol behaves exactly like \notation*, and \notation*{foo}[bar]l{...} be-
haves exactly like \notation{foo}[bar]{...}\setnotation{foo}{bar}.

\textsymdecl In the less mathematical settings where we want a symbol and semantic macro for
some concept with a notation beyond its mere name, but which should also be
available in TEX’s text mode, the command \textsymdecl is useful. For exam-
ple, we can declare a symbol openmath with the notation \textsc{OpenMath} using
\textsymdecl{openmath} [name=0penMath] {\textsc{OpenMath}}. The \openmath yields
OPENMATH both in text and math mode.

Operator Notations

Once we have a semantic macro with arguments, such as \newbinarysymbol, the semantic
macro represents the application of the symbol to a list of arguments. What if we want
to refer to the operator itself, though?

We can do so by supplying the \notation (or \symdef) with an operator notation,
indicated with the optional argument op=. We can then invoke the operator notation

19



using \symbolname! [notation-identifier]. Since operator notations never take ar-
guments, we do not need to use \comp in it, the whole notation is wrapped in a \comp
automatically:

Example 8

Input:

1 \notation{newbinarysymbol}[ab, op={\text{a:}\cdot\text{; b:}\cdot}]
2 {\comp{\text{a:}}#1\comp{\text{; b:}}#2} \symname{newbinarysymbol} is algo
3 occasionally written $\newbinarysymbol! [ab]l$

Output:

newbinarysymbol is also occasionally written a: - ; b:-

r N
_M%

—lvT./\)

\symbolname! is translated to OMDOC/MMT as <OMS name="...?symbolname"/>
directly.

\.

3.3.3 Argument Modes

The notations so far used simple arguments which we call mode-i arguments. Declaring a

new symbol with \symdecl{foo} [args=3] is equivalent to writing \symdecl{foo} [args=iiil,
indicating that the semantic macro takes three mode-i arguments. However, there are
three more argument modes which we will investigate now, namely mode-b, mode-a and
mode-B arguments.

Mode-b Arguments

A mode-b argument represents a variable that is bound by the symbol in its application,
making the symbol a binding operator. Typical examples of binding operators are e.g.
sums »_, products [], integrals [, quantifiers like V and 3, that A-operator, etc.

“—M— Mode-b arguments behave exactly like mode-i arguments within TEX, but appli-
—NM\[— cations of binding operators, i.e. symbols with mode-b arguments, are translated
—~T~> to OMBIND-terms in OMDoc/MMT, rather than OMA.

For example, we can implement a summation operator binding an index variable
and taking lower and upper index bounds and the expression to sum over like this:
Example 9
Input:

1 \symdef{summation} [args=biiil
2 {\mathop{\comp{\sum}}_{#1\comp{=}#2}"{#3}#4}
3 $\summation{\svar{x}}{1}{\svar{n}}{\svar{x}}"2$

Output:

20



where the variable = is now bound by the \summation-symbol in the expression.

Mode-a Arguments

Mode-a arguments represent a flezary argument sequence, i.e. a sequence of arguments
of arbitrary length. Formally, operators that take arbitrarily many arguments don’t
“exist”, but in informal mathematics, they are ubiquitous. Mode-a arguments allow
us to write e.g. \addition{a,b,c,d,e} rather than having to write something like
\addition{a}{\addition{b}{\addition{c}{\addition{d}{e}}}}!

\notation (and consequently \symdef, too) take one additional argument for each
mode-a argument that indicates how to “accumulate” a comma-separated sequence of
arguments. This is best demonstrated on an example.

Let’s say we want an operator representing quantification over an ascending
chain of elements in some set, i.e. \ascendingchain{S}{a,b,c,d,e}{t} should yield
Va<gb<gc<gd<ge.t. The “base”-notation for this operator is simply
{\comp{\forall} #2\comp{.\,}#3}, where #2 represents the full notation fragment ac-
cumulated from {a,b,c,d,e}.

The additional argument to \notation (or \symdef) takes the same arguments as
the base notation and two additional arguments ##1 and ##2 representing successive
pairs in the mode-a argument, and accumulates them into #2, i.e. to produce a <g b <g
c<gd<ge,wedo {##1 \comp{<}_{#1} ##2}:

Example 10
Input:

1 \symdef{ascendingchain}[args=iai]
2 {\comp{\forall} #2\comp{.\,2}#3}
i {##1 \comp{<}_{#1} ##2}

5 Tadaa: $\ascendingchain{S}{a,b,c,d,e}{t}$

Output:

Tadaa: Va<gb<gc<gd<ge.t

If this seems overkill, keep in mind that you will rarely need the single-hash ar-
guments #1 #2 etc. in the a-notation-argument. For a much more representative and
simpler example, we can introduce flexary addition via:

Example 11
Input:

% \symdef{addition} [args=a] {#1}{##1 \comp{+} ##2}

3 Tadaa: $\addition{a,b,c,d,e}$

Output:

21



Tadaa: a+b+ct+d+e

The assoc-key We mentioned earlier that “formally”, flexary arguments don’t really
“exist”. Indeed, formally, addition is usually defined as a binary operation, quantifiers
bind a single variable etc.

Consequently, we can tell STEX (or, rather, MMT/OMDoC) how to “resolve” flexary
arguments by providing \symdecl or \symdef with an optional assoc-argument, as in
\symdecl{addition} [args=a,assoc=bin]. The possible values for the assoc-key are:

bin: A binary, associative argument, e.g. as in \addition

d
binl: A binary, left-associative argument, e.g. a®* | which stands for ((a?))?

binr: A binary, right-associative argument, e.g. as in A — B — C' — D, which stands
for A— (B — (C — D))

pre: Successively prefixed, e.g. as in Vz,y, z. P, which stands for Vz.Vy.Vz. P

conj: Conjunctive, e.g. asina=b=c=d or a,b,c,d € A, which stand for a =d A b=
dhNc=danda € ANbE ANce ANd € A, respectively

pwconj: Pairwise conjunctive, e.g. asin a # b # ¢ # d, which stands for a #bAa # cAa #
dNbF#cANb#dNcH#d

As before, at the PDF level, this annotation is invisible (and without effect), but at the
level of the generated OMDoc/MMT this leads to more semantical expressions.

Mode-B Arguments

Finally, mode-B arguments simply combine the functionality of both a and b - i.e. they
represent an arbitrarily long sequence of variables to be bound, e.g. for implementing
quantifiers:

Example 12

Input:

1 \symdef{quantforall} [args=Bi]

2 {\comp{\foralll}#1\comp{.}#2}
3 {##1\comp, ##2}
4
5

$\quantforall{\svar{x},\svar{y}, \svar{z}}{P}$

Output:

You,y,z2. P

22



3.

3.4 Type and Definiens Components

\symdecl and \symdef take two more optional arguments. TEX largely ignores them
(except for special situations we will talk about later), but MMT can pick up on them
for additional services. These are the type and def keys, which expect expressions in
math-mode (ideally using semantic macros, of course!)

r

The type and def keys correspond to the type and definiens components of

“—M— OMDoC/MMT constants.

—M-— Correspondingly, the name “type” should be taken with a grain of salt, since
—~T»> OMDoc/MMT- being foundation-independent — does not a priori implement a

fixed typing system.

N\

I

The type-key allows us to provide additional information (given the necessary §IgX
symbols), e.g. for addition on natural numbers:

Example 13
Input:

1 \symdef{Nat}[type=\set]{\comp{\mathbb N}}
2 \symdef{addition}[

3 type=\funtype{\Nat, \Nat}{\Nat},

4 op=+,

5 args=a

g 1{#1}{##1 \comp+ ##2}

8

\symname{addition} is an operation $\funtype{\Nat,\Nat}{\Nat}$

Output:

addition is an operation NxN—N

The def-key allows for declaring symbols as abbreviations:

Example 14
Input:

1 \symdef{successor}[

2 type=\funtype{\Nat}{\Nat},

3 def=\fun{\svar{x}}{\addition{\svar{x},1}},
4 op=\mathtt{succ},

5 args=1

g J{\comp{\mathtt{succ (}#1\comp{) }}}

8 The \symname{successor} operation $\funtype{\Nat}{\Nat}$
9 is defined as $\fun{\svar{x}}{\addition{\svar{x},1}}$

Output:

The successor operation N—N is defined as r+—r+1

23



3.3.5 Precedences and Automated Bracketing

Having done \addition, the obvious next thing to implement is \multiplication. This
is straight-forward in theory:

Example 15

Input:

1 \symdef{multiplication}[

2 type=\funtype{\Nat, \Nat}{\Nat},
3 op=\cdot,

4 args=a

g J{#1}{##1 \comp\cdot ##23}

7

\symname{multiplication} is an operation $\funtype{\Nat, \Nat}{\Nat}$

Output:

multiplication is an operation NxN—N

However, if we combine \addition and \multiplication, we notice a problem:

Example 16
Input:

1 $\addition{a, \multiplication{b, \addition{c, \multiplication{d,e}}}}$

Output:

a+b-ctd-e

We all know that - binds stronger than +, so the output a+b-c+d-e does not actually
reflect the term we wrote. We can of course insert parentheses manually
Example 17
Input:

1 $\addition{a, \multiplication{b, (\addition{c, \multiplication{d,e}})}}$

Output:

a+b-(c+d-e)

"‘but we can also do better by supplying precedences and have §IEX insert parentheses
automatically.

For that purpose, \notation (and hence \symdef) take an optional argument
prec=<opprec>;<argprecl>x...x<argprec n>.

We will investigate the precise meaning of <opprec> and the <argprec>s shortly — in
the vast majority of cases, it is perfectly sufficient to think of prec= taking a single number
and having that be the precedence of the notation, where lower precedences (somewhat

24



\infprec

\neginfprec

counterintuitively) bind stronger than higher precedences. So fixing our notations for
\addition and \multiplication, we get:

Example 18

Input:

1 \notation{multiplication}[
op=\cdot,

prec=50

4 1{#1}3{##1 \comp\cdot ##2}
5 \notation{addition}[

op=+,

prec=100

g J{#1}{##1 \comp+ ##2}

w N

o

10 $\addition{a, \multiplication{b, \addition{c, \multiplication{d,e}}}}$

Output:

a+b-(c+d-e)

Note that the precise numbers used for precedences are pretty arbitrary - what
matters is which precedences are higher than which other precedences when used in
conjunction.

It is occasionally useful to have “infinitely” high or low precedences to enforce or forbid
automated bracketing entirely — for those purposes, \infprec and \neginfprec exist
(which are implemented as the maximal and minimal integer values accordingly).

More precisely, each notation takes
1. One operator precedence and
2. one argument precedence for each argument.

By default, all precedences are 0, unless the symbol takes no argument, in which
case the operator precedence is \neginfprec (negative infinity). If we only provide
a single number, this is taken as both the operator precedence and all argument
precedences.

SIEX decides whether to insert parentheses by comparing operator precedences
to a downward precedence pq with initial value \infprec. When encountering a
semantic macro, SIEX takes the operator precedence p,, of the notation used and
checks whether pop > pa. If so, SIEX insert parentheses.

When SIEX steps into an argument of a semantic macro, it sets pq to the respective
argument precedence of the notation used.

In the example above:

1. dIEX starts out with pg =\infprec.

2. QIEX encounters \addition with po, = 100. Since 100 #\infprec, it inserts
no parentheses.

3. Next, SIEX encounters the two arguments for \addition. Both have no

specifically provided argument precedence, so SIEX uses pq = pop = 100 for
both and recurses.

25



\svar

\vardef

4. Next, SIEX encounters \multiplication{b, ...}, whose notation has p,, =
50.

5. We compare to the current downward precedence pq set by \addition, ar-
riving at pop = 50 % 100 = pg, so STEX again inserts no parentheses.

6. Since the notation of \multiplication has no explicitly set argument

precedences, SIEX uses the operator precedence for all arguments of
\multiplication, hence sets pg = pop = 50 and recurses.

7. Next, SIEX encounters the inner \addition{c,...} whose notation has
DPop = 100.

8. We compare to the current downward precedence pg set by
\multiplication, arriving at p,, = 100 > 50 = pg — which finally
prompts SIEX to insert parentheses, and we proceed as before.

3.3.6 Variables

All symbol and notation declarations require a module with which they are associ-
ated, hence the commands \symdecl, \notation, \symdef etc. are disabled outside
of smodule-environments.

Variables are different — variables are allowed everywhere, are not exported when
the current module (if one exists) is imported (via or ) and
(also unlike symbol declarations) “disappear” at the end of the current TEX group.

So far, we have always used variables using \svar{n}, which marks-up n as a variable with
name n. More generally, \svar [foo] {<texcode>} marks-up the arbitrary <texcode> as
representing a variable with name foo.

Of course, this makes it difficult to reuse variables, or introduce “functional” variables
with arities > 0, or provide them with a type or definiens.

For that, we can use the \vardef command. Its syntax is largely the same as that of
\symdef, but unlike symbols, variables have only one notation (TODO: so far?), hence
there is only \vardef and no \vardecl.

Example 19

Input:

1 \vardef{varf}[

2 name=f,

3 type=\funtype{\Nat}{\Nat},

4 op=f,

5 args=1,

[§ prec=0;\neginfprec

7 1{\comp{f}#1}

8 \vardef{varn} [name=n, type=\Nat]{\comp{n}}
18 \vardef{varx} [name=x,type=\Nat]{\comp{x}}

11 Given a function $\varf!:\funtype{\Nat}{\Nat}$,
12 by $\addition{\varf!,\varn}$ we mean the function
13 $\fun{\varx}{\varf{\addition{\varx,\varn}}}$

26



Output:

Given a function [ : N—N, by f+n we mean the function z+— [ (z+n)

(of course, “lifting” addition in the way described in the previous example is an
operation that deserves its own symbol rather than abusing \addition, but... well.)
TODO: bind=forall/exists

3.3.7 Variable Sequences

Variable sequences occur quite frequently in informal mathematics, hence they deserve
special support. Variable sequences behave like variables in that they disappear at the
end of the current TEX group and are not exported from modules, but their declaration
is quite different.

\varseq A variable sequence is introduced via the command \varseq, which takes the usual
optional arguments name and type. It then takes a starting index, an end index and a
notation for the individual elements of the sequence parametric in an index. Note that
both the starting as well as the ending index may be variables.

This is best shown by example:

Example 20
Input:

1 \vardef{varn} [name=n, type=\Nat]{\comp{n}}
% \varseq{seqa} [name=a, type=\Nat]{1}{\varn}{\comp{a}_{#1}}

4 The $i$th index of $\seqa!$ is $\seqaf{il}$.

Output:

The ith index of a1,...,a, is a;.

Note that the syntax \seqa! now automatically generates a presentation based on
the starting and ending index.

TODO: more notations for invoking sequences.

Notably, variable sequences are nicely compatible with a-type arguments, so we can
do the following;:

Example 21
Input:

1 $\addition{\seqal}$

Output:

a1+...4+an,

27



Sequences can be multidimensional using the args-key, in which case the notation’s
arity increases and starting and ending indices have to be provided as a comma-separated
list:

Example 22
Input:

1 \vardef{varm} [name=m, type=\Nat] {\comp{m}}
2 \varseq{seqal}[

name=a,

args=2,

type=\Nat,
1{1,1}X{\varn, \varm}{\comp{a}_{#1}~{#2}}

O Otk W

8 $\seqa!$ and $\addition{\seqal}$

Output:

at,...,a’ and ai4... +a

"We can also explicitly provide a “middle” segment to be used, like such:
Example 23
Input:

1 \varseq{seqal}[

2 name=a,

3 type=\Nat,

4 args=2,

5 mid={\comp{a}_{\varn}~1,\comp{a}_172,\ellipses,\comp{a}_{1}"{\varm}}
(73 1{1,1}{\varn, \varm}{\comp{a} _{#1}~{#2}}

8 $\seqa!$ and $\addition{\seqal}$

Output:

1 1 2 m m 1 1 2 m m
Ay eeesUpylyeeeyal’ s .. an and aj+...+a,+ai+...4ai"+...4a,

3.4 Module Inheritance and Structures

The SIEX features for modular document management are inherited from the OM-
Doc/MMT model that organizes knowledge into a graph, where the nodes are theories
(called modules in SIEX) and the edges are truth-preserving mappings (called theory
morphismes in MMT). We have already seen modules/theories above.

Before we get into theory morphisms in §IEX we will see a very simple application
of modules: managing multilinguality modularly.

3.4.1 Multilinguality and Translations

If we load the §IEX document class or package with the option lang=<lang>, SIEX will
load the appropriate babel language for you — e.g. lang=de will load the babel language

28



\importmodule

\usemodule

ngerman. Additionally, it makes §TEX aware of the current document being set in (in
this example) german. This matters for reasons other than mere babel-purposes, though:
Every module is assigned a language. If no §I[EX package option is set that allows
for inferring a language, SI[EX will check whether the current file name ends in e.g.
.en.tex (or .de.tex or .fr.tex, or...) and set the language accordingly. Alternatively,
a language can be explicitly assigned via \begin{smodule}[lang=<language>]{Foo}.

Technically, each smodule-environment induces two OMDoC/MMT theories:
\begin{smodule} [lang=<lang>]{Foo} generates a theory some/namespace?Foo
“—N\[— that only contains the “formal” part of the module — i.e. exactly the content
M that is exported when using
—~T~> Additionally, MMT generates a language theory some/namespace/Foo?<lang> that
includes some/namespace?Foo and contains all the other document content — vari-
able declarations, includes for each , etc.

Notably, the language suffix in a filename is ignored for
and in generating/computing URIs for modules. This however allows for providing trans-
lations for modules between languages without needing to duplicate content:

If a module Foo exists in e.g. english in a file Foo.en.tex, we can provide a file
Foo.de.tex right next to it, and write \begin{smodule}[sig=en]{Foo}. The sig-key
then signifies, that the “signature” of the module is contained in the english version of
the module, which is immediately imported from there, just like would.

Additionally to translating the informal content of a module file to different lan-
guages, it also allows for customizing notations between languages. For example, the
least common multiple of two numbers is often denoted as lcm(a,b) in english, but is
called kleinstes gemeinsames Vielfaches in german and consequently denoted as kgV(a, b)
there.

We can therefore imagine a german version of an lem-module looking something like
this:

1 \begin{smodule}[sig=en]{lcm}

2 \notation*{lcm}[de]{\comp{\mathtt{kgV}} (#1,#2)}
3

4 Das \symref{lcm}{kleinste gemeinsame Vielfache}
5 $\lcm{a,b}$ von zwei Zahlen $a,b$ ist...

6 \end{smodule}

If we now do {lcm} (or {lcm}) within a german docu-
ment, it will also load the content of the german translation, including the de-notation
for \lcm.

3.4.2 Simple Inheritance and Namespaces

[Some/Archive] {path?ModuleName} is only allowed within an smodule-
environment and makes the symbols declared in ModuleName available therein. Addi-
tionally the symbols of ModuleName will be exported if the current module is imported
somewhere else via

behaves the same way, but without exporting the content of the used
module.

29



It is worth going into some detail how exactly and
resolve their arguments to find the desired module — which is closely related to the
namespace generated for a module, that is used to generate its URI.

Ideally, STEX would use arbitrary URIs for modules, with no forced relationships
between the logical namespace of a module and the physical location of the file
declaring the module — like MMT does things.

Unfortunately, TEX only provides very restricted access to the file system, so we
are forced to generate namespaces systematically in such a way that they reflect
the physical location of the associated files, so that SIEX can resolve them accord-
ingly. Largely, users need not concern themselves with namespaces at all, but for
completenesses sake, we describe how they are constructed:

which does mnot belong to an archive, the namespace is

e If \begin{smodule}{Foo} occurs in a file /path/to/file/Fool.(lang)] .tex
A file://path/to/file.

o If the same statement occurs in a file /path/to/file/bar[.(lang)] .tex, the
namespace is file://path/to/file/bar.

In other words: outside of archives, the namespace corresponds to the file URI
with the filename dropped iff it is equal to the module name, and ignoring the
(optional) language suffix.
If the current file is in an archive, the procedure is the same except that the
initial segment of the file path up to the archive’s source-folder is replaced by the
archive’s namespace URI.

Conversely, here is how namespaces/URIs and file paths are computed in import
statements, examplary :

o {Foo} outside of an archive refers to module Foo in the cur-
rent namespace. Consequently, Foo must have been declared earlier in the
same document or, if not, in a file Foo[. (lang)] . tex in the same directory.

e« The same statement within an archive refers to either the module Foo de-
clared earlier in the same document, or otherwise to the module Foo in the
archive’s top-level namespace. In the latter case, is has to be declared in a
file Foo[.(lang)] .tex directly in the archive’s source-folder.

either the sub-directory and relative namespace path of the current directory
and namespace outside of an archive, or relative to the current archive’s top-
level namespace and source-folder, respectively.

: o Similarly, in {some/path?Foo} the path some/path refers to

The module Foo must either be declared in the
file (top-directory)/some/path/Foo[. (lang)] . tex, or in
(top-directory)/some/path[.(lang)] .tex (which are checked in that
order).

¢ Similarly, [Some/Archive]{some/path?Foo} is resolved like
the previous cases, but relative to the archive Some/Archive in the mathhub-
directory.

o Finally, {full://uri?Foo} naturally refers to the module
Foo in the namespace full://uri. Since the file this module is declared

30



\STEXexport

mathstructure

in can not be determined directly from the URI, the module must be in
memory already, e.g. by being referenced earlier in the same document.

A Since this is less compatible with a modular development, using full URIs
directly is strongly discouraged, unless the module is delared in the current
file directly.

and import all symbols, notations, semantic macros and
(recursively) s. If you want to additionally export e.g. convenience macros
and other (SIEX) code from a module, you can use the command \STEXexport{<code>}
in your module. Then <code> is executed (both immediately and) every time the current
module is opened via or

For persistency reasons, everything in an \STEXexport is digested by TEXin the
¥TEX3-category code scheme. This means that the characters _ and : are consid-
ered letters and valid parts of control sequence names, and space characters are
ignored entirely. For spaces, use the character ~ instead, and keep in mind, that if
you want to use subscripts, you should use \c_math_subscript_token instead of

|

A Also note, that \newcommand defines macros globally and throws an error if the
macro already exists, potentially leading to low-level IXTEX errors if we put a
\newcommand in an \STEXexport and the <code> is executed more than once in a
document — which can happen easily.
A safer alternative is to use macro definition principles, that are safe to use even
if the macro being defined already exists, and ideally are local to the current TEX
group, such as \def or \let.

3.4.3 The mathstructure Environment

A common occurence in mathematics is bundling several interrelated “declarations” to-
gether into structures. For example:

o A monoid is a structure (M, o ,e) with o: M x M — M and e € M such that...
o A topological space is a structure (X,7) where X is a set and T is a topology on X
o A partial order is a structure (S, <) where < is a binary relation on S such that...

This phenomenon is important and common enough to warrant special support,
in particular because it requires being able to instantiate such structures (or, rather,
structure signatures) in order to talk about (concrete or variable) particular monoids,
topological spaces, partial orders etc.

The mathstructure environment allows us to do exactly that. It behaves exactly like
the smodule environment, but is itself only allowed inside an smodule environment, and
allows for instantiation later on.

How this works is again best demonstrated by example:

31



Example 24

Input:
1 \begin{mathstructure}{monoid}
2 \symdef{universe} [type=\set]{\comp{U}}
3 \symdef{op}[
4 args=2,
5 type=\funtype{\universe, \universe}{\universe},
[§ op=\circ
7 1{#1 \comp{\circ} #2}

8 \symdef{unit} [type=\universe]{\comp{el}}
9 \end{mathstructure}
10

11 A \symname{monoid} is...

Output:

A monoid is...

‘Note that the \symname{monoid} is appropriately highlighted and (depending on
your pdf viewer) shows a URI on hovering — implying that the mathstructure envi-
ronment has generated a symbol monoid for us. It has not generated a semantic macro
though, since we can not use the monoid-symbol directly. Instead, we can instantiate it,
for example for integers:

Example 25
Input:

1 \symdef{Int} [type=\set]{\comp{\mathbb Z}}
2 \symdef{addition}[

3 type=\funtype{\Int, \Int}{\Int},

4 args=2,

5 op=+

6 J{##1 \comp{+} ##2}

g \symdef{zero} [type=\Int]{\comp{0}}

9 $\mathstruct{\Int, \addition!, \zero}$ is a \symname{monoid}.

Output:

(Z,+,0) is a monoid.

So far, we have not actually instantiated monoid, but now that we have all the
symbols to do so, we can:

Example 26
Input:

32



\instantiate

\varinstantiate

1 \instantiate{intmonoid}{monoid}{\mathbb{Z}_{+,0}}[

2 universe = Int ,

3 op = addition ,

4 unit = zero

51

6
7 $\intmonoid{universe}$, $\intmonoid{unit}$ and $\intmonoid{op}{al}{bl}$.
8
94

1so: $\intmonoid!'$

Output:
Z, 0 and a+b.
Also: Zy o

So summarizing: \instantiate takes four arguments: The (macro-)name of the instance,
a key-value pair assigning declarations in the corresponding mathstructure to symbols
currently in scope, the name of the mathstructure to instantiate, and lastly a notation
for the instance itself.

It then generates a semantic macro that takes as argument the name of a declaration
in the instantiated mathstructure and resolves it to the corresponding instance of that
particular declaration.

a 3

\instantiate and mathstructure make use of the Theories-as-Types paradigm

(see [MRK18]):

mathstructure{<name>} simply creates a nested theory with name
“M—> <name>-structure. The constant <name> is defined as Mod(<name>-structure)
—M— - a dependent record type with manifest fields, the fields of which are generated
—~T'~> from (and correspond to) the constants in <name>-structure.

\instantiate generates a constant whose definiens is a record term of type

Mod (<name>-structure), with the fields assigned based on the respective key-

value-list.

\ J

Notably, \instantiate throws an error if not every declaration in the instantiated
mathstructure is being assigned.
You might consequently ask what the usefulness of mathstructure even is.

The answer is that we can also instantiate a mathstructure with a variable. The syntax
of \varianstantiate is equivalent to that of \instantiate, but all of the key-value-
pairs are optional, and if not explicitly assigned (to a symbol or a variable declared with
\vardef) inherit their notation from the one in the mathstructure environment.

This allows us to do things like:

Example 27
Input:

33



1 \varinstantiate{varM}{monoid}{M}
2

3 A \symname{monoid} is a structure
4 $\varM! :=\mathstruct{\varM{universe}, \varM{op}!,\varM{unit}}$

5 such that
6 $\varM{op}!: \funtype{\varM{universe}, \varM{universe}}{\varM{universe}}$ ...

Output:

A monoid is a structure M := (U,0,e) such that o : UxU—=U ...

and
Example 28

Input:

1 \varinstantiate{varMb}{monoid}{M_2}[universe = Int]

3 Let $\varMb!:=\mathstruct{\varMb{universel},\varMb{op}!,\varMb{unit}}$
4 be a \symname{monoid} on $\Int$ ...

Output:

Let My := (Z,0,¢) be a monoid on Z ...

We will return to these two example later, when we also know how to handle the

axioms of a monoid.

3.4.4 The copymodule Environment

TODO: explain

Given modules:
Example 29
Input:

1 \begin{smodule}{magma}

2 \symdef{universe}{\comp{\mathcal U}}

3 \symdef{operation}[args=2,op=\circ]{#1 \comp\circ #2}
4 \end{smodule}

5 \begin{smodule}{monoid}

6 {magma}

7 \symdef{unit}{\comp e}

8 \end{smodule}

9 \begin{smodule}{group}

10 {monoid}

11 \symdef{inverse} [args=1]1{{#1}"{\comp{-1}}3}
12 \end{smodule}

Output:

34



We can form a module for rings by “cloning” an instance of group (for addition)
and monoid (for multiplication), respectively, and “glueing them together” to ensure they
share the same universe:

Example 30
Input:
1 \begin{smodule}{ring}
2 \begin{copymodule}{group}{addition}
3 \renamedecl [name=universe] {universe}{runiverse}
4 \renamedecl [name=plus] {operation}{rplus}
5 \renamedecl [name=zero] {unit}{rzero}
6 \renamedecl [name=uminus] {inverse}{ruminus}
7 \end{copymodule}
8 \notation*{rplus}[plus,op=+,prec=60]{#1 \comp+ #2}
9 \notation*{rzero} [zero] {\compO}
10 \notation*{ruminus} [uminus,op=-]1{\comp- #1}
11 \begin{copymodule}{monoid}{multiplication}
12 \assign{universe}{\runiverse}
13 \renamedecl [name=times] {operation}{rtimes}
14 \renamedecl [name=one] {unit}{rone}
15 \end{copymodule}
16 \notation*{rtimes}[cdot,op=\cdot,prec=50]{#1 \comp\cdot #2}
17 \notation*{rone} [one] {\comp1}
18 Test: $\rtimes a{\rplus c{\rtimes del}}$
19 \end{smodule}

Output:

Test: a-(ct+d-e)

TODO: explain donotclone

3.4.5 The interpretmodule Environment

TODO: explain
Example 31
Input:

1 \begin{smodule}{int}

2 \symdef{Integers}{\comp{\mathbb Z}}

3 \symdef{plus}[args=2,op=+]{#1 \comp+ #2}
4 \symdef{zero}{\comp0}

2 \symdef{uminus} [args=1,op=-]{\comp-#1}

7

8

\begin{interpretmodule}{group}{intisgroup}
\assign{universe}{\Integers}

9 \assign{operation}{\plus!}
10 \assign{unit}{\zero}
11 \assign{inverse}{ \uminus!}

12 \end{interpretmodule}
13 \end{smodule}

Output:

35



3.5 Primitive Symbols (The TgX Metatheory)

The stex-metatheory package contains §IEX symbols so ubiquitous, that it is virtually
impossible to describe any flexiformal content without them, or that are required to
annotate even the most primitive symbols with meaningful (foundation-independent)
“type”-annotations, or required for basic structuring principles (theorems, definitions).
As such, it serves as the default meta theory for any §IEX module.

We can also see the stex-metatheory as a foundation of mathematics in the sense of
[ ], albeit an informal one (the ones discussed there are all formal foundations). The
state of the stex-metatheory is necessarily incomplete, and will stay so for a long while:
It arises as a collection of empirically useful symbols that are collected as more and more
mathematics are encoded in SIEX and are classified as foundational.

Formal foundations should ideally instantiate these symbols with their formal coun-
terparts, e.g. isa corresponds to a typing operation in typed setting, or the €-operator
in set-theoretic contexts; bind corresponds to a universal quantifier in (nth-order) logic,
or a Il in dependent type theories.

We make this theory part of the SITEX collection due to the obiquity of the symbols
involved. Note however, that the metatheory is for all practical purposes a “normal”
SIEX module, and the symbols contained “normal” §IEX symbols.

36



\symref
\symname

Chapter 4

Using SIEX Symbols

Given a symbol declaration \symdecl{symbolnamel}, we obtain a semantic macro
\symbolname. We can use this semantic macro in math mode to use its notation(s),
and we can use \symbolname! in math mode to use its operator notation(s). What else
can we do?

4.1 \symref and its variants

We have already seen \symname and \symref, the latter being the more general.

\symref{<symbolname>}{<code>} marks-up <code> as referencing <symbolname>.
Since quite often, the <code> should be (a variant of) the name of the symbol anyway,
we also have \symname{<symbolname>}.

Note that \symname uses the name of a symbol, not its macroname. More precisely,
\symname will insert the name of the symbol with “~” replaced by spaces. If a symbol
does not have an explicit name= given, the two are equal — but for \symname it often
makes sense to make the two explicitly distinct. For example:

Example 32
Input:

1 \symdef{Nat}[
2 name=natural-number,

3 type=\set
4 J{\comp{\mathbb{N}}}
5

6 A \symname{Nat} is...

Output:

A natural number is...

\symname takes two additional optional arguments, pre= and post= that get
prepended or appended respectively to the symbol name.

37



\Symname

Additionally, \Symname behaves exactly like \symname, but will capitalize the first letter
of the name:

Example 33

Input:

1 \Symname [post=s]{Nat} are...

Output:

Natural numbers are...

This is as good a place as any other to explain how SIEX resolves a string
symbolname to an actual symbol.

If \symbolname is a semantic macro, then SIEX has no trouble resolving
symbolname to the full URI of the symbol that is being invoked.

However, especially in \symname (or if a symbol was introduced using \symdecl*
without generating a semantic macro), we might prefer to use the name
of a symbol directly for readability — e.g. we would want to write
A \symname{natural-number} is... rather than A \symname{Nat} is.... S[EX
attempts to handle this case thusly:

If string does not correspond to a semantic macro \string and does not contain
a 7, then §IEX checks all symbols currently in scope until it finds one, whose name
is string. If string is of the form pre?name, SIEX first looks through all modules
currently in scope, whose full URI ends with pre, and then looks for a symbol with
name name in those. This allows for disambiguating more precisely, e.g. by saying
\symname{Integers?addition} or \symname{RealNumbers?addition} in the case
where several additions are in scope.

4.2 Marking Up Text and On-the-Fly Notations

We can also use semantic macros outside of text mode though, which allows us to annotate
arbitrary text fragments.

Let us assume again, that we have \symdef{addition}[args=2]{#1 \comp+ #2}.
Then we can do
Example 34
Input:

% .\addition{\comp{The sum of} \arg{$\svar{n}$} \comp{ and }F\arg{$\svar{m}$}}
is...

Output:

The sum of n and m is...

38



"...which marks up the text fragment as representing an application of the addition-
symbol to two argument n and m.
f 3
“M— As expected, the above example is translated to OMDoc/MMT as an
—M-— OMA with <OMS name="...?7addition"/> as head and <OMV name="n"/> and
—~T'~> <0MV name="m"/> as arguments.

Note the difference in treating “arguments” between math mode and text mode.
In math mode the (in this case two) tokens/groups following the \addition macro

A are treated as arguments to the addition function, whereas in text mode the group
following \addition is taken to be the ad-hoc presentation. We drill in on this
now.

\arg In text mode, every semantic macro takes exactly one argument, namely the text-
fragment to be annotated. The \arg command is only valid within the argument to
a semantic macro and marks up the individual arguments for the symbol.

We can also use semantic macros in text mode to invoke an operator itself instead
of its application, with the usual syntax using !:

Example 35
Input:

1 \addition!{Addition} is...

Output:

Addition is...

Indeed, \symbolname!{<code>} is exactly equivalent to \symref{symbolname}{<code>}
(the latter is in fact implemented in terms of the former).
\arg also allows us to switch the order of arguments around and “hide” arguments:
For example, \arg[3]{<code>} signifies that <code> represents the third argument to
the current operator, and \arg*[i]{<code>} signifies that <code> represents the ith
argument, but it should not produce any output (it is exported in the xhtml however, so
EdN:1 that MMT and other systems can pick up on it).!

Example 36
Input:

1 \addition{\comp{adding}
2 \arg[2]{$\svar{k}$}
3 \arg*x{$\addition{\svar{n}}{\svar{m}}$}} yields...

Output:

IEDNOTE: MK: | do not understand why we have to/want to give the second arg*; | think this must be
elaborated on.

39



adding £ yields...

"Note that since the second \arg has no explicit argument number, it automatically
EdN:2 represents the first not-yet-given argument — i.e. in this case the first one.?

The same syntax can be used in math mod as well. This allows us to spontaneously
introduce new notations on the fly. We can activate it using the starred variants of
semantic macros:

Example 37
Input:

1 Given $\addition{\svar{n}}{\svar{m}}$, then
2 $\addition*{

3 \arg*{\addition{\svar{n}}{\svar{m}}}

4 \comp{+}

5 \arg{\svar{k}}

6 }$ yields...

Output:

Given n+m, then +k yields...

4.3 Referencing Symbols and Statements

TODO: references documentation

2EDNOTE: MK: | do not understand this at all.

40



Chapter 5

SIEX Statements

5.1 Definitions, Theorems, Examples, Paragraphs

As mentioned earlier, we can semantically mark-up statements such as definitions, theo-
rems, lemmata, examples, etc.
The corresponding environments for that are:

e sdefinition for definitions,

e sassertion for assertions, i.e. propositions that are declared to be true, such as
theorems, lemmata, axioms,

e sexample for examples and counterexamples, and

e sparagraph for “other” semantic paragraphs, such as comments, remarks, conjec-
tures, etc.

The presentation of these environments can be customized to use e.g. predefined
theorem-environments, see chapter 6 for details.

All of these environments take optional arguments in the form of key=value-pairs.
Common to all of them are the keys id= (for cross-referencing, see section 4.3), type=
for customization (see chapter 6) and additional information (e.g. definition principles,
“difficulty” etc), as well as title= (for giving the paragraph a title), and finally for=.

The for= key expects a comma-separated list of existing symbols, allowing for e.g.
things like
Example 38
Input:

1 \begin{sexample}[

2 id=additionandmultiplication.ex,

3 for={addition,multiplication},

4 type={trivial,boring},

5 title={An Example}

61

7 $\addition{2,3}$ is $5%, $\multiplication{2,3}$ is $63%.
8 \end{sexample}

Output:

41



Example 5.1.1 (An Example). 243 is 5, 2-3 is 6.

\definiendum gdefinition (and sparagraph with type=symdoc) introduce three new macros: definiendum
\def:!.name behaves like symref (and definame/Definame like symname/Symname, respectively), but
\Definame highlights the referenced symbol as being defined in the current definition.

The special type=symdoc for sparagraph is intended to be used for “informal
definitions”; or encyclopedia-style descriptions for symbols.

The MMT system can use those (in lieu of an actual sdefinition in scope) to
present to users, e.g. when hovering over symbols.

LM»
_M%

WTJ\)

\definiens Additionally, sdefinition (and sparagraph with type=symdoc) introduces \definiens [<optional syn
which marks up <code> as being the explicit definiens of <optional symbolname> (in
case for= has multiple symbols).
All four statement environments — i.e. sdefinition, sassertion, sexample, and
sparagraph — also take an optional parameter name= — if this one is given a value, the
environment will generate a symbol by that name (but with no semantic macro). Not
only does this allow for \symref et al, it allows us to resume our earlier example for
EdN:3 monoids much more nicely:?

Example 39
Input:

3EDNOTE: MK: we should reference the example explicitly here.

42



1 \begin{mathstructure}{monoid}

2 \symdef{universe} [type=\set]{\comp{U}}

3 \symdef{op}[

4 args=2,

5 type=\funtype{\universe,\universe}{\universe},
6 op=\circ

7 1{#1 \comp{\circ} #2}

S \symdef{unit} [type=\universe]{\comp{el}}

10 \begin{sparagraph} [type=symdoc,for=monoid]

11 A \definame{monoid} is a structure

12 $\mathstruct{\universe,\op!,\unit}$

13 where $\op!:\funtype{\universe}{\universe}$ and
%% $\inset{\unit}{\universe}$ such that

16 \begin{sassertion} [name=associative,

17 type=axiom,

18 title=Associativity]

19 $\op!$ is associative

20 \end{sassertion}

21 \begin{sassertion}[name=isunit,

22 type=axiom,

23 title=Unit]

24 $\equal{\op{\svar{x}}{\unit}}{\svar{x}}$
25 for all $\inset{\svar{x}}{\universe}$

26 \end{sassertion}

27 \end{sparagraph}
28 \end{mathstructure}
29

30 An example for a \symname{monoid} is...

Output:

A monoid is a structure (U,o,e) where o : U—U and e€U such that
Axiom 5.1.2 (Associativity). o is associative

Axiom 5.1.3 (Unit). zoe=x for all €U

An example for a monoid is...

EdN:4 The main difference to before? is that the two sassertions now have name= at-
tributes. Thus the mathstructure monoid now contains two additional symbols, namely
the axioms for associativity and that e is a unit. Note that both symbols do not represent
the mere propositions that e.g. o is associative, but the assertion that it is actually true
that o is associative.

If we now want to instantiate monoid (unless with a variable, of course), we also
need to assign associative and neutral to analogous assertions. So the earlier example

1 \instantiate{intmonoid}{monoid}{\mathbb{Z}_{+,0}}[

2 universe = Int ,
3 op = addition ,
4 unit = zero

5]

4EDNOTE: MK: reference

43



...will not work anymore. We now need to give assertions that addition is associative
and that zero is a unit with respect to addition.?

The stex-proof package supplies macros and environment that allow to annotate the
structure of mathematical proofs in §IEX document. This structure can be used by
MKM systems for added-value services, either directly from the §IEX sources, or after
translation.

We will go over the general intuition by way of a running example:

1 \begin{sproof}[id=simple-proof]

2 {We prove that $\sum_{i=1}"n{2i-1}=n"{2}$ by induction over $n$}

3 \begin{spfcases}{For the induction we have to consider three cases:}
4  \begin{spfcase}{$n=1$}

5 \begin{spfstep}[type=inline] then we compute $1=1"2$\end{spfstep}
6  \end{spfcase}

7  \begin{spfcase}{$n=2$}

8 \begin{spfcomment} [type=inline]

9 This case is not really necessary, but we do it for the

10 fun of it (and to get more intuition).
11 \end{spfcomment}
12 \begin{spfstep}[type=inline] We compute $1+3=2"{2}=4$.\end{spfstep}

13 \end{spfcase}
14  \begin{spfcase}{$n>1$}

15 \begin{spfstep}[type=assumption,id=ind-hyp]

16 Now, we assume that the assertion is true for a certain $k\geq 18,
17 i.e. $\sum_{i=1}"k{(2i-1)}=k~{2}$.

18 \end{spfstep}

19 \begin{spfcomment}

20 We have to show that we can derive the assertion for $n=k+1$ from
21 this assumption, i.e. $\sum_{i=1}"{k+1}{(2i-1)}=(k+1)"{2}$.

22 \end{spfcomment}

23 \begin{spfstep}

24 We obtain $\sum_{i=1}"{k+1}{2i-1}=\sum_{i=1}"k{2i-1}+2(k+1)-1$

25 \spfjust [method=arith:split-sum]{by splitting the sum}.

26 \end{spfstep}

27 \begin{spfstep}

28 Thus we have $\sum_{i=1}"{k+1}{(2i-1)}=k~2+2k+1$

29 \spf just [method=fertilize]{by inductive hypothesis}.

30 \end{spfstep}

31 \begin{spfstep} [type=conclusion]

32 We can \spfjust[method=simplify]{simplify} the right-hand side to
33 ${k+1}"2$, which proves the assertion.

34 \end{spfstep}

35  \end{spfcase}

36 \begin{spfstep} [type=conclusion]

37 We have considered all the cases, so we have proven the assertion.
38 \end{spfstep}

39 \end{spfcases}

40 \end{sproof}

This yields the following result:

Proof: We prove that > " ;2i—1= n? by induction over n

20f course, STEX can not check that the assertions are the “correct” ones — but if the assertions (both
in monoid as well as those for addition and zero) are properly marked up, MMT can. TODO: should

44



sproof

\spfidea

\spfsketch

spfstep

1. For the induction we have to consider the following cases:

1.1. n=1: then we compute 1 = 12 O
1.2. n =2: This case is not really necessary, but we do it for the fun of it (and
to get more intuition). We compute 1+ 3 =22 =4 O
1.3. n> 1:

1.3.1. Now, we assume that the assertion is true for a certain k& > 1, i.e.
Sy (20— 1) = k2.

1.3.2. We have to show that we can derive the assertion for n = k + 1 from this
assumption, i.e. YF1 (20 — 1) = (k + 1)2.

1.3.3. We obtain %4 (2i — 1) = 32F | (2i — 1)+ 2(k+1) — 1 by splitting the sum.
1.3.4. Thus we have Zf:ll (26 — 1) = k? + 2k + 1 by inductive hypothesis.

1.3.5. We can simplify the right-hand side to (k + 1)2, which proves the assertion.
O

1.4. We have considered all the cases, so we have proven the assertion.

O

The sproof environment is the main container for proofs. It takes an optional KeyVal
argument that allows to specify the id (identifier) and for (for which assertion is this a
proof) keys. The regular argument of the proof environment contains an introductory
comment, that may be used to announce the proof style. The proof environment contains
a sequence of spfstep, spfcomment, and spfcases environments that are used to markup
the proof steps.

The \spfidea macro allows to give a one-paragraph description of the proof idea.

For one-line proof sketches, we use the \spfsketch macro, which takes the same optional
argument as sproof and another one: a natural language text that sketches the proof.

Regular proof steps are marked up with the step environment, which takes an optional
KeyVal argument for annotations. A proof step usually contains a local assertion (the
text of the step) together with some kind of evidence that this can be derived from
already established assertions.

45



\spf just

\premise

\justarg

subproof

spfcases

spfcase

\spfcasesketch

spfcomment

This evidence is marked up with the \spfjust macro in the stex-proofs package. This
environment totally invisible to the formatted result; it wraps the text in the proof step
that corresponds to the evidence. The environment takes an optional KeyVal argument,
which can have the method key, whose value is the name of a proof method (this will
only need to mean something to the application that consumes the semantic annotations).
Furthermore, the justification can contain “premises” (specifications to assertions that
were used justify the step) and “arguments” (other information taken into account by
the proof method).

The \premise macro allows to mark up part of the text as reference to an assertion that
is used in the argumentation. In the running example we have used the \premise macro
to identify the inductive hypothesis.

The \justarg macro is very similar to \premise with the difference that it is used to
mark up arguments to the proof method. Therefore the content of the first argument
is interpreted as a mathematical object rather than as an identifier as in the case of
\premise. In our example, we specified that the simplification should take place on the
right hand side of the equation. Other examples include proof methods that instantiate.
Here we would indicate the substituted object in a \ justarg macro.

Note that both \premise and \ justarg can be used with an empty second argument
to mark up premises and arguments that are not explicitly mentioned in the text.

The spfcases environment is used to mark up a subproof. This environment takes an
optional KeyVal argument for semantic annotations and a second argument that allows
to specify an introductory comment (just like in the proof environment). The method
key can be used to give the name of the proof method executed to make this subproof.

The spfcases environment is used to mark up a proof by cases. Technically it is a variant
of the subproof where the method is by-cases. Its contents are spfcase environments
that mark up the cases one by one.

The content of a spfcases environment are a sequence of case proofs marked up in the
spfcase environment, which takes an optional KeyVal argument for semantic annota-
tions. The second argument is used to specify the the description of the case under
consideration. The content of a spfcase environment is the same as that of a sproof,
i.e. spfsteps, spfcomments, and spfcases environments.

\spfcasesketch is a variant of the spfcase environment that takes the same arguments,
but instead of the spfsteps in the body uses a third argument for a proof sketch.

The spfcomment environment is much like a step, only that it does not have an object-
level assertion of its own. Rather than asserting some fact that is relevant for the proof,
it is used to explain where the proof is going, what we are attempting to to, or what we
have achieved so far. As such, it cannot be the target of a \premise.

46



\sproofend Traditionally, the end of a mathematical proof is marked with a little box at the end of

\sProofEndSymbol

the last line of the proof (if there is space and on the end of the next line if there isn’t),
like so:
The stex-proofs package provides the \sproofend macro for this.

If a different symbol for the proof end is to be used (e.g. g.e.d), then this can be obtained
by specifying it using the \sProofEndSymbol configuration macro (e.g. by specifying
\sProofEndSymbol{q.e.d}).

Some of the proof structuring macros above will insert proof end symbols for sub-
proofs, in most cases, this is desirable to make the proof structure explicit, but sometimes
this wastes space (especially, if a proof ends in a case analysis which will supply its own
proof end marker). To suppress it locally, just set proofend={} in them or use use
\sProofEndSymbol{}.

47



\stexpatchmodule
\stexpatchdefinition
\stexpatchassertion
\stexpatchexample
\stexpatchparagraph
\stexpatchproof

Chapter 6

Highlighting and Presentation
Customizations

The environments starting with s (i.e. smodule, sassertion, sexample, sdefinition,
sparagraph and sproof) by default produce no additional output whatsoever (except
for the environment content of course). Instead, the document that uses them (whether
directly or e.g. via ) can decide how these environments are supposed to look
like.

The stexthm package defines some default customizations that can be used, but of
course many existing KTEX templates come with their own definition, theorem and
similar environments that authors are supposed (or even required) to use. Their concrete
syntax however is usually not compatible with all the additional arguments that SIEX
allows for semantic information.

Therefore we introduced the separate environments sdefinition etc. instead of
using definition directly. We allow authors to specify how these environments should
be styled via the commands stexpatchx.

All of these commands take one optional and two proper arguments, i.e.
\stexpatch* [<type>]{<begin-code>}{<end-code>}.

After SIEX reads and processes the optional arguments for these environments,
(some of) their values are stored in the macros \s*<field> (i.e. sexampleid,
\sassertionname, etc.). It then checks for all the values <type> in the type=-list,
whether an \stexpatch* [<type>] for the current environment has been called. If it finds
one, it uses the patches <begin-code> and <end-code> to mark up the current environ-
ment. If no patch for (any of) the type(s) is found, it checks whether and \stexpatch*
was called without optional argument.

For example, if we want to use a predefined theorem environment for sassertions
with type=theorem, we can do

1 \stexpatchassertion[theorem] {\begin{theorem}}{\end{theorem}}
...or, rather, since e.g. theorem-like environments defined using amsthm take an optional
title as argument, we can do:

1 \stexpatchassertion[theorem]
2 {\ifx\sassertiontitle\@empty
3 \begin{theorem}

48



\compemph
\varemph
\symrefemph
\defemph

\compemph@uri
\varemph@uri
\symrefemph@uri
\defemphQuri

4
)
6
7

1

2
3
4
)
6
7

1

N O ULk Wi

\else
\begin{theorem} [\sassertiontitle]
\fi}
{\end{theorem}}

Or, if we want all kinds of sdefinitions to use a predefined definition-
environment irrespective of their type=, then we can issue the following customization
patch:

\stexpatchdefinition
{\ifx\sdefinitiontitle\Q@empty
\begin{definition}
\else
\begin{definition}[\sdefinitiontitlel
\fi}
{\end{definition}}

Apart from the environments, we can control how SIEX highlights variables, notation
components, \symrefs and \definiendums, respectively.

To do so, we simply redefine these four macros. For example, to highlight nota-
tion components (i.e. everything in a \comp) in blue, as in this document, we can do
\def\compemph#1{\textcolor{blue}{#1}}. By default, \compemph et al do nothing.

For each of the four macros, there exists an additional macro that takes the full URI of
the relevant symbol currently being highlighted as a second argument. That allows us to
e.g. use pdf tooltips and links. For example, this document uses®
\protected\def\symrefemphQuri#1#2{
\pdftooltip{
\srefsymuri{#2}{\symrefemph{#1}}

H
URI:~\detokenize{#2}
}

}

By default, \compemph@uri is simply defined as \compemph{#1} (analogously for the
other three commands).

49



Chapter 7

Additional Packages

7.1 Tikzinput: Treating TIKZ code as images

image The behavior of the ikzinput package is determined by whether the image option is given.
If it is not, then the tikz package is loaded, all other options are passed on to it and
\tikzinput{(file)} inputs the TIKZ file (file).tex; if not, only the graphicx package is
loaded and \tikzinput{(file)} loads an image file (file).(ext) generated from (file).tex.
The selective input functionality of the tikzinput package assumes that the TIKZ
pictures are externalized into a standalone picture file, such as the following one

1 \documentclass{standalone}
2 \usepackage{tikz}

3 \usetikzpackage{...}

4 \begin{document}

5 \begin{tikzpicture}

6

7 \end{tikzpicture}
8 \end{document}

The standalone class is a minimal ETEX class that when loaded in a document
that uses the standalone package: the preamble and the documenat environment are
disregarded during loading, so they do not pose any problems. In effect, an \input of
the file above only sees the tikzpicture environment, but the file itself is standalone in
the sense that we can run IMTEX over it separately, e.g. for generating an image file from
it.

\tikzinput  This is exactly where the tikzinput package comes in: it supplies the \tikzinput macro,
\ctikzinput hich - depending on the image option — either directly inputs the TIKZ picture (source)
or tries to load an image file generated from it.
Concretely, if the image option is not set for the tikzinput package, then \tikzinput [{opt)]1{(file)}
disregards the optional argument (opt) and inputs (file) . tex via \input and resizes it to
as specified in the width and height keys. If it is, \tikzinput [{opt)]1{(file)} expands
to \includegraphics [{opt)]1{(file)}.
\ctizkinput is a version of \tikzinput that is centered.

50



EdN:6

\mhtikzinput
\cmhtikzinput

\libusetikzlibrary

sfragment

\mhtizkinput is a variant of \tikzinput that treats its file path argument as a relative
path in a math archive in analogy to . To give the archive path, we use the
mhrepos= key. Again, \cmhtizkinput is a version of \mhtikzinput that is centered.

Sometimes, we want to supply archive-specific TIKZ libraries in the lib folder of
the archive or the meta-inf/1ib of the archive group. Then we need an anal-
ogon to for \usetikzlibrary. The stex-tikzinput package provides the
libusetikzlibrary for this purpose.

7.2 Modular Document Structuring

The document-structure package supplies an infrastructure for writing OMDoc docu-
ments in XTEX. This includes a simple structure sharing mechanism for SIEX that allows
to to move from a copy-and-paste document development model to a copy-and-reference
model, which conserves space and simplifies document management. The augmented
structure can be used by MKM systems for added-value services, either directly from the
SIEX sources, or after translation.

The document-structure package supplies macros and environments that allow to la-
bel document fragments and to reference them later in the same document or in other
documents. In essence, this enhances the document-as-trees model to documents-as-
directed-acyclic-graphs (DAG) model. This structure can be used by MKM systems for
added-value services, either directly from the §I'EX sources, or after translation. Cur-
rently, trans-document referencing provided by this package can only be used in the
SIEX collection.

DAG models of documents allow to replace the “Copy and Paste” in the source
document with a label-and-reference model where document are shared in the document
source and the formatter does the copying during document formatting/presentation.

The document-structure package accepts the following options:

class=(name) load (name).cls instead of article.cls
topsect=(sect) | The top-level sectioning level; the default for (sect) is section

The structure of the document is given by nested sfragment environments. In the ITEX
route, the sfragment environment is flexibly mapped to sectioning commands, inducing
the proper sectioning level from the nesting of sfragment environments. Correspondingly,
the sfragment environment takes an optional key/value argument for metadata followed
by a regular argument for the (section) title of the sfragment. The optional metadata
argument has the keys id for an identifier, creators and contributors for the Dublin
Core metadata | ]. The option short allows to give a short title for the generated
section. If the title contains semantic macros, they need to be protected by \protectb,
and we need to give the loadmodules key it needs no value. For instance we would have

1 \begin{smodule}{foo}

\symdef{bar}{B~a_r}

\begin{sfragment}[id=sec.barderiv,loadmodules]
{Introducing $\protect\bar$ Derivations}

T LN

SEDNOTE: MK: still?

o1



EdN:7

blindfragment

SIEX automatically computes the sectioning level, from the nesting of sfragment
environments.

But sometimes, we want to skip levels (e.g. to use a \subsection* as an introduction
for a chapter).

Therefore the document-structure package provides a variant blindfragment that does
not produce markup, but increments the sectioning level and logically groups document
parts that belong together, but where traditional document markup relies on convention
rather than explicit markup. The blindfragment environment is useful e.g. for creating
frontmatter at the correct level. The example below shows a typical setup for the outer
document structure of a book with parts and chapters.

1 \begin{document}

2 \begin{blindfragment}

3 \begin{blindfragment}

4 \begin{frontmatter}

5 \maketitle\newpage

6 \begin{sfragment}{Preface}

7 ... <<preface>> ...

8 \end{sfragment}

9 \clearpage\setcounter{tocdepth}{4}\tableofcontents\clearpage

10 \end{frontmatter}

11 \end{blindfragment}

12 ... <<introductory remarks>>

13 \end{blindfragment}

14 \begin{sfragment}{Introduction}

15 ... <<intro>>
16 \end{sfragment}
17 ... <<more chapters>> ...

18 \bibliographystyle{alpha}\bibliography{kwarc}
19 \end{document}

Here we use two levels of blindfragment:

e The outer one groups the introductory parts of the book (which we assume to have a

\skipfragment

sectioning hierarchy topping at the part level). This blindfragment makes sure that the
introductory remarks become a “chapter” instead of a “part”.

The inner one groups the frontmatter® and makes the preface of the book a section-level
construct.”

The \skipfragment “skips an sfragment”, i.e. it just steps the respective sectioning
counter. This macro is useful, when we want to keep two documents in sync struc-
turally, so that section numbers match up: Any section that is left out in one becomes a
\skipfragment.

3We shied away from redefining the frontmatter to induce a blindfragment, but this may be the
“right” way to go in the future.

"EDNOTE: MK: We need a substitute for the “Note that here the display=flow on the sfragment
environment prevents numbering as is traditional for prefaces.”

52



\currentsectionlevel
\CurrentSectionLevel

\prematurestop
\afterprematurestop

\setSGvar
\useSGvar

\ifSGvar

The \currentsectionlevel macro supplies the name of the current sectioning level,
e.g. “chapter”; or “subsection”. \CurrentSectionLevel is the capitalized variant. They
are useful to write something like “In this \currentsectionlevel, we will...” in an
sfragment environment, where we do not know which sectioning level we will end up.

For prematurely stopping the formatting of a document, SIEX provides the \prematurestop
macro. It can be used everywhere in a document and ignores all input after that — back-
ing out of the sfragment environment as needed. After that — and before the implicit
\end{document} it calls the internal \afterprematurestop, which can be customized
to do additional cleanup or e.g. print the bibliography.

\prematurestop is useful when one has a driver file, e.g. for a course taught multiple
years and wants to generate course notes up to the current point in the lecture. Instead
of commenting out the remaining parts, one can just move the \prematurestop macro.
This is especially useful, if we need the rest of the file for processing, e.g. to generate a
theory graph of the whole course with the already-covered parts marked up as an overview
over the progress; see import_graph.py from the lmhtools utilities [ ].

Text fragments and modules can be made more re-usable by the use of global vari-
ables. For instance, the admin section of a course can be made course-independent
(and therefore re-usable) by using variables (actually token registers) courseAcronym
and courseTitle instead of the text itself. The variables can then be set in the §IEX
preamble of the course notes file.

\setSGvar{(vname)}H (text)} to set the global variable (vname) to (text) and \useSGvar{(vname)}
to reference it.

With\ifSGvar we can test for the contents of a global variable: the macro call
\ifSGvar{(vname)}{(val)}{{ctext)} tests the content of the global variable (vname),
only if (after expansion) it is equal to (val), the conditional text (ctext) is formatted.

7.3 Slides and Course Notes

The notesslides document class is derived from beamer.cls | ], it adds a “notes ver-
sion” for course notes that is more suited to printing than the one supplied by beamer.cls.

The notesslides class takes the notion of a slide frame from Till Tantau’s excellent
beamer class and adapts its notion of frames for use in the §IEX and OMDoc. To
support semantic course notes, it extends the notion of mixing frames and explanatory
text, but rather than treating the frames as images (or integrating their contents into the
flowing text), the notesslides package displays the slides as such in the course notes to
give students a visual anchor into the slide presentation in the course (and to distinguish
the different writing styles in slides and course notes).

In practice we want to generate two documents from the same source: the slides for
presentation in the lecture and the course notes as a narrative document for home study.
To achieve this, the notesslides class has two modes: slides mode and notes mode which
are determined by the package option.

53



slides

notes
sectocframes
frameimages
fiboxed

frame,note

\ifnotes

The notesslides class takes a variety of class options:

o The options slides and notes switch between slides mode and notes mode (see
Section ?77).

o If the option sectocframes is given, then for the sfragments, special frames with
the sfragment title (and number) are generated.

o If the option frameimages is set, then slide mode also shows the \frameimage-
generated frames (see section ?77). If also the fiboxed option is given, the slides
are surrounded by a box.

Slides are represented with the frame environment just like in the beamer class, see | ]
for details. The notesslides class adds the note environment for encapsulating the course
note fragments.*

the line — in particular, there may not be leading blanks — else I“TEX becomes

Note that it is essential to start and end the notes environment at the start of
A confused and throws error messages that are difficult to decipher.

By interleaving the frame and note environments, we can build course notes as
shown here:

1 \ifnotes\maketitle\else

2 \frame [noframenumbering] \maketitle\fi
3

4 \begin{note}

5 We start this course with ...

6 \end{note}

7

8 \begin{frame}

9 \frametitle{The first slide}
10 ...
11 \end{frame}
12 \begin{note}

13 ... and more explanatory text
14 \end{note}
15

16 \begin{frame}

17 \frametitle{The second slide}
18 ...

19 \end{frame}

20 ...

Note the use of the \ifnotes conditional, which allows different treatment between notes
and slides mode — manually setting \notestrue or \notesfalse is strongly discouraged
however.

4MK: it would be very nice, if we did not need this environment, and this should be possible in
principle, but not without intensive LaTeX trickery. Hints to the author are welcome.

54



\inputrefx*

nexample, nsproof, nassertion

\setslidelogo

\setsource

\setlicensing

We need to give the title frame the noframenumbering option so that the frame
numbering is kept in sync between the slides and the course notes.

The beamer class recommends not to use the allowframebreaks option on frames
(even though it is very convenient). This holds even more in the notesslides case:
At least in conjunction with \newpage, frame numbering behaves funnily (we have
tried to fix this, but who knows).

If we want to transclude a the contents of a file as a note, we can use a new
variant \inputref* of the \inputref macro: \inputref*{fool} is equivalent to
\begin{note}\inputref{foo}\end{note}.

There are some environments that tend to occur at the top-level of note environments.
We make convenience versions of these: e.g. the nparagraph environment is just an
sparagraph inside a note environment (but looks nicer in the source, since it avoids one
level of source indenting). Similarly, we have the nfragment, ndefinition, nexample,
nsproof, and nassertion environments.

The default logo provided by the notesslides package is the SIEX logo it can be customized
using \setslidelogo{(logo name)}.

The default footer line of the notesslides package mentions copyright and licensing. In
the beamer class, \source stores the author’s name as the copyright holder . By default
it is Michael Kohlhase in the notesslides package since he is the main user and designer
of this package. \setsource{(name)} can change the writer’s name.

For licensing, we use the Creative Commons Attribuition-ShareAlike license by default to
strengthen the public domain. If package hyperref is loaded, then we can attach a hyper-
link to the license logo. \setlicensing[(url)1{({logo name)} is used for customization,
where (url) is optional.

Sometimes, we want to integrate slides as images after all — e.g. because we already
have a PowerPoint presentation, to which we want to add SI'EX notes.

55



\frameimage In this case we can use \frameimage [{opt)]1{(path)}, where (opt) are the options of
\mhframeimage \jpcludegraphics from the graphicx package | ] and (path) is the file path (exten-
sion can be left off like in \includegraphics). We have added the label key that allows
to give a frame label that can be referenced like a regular beamer frame.
The \mhframeimage macro is a variant of \frameimage with repository support.
Instead of writing

1 \frameimage{\MathHub{fooMH/bar/source/baz/foobar}}

we can simply write (assuming that \MathHub is defined as above)

1 \mhframeimage [fooMH/bar]{baz/foobar}

Note that the \mhframeimage form is more semantic, which allows more advanced doc-
ument management features in MathHub.

If baz/foobar is the “current module”, i.e. if we are on the MathHub path
...MathHub/fooMH/bar. .., then stating the repository in the first optional argument
is redundant, so we can just use

1 \mhframeimage{baz/foobar}

\textvarning Ty, \textwarning macro generates a warning sign: 2\

In course notes, we sometimes want to point to an “excursion” — material that is
either presupposed or tangential to the course at the moment — e.g. in an appendix. The
typical setup is the following:

1 \excursion{founif}{../ex/founif}{We will cover first-order unification in}
2 ...
3 \begin{appendix}\printexcursions\end{appendix}

\excursion The \excursion{(ref)}{(path)}{(text)} is syntactic sugar for

1 \begin{nparagraph}[title=Excursion]

2 \activateexcursion{founif}{../ex/founif}

3 We will cover first-order unification in \sref{founif}.
4 \end{nparagraph}

\activateexcursion Tere \activateexcursion{(path)} augments the \printexcursions macro by a call
\Pl”inte’fwr sion \inputref{(path)}. In this way, the \printexcursions macro (usually in the appendix)
\excursionref will collect up all excursions that are specified in the main text.
Sometimes, we want to reference — in an excursion — part of another. We can use
\excursionref{(label)} for that.

56



\excursiongroup

solutions
notes
hints
gnotes
pts

min
boxed
test

problem

Finally, we usually want to put the excursions into an sfragment environment and add
an introduction, therefore we provide the a variant of the \printexcursions macro:
\excursiongroup [id=(id), intro=(path)] is equivalent to

1 \begin{note}

2 \begin{sfragment}[id=<id>]{Excursions}
3 {<path>}

4 \printexcursions

5 \end{sfragment}

6 \end{note}

When option book which uses \pagestyle{headings} is given and semantic macros
are given in the sfragment titles, then they sometimes are not defined by the time
the heading is formatted. Need to look into how the headings are made. This is a
problem of the underlying document-structure package.

7.4 Representing Problems and Solutions

The problem package supplies an infrastructure that allows specify problem. Problems
are text fragments that come with auxiliary functions: hints, notes, and solutions®. Fur-
thermore, we can specify how long the solution to a given problem is estimated to take
and how many points will be awarded for a perfect solution.

Finally, the problem package facilitates the management of problems in small files,
so that problems can be re-used in multiple environment.

The problem package takes the options solutions (should solutions be output?), notes
(should the problem notes be presented?), hints (do we give the hints?), gnotes (do we
show grading notes?), pts (do we display the points awarded for solving the problem?),
min (do we display the estimated minutes for problem soling). If theses are specified, then
the corresponding auxiliary parts of the problems are output, otherwise, they remain
invisible.

The boxed option specifies that problems should be formatted in framed boxes so
that they are more visible in the text. Finally, the test option signifies that we are in
a test situation, so this option does not show the solutions (of course), but leaves space
for the students to solve them.

The main environment provided by the problempackage is (surprise surprise) the problem
environment. It is used to mark up problems and exercises. The environment takes an
optional KeyVal argument with the keys id as an identifier that can be reference later,
pts for the points to be gained from this exercise in homework or quiz situations, min for
the estimated minutes needed to solve the problem, and finally title for an informative
title of the problem.

5for the moment multiple choice problems are not supported, but may well be in a future version

57



solution

hint,exnote,gnote

\startsolutions
\stopsolutions

Example 40
Input:

1 \documentclass{article}
2 \usepackage[solutions,hints,pts,min] {problem}
3 \begin{document}

4  \begin{sproblem}[id=elefants,pts=10,min=2,title=Fitting Elefants]
5 How many Elefants can you fit into a Volkswagen beetle?

6 \begin{hint}

7 Think positively, this is simple!

8 \end{hint}

9 \begin{exnote}

10 Justify your answer

11 \end{exnote}

12 \begin{solution} [for=elefants,height=3cm]

13 Four, two in the front seats, and two in the back.
14 \begin{gnote}

15 if they do not give the justification deduct 5 pts
16  \end{gnote}

17 \end{solution}

18 \end{sproblem}

19 \end{document}

Output:

Problem 7.4.1 (Fitting Elefants)
How many Elefants can you fit into a Volkswagen beetle?

Hint: Think positively, this is simple!

Note: Justify your answer

Solution: Four, two in the front seats, and two in the back.

Grading: if they do not give the justification deduct 5 pts

The solution environment can be to specify a solution to a problem. If the package
option solutions is set or \solutionstrue is set in the text, then the solution will be
presented in the output. The solution environment takes an optional KeyVal argument
with the keys id for an identifier that can be reference for to specify which problem this
is a solution for, and height that allows to specify the amount of space to be left in test
situations (i.e. if the test option is set in the \usepackage statement).

The hint and exnote environments can be used in a problem environment to give hints
and to make notes that elaborate certain aspects of the problem. The gnote (grading
notes) environment can be used to document situtations that may arise in grading.

Sometimes we would like to locally override the solutions option we have given to
the package. To turn on solutions we use the \startsolutions, to turn them off,
\stopsolutions. These two can be used at any point in the documents.

58



EdN:8

\ifsolutions

mcb

\mcc

Also, sometimes, we want content (e.g. in an exam with master solutions) conditional
on whether solutions are shown. This can be done with the \ifsolutions conditional.

Multiple choice blocks can be formatted using the mcb environment, in which single
choices are marked up with \mcc macro.

\mcc [{keyvals)]{(text)} takes an optional key/value argument (keyvals) for choice meta-
data and a required argument (text) for the proposed answer text. The following keys
are supported

e T for true answers, F for false ones,
e Ttext the verdict for true answers, Ftext for false ones, and

e feedback for a short feedback text given to the student.

If we start the solutions, then we get

Example 41
Input:

1 \startsolutions
2 \begin{sproblem} [title=Functions,name=functionsi]

3 What is the keyword to introduce a function definition in python?
4  \begin{mcb}
5 \mcc [T]{def}
6 \mcc[F,feedback=that is for C and C++]{function}
7 \mcc[F,feedback=that is for Standard ML]{fun}
8 \mcc [F,Ftext=Nooooooooo, feedback=that is for Java]{public static void}
9 \end{mcb}
10 \end{sproblem}
Output:

Problem 7.4.2 (Functions)
What is the keyword to introduce a function definition in python?

O def
(true)
O function
(false) (that is for C and C++)

O fun
(false) (that is for Standard ML)

[J public static void
(false) (that is for Java)

‘without solutions (that is what the students see during the exam/quiz)®

8EDNOTE: MK: that did not work!

59



\includeproblem

Example 42
Input:

1 \stopsolutions
2 \begin{sproblem} [title=Functions,name=functionsi]

3 What is the keyword to introduce a function definition in python?
4  \begin{mcb}
5 \mcc [T]{def}
6 \mcc[F,feedback=that is for C and C++]{function}
7 \mcc[F,feedback=that is for Standard ML]{fun}
8 \mcc [F,Ftext=Nooooooooo,feedback=that is for Java]{public static void}
9 \end{mcb}
10 \end{sproblem}
Output:

Problem 7.4.3 (Functions)
What is the keyword to introduce a function definition in python?

O def
(true)

O function
(false) (that is for C and C++)

O fun
(false) (that is for Standard ML)

[0 public static void
(false) (that is for Java)

The \includeproblem macro can be used to include a problem from another file. It
takes an optional KeyVal argument and a second argument which is a path to the file
containing the problem (the macro assumes that there is only one problem in the include
file). The keys title, min, and pts specify the problem title, the estimated minutes for
solving the problem and the points to be gained, and their values (if given) overwrite the
ones specified in the problem environment in the included file.

The sum of the points and estimated minutes (that we specified in the pts and min
keys to the problem environment or the \includeproblem macro) to the log file and the
screen after each run. This is useful in preparing exams, where we want to make sure
that the students can indeed solve the problems in an allotted time period.

The \min and \pts macros allow to specify (i.e. to print to the margin) the distri-
bution of time and reward to parts of a problem, if the pts and pts options are set. This
allows to give students hints about the estimated time and the points to be awarded.

7.5 Homeworks, Quizzes and Exams

The hwexam package and class supplies an infrastructure that allows to format nice-
looking assignment sheets by simply including problems from problem files marked up

60



solutions

notes

hints

gnotes

pts

min
assignment

number

title
type
given
due
multiple

test

\testspace
\testnewpage
\testemptypage

testheading
duration
min

reqpts

with the roblem package. It is designed to be compatible with problems. sty, and inherits
some of the functionality.

The wexam package and class take the options solutions, notes, hints, gnotes, pts,
min, and boxed that are just passed on to the problems package (cf. its documentation
for a description of the intended behavior).

This package supplies the assignment environment that groups problems into as-
signment sheets. It takes an optional KeyVal argument with the keys number (for the
assignment number; if none is given, 1 is assumed as the default or — in multi-assignment
documents — the ordinal of the assignment environment), title (for the assignment
title; this is referenced in the title of the assignment sheet), type (for the assignment
type; e.g. “quiz”, or “homework”), given (for the date the assignment was given), and
due (for the date the assignment is due).

Furthermore, the hwexam package takes the option multiple that allows to combine
multiple assignment sheets into a compound document (the assignment sheets are treated
as section, there is a table of contents, etc.).

Finally, there is the option test that modifies the behavior to facilitate formatting
tests. Only in test mode, the macros \testspace, \testnewpage, and \testemptypage
have an effect: they generate space for the students to solve the given problems. Thus
they can be left in the N TEX source.

\testspace takes an argument that expands to a dimension, and leaves vertical
space accordingly. \testnewpage makes a new page in test mode, and \testemptypage
generates an empty page with the cautionary message that this page was intentionally
left empty.

Finally, the \testheading takes an optional keyword argument where the keys
duration specifies a string that specifies the duration of the test, min specifies the equiv-
alent in number of minutes, and reqpts the points that are required for a perfect grade.

1 \title{320101 General Computer Science (Fall 2010)}

2 \begin{testheading} [duration=one hour,min=60,reqpts=27]
3 Good luck to all students!

4 \end{testheading}

Will result in

61



Name: Matriculation Number:

320101 General Computer Science (Fall 2010)
2022-05-24

You have one hour (sharp) for the test;

Write the solutions to the sheet.

The estimated time for solving this exam is 60 minutes, leaving you
0 minutes for revising your exam.

You can reach 40 points if you solve all problems. You will only need
27 points for a perfect score, i.e. 13 points are bonus points.

You have ample time, so take it slow and avoid rushing
to mistakes!

Different problems test different skills and knowledge, so
do not get stuck on one problem.

To be used for grading, do not write here
prob. 7411742743 |1.1]21]22]23|31]32]|33| Sum || grade
total 10 4 4 6 6 4 4 2 40
reached
good luck

EdN:9 9

\inputassignment The \inputassignment macro can be used to input an assignment from another file. It
takes an optional KeyVal argument and a second argument which is a path to the file con-
taining the problem (the macro assumes that there is only one assignment environment
in the included file). The keys number, title, type, given, and due are just as for the
assignment environment and (if given) overwrite the ones specified in the assignment
environment in the included file.

9EDNOTE: MK: The first three “problems” come from the stex examples above, how do we get rid of
this?

62



References

[Bus+04]

[CR99]

[DCMO3]

[Koh06]

[LMH]
[MMT]

[MRK18]

Stephen Buswell et al. The Open Math Standard, Version 2.0. Tech. rep. The
OpenMath Society, 2004. URL: http://www.openmath.org/standard/om20.
David Carlisle and Sebastian Rathz. The graphicxl package. Part of the TEX
distribution. The Comprehensive TEX Archive Network. 1999. URL: https:
//www . tug . org/texlive /devsrc /Master /texmf - dist /doc/ latex/
graphics/graphicx.pdf.

The DCMI Usage Board. DCMI Metadata Terms. DCMI Recommendation.
Dublin Core Metadata Initiative, 2003. URL: http ://dublincore . org/
documents/dcmi-terms/.

Michael Kohlhase. OMDoc — An open markup format for mathematical doc-
uments [Version 1.2]. LNAT 4180. Springer Verlag, Aug. 2006. URL: http:
//omdoc.org/pubs/omdocl.2.pdf.

LMH Secripts. URL: https://github.com/sLaTeX/1lmhtools.

MMT - Language and System for the Uniform Representation of Knowl-
edge. Project web site. URL: https://uniformal . github.io/ (visited on
01/15/2019).

Dennis Miiller, Florian Rabe, and Michael Kohlhase. “Theories as Types”. In:
9th International Joint Conference on Automated Reasoning. Ed. by Didier
Galmiche, Stephan Schulz, and Roberto Sebastiani. Springer Verlag, 2018.
URL: https://kwarc.info/kohlhase/papers/ijcarl8-records.pdf.
Florian Rabe. “The Future of Logic: Foundation-Independence”. In: Logica
Universalis 10.1 (2015). 10.1007/s11787-015-0132-x; Winner of the Contest
“The Future of Logic” at the World Congress on Universal Logic, pp. 1-20.
Florian Rabe and Michael Kohlhase. “A Scalable Module System”. In: Infor-
mation & Computation 0.230 (2013), pp. 1-54. URL: https://kwarc.info/
frabe/Research/mmt . pdf.

sLaTeX/RusTeX. URL: https://github.com/sLaTeX/RusTeX (visited on
04/22/2022).

sLaTeX/sTeX-IDE. URL: https://github.com/slatex/sTeX-IDE (visited
on 04/22/2022).

sLaTeX /stexls-vscode-plugin. URL: https://github.com/slatex/stexls~
vscode-plugin (visited on 04/22/2022).

sLaTeX/stexls. URL: https ://github . com/slatex/stexls (visited on
04/22/2022).

sTeX — An Infrastructure for Semantic Preloading of LaTeX Documents. URL:
https://ctan.org/pkg/stex (visited on 04/22/2022).

sTeX: A semantic Extension of TeX/LaTeX. URL: https://github.com/
sLaTeX/sTeX (visited on 05/11/2020).

Till Tantau. beamer — A LaTeX class for producing presentations and slides.
URL: http://ctan.org/pkg/beamer (visited on 01/07/2014).

Till Tantau. User Guide to the Beamer Class. URL: http://ctan . org/
macros/latex/contrib/beamer/doc/beameruserguide.pdf.

TeX Live. URL: http://www.tug.org/texlive/ (visited on 12/11/2012).

63


http://www.openmath.org/standard/om20
https://www.tug.org/texlive/devsrc/Master/texmf-dist/doc/latex/graphics/graphicx.pdf
https://www.tug.org/texlive/devsrc/Master/texmf-dist/doc/latex/graphics/graphicx.pdf
https://www.tug.org/texlive/devsrc/Master/texmf-dist/doc/latex/graphics/graphicx.pdf
http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-terms/
http://omdoc.org/pubs/omdoc1.2.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
https://github.com/sLaTeX/lmhtools
https://uniformal.github.io/
https://kwarc.info/kohlhase/papers/ijcar18-records.pdf
https://kwarc.info/frabe/Research/mmt.pdf
https://kwarc.info/frabe/Research/mmt.pdf
https://github.com/sLaTeX/RusTeX
https://github.com/slatex/sTeX-IDE
https://github.com/slatex/stexls-vscode-plugin
https://github.com/slatex/stexls-vscode-plugin
https://github.com/slatex/stexls
https://ctan.org/pkg/stex
https://github.com/sLaTeX/sTeX
https://github.com/sLaTeX/sTeX
http://ctan.org/pkg/beamer
http://ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf
http://ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf
http://www.tug.org/texlive/

	Contents
	1 What is ?
	2 Quickstart
	2.1 Setup
	2.1.1 Minimal Setup for the PDF-only Workflow
	2.1.2 GIT-based Setup for the Development Version
	2.1.3 Archives (Manual Setup)
	2.1.4 The IDE
	2.1.5 Manual Setup for Active Documents and Knowledge Management Services

	2.2 A First Document
	2.2.1 OMDoc/xhtml Conversion
	2.2.2 Mmt/OMDoc Conversion


	3 Creating Content
	3.1 How Knowledge is Organized in 
	3.2 Archives
	3.2.1 The Local MathHub-Directory
	3.2.2 The Structure of Archives
	3.2.3 MANIFEST.MF-Files
	3.2.4 Using Files in Archives Directly

	3.3 Module, Symbol and Notation Declarations
	3.3.1 The smodule-Environment
	3.3.2 Declaring New Symbols and Notations
	Operator Notations

	3.3.3 Argument Modes
	Mode-b Arguments
	Mode-a Arguments
	Mode-B Arguments

	3.3.4 Type and Definiens Components
	3.3.5 Precedences and Automated Bracketing
	3.3.6 Variables
	3.3.7 Variable Sequences

	3.4 Module Inheritance and Structures
	3.4.1 Multilinguality and Translations
	3.4.2 Simple Inheritance and Namespaces
	3.4.3 The mathstructure Environment
	3.4.4 The copymodule Environment
	3.4.5 The interpretmodule Environment

	3.5 Primitive Symbols (The Metatheory)

	4 Using Symbols
	4.1 \symref and its variants
	4.2 Marking Up Text and On-the-Fly Notations
	4.3 Referencing Symbols and Statements

	5 Statements
	5.1 Definitions, Theorems, Examples, Paragraphs

	6 Highlighting and Presentation Customizations
	7 Additional Packages
	7.1 Tikzinput: Treating TIKZ code as images
	7.2 Modular Document Structuring
	7.3 Slides and Course Notes
	7.4 Representing Problems and Solutions
	7.5 Homeworks, Quizzes and Exams


