The STEX3 Manual *

Michael Kohlhase, Dennis Müller
FAU Erlangen-Nürnberg
http://kwarc.info/

2022-05-24

Abstract

$\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ is a collection of $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ packages that allow to markup documents semantically without leaving the document format. Running 'pdflatex' over sTeX-annotated documents formats them into normallooking PDF. But sTeX also comes with a conversion pipeline into semantically annotated HTML5, which can host semantic added-value services that make the documents active (i.e. interactive and user-adaptive) and essentially turning $\mathrm{IATEX}_{\mathrm{E}}$ into a document format for (mathematical) knowledge management (MKM). STEX augments $\mathrm{EATEX}_{\mathrm{E}}$ with - semantic macros that denote and distinguish between mathematical concepts, operators, etc. independent of their notational presentation, - a powerful module system that allows for authoring and importing individual fragments containing document text and/or semantic macros, independent of - and without hard coding - directory paths relative to the current document, and - a mechanism for exporting STEX documents to (modular) XHTML, preserving all the semantic information for semantically informed knowledge management services.

This is the user manual for the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ package and associated software. It is primarily directed at end-users who want to use $\mathrm{S}^{\mathrm{T}} \mathrm{X}$ to author semantically enriched documents. For the full documentation, see the STEX documentation.

[^0]
Contents

1 What is $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$? 2
2 Quickstart 3
2.1 Setup 3
2.1.1 Minimal Setup for the PDF-only Workflow 3
2.1.2 GIT-based Setup for the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ Development Version 3
2.1.3 $\quad \mathrm{ST}^{\mathrm{E}} \mathrm{X}$ Archives (Manual Setup) 4
2.1.4 The STEX IDE 4
2.1.5 Manual Setup for Active Documents and Knowledge Management Services 4
2.2 A First $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ Document 5
2.2.1 OMDoc/xhtml Conversion 8
2.2.2 Ммт/OMDoc Conversion 9
3 Creating STEX Content 10
3.1 How Knowledge is Organized in $\mathrm{S}^{\mathrm{T}} \mathrm{E} \mathrm{X}$ 10
3.2 STEX Archives 11
3.2.1 The Local MathHub-Directory 11
3.2.2 The Structure of STEX Archives 12
3.2.3 MANIFEST.MF-Files 12
3.2.4 Using Files in STEX Archives Directly 13
3.3 Module, Symbol and Notation Declarations 14
3.3.1 The smodule-Environment 14
3.3.2 Declaring New Symbols and Notations 16
Operator Notations 19
3.3.3 Argument Modes 20
Mode-b Arguments 20
Mode-a Arguments 21
Mode-B Arguments 22
3.3.4 Type and Definiens Components 23
3.3.5 Precedences and Automated Bracketing 24
3.3.6 Variables 26
3.3.7 Variable Sequences 27
3.4 Module Inheritance and Structures 28
3.4.1 Multilinguality and Translations 28
3.4.2 Simple Inheritance and Namespaces 29
3.4.3 The mathstructure Environment 31
3.4.4 The copymodule Environment 34
3.4.5 The interpretmodule Environment 35
3.5 Primitive Symbols (The $\mathrm{S}^{\mathrm{T}} \mathrm{E}$ X Metatheory) 36
4 Using $\mathbf{S T}^{\mathbf{T}} \mathrm{X}$ Symbols 37
4.1 \symref and its variants 37
4.2 Marking Up Text and On-the-Fly Notations 38
4.3 Referencing Symbols and Statements 40
5 STEX Statements 41
5.1 Definitions, Theorems, Examples, Paragraphs 41
6 Highlighting and Presentation Customizations 48
7 Additional Packages 50
7.1 Tikzinput: Treating TIKZ code as images 50
7.2 Modular Document Structuring 51
7.3 Slides and Course Notes 53
7.4 Representing Problems and Solutions 57
7.5 Homeworks, Quizzes and Exams 60

Boxes like this one contain implementation details that are mostly relevant for more advanced use cases, might be useful to know when debugging, or might be good to know to better understand how something works. They can easily be skipped on a first read.
$\stackrel{\mathrm{C}}{\mathrm{M} \rightarrow}$ Boxes like this one explain how some $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ concept relates to the Mmт/OMDoc $\xrightarrow[\sim T]{\mathrm{M}} \rightarrow$ system, philosophy or language; see [MMT; Koh06] for introductions.

Chapter 1

What is $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$?

Formal systems for mathematics (such as interactive theorem provers) have the potential to significantly increase both the accessibility of published knowledge, as well as the confidence in its veracity, by rendering the precise semantics of statements machine actionable. This allows for a plurality of added-value services, from semantic search up to verification and automated theorem proving. Unfortunately, their usefulness is hidden behind severe barriers to accessibility; primarily related to their surface languages reminiscent of programming languages and very unlike informal standards of presentation.

STEX minimizes this gap between informal and formal mathematics by integrating formal methods into established and widespread authoring workflows, primarily $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$, via non-intrusive semantic annotations of arbitrary informal document fragments. That way formal knowledge management services become available for informal documents, accessible via an IDE for authors and via generated active documents for readers, while remaining fully compatible with existing authoring workflows and publishing systems.

Additionally, an extensible library of reusable document fragments is being developed, that serve as reference targets for global disambiguation, intermediaries for content exchange between systems and other services.

Every component of the system is designed modularly and extensibly, and thus lay the groundwork for a potential full integration of interactive theorem proving systems into established informal document authoring workflows.

The general $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ workflow combines functionalities provided by several pieces of software:

- The $\mathrm{ST}^{\mathrm{E}} \mathrm{X}$ package collection to use semantic annotations in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ documents,
- RUSTE ${ }_{E} \mathrm{X}[R T]$ to convert tex sources to (semantically enriched) xhtml,
- The Mmт system [MMT], that extracts semantic information from the thus generated xhtml and provides semantically informed added value services. Notably, Mmt integrates the RUSTEX system already.

Chapter 2

Quickstart

2.1 Setup

There are two ways of using $S_{E} \mathrm{EX}$: as a

1. way of writing $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ more modularly (object-oriented Math) for creating PDF documents or
2. foundation for authoring active documents in HTML5 instrumented with knowledge management services.

Both are legitimate and useful. The first requires a significantly smaller tool-chain, so we describe it first. The second requires a much more substantial (and experimental) toolchain of knowledge management systems. Both workflows profit from an integrated development environment (IDE), which (also) automates setup as far as possible (see subsection 2.1.4).

2.1.1 Minimal Setup for the PDF-only Workflow

In the best of all worlds, there is no setup, as you already have a new version of $\mathrm{T}_{\mathrm{E}} \mathrm{XLive}$ on your system as a $\mathrm{IATEX}_{\mathrm{E}}$ enthusiast. If not now is the time to install it; see [TL]. You can usually update T_{E} XLive via a package manager or the T_{E} XLive manager tlmgr.

Alternatively, you can install $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ from CTAN, the Comprehensive $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Archive Network; see [ST] for details.

2.1.2 GIT-based Setup for the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ Development Version

If you want use the latest and greatest $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ packages that have not even been released to CTAN, then you can directly clone them from the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ development repository [sTeX] by the following command-line instructions:

```
cd <stexdir>
git clone https://github.com/slatex/sTeX.git
```

and keep it updated by pulling updates via git pull in the cloned STEX directory. Then update your TEXINPUTS environment variable, e.g. by placing the following line in your .bashrc:
export TEXINPUTS="\$(TEXINPUTS):<sTeXDIR>//:"

2.1.3 $\quad \mathrm{ST}_{\mathrm{E}} \mathrm{X}$ Archives (Manual Setup)

Writing semantically annotated $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ becomes much easier, if we can use well-designed libraries of already annotated content. $\mathrm{S}_{\mathrm{E}} \mathrm{X}$ provides such libraries as $\mathrm{S}_{\mathrm{E}} \mathrm{X}$ archives i.e. GIT repositories at https://gl.mathhub.info - most prominently the SMGLoM libraries at https://gl.mathhub.info/smglom.

To do so, we set up a local MathHub by creating a MathHub directory <mhdir>. Every $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ archive as an archive path <apath> and a name <archive>. We can clone the STEX archive by the following command-line instructions:

```
cd <mhdir>/<apath>
git clone https://gl.mathhub.info/smglom/<archive>.git
```

Note that $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ archives often depend on other archives, thus you should be prepared to clone these as well - e.g. if pdflatex reports missing files. To make sure that $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ too knows where to find its archives, we need to set a global system variable MATHHUB, that points to your local MathHub-directory (see section 3.2).
export MATHHUB="<mhdir>',

2.1.4 The STEX IDE $^{\text {I }}$

We are currently working on an $S^{T} \mathrm{E}_{\mathrm{E}}$ IDE as an $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ plugin for VScode; see [SLa]. It will feature a setup procedure that automates the setup described above (and below). For additional functionality see the (now obsolete) plugin for $\mathrm{ST}^{\mathrm{E}} \mathrm{X} 1$ [SLS; SIb].

2.1.5 Manual Setup for Active Documents and Knowledge Management Services

Foregoing on the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ IDE, we will need several additional (on top of the minimal setup above) pieces of software; namely:

- The Mmt System available here. We recommend following the setup routine documented here.
Following the setup routine (Step 3) will entail designating a MathHub-directory on your local file system, where the MmT system will look for $\mathrm{ST}_{\mathrm{E}} \mathrm{X} / \mathrm{MmT}$ content archives.
- $\mathbf{S T}_{\mathbf{E}} \mathbf{X}$ Archives If we only care about $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ and generating pdfs, we do not technically need Mmт at all; however, we still need the MATHHUB system variable to be set. Furthermore, Mmt can make downloading content archives we might want to use significantly easier, since it makes sure that all dependencies of (often highly interrelated) $\mathrm{S}_{\mathrm{E}} \mathrm{X}$ archives are cloned as well.
Once set up, we can run mmt in a shell and download an archive along with all of its dependencies like this: lmh install <name-of-repository>, or a whole group of archives; for example, lmh install smglom will download all smglom archives.
- RusTeX The Mmt system will also set up RuSTEX for you, which is used to generate (semantically annotated) xhtml from tex sources. In lieu of using MmT, you can also download and use RusTEX directly here.

2.2 A First STEX Document

Having set everything up, we can write a first $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ document. As an example, we will use the smglom/calculus and smglom/arithmetics archives, which should be present in the designated MathHub-folder, and write a small fragment defining the geometric series:

```
\documentclass{article}
\usepackage{stex,xcolor,stexthm}
3
\ \begin{document}
\begin{smodule}{GeometricSeries}
    \importmodule[smglom/calculus]{series}
    \importmodule[smglom/arithmetics]{realarith}
    \symdef{geometricSeries}[name=geometric-series]{\comp{S}}
    \begin{sdefinition}[for=geometricSeries]
        The \definame{geometricSeries} is the \symname{?series}
        \[\defeq{\geometricSeries}{\definiens{
            \infinitesum{\svar{n}}{1}{
                    \realdivide[frac]{1}{
                            \realpower{2}{\svar{n}}
            }}
        }}.\]
    \end{sdefinition}
    \begin{sassertion}[name=geometricSeriesConverges,type=theorem]
    The \symname{geometricSeries} \symname{converges} towards $1$
    \end{sassertion}
\end{smodule}
\end{document}
```

Compiling this document with pdflatex should yield the output
Definition 0.1. The geometric series is the series

$$
S:=\sum_{n=1}^{\infty} \frac{1}{2^{n}} .
$$

Theorem 0.2. The geometric series converges towards 1 .
Move your cursor over the various highlighted parts of the document - depending on your pdf viewer, this should yield some interesting (but possibly for now cryptic) information.

Remark 2.2.1:

Note that all of the highlighting, tooltips, coloring and the environment headers come from stexthm - by default, the amount of additional packages loaded is kept to a minimum and all the presentations can be customized, see chapter 6 .

Let's investigate this document in detail to understand the respective parts of the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ markup infrastructure:

```
smodule \begin{smodule}{GeometricSeries}
```

```
\end{smodule}
```

First, we open a new module called GeometricSeries. The main purpose of the smodule environment is to group the contents and associate it with a globally unique identifier (URI), which is computed from the name GeometricSeries and the document context.
(Depending on your pdf viewer), the URI should pop up in a tooltip if you hover over the word geometric series.

\importmodule[smglom/calculus]\{series\}
 \importmodule[smglom/arithmetics]\{realarith\}

Next, we import two modules - series from the STEX archive smglom/calculus, and realarith from the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ archive smglom/arithmetics. If we investigate these archives, we find the files series.en.tex and realarith.en.tex (respectively) in their respective source-folders, which contain the statements \begin\{smodule\}\{series\} and } \begin\{smodule\}\{realarith\} (respectively). }

The \importmodule-statements make all $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ symbols and associated semantic macros (e.g. \infinitesum, \realdivide, \realpower) in the imported module available to the current module GeometricSeries. The module GeometricSeries "exports" all of these symbols to all modules imports it via an \importmodule\{GeometricSeries\} instruction. Additionally it exports the local symbol \geometricSeries.
\usemodule If we only want to use the content of some module Foo, e.g. in remarks or examples, but none of the symbols in our current module actually depend on the content of Foo, we can use \usemodule instead - like \importmodule, this will make the module content available, but will not export it to other modules.
\symdef
\symdef\{GeometricSeries\}[name=geometric-series]\{\comp\{S\}\}
Next, we introduce a new symbol with name geometric-series and assign it the semantic macro \geometricSeries. \symdef also immediately assigns this symbol a notation, namely S.
\comp The macro \comp marks the S in the notation as a notational component, as opposed to e.g. arguments to lgeometricSeries. It is the notational components that get highlighted and associated with the corresponding symbol (i.e. in this case geometricSeries). Since \geometricSeries takes no arguments, we can wrap the whole notation in a \comp.

```
\begin{sdefinition}[for=geometricSeries]
•••
\end{sdefinition}
\begin{sassertion}[name=geometricSeriesConverges,type=theorem]
\end{sassertion}
```

What follows are two $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$-statements (e.g. definitions, theorems, examples, proofs, ...). These are semantically marked-up variants of the usual environments, which take additional optional arguments (e.g. for=, type=, name=). Since many LATEX templates predefine environments like definition or theorem with different syntax, we use sdefinition, sassertion, sexample etc. instead. You can customize these environments to e.g. simply wrap around some predefined theorem-environment. That way, we can still use sassertion to provide semantic information, while being fully compatible with (and using the document presentation of) predefined environments.

In our case, the stexthm-package patches e.g. \begin\{sassertion\} [type=theorem] } to use a theorem-environment defined (as usual) using the amsthm package.
... is the \symname\{?series\}
The \symname-command prints the name of a symbol, highlights it (based on customizable settings) and associates the text printed with the corresponding symbol.

Note that the argument of \symref can be an imported symbol (here the series symbol is imported from the series module). STEX tries to determine the full symbol URI from the argument. If there are name clashes in or with the imported symbols, the name of the exporting module can be prepended to the symbol name before the ? character.

If you hover over the word series in the pdf output, you should see a tooltip showing the full URI of the symbol used.

The \symname-command is a special case of the more general \symref-command, which allows customizing the precise text associated with a symbol. \symref takes two arguments: the first ist the symbol name (or macro name), and the second a variant verbalization of the symbol, e.g. an inflection variant, a different language or a synonym. In our example \symname\{?series\} abbreviates \symref\{?series\}\{series\}.
\definame
\definiendum

The \definame\{geometricSeries\} ...
The sdefinition-environment provides two additional macros, \definame and \definiendum which behave similarly to \symname and \symref, but explicitly mark the symbols as being defined in this environment, to allow for special highlighting.

```
\[\defeq{\geometricSeries}{\definiens{
    \infinitesum{\svar{n}}{1}{
        \realdivide[frac]{1}{
            \realpower{2}{\svar{n}}
    }}
}}.\]
```

The next snippet - set in a math environment - uses several semantic macros imported from (or recursively via) series and realarithmetics, such as \defeq, \infinitesum, etc. In math mode, using a semantic macro inserts its (default) definition. A semantic macro can have several notations - in that case, we can explicitly choose a specific notation by providing its identifier as an optional argument; e.g. \realdivide[frac]\{a\}\{b\} will use the explicit notation named frac of the semantic macro \realdivide, which yields $\frac{a}{b}$ instead of a / b.
\svar The \svar\{n\} command marks up the n as a variable with name n and notation n .
\definiens
The sdefinition-environment additionally provides the \definiens-command, which allows for explicitly marking up its argument as the definiens of the symbol currently being defined.

2.2.1 OMDoc/xhtml Conversion

So, if we run pdflatex on our document, then $\mathrm{S}^{\mathrm{T}} \mathrm{E} \mathrm{X}$ yields pretty colors and tooltips ${ }^{1}$. But STEX becomes a lot more powerful if we additionally convert our document to xhtml while preserving all the $\mathrm{S}_{\mathrm{E}} \mathrm{X}$ markup in the result.

TODO VSCode Plugin
Using R RUSTEX [RT], we can convert the document to xhtml using the command rustex -i /path/to/file.tex -o /path/to/outfile.xhtml. Investigating the resulting file, we notice additional semantic information resulting from our usage of semantic macros, \symref etc. Below is the (abbreviated) snippet inside our \definiens block:

```
<mrow resource="" property="stex:definiens">
    <mrow resource="...?series?infinitesum" property="stex:OMBIND">
        <munderover displaystyle="true">
            <mo resource="...?series?infinitesum" property="stex:comp">\Sigma</mo>
            <mrow>
            <mrow resource="1" property="stex:arg">
            <mi resource="var://n" property="stex:OMV">n</mi>
            </mrow>
            <mo resource="...?series?infinitesum" property="stex:comp">=</mo>
            <mi resource="2" property="stex:arg">1</mi>
            </mrow>
            <mi resource="...?series?infinitesum" property="stex:comp">\infty</mi>
    </munderover>
    <mrow resource="3" property="stex:arg">
            <mfrac resource="...?realarith?division#frac#" property="stex:OMA">
            <mi resource="1" property="stex:arg">1</mi>
            <mrow resource="2" property="stex:arg">
                <msup resource="...realarith?exponentiation" property="stex:OMA">
                    <mi resource="1" property="stex:arg">2</mi>
                    <mrow resource="2" property="stex:arg">
                    <mi resource="var://n" property="stex:OMV">n</mi>
                </mrow>
                </msup>
            </mrow>
        </mfrac>
    </mrow>
    </mrow>
</mrow>
```

...containing all the semantic information. The MmT system can extract from this the following OpenMath snippet:

```
<OMBIND>
    <OMID name="...?series?infinitesum"/>
    <OMV name="n"/>
```

${ }^{1}$...and hyperlinks for symbols, and indices, and allows reusing document fragments modularly, and...

```
    <OMLIT name="1"/>
    <OMA>
        <OMS name="...?realarith?division"/>
        <OMLIT name="1"/>
        <OMA>
            <OMS name="...realarith?exponentiation"/>
            <OMLIT name="2"/>
            <OMV name="n"/>
    </OMA>
    </OMA>
</OMBIND>
```

...giving us the full semantics of the snippet, allowing for a plurality of knowledge management services - in particular when serving the xhtml.

Remark 2.2.2:

Note that the html when opened in a browser will look slightly different than the pdf when it comes to highlighting semantic content - that is because naturally html allows for much more powerful features than pdf does. Consequently, the html is intended to be served by a system like Ммт, which can pick up on the semantic information and offer much more powerful highlighting, linking and similar features, and being customizable by readers rather than being prescribed by an author.

Additionally, not all browsers (most notably Chrome) support MathML natively, and might require additional external JavaScript libraries such as MathJax to render mathematical formulas properly.

2.2.2 Mmt/OMDoc Conversion

Another way to convert our document to actual Mmt/OMDoc is to put it in an $\mathrm{S}^{\mathrm{T}} \mathrm{E} \mathrm{X}$ archive (see section 3.2) and have Mmт take care of everything.

Assuming the above file is source/demo.tex in an $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ archive MyTest, you can run Mmт and do build MyTest stex-omdoc demo.tex to convert the document to both xhtml (which you will find in xhtml/demo.xhtml in the archive) and formal Ммт/OMDoc, which you can subsequently view in the Mmт browser (see https:// uniformal.github.io//doc/applications/server.html\#the-mmt-web-site for details).

Chapter 3

Creating $\mathbf{S T}^{\mathbf{E}} \mathbf{X}$ Content

We can use STEX 2}\)bysimplyincludingthepackagewith\usepackage\{stex\},or-primarilyforindividualfragmentstobeincludedinotherdocuments-byusingthe$\mathrm{STEX}_{\mathrm{E}}$documentclasswith\documentclass\{stex\}whichcombinesthestandalonedocumentclasswiththestexpackage.undefined

Both the stex package and document class offer the following options:
lang (〈language $\rangle *)$ Languages to load with the babel package.
mathhub (\langle directory \rangle) MathHub folder to search for repositories - this is not necessary if the MATHHUB system variable is set.
writesms (\langle boolean \rangle) with this package option, $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ will write the contents of all external modules imported via \importmodule or \usemodule into a file \jobname.sms (analogously to the table of contents .toc-file).
usems (\langle boolean \rangle) subsequently tells $\mathrm{S}_{\mathrm{E}} \mathrm{X}$ to read the generated sms-file at the beginning of the document. This allows for e.g. collaborating on documents without all authors having to have all used archives and modules available - one author can load the modules with writesms, and the rest can use the the modules with usesms. Furthermore, the sms file can be submitted alongside a tex-file, effectively making it "standalone".
image (\langle boolean \rangle) passed on to tikzinput.
debug ($\langle\log$-prefix $\rangle *)$ Logs debugging information with the given prefixes to the terminal, or all if all is given. Largely irrelevant for the majority of users.

3.1 How Knowledge is Organized in $\mathrm{S}_{\mathrm{E}} \mathrm{X}$

$\mathrm{S}^{\mathrm{T}} \mathrm{E}$ content is organized on multiple levels:

1. $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ archives (see section 3.2) contain individual .tex-files.
2. These may contain $\mathrm{S}^{\mathrm{T}} \mathrm{X}$ modules, introduced via \begin\{smodule\}\{ModuleName\}. }
3. Modules contain STEX symbol declarations, introduced via \symdecl\{symbolname\}, \symdef \{symbolname\} and some other constructions. Most symbols have a notation that can be used via a semantic macro \symbolname generated by symbol declarations.
4. $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ expressions finally are built up from usages of semantic macros.

- $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ archives are simultaneously MMT archives, and the same directory structure is consequently used.
- $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ modules correspond to OMDoc/MmT theories. \importmodules (and similar constructions) induce Mmт includes and other theory morphisms,
$-\mathrm{M} \rightarrow$ thus giving rise to a theory graph in the OMDoc sense [RK13].
$\sim T \leadsto$
- Symbol declarations induce OMDoc/Mmт constants, with optional (formal) type and definiens components.
- Finally, STEX expressions are converted to OMDoc/Mmt terms, which use the abstract syntax (and XML encoding) of OpenMath [Bus+04].

$3.2 \quad \mathrm{ST}_{\mathrm{E}} \mathrm{X}$ Archives

3.2.1 The Local MathHub-Directory

\usemodule, \importmodule, \inputref etc. allow for including content modularly without having to specify absolute paths, which would differ between users and machines. Instead, STEX uses archives that determine the global namespaces for symbols and statements and make it possible for $\mathrm{S}^{\mathrm{T}} \mathrm{EX}$ to find content referenced via such URIs.

All $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ archives need to exist in the local MathHub-directory. $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ knows where this folder is via one of four means:

1. If the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ package is loaded with the option mathhub=/path/to/mathhub, then $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ will consider /path/to/mathhub as the local MathHub-directory.
2. If the mathhub package option is not set, but the macro stswhenthe${}_{ST}{}_{E}\mathrm{X}$-packageisloaded,thenthismacroisassumedtopointtothelocalMathHubdirectory;i.e.\backslashdef\backslashmathhub\{/path/to/mathhub\}\usepackage\{stex\}willsettheMathHub-directoryaspath/to/mathhub.undefined
3. Otherwise, $\mathrm{STEX}_{\mathrm{E}} \mathrm{X}$ will attempt to retrieve the system variable MATHHUB, assuming it will point to the local MathHub-directory. Since this variant needs setting up only once and is machine-specific (rather than defined in tex code), it is compatible with collaborating and sharing tex content, and hence recommended.
4. Finally, if all else fails, $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ will look for a file $\sim /$.stex/mathhub. path. If this file exists, $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ will assume that it contains the path to the local MathHub-directory. This method is recommended on systems where it is difficult to set environment variables.

3.2.2 The Structure of $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ Archives

An STEX archive group/name is stored in the directory/path/to/mathhub/group/name; e.g. assuming your local MathHub-directory is set as /user/foo/MathHub, then in order for the smglom/calculus-archive to be found by the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ system, it needs to be in /user/foo/MathHub/smglom/calculus.

Each such archive needs two subdirectories:

- /source - this is where all your tex files go.
- /META-INF - a directory containing a single file MANIFEST.MF, the content of which we will consider shortly
An additional lib-directory is optional, and is where $S_{1} \mathrm{EX}$ will look for files included via \libinput.

Additionally a group of archives group/name may have an additional archive group/meta-inf. If this meta-inf-archive has a /lib-subdirectory, it too will be searched by \libinput from all tex files in any archive in the group/*-group.

We recommend the following additional directory structure in the source-folder of an $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ archive:

- /source/mod/ - individual $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ modules, containing symbol declarations, notations, and \begin\{sparagraph\}[type=symdoc,for=...] environments for "ency- } clopaedic" symbol documentations
- /source/def/- definitions
- /source/ex/ - examples
- /source/thm/ - theorems, lemmata and proofs; preferably proofs in separate files to allow for multiple proofs for the same statement
- /source/snip/ - individual text snippets such as remarks, explanations etc.
- /source/frag/ - individual document fragments, ideally only \inputrefing snippets, definitions, examples etc. in some desirable order
- /source/tikz/ - tikz images, as individual .tex-files
- /source/PIC/ - image files.

3.2.3 MANIFEST.MF-Files

The MANIFEST.MF in the META-INF-directory consists of key-value-pairs, informing STEX (and associated software) of various properties of an archive. For example, the MANIFEST.MF of the smglom/calculus-archive looks like this:

```
id: smglom/calculus
source-base: http://mathhub.info/smglom/calculus
narration-base: http://mathhub.info/smglom/calculus
dependencies: smglom/arithmetics,smglom/sets,smglom/topology,
    smglom/mv,smglom/linear-algebra,smglom/algebra
responsible: Michael.Kohlhase@FAU.de
title: Elementary Calculus
```

```
teaser: Terminology for the mathematical study of change.
description: desc.html
```

Many of these are in fact ignored by $\mathrm{ST}_{\mathrm{EX}}$, but some are important:
id: The name of the archive, including its group (e.g. smglom/calculus),
source-base or
ns: The namespace from which all symbol and module URIs in this repository are formed, see (TODO),
narration-base: The namespace from which all document URIs in this repository are formed, see (TODO),
url-base: The URL that is formed as a basis for external references, see (TODO),
dependencies: All archives that this archive depends on. STEX ignores this field, but Mmт can pick up on them to resolve dependencies, e.g. for 1 mh install.

3.2.4 Using Files in $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ Archives Directly

Several macros provided by STEX allow for directly including files in repositories. These $^{\text {I }}$ are:
\mhinput \mhinput[Some/Archive]\{some/file\} directly inputs the file some/file in the sourcefolder of Some/Archive.
\inputref \inputref[Some/Archive]\{some/file\} behaves like \mhinput, but wraps the input in a \begingroup ... \endgroup. When converting to xhtml, the file is not input at all, and instead an html-annotation is inserted that references the file, e.g. for lazy loading.

In the majority of practical cases \inputref is likely to be preferred over \mhinput because it leads to less duplication in the generated xhtml.
\ifinput Both \mhinput and \inputref set \ifinput to "true" during input. This allows for selectively including e.g. bibliographies only if the current file is not being currently included in a larger document.
\addmhbibresource[Some/Archive]\{some/file\} searches for a file like \mhinput does, but calls \addbibresource to the result and looks for the file in the archive root directory directly, rather than the source directory. Typical invocations are

- \addmhbibresource\{lib/refs.bib\}, which specifies a bibliography in the lib folder in the local archive or
- \addmhbibresource[HW/meta-inf]\{lib/refs.bib\} in another.
- the lib-directory of the current archive, and
- the lib-directory of a meta-inf-archive in (any of) the archive groups containing the current archive
and include all found files in reverse order; e.g. \libinput\{preamble\} in a .tex-file in smglom/calculus will first input .../smglom/meta-inf/lib/preamble.tex and then ../smglom/calculus/lib/preamble.tex.
\libinput will throw an error if no candidate for some/file is found.

\libusepackage

\libusepackage[package-options]\{some/file\}searchesforafilesome/file.styinthesamewaythat\backslashlibinputdoes,butwillcall\usepackage[package-options]\{path/to/some/file\}insteadof\input.$\backslashlibusepackage~throws~an~error~if~not~exactly~one~candidate~for~some/file~is~found.~$undefined

Remark 3.2.1:

A good practice is to have individual rm{S}_{\mathrm{E}}\mathrm{X}\)fragmentsfollowbasicallythisdocumentframe:1\documentclass\{stex\}2\libinput\{preamble\}3\begin\{document\}}45\ifinputref\else\libinput\{postamble\}\fi6\end\{document\}}Thenthepreamble.texfilescantakecareofloadingthegenerallyrequiredpackages,settingpresentationcustomizationsetc.(perarchiveorarchivegrouporboth),andpostamble.texcane.g.printthebibliography,indexetc.\backslashlibusepackageisparticularlyusefulinpreamble.texwhenwewanttousecustompackagesthatarenotpartof$T_{EXLive.~In~this~case~we~commit~the~}^{\text{e}}$respectivepackagesinoneofthelibfoldersanduse\libusepackagetoloadthem.undefined

3.3 Module, Symbol and Notation Declarations

3.3.1 The smodule-Environment

smodule A new module is declared using the basic syntax
\begin\{smodule\}[options] \{ModuleName\} . . . \end\{smodule\}. }
A module is required to declare any new formal content such as symbols or notations (but not variables, which may be introduced anywhere).

The smodule-environment takes several keyword arguments, all of which are optional:
title (\langle token list \rangle) to display in customizations.
type (\langle string $\rangle *$) for use in customizations.
deprecate $(\langle$ module $\rangle)$ if set, will throw a warning when loaded, urging to use \langle module \rangle instead.
id (\langle string \rangle) for cross-referencing.
ns ($\langle U R I\rangle)$ the namespace to use. Should not be used, unless you know precisely what you're doing. If not explicitly set, is computed using \stex_modules_current_namespace:.
lang (\langle language \rangle) if not set, computed from the current file name (e.g. foo.en.tex).
sig (〈language $\rangle)$ if the current file is a translation of a file with the same base name but a different language suffix, setting sig=<lang> will preload the module from that language file. This helps ensuring that the (formal) content of both modules is (almost) identical across languages and avoids duplication.
creators $(\langle$ string $\rangle *)$ names of the creators.
contributors $(\langle$ string $\rangle *)$ names of contributors.
srccite $(\langle$ string $\rangle)$ a source citation for the content of this module.
$\smile \mathrm{M} \rightarrow \mathrm{An}$ STEX module corresponds to an MmT/OMDoc theory. As such it $-\mathrm{M} \rightarrow$ gets assigned a module URI (universal resource identifier) of the form $\sim \mathrm{T} \rightarrow$ <namespace>?<module-name>.

By default, opening a module will produce no output whatsoever, e.g.:

Example 1

Input:
1 \begin\{smodule\}[title=\{This is Some Module\}]\{SomeModule\} }
2 Hello World
3 \end\{smodule\} }

Output:

```
Hello World
```

[^1]```
1 \stexpatchmodule[display]
2 {\textbf{Module (\smoduletitle)}\par}
{\par\noindent\textbf{End of Module (\smoduletitle)}}
4
5\begin{smodule}[type=display,title={Some New Module}]{SomeModule2}
 Hello World
7 \end{smodule}
```

Output:

```
Module (Some New Module)
 Hello World
End of Module (Some New Module)
```


### 3.3.2 Declaring New Symbols and Notations

Inside an smodule environment, we can declare new $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ symbols.
\symdecl The most basic command for doing so is using \symdecl\{symbolname\}. This introduces a new symbol with name symbolname, arity 0 and semantic macro \symbolname.

The starred variant \symdecl*\{symbolname\} will declare a symbol, but not introduce a semantic macro. If we don't want to supply a notation (for example to introduce concepts like "abelian", which is not something that has a notation), the starred variant is likely to be what we want.
$\smile \mathrm{M} \rightarrow$ \symdecl introduces a new OMDoc/Mmт constant in the current mod-$-\mathrm{M} \rightarrow$ ule (=OMDoc/MmT theory). Correspondingly, they get assigned the URI
$\sim T \leadsto$ <module-URI>?<constant-name>.

Without a semantic macro or a notation, the only meaningful way to reference a symbol is via \symref, \symname etc.

## Example 3

Input:
1 \symdecl*\{foo\}
2 Given a \symname\{foo\}, we can...

Output:
Given a foo, we can...

Obviously, most semantic macros should take actual arguments, implying that the symbol we introduce is an operator or function. We can let \symdecl know the arity (i.e. number of arguments) of a symbol like this:

## Example 4

Input:

```
1 \symdecl{binarysymbol}[args=2]
2 \symref{binarysymbol}{this} is a symbol taking two arguments.
```

Output:
this is a symbol taking two arguments.

So far we have gained exactly . . . nothing by adding the arity information: we cannot do anything with the arguments in the text.

We will now see what we can gain with more machinery.
\notation We probably want to supply a notation as well, in which case we can finally actually use the semantic macro in math mode. We can do so using the \notation command, like this:

## Example 5

Input:
1 \notation\{binarysymbol\}\{\text\{First: \}\#1\text\{; Second: \}\#2\}
2 \$ $\backslash$ binarysymbol\{a\}\{b\}\$

Output:
First: $a$; Second: $b$
$\smile \mathrm{M} \rightarrow$ Applications of semantic macros, such as $\backslash$ binarysymbol $\{\mathrm{a}\}\{\mathrm{b}\}$ are translated to $-\mathrm{M} \rightarrow$ Ммт/OMDoc as OMA-terms with head <OMS name=" . . ? \({ }^{\text {binarysymbol"/>. }}\)
$\sim \mathrm{T} \leadsto$ Semantic macros with no arguments correspond to OMS directly.
\comp For many semantic services e.g. semantic highlighting or wikification (linking uservisible notation components to the definition of the respective symbol they come from), we need to specify the notation components. Unfortunately, there is currently no way the $S_{E} \mathrm{E}$ engine can infer this by itself, so we have to specify it manually in the notation specification. We can do so with the \comp command.

We can introduce a new notation highlight for \binarysymbol that fixes this flaw, which we can subsequently use with \binarysymbol[highlight]:

Example 6
Input:

```
1\notation{binarysymbol} [highlight]
```

2 \{\comp\{\text\{First: \}\}\#1\comp\{\text\{; Second: \}\}\#2\}
3 \$ ${ }^{\text {binarysymbol [highlight] }\{a\}\{b\} \$ ~}$

Output:
First: $a$; Second: $b$

Ideally, \comp would not be necessary: Everything in a notation that is not an argument should be a notation component. Unfortunately, it is computationally expensive to determine where an argument begins and ends, and the argument
 markers \#n may themselves be nested in other macro applications or $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ groups, making it ultimately almost impossible to determine them automatically while also remaining compatible with arbitrary highlighting customizations (such as tooltips, hyperlinks, colors) that users might employ, and that are ultimately invoked by \comp.

## Note that it is required that

1. the argument markers \#n never occur inside a \comp, and
2. no semantic arguments may ever occur inside a notation.

Both criteria are not just required for technical reasons, but conceptionally meaningful:
The underlying principle is that the arguments to a semantic macro represent arguments to the mathematical operation represented by a symbol. For example, a semantic macro \addition $\{\mathrm{a}\}\{\mathrm{b}\}$ taking two arguments would represent the actual addition of (mathematical objects) a and $b$. It should therefore be impossible for
 $a$ or $b$ to be part of a notation component of \addition.
Similarly, a semantic macro can not conceptually be part of the notation of \addition, since a semantic macro represents a distinct mathematical concept with its own semantics, whereas notations are syntactic representations of the very symbol to which the notation belongs.
If you want an argument to a semantic macro to be a purely syntactic parameter, then you are likely somewhat confused with respect to the distinction between the precise syntax and semantics of the symbol you are trying to declare (which happens quite often even to experienced $S_{\mathrm{S}} \mathrm{EX}$ users), and might want to give those another thought - quite likely, the macro you aim to implement does not actually represent a semantically meaningful mathematical concept, and you will want to use \def and similar native $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ macro definitions rather than semantic macros.

[^2]
## Example 7

Input:

```
1 \symdef{newbinarysymbol}[hl,args=2]
2 {\comp{\text{1.: }}#1\comp{\text{; 2.: }}#2}
3 $\newbinarysymbol{a}{b}$
```

Output:
1.: $a ; 2 .: b$

We just declared a new symbol newbinarysymbol with args=2 and immediately provided it with a notation with identifier hl. Since hl is the first (and so far, only) notation supplied for newbinarysymbol, using \newbinarysymbol without optional argument defaults to this notation.

But one man's meat is another man's poison: it is very subjective what the "default notation" of an operator should be. Different communities have different practices. For instance, the complex unit is written as $i$ in Mathematics and as $j$ in electrical engineering. So to allow modular specification and facilitate re-use of document fragments $\mathrm{S}_{\mathrm{E}} \mathrm{X}$ allows to re-set notation defaults.

## \setnotation <br> The first notation provided will stay the default notation unless explicitly changed - this

 is enabled by the \setnotation command: \setnotation\{symbolname\}\{notation-id\} sets the default notation of \symbolname to notation-id, i.e. henceforth, \symbolname behaves like \symbolname[notation-id] from now on.Often, a default notation is set right after the corresponding notation is introduced - the starred version \notation* for that reason introduces a new notation and immediately sets it to be the new default notation. So expressed differently, the first \notation for a symbol behaves exactly like \notation*, and \notation*\{foo\}[bar]\{...\} behaves exactly like \notation\{foo\}[bar]\{...\}\setnotation\{foo\}\{bar\}.
\textsymdecl In the less mathematical settings where we want a symbol and semantic macro for some concept with a notation beyond its mere name, but which should also be available in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ 's text mode, the command \textsymdecl is useful. For example, we can declare a symbol openmath with the notation \textsc\{0penMath\} using \textsymdecl\{openmath\}[name=OpenMath] \{\textsc\{0penMath\}\}. The \openmath yields OpenMath both in text and math mode.

## Operator Notations

Once we have a semantic macro with arguments, such as \newbinarysymbol, the semantic macro represents the application of the symbol to a list of arguments. What if we want to refer to the operator itself, though?

We can do so by supplying the \notation (or \symdef) with an operator notation, indicated with the optional argument $\mathrm{op}=$. We can then invoke the operator notation
using \symbolname! [notation-identifier]. Since operator notations never take arguments, we do not need to use \comp in it, the whole notation is wrapped in a \comp automatically:

## Example 8

Input:
1 \notation\{newbinarysymbol\}[ab, op=\{\text\{a:\}\cdot\text\{; b:\}\cdot\}]
2 \{\comp\{\text\{a:\}\}\#1\comp\{\text\{; b:\}\}\#2\} \symname\{newbinarysymbol\} is al\$o 3 occasionally written $\$ \backslash n e w b i n a r y s y m b o l![a b] \$$

Output:
newbinarysymbol is also occasionally written $\mathrm{a}: \cdot$; b:•

$$
\begin{aligned}
& \subset \mathrm{M} \rightarrow \text { \symbolname! is translated to OMDOc/MmT as <OMS name=". . . ?symbolname"/> } \\
& \xrightarrow[\sim T]{\sim} \rightarrow \text { directly. }
\end{aligned}
$$

### 3.3.3 Argument Modes

The notations so far used simple arguments which we call mode-i arguments. Declaring a new symbol with \symdecl\{foo\}[args=3] is equivalent to writing \symdecl\{foo\}[args=iii], indicating that the semantic macro takes three mode-i arguments. However, there are three more argument modes which we will investigate now, namely mode-b, mode-a and mode-B arguments.

## Mode-b Arguments

A mode-b argument represents a variable that is bound by the symbol in its application, making the symbol a binding operator. Typical examples of binding operators are e.g. sums $\sum$, products $\Pi$, integrals $\int$, quantifiers like $\forall$ and $\exists$, that $\lambda$-operator, etc.
$\complement^{-} \mathrm{M} \rightarrow$ Mode-b arguments behave exactly like mode-i arguments within $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, but appli-$-\mathrm{M} \rightarrow$ cations of binding operators, i.e. symbols with mode-b arguments, are translated
$\sim \mathrm{T} \leadsto$ to OMBIND-terms in OMDoc/Mmт, rather than OMA.

For example, we can implement a summation operator binding an index variable and taking lower and upper index bounds and the expression to sum over like this:

Example 9
Input:
1 \symdef $\{$ summation\} [args=biii]
2 \{\mathop $\{\backslash \operatorname{comp}\{\backslash$ sum $\}\}$ _\{\#1\comp\{=\}\#2\}~\{\#3\}\#4\}
3 \$ 1 summation $\{\backslash \operatorname{svar}\{x\}\}\{1\}\{\backslash \operatorname{svar}\{n\}\}\{\backslash \operatorname{svar}\{x\}\}^{-} 2 \$$

Output:

## $\sum_{x=1}^{n} x^{2}$

where the variable $x$ is now bound by the \summation-symbol in the expression.

## Mode-a Arguments

Mode-a arguments represent a flexary argument sequence, i.e. a sequence of arguments of arbitrary length. Formally, operators that take arbitrarily many arguments don't "exist", but in informal mathematics, they are ubiquitous. Mode-a arguments allow us to write e.g. \addition\{a,b,c,d,e\} rather than having to write something like \addition\{a\}\{\addition\{b\}\{\addition\{c\}\{\addition\{d\}\{e\}\}\}\}!
\notation (and consequently \symdef, too) take one additional argument for each mode-a argument that indicates how to "accumulate" a comma-separated sequence of arguments. This is best demonstrated on an example.

Let's say we want an operator representing quantification over an ascending chain of elements in some set, i.e. \ascendingchain\{S\}\{a, b, c, d, e\}\{t\} should yield $\forall a<{ }_{S} b<_{S} c<_{S} d<_{S} e . t$. The "base"-notation for this operator is simply
$\{\backslash$ comp\{\forall\} \#2\comp\{.\,\}\#3\}, where \#2 represents the full notation fragment $a c$ cumulated from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$.

The additional argument to \notation (or \symdef) takes the same arguments as the base notation and two additional arguments \#\#1 and \#\#2 representing successive pairs in the mode-a argument, and accumulates them into \#2, i.e. to produce $a<_{S} b<_{S}$ $c<_{S} d<_{S} e$, we do \{\#\#1 \comp\{<\}_\{\#1\} \#\#2\}:

## Example 10

Input:

```
\symdef{ascendingchain}[args=iai]
 {\comp{\forall} #2\comp{.\,}#3}
 {##1 \comp{<}_{#1} ##2}
5 Tadaa: $\ascendingchain{S}{a,b,c,d,e}{t}$
```

Output:
Tadaa: $\forall a<s b<s c<s d<s e . t$

If this seems overkill, keep in mind that you will rarely need the single-hash arguments \#1,\#2 etc. in the a-notation-argument. For a much more representative and simpler example, we can introduce flexary addition via:

Example 11
Input:

```
\symdef{addition}[args=a]{#1}{##1 \comp{+} ##2}
3 Tadaa: $\addition{a,b,c,d,e}$
```

2

Output:

```
Tadaa: }a+b+c+d+
```

The assoc-key We mentioned earlier that "formally", flexary arguments don't really "exist". Indeed, formally, addition is usually defined as a binary operation, quantifiers bind a single variable etc.

Consequently, we can tell STEX (or, rather, MmT/OMDoc) how to "resolve" flexary arguments by providing \symdecl or \symdef with an optional assoc-argument, as in \symdecl\{addition\}[args=a,assoc=bin]. The possible values for the assoc-key are:
bin: A binary, associative argument, e.g. as in \addition
binl: A binary, left-associative argument, e.g. $a^{c^{c^{d}}}$, which stands for $\left(\left(a^{b}\right)^{c}\right)^{d}$
binr: A binary, right-associative argument, e.g. as in $A \rightarrow B \rightarrow C \rightarrow D$, which stands for $A \rightarrow(B \rightarrow(C \rightarrow D))$
pre: Successively prefixed, e.g. as in $\forall x, y, z . P$, which stands for $\forall x . \forall y . \forall z . P$
conj: Conjunctive, e.g. as in $a=b=c=d$ or $a, b, c, d \in A$, which stand for $a=d \wedge b=$ $d \wedge c=d$ and $a \in A \wedge b \in A \wedge c \in A \wedge d \in A$, respectively
pwconj: Pairwise conjunctive, e.g. as in $a \neq b \neq c \neq d$, which stands for $a \neq b \wedge a \neq c \wedge a \neq$ $d \wedge b \neq c \wedge b \neq d \wedge c \neq d$

As before, at the PDF level, this annotation is invisible (and without effect), but at the level of the generated OMDoc/MMT this leads to more semantical expressions.

## Mode-B Arguments

Finally, mode-B arguments simply combine the functionality of both a and b-i.e. they represent an arbitrarily long sequence of variables to be bound, e.g. for implementing quantifiers:

Example 12
Input:

```
\symdef{quantforall}[args=Bi]
 {\comp{\forall}#1\comp{.}#2}
 {##1\comp,##2}
4
5 $\quantforall{\svar{x},\svar{y},\svar{z}}{P}$
```

Output:

```
\forallx,y,z.P
```


### 3.3.4 Type and Definiens Components

\symdecl and \symdef take two more optional arguments. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ largely ignores them (except for special situations we will talk about later), but Mmt can pick up on them for additional services. These are the type and def keys, which expect expressions in math-mode (ideally using semantic macros, of course!)

The type and def keys correspond to the type and definiens components of $\smile \mathrm{M} \rightarrow$ OMDOc/MmT constants.

- $\mathrm{M} \rightarrow$ Correspondingly, the name "type" should be taken with a grain of salt, since
$\sim \mathrm{T} \leadsto$ OMDOc/MMT- being foundation-independent - does not a priori implement a fixed typing system.

The type-key allows us to provide additional information (given the necessary $\mathrm{S}_{\mathrm{E}} \mathrm{X}$ symbols), e.g. for addition on natural numbers:

## Example 13

Input:

```
1 \symdef{Nat}[type=\set]{\comp{\mathbb N}}
2 \symdef{addition}[
3 type=\funtype{\Nat,\Nat}{\Nat},
4 op=+,
args=a
6]{#1}{##1 \comp+ ##2}
7
8\symname{addition} is an operation $\funtype{\Nat,\Nat}{\Nat}$
```

Output:

```
addition is an operation }\mathbb{N}\times\mathbb{N}->\mathbb{N
```

The def-key allows for declaring symbols as abbreviations:
Example 14
Input:

```
1 \symdef{successor}[
 type=\funtype{\Nat}{\Nat},
 def=\fun{\svar{x}}{\addition{\svar{x},1}},
 op=\mathtt{succ},
 args=1
 6]{\comp{\mathtt{succ(}#1\comp{)}}}
 7
 8 The \symname{successor} operation $\funtype{\Nat}{\Nat}$
 9 is defined as $\fun{\svar{x}}{\addition{\svar{x},1}}$
```

Output:
The successor operation $\mathbb{N} \rightarrow \mathbb{N}$ is defined as $x \mapsto x+1$

### 3.3.5 Precedences and Automated Bracketing

Having done \addition, the obvious next thing to implement is \multiplication. This is straight-forward in theory:

## Example 15

Input:

```
1 \symdef{multiplication}[
2 type=\funtype{\Nat,\Nat}{\Nat},
 op=\cdot,
 args=a
5]{#1}{##1 \comp\cdot ##2}
6
7\symname{multiplication} is an operation $\funtype{\Nat,\Nat}{\Nat}$
```

Output:

```
multiplication is an operation }\mathbb{N}\times\mathbb{N}->\mathbb{N
```

However, if we combine \addition and \multiplication, we notice a problem:
Example 16
Input:

```
1 $\addition{a,\multiplication{b,\addition{c,\multiplication{d,e}}}}$
```

Output:

$$
a+b \cdot c+d \cdot e
$$

We all know that • binds stronger than + , so the output $a+b \cdot c+d \cdot e$ does not actually reflect the term we wrote. We can of course insert parentheses manually

Example 17
Input:
1 \$\addition\{a, \multiplication\{b, (\addition\{c, \multiplication\{d,e\}\})\}\}\$

Output:
$a+b \cdot(c+d \cdot e)$
'but we can also do better by supplying precedences and have $\mathrm{STEX}_{\mathrm{E}}$ insert parentheses automatically.

For that purpose, \notation (and hence \symdef) take an optional argument prec=<opprec>;<argprec1>x...x<argprec $n>$.

We will investigate the precise meaning of <opprec> and the <argprec>s shortly - in the vast majority of cases, it is perfectly sufficient to think of prec= taking a single number and having that be the precedence of the notation, where lower precedences (somewhat
counterintuitively) bind stronger than higher precedences. So fixing our notations for \addition and \multiplication, we get:

## Example 18

Input:

```
1 \notation{multiplication}[
2 op=\cdot,
3 prec=50
4]{#1}{##1 \comp\cdot ##2}
5\notation{addition}[
6 op=+,
7 prec=100
8]{#1}{##1 \comp+ ##2}
9
10 $\addition{a,\multiplication{b,\addition{c,\multiplication{d,e}}}}$
```

Output:

$$
a+b \cdot(c+d \cdot e)
$$

Note that the precise numbers used for precedences are pretty arbitrary - what matters is which precedences are higher than which other precedences when used in conjunction.
\infprec
\neginfprec

It is occasionally useful to have "infinitely" high or low precedences to enforce or forbid automated bracketing entirely - for those purposes, \infprec and \neginfprec exist (which are implemented as the maximal and minimal integer values accordingly).

More precisely, each notation takes

1. One operator precedence and
2. one argument precedence for each argument.

By default, all precedences are 0 , unless the symbol takes no argument, in which case the operator precedence is \neginfprec (negative infinity). If we only provide a single number, this is taken as both the operator precedence and all argument precedences.
$\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ decides whether to insert parentheses by comparing operator precedences to a downward precedence $p_{d}$ with initial value \infprec. When encountering a semantic macro, $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ takes the operator precedence $p_{o p}$ of the notation used and checks whether $p_{o p}>p_{d}$. If so, $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ insert parentheses.
When $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ steps into an argument of a semantic macro, it sets $p_{d}$ to the respective argument precedence of the notation used.
In the example above:

1. $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ starts out with $p_{d}=\backslash$ infprec.
2. $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ encounters \addition with $p_{o p}=100$. Since $100 \ngtr \backslash$ infprec, it inserts no parentheses.
3. Next, $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ encounters the two arguments for \addition. Both have no specifically provided argument precedence, so $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ uses $p_{d}=p_{o p}=100$ for both and recurses.
4. Next, $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ encounters $\backslash$ multiplication $\{\mathrm{b}, \ldots\}$, whose notation has $p_{o p}=$ 50.
5. We compare to the current downward precedence $p_{d}$ set by \addition, arriving at $p_{o p}=50 \ngtr 100=p_{d}$, so $\mathrm{S}_{\mathrm{E}} \mathrm{X}$ again inserts no parentheses.
6. Since the notation of $\backslash$ multiplication has no explicitly set argument precedences, $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ uses the operator precedence for all arguments of $\backslash$ multiplication, hence sets $p_{d}=p_{o p}=50$ and recurses.
7. Next, STEX encounters the inner \addition\{c,...\} whose notation has $p_{o p}=100$.
8. We compare to the current downward precedence $p_{d}$ set by $\backslash$ multiplication, arriving at $p_{o p}=100>50=p_{d}$ - which finally prompts STEX to insert parentheses, and we proceed as before.

### 3.3.6 Variables

All symbol and notation declarations require a module with which they are associated, hence the commands \symdecl, \notation, \symdef etc. are disabled outside of smodule-environments.

Variables are different - variables are allowed everywhere, are not exported when the current module (if one exists) is imported (via \importmodule or \usemodule) and (also unlike symbol declarations) "disappear" at the end of the current $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ group.
\svar
So far, we have always used variables using \svar\{n\}, which marks-up $n$ as a variable with name n. More generally, \svar[foo] \{<texcode>\} marks-up the arbitrary <texcode> as representing a variable with name foo.

Of course, this makes it difficult to reuse variables, or introduce "functional" variables with arities $>0$, or provide them with a type or definiens.
\vardef For that, we can use the \vardef command. Its syntax is largely the same as that of \symdef, but unlike symbols, variables have only one notation (TODO: so far?), hence there is only \vardef and no \vardecl.

## Example 19

Input:

```
\vardef{varf} [
 name=f,
 type=\funtype{\Nat}{\Nat},
 op=f,
 args=1,
 prec=0;\neginfprec
7]{\comp{f}#1}
8\vardef {varn}[name=n,type=\Nat]{\comp{n}}
9\vardef{varx}[name=x,type=\Nat]{\comp{x}}
11 Given a function $\varf!:\funtype{\Nat}{\Nat}$,
12 by $\addition{\varf!,\varn}$ we mean the function
13 $\fun{\varx}{\varf{\addition{\varx,\varn}}}$
```

10

Output:
Given a function $f: \mathbb{N} \rightarrow \mathbb{N}$, by $f+n$ we mean the function $x \mapsto f(x+n)$
(of course, "lifting" addition in the way described in the previous example is an operation that deserves its own symbol rather than abusing \addition, but... well.)

TODO: bind=forall/exists

### 3.3.7 Variable Sequences

Variable sequences occur quite frequently in informal mathematics, hence they deserve special support. Variable sequences behave like variables in that they disappear at the end of the current $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ group and are not exported from modules, but their declaration is quite different.
\varseq A variable sequence is introduced via the command \varseq, which takes the usual optional arguments name and type. It then takes a starting index, an end index and a notation for the individual elements of the sequence parametric in an index. Note that both the starting as well as the ending index may be variables.

This is best shown by example:
Example 20
Input:
$1 \backslash$ vardef $\{$ varn $\}$ [name=n, type $=\backslash$ Nat] $\{\backslash \operatorname{comp}\{n\}\}$
$2 \backslash$ varseq\{seqa\} [name=a, type $=\backslash N a t]\{1\}\{\backslash \operatorname{varn}\}\left\{\backslash \operatorname{comp}\{a\} \_\{\# 1\}\right\}$
3
4 The $\$$ i\$th index of $\$ \backslash$ seqa! $\$$ is $\$ \backslash$ seqa\{i\} $\$$.

Output:
The $i$ th index of $a_{1}, \ldots, a_{n}$ is $a_{i}$.

Note that the syntax \seqa! now automatically generates a presentation based on the starting and ending index.

TODO: more notations for invoking sequences.
Notably, variable sequences are nicely compatible with a-type arguments, so we can do the following:

Example 21
Input:
1 \$ \addition\{\seqa\}\$

Output:

```
a}+\ldots+\ldots+\mp@subsup{a}{n}{
```

Sequences can be multidimensional using the args-key, in which case the notation's arity increases and starting and ending indices have to be provided as a comma-separated list:

Example 22
Input:

```
\vardef{varm}[name=m,type=\Nat]{\comp{m}}
\varseq{seqa}[
 name=a,
 args=2,
 type=\Nat,
6]{1,1}{\varn,\varm}{\comp{a}_{#1}^{#2}}
8$\seqa!$ and $\addition{\seqa}$
```

Output:

```
al1, ,., a,m}\mathrm{ and }\mp@subsup{a}{1}{1}+\ldots+\mp@subsup{a}{n}{m
```

We can also explicitly provide a "middle" segment to be used, like such:
Example 23
Input:

```
\varseq{seqa}[
 name=a,
 type=\Nat,
 args=2,
 mid={\comp{a}_{\varn}^1,\comp{a}_1^2,\ellipses,\comp{a}_{1}^{\varm}}
6]{1,1}{\varn,\varm}{\comp{a}_{#1}^{#2}}
8 $\seqa!$ and $\addition{\seqa}$
```

Output:

```
al1},\ldots,\mp@subsup{a}{n}{1},\mp@subsup{a}{1}{2},\ldots,\mp@subsup{a}{1}{m},\ldots,\mp@subsup{a}{n}{m}\mathrm{ and }\mp@subsup{a}{1}{1}+\ldots+\mp@subsup{a}{n}{1}+\mp@subsup{a}{1}{2}+\ldots+\mp@subsup{a}{1}{m}+\ldots+\mp@subsup{a}{n}{m
```


### 3.4 Module Inheritance and Structures

The STEX features for modular document management are inherited from the OMDoc/MMT model that organizes knowledge into a graph, where the nodes are theories (called modules in $\mathrm{S}_{\mathrm{E}} \mathrm{X}$ ) and the edges are truth-preserving mappings (called theory morphismes in MMT). We have already seen modules/theories above.

Before we get into theory morphisms in $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ we will see a very simple application of modules: managing multilinguality modularly.

### 3.4.1 Multilinguality and Translations

If we load the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ document class or package with the option lang=<lang>, $\mathrm{S}_{\mathrm{E}} \mathrm{X}$ will load the appropriate babel language for you - e.g. lang=de will load the babel language
ngerman. Additionally, it makes $\mathrm{STEX}_{\mathrm{E}}$ aware of the current document being set in (in this example) german. This matters for reasons other than mere babel-purposes, though:

Every module is assigned a language. If no STEX package option is set that allows for inferring a language, $\mathrm{S}^{\mathrm{E}} \mathrm{X}$ will check whether the current file name ends in e.g. .en.tex (or .de.tex or .fr.tex, or...) and set the language accordingly. Alternatively, a language can be explicitly assigned via \begin\{smodule\} [lang=<language>] \{Foo\}. }

Technically, each smodule-environment induces two OMDoc/Mmt theories: \begin\{smodule\}[lang=<lang>]\{Foo\} generates a theory some/namespace?Foo }
$\smile \mathrm{M} \rightarrow$ that only contains the "formal" part of the module - i.e. exactly the content
$-\mathrm{M} \rightarrow$ that is exported when using \importmodule.
$\sim \mathrm{T} \leadsto$ Additionally, Mмт generates a language theory some/namespace/Foo?<lang> that includes some/namespace?Foo and contains all the other document content - variable declarations, includes for each \usemodule, etc.

Notably, the language suffix in a filename is ignored for \usemodule, \importmodule and in generating/computing URIs for modules. This however allows for providing translations for modules between languages without needing to duplicate content:

If a module Foo exists in e.g. english in a file Foo.en.tex, we can provide a file Foo.de.tex right next to it, and write \begin\{smodule\}[sig=en] \{Foo\}. The sig-key } then signifies, that the "signature" of the module is contained in the english version of the module, which is immediately imported from there, just like \importmodule would.

Additionally to translating the informal content of a module file to different languages, it also allows for customizing notations between languages. For example, the least common multiple of two numbers is often denoted as $\operatorname{lcm}(a, b)$ in english, but is called kleinstes gemeinsames Vielfaches in german and consequently denoted as $\mathrm{kgV}(a, b)$ there.

We can therefore imagine a german version of an lcm-module looking something like this:

```
1 \begin{smodule}[sig=en] {lcm}
 \notation*{lcm}[de]{\comp{\mathtt{kgV}}(#1,#2)}
 Das \symref{lcm}{kleinste gemeinsame Vielfache}
 $\lcm{a,b}$ von zwei Zahlen a,b ist...
6\end{smodule}
```

If we now do \importmodule\{lcm\} (or \usemodule\{lcm\}) within a german document, it will also load the content of the german translation, including the de-notation for $\backslash 1 \mathrm{~cm}$.

### 3.4.2 Simple Inheritance and Namespaces

\importmodule
\usemodule
\importmodule [Some/Archive] \{path?ModuleName\} is only allowed within an smoduleenvironment and makes the symbols declared in ModuleName available therein. Additionally the symbols of ModuleName will be exported if the current module is imported somewhere else via \importmodule.
\usemodule behaves the same way, but without exporting the content of the used module.

It is worth going into some detail how exactly \importmodule and \usemodule resolve their arguments to find the desired module－which is closely related to the namespace generated for a module，that is used to generate its URI．

Ideally， $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ would use arbitrary URIs for modules，with no forced relationships between the logical namespace of a module and the physical location of the file declaring the module－like Mmt does things．
Unfortunately， $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ only provides very restricted access to the file system，so we are forced to generate namespaces systematically in such a way that they reflect the physical location of the associated files，so that $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ can resolve them accord－ ingly．Largely，users need not concern themselves with namespaces at all，but for completenesses sake，we describe how they are constructed：
－If \begin\｛smodule\}\{Foo\} occurs in a file/path/to/file/Foo[. $｛smodule\}\{Foo\} occurs in a file/path/to/file/Foo[. }\langle$ lang $\rangle$ ］．tex which does not belong to an archive，the namespace is file：／／path／to／file．
－If the same statement occurs in a file／path／to／file／bar［．〈lang〉］．tex，the namespace is file：／／path／to／file／bar．

In other words：outside of archives，the namespace corresponds to the file URI with the filename dropped iff it is equal to the module name，and ignoring the （optional）language suffix．
If the current file is in an archive，the procedure is the same except that the initial segment of the file path up to the archive＇s source－folder is replaced by the archive＇s namespace URI．

Conversely，here is how namespaces／URIs and file paths are computed in import statements，examplary \importmodule：
－\importmodule\｛Foo\} outside of an archive refers to module Foo in the current namespace．Consequently，Foo must have been declared earlier in the same document or，if not，in a file Foo［．$\langle l a n g\rangle]$ ．tex in the same directory．
－The same statement within an archive refers to either the module Foo de－ clared earlier in the same document，or otherwise to the module Foo in the archive＇s top－level namespace．In the latter case，is has to be declared in a file Foo［．$\langle l a n g\rangle]$ ．tex directly in the archive＇s source－folder．
－Similarly，in \importmodule\｛some／path？Foo\} the path some/path refers to either the sub－directory and relative namespace path of the current directory and namespace outside of an archive，or relative to the current archive＇s top－ level namespace and source－folder，respectively．
The module Foo must either be declared in the file $\langle$ top－directory $\rangle /$ some／path／Foo［．〈lang〉］．tex，or in $\langle$ top－directory $\rangle /$ some／path［．$\langle$ lang $\rangle]$ ．tex（which are checked in that order）．
－Similarly，\importmodule［Some／Archive］\｛some／path？Foo\} is resolved like the previous cases，but relative to the archive Some／Archive in the mathhub－ directory．
－Finally，\importmodule\｛full：／／uri？Foo\} naturally refers to the module Foo in the namespace full：／／uri．Since the file this module is declared
in can not be determined directly from the URI, the module must be in memory already, e.g. by being referenced earlier in the same document.
Since this is less compatible with a modular development, using full URIs directly is strongly discouraged, unless the module is delared in the current file directly.
\importmodule and \usemodule import all symbols, notations, semantic macros and (recursively) \importmodules. If you want to additionally export e.g. convenience macros and other (STEX) code from a module, you can use the command $\backslash$ STEXexport $\{<$ code $>\}$ in your module. Then <code> is executed (both immediately and) every time the current module is opened via \importmodule or \usemodule.

For persistency reasons, everything in an \STEXexport is digested by $\mathrm{T}_{\mathrm{E}} \mathrm{Xin}$ the IAT $_{E} X 3$-category code scheme. This means that the characters _ and : are considered letters and valid parts of control sequence names, and space characters are ignored entirely. For spaces, use the character ~ instead, and keep in mind, that if you want to use subscripts, you should use \c_math_subscript_token instead of _!
Also note, that \newcommand defines macros globally and throws an error if the macro already exists, potentially leading to low-level $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ errors if we put a \newcommand in an \STEXexport and the <code> is executed more than once in a document - which can happen easily.
A safer alternative is to use macro definition principles, that are safe to use even if the macro being defined already exists, and ideally are local to the current $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ group, such as \def or \let.

### 3.4.3 The mathstructure Environment

A common occurence in mathematics is bundling several interrelated "declarations" together into structures. For example:

- A monoid is a structure $\langle M, \circ, e\rangle$ with $\circ: M \times M \rightarrow M$ and $e \in M$ such that...
- A topological space is a structure $\langle X, \mathcal{T}\rangle$ where $X$ is a set and $\mathcal{T}$ is a topology on $X$
- A partial order is a structure $\langle S, \leq\rangle$ where $\leq$ is a binary relation on $S$ such that...

This phenomenon is important and common enough to warrant special support, in particular because it requires being able to instantiate such structures (or, rather, structure signatures) in order to talk about (concrete or variable) particular monoids, topological spaces, partial orders etc.
mathstructure The mathstructure environment allows us to do exactly that. It behaves exactly like the smodule environment, but is itself only allowed inside an smodule environment, and allows for instantiation later on.

How this works is again best demonstrated by example:

## Example 24

Input:

```
1 \begin{mathstructure}{monoid}
 \symdef{universe}[type=\set]{\comp{U}}
 \symdef{op}[
 args=2,
 type=\funtype{\universe,\universe}{\universe},
 op=\circ
]{#1 \comp{\circ} #2}
 \symdef{unit}[type=\universe]{\comp{e}}
9 \end{mathstructure}
1 0
11 A \symname{monoid} is...
```

Output:
A monoid is...
-Note that the \symname\{monoid\} is appropriately highlighted and (depending on your pdf viewer) shows a URI on hovering - implying that the mathstructure environment has generated a symbol monoid for us. It has not generated a semantic macro though, since we can not use the monoid-symbol directly. Instead, we can instantiate it, for example for integers:

Example 25
Input:

```
1 \symdef{Int}[type=\set]{\comp{\mathbb Z}}
2 \symdef{addition}[
3 type=\funtype{\Int,\Int}{\Int},
4 args=2,
 op=+
6]{##1 \comp{+} ##2}
7 \symdef {zero} [type=\Int]{\comp{0}}
8
9$\mathstruct{\Int,\addition!,\zero}$ is a \symname{monoid}.
```

Output:

$$
\langle\mathbb{Z},+, 0\rangle \text { is a monoid. }
$$

So far, we have not actually instantiated monoid, but now that we have all the symbols to do so, we can:

## Example 26

Input:

```
1 \instantiate{intmonoid}{monoid}{\mathbb{Z}_{+,0}}[
 universe = Int ,
 op = addition ,
 unit = zero
5]
6
7 $\intmonoid{universe}$, \intmonoid{unit} and $\intmonoid{op}{a}{b}$.
8
9 Also: $\intmonoid!$
```

Output:

```
Z, 0 and a+b.
 Also: }\mp@subsup{\mathbb{Z}}{+,0}{
```

So summarizing: \instantiate takes four arguments: The (macro-)name of the instance, a key-value pair assigning declarations in the corresponding mathstructure to symbols currently in scope, the name of the mathstructure to instantiate, and lastly a notation for the instance itself.

It then generates a semantic macro that takes as argument the name of a declaration in the instantiated mathstructure and resolves it to the corresponding instance of that particular declaration.
\instantiate and mathstructure make use of the Theories-as-Types paradigm (see [MRK18]): mathstructure\{<name>\} simply creates a nested theory with name <name>-structure. The constant <name> is defined as Mod(<name>-structure)
$-\mathrm{M} \rightarrow-\mathrm{a}$ dependent record type with manifest fields, the fields of which are generated
$\sim T \leadsto$ from (and correspond to) the constants in <name>-structure.
\instantiate generates a constant whose definiens is a record term of type Mod(<name>-structure), with the fields assigned based on the respective key-value-list.

Notably, \instantiate throws an error if not every declaration in the instantiated mathstructure is being assigned.

You might consequently ask what the usefulness of mathstructure even is.

[^3]```
1 \varinstantiate{varM}{monoid}{M}
2
3 A \symname{monoid} is a structure
4 $\varM! :=\mathstruct{\varM{universe},\varM{op}!,\varM{unit}}$
5 such that
6 $\varM{op}!:\funtype{\varM{universe},\varM{universe}}{\varM{universe}}$
```

Output:
A monoid is a structure $M:=\langle U, \circ, e\rangle$ such that $\circ: U \times U \rightarrow U \ldots$
and
Example 28
Input:

```
\varinstantiate{varMb}{monoid}{M_2}[universe = Int]
3 Let $\varMb!:=\mathstruct{\varMb{universe},\varMb{op}!,\varMb{unit}}$
4 be a \symname{monoid} on $\Int$ ...
```

Output:
Let $M_{2}:=\langle\mathbb{Z}, \circ, e\rangle$ be a monoid on $\mathbb{Z} \ldots$

We will return to these two example later, when we also know how to handle the axioms of a monoid.

3.4.4 The copymodule Environment

TODO: explain
Given modules:
Example 29
Input:

```
\begin{smodule}{magma}
    \symdef{universe}{\comp{\mathcal U}}
    \symdef{operation}[args=2,op=\circ]{#1 \comp\circ #2}
    \end{smodule}
    5\begin{smodule}{monoid}
    \importmodule{magma}
    \symdef{unit}{\comp e}
    \end{smodule}
    9\begin{smodule}{group}
10\importmodule{monoid}
11\symdef{inverse}[args=1]{{#1}^{\comp{-1}}}
2 \end{smodule}
```

Output:

We can form a module for rings by "cloning" an instance of group (for addition) and monoid (for multiplication), respectively, and "glueing them together" to ensure they share the same universe:

Example 30
Input:

```
\begin{smodule}{ring}
    \begin{copymodule}{group}{addition}
        \renamedecl[name=universe] {universe}{runiverse}
        \renamedecl[name=plus] {operation}{rplus}
        \renamedecl[name=zero] {unit}{rzero}
        \renamedecl[name=uminus]{inverse}{ruminus}
    \end{copymodule}
    \notation*{rplus}[plus,op=+,prec=60]{#1 \comp+ #2}
    \notation*{rzero}[zero]{\comp0}
    \notation*{ruminus}[uminus,op=-]{\comp- #1}
    \begin{copymodule}{monoid}{multiplication}
            \assign{universe}{\runiverse}
            \renamedecl[name=times]{operation}{rtimes}
            \renamedecl[name=one] {unit}{rone}
    \end{copymodule}
    \notation*{rtimes}[cdot,op=\cdot,prec=50]{#1 \comp\cdot #2}
    \notation*{rone}[one]{\comp1}
    Test: $\rtimes a{\rplus c{\rtimes de}}$
\end{smodule}
```

Output:

```
Test: a (c+d\cdote)
```


TODO: explain donotclone

3.4.5 The interpretmodule Environment

TODO: explain

Example 31

Input:

```
\begin{smodule}{int}
    \symdef{Integers}{\comp{\mathbb Z}}
    \symdef{plus}[args=2,op=+]{#1\comp+ #2}
    \symdef{zero}{\comp0}
    \symdef {uminus}[args=1,op=-]{\comp-#1}
    \begin{interpretmodule}{group}{intisgroup}
        \assign{universe}{\Integers}
        \assign{operation}{\plus!}
        \assign{unit}{\zero}
        \assign{inverse}{\uminus!}
    \end{interpretmodule}
\end{smodule}
```

Output:

3.5 Primitive Symbols (The $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ Metatheory)

The stex-metatheory package contains $\mathrm{S}_{\mathrm{E}} \mathrm{X}$ symbols so ubiquitous, that it is virtually impossible to describe any flexiformal content without them, or that are required to annotate even the most primitive symbols with meaningful (foundation-independent) "type"-annotations, or required for basic structuring principles (theorems, definitions). As such, it serves as the default meta theory for any $\mathrm{S}_{\mathrm{E}} \mathrm{X}$ module.

We can also see the stex-metatheory as a foundation of mathematics in the sense of [Rab15], albeit an informal one (the ones discussed there are all formal foundations). The state of the stex-metatheory is necessarily incomplete, and will stay so for a long while: It arises as a collection of empirically useful symbols that are collected as more and more mathematics are encoded in $\mathrm{S}^{\mathrm{T}} \mathrm{E}$ and are classified as foundational.

Formal foundations should ideally instantiate these symbols with their formal counterparts, e.g. isa corresponds to a typing operation in typed setting, or the \in-operator in set-theoretic contexts; bind corresponds to a universal quantifier in (n th-order) logic, or a Π in dependent type theories.

We make this theory part of the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ collection due to the obiquity of the symbols involved. Note however, that the metatheory is for all practical purposes a "normal" STEX module, and the symbols contained "normal" STEX symbols.

Chapter 4

Using STEX Symbols

Given a symbol declaration \symdecl\{symbolname\}, we obtain a semantic macro \symbolname. We can use this semantic macro in math mode to use its notation(s), and we can use \symbolname! in math mode to use its operator notation(s). What else can we do?

4.1 \symref and its variants

We have already seen \symname and \symref, the latter being the more general.
\symref\{<symbolname>\}\{<code>\} marks-up <code> as referencing <symbolname>. Since quite often, the <code> should be (a variant of) the name of the symbol anyway, we also have \symname\{<symbolname>\}.

Note that \symname uses the name of a symbol, not its macroname. More precisely, \symname will insert the name of the symbol with "-" replaced by spaces. If a symbol does not have an explicit name= given, the two are equal - but for \symname it often makes sense to make the two explicitly distinct. For example:

Example 32
Input:

```
1 \symdef{Nat}[
2 name=natural-number,
3 type=\set
4 ]{\comp{\mathbb{N}}}
5
6 A \symname{Nat} is...
```

Output:
A natural number is...
\symname takes two additional optional arguments, pre= and post= that get prepended or appended respectively to the symbol name.
\backslash Symname Additionally, \Symname behaves exactly like \symname, but will capitalize the first letter of the name:

Example 33

Input:

```
1 \Symname[post=s]{Nat} are...
```

Output:
Natural numbers are...

This is as good a place as any other to explain how $\mathrm{STEX}_{\mathrm{E}}$ resolves a string symbolname to an actual symbol.
If \symbolname is a semantic macro, then $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ has no trouble resolving symbolname to the full URI of the symbol that is being invoked.
However, especially in \symname (or if a symbol was introduced using \symdecl* without generating a semantic macro), we might prefer to use the name
 of a symbol directly for readability - e.g. we would want to write A \symname\{natural-number\} is... rather than A \symname\{Nat\} is.... STEX attempts to handle this case thusly:
If string does not correspond to a semantic macro \string and does not contain a ? , then $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ checks all symbols currently in scope until it finds one, whose name is string. If string is of the form pre?name, $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ first looks through all modules currently in scope, whose full URI ends with pre, and then looks for a symbol with name name in those. This allows for disambiguating more precisely, e.g. by saying \symname\{Integers?addition\} or \symname\{RealNumbers?addition\} in the case where several additions are in scope.

4.2 Marking Up Text and On-the-Fly Notations

We can also use semantic macros outside of text mode though, which allows us to annotate arbitrary text fragments.

Let us assume again, that we have \symdef\{addition\}[args=2]\{\#1 \comp+ \#2\}. Then we can do

Example 34

Input:
1 \addition\{\comp\{The sum of\} \arg\{\$\svar\{n\}\$\} \comp\{ and $\} \backslash \arg \{\$ \backslash \operatorname{svar}\{m\} \$\}\}$
2 is...

Output:
The sum of n and m is...
$\cdot .$. which marks up the text fragment as representing an application of the additionsymbol to two argument n and m.
$\smile \mathrm{M} \rightarrow$ As expected, the above example is translated to OMDoc/MmT as an $-\mathrm{M} \rightarrow$ OMA with <OMS name="...?addition"/> as head and <OMV name="n"/> and
\sim T \rightarrow <OMV name="m"/> as arguments.

Note the difference in treating "arguments" between math mode and text mode. In math mode the (in this case two) tokens/groups following the \addition macro are treated as arguments to the addition function, whereas in text mode the group following \addition is taken to be the ad-hoc presentation. We drill in on this now.

In text mode, every semantic macro takes exactly one argument, namely the textfragment to be annotated. The \arg command is only valid within the argument to a semantic macro and marks up the individual arguments for the symbol.

We can also use semantic macros in text mode to invoke an operator itself instead of its application, with the usual syntax using !:

Example 35
Input:

```
1 \addition!{Addition} is...
```

Output:

```
Addition is...
```

Indeed, \symbolname! \{<code>\} is exactly equivalent to \symref \{symbolname\}\{<code>\} (the latter is in fact implemented in terms of the former).
larg also allows us to switch the order of arguments around and "hide" arguments: For example, $\backslash \arg [3]\{<c o d e>\}$ signifies that <code> represents the third argument to the current operator, and $\backslash \arg *[i]\{<c o d e>\}$ signifies that <code> represents the i th argument, but it should not produce any output (it is exported in the xhtml however, so that Ммт and other systems can pick up on it). ${ }^{1}$
Example 36
Input:

```
\addition{\comp{adding}
    \arg[2]{$\svar{k}$}
    \arg*{$\addition{\svar{n}}{\svar{m}}$}} yields...
```

Output:

[^4]```
adding }k\mathrm{ yields..
```

'Note that since the second $\backslash$ arg has no explicit argument number, it automatically represents the first not-yet-given argument - i.e. in this case the first one. ${ }^{2}$

The same syntax can be used in math mod as well. This allows us to spontaneously introduce new notations on the fly. We can activate it using the starred variants of semantic macros:

## Example 37

Input:
1 Given \$\addition\{\svar\{n\}\}\{\svar\{m\}\}\$, then
2 \$ \addition*\{
$3 \backslash \arg *\{$ \addition $\{\backslash \operatorname{svar}\{n\}\}\{\backslash \operatorname{svar}\{\mathrm{m}\}\}\}$
4 \comp\{+\}
$5 \backslash \arg \{\backslash \operatorname{svar}\{\mathrm{k}\}\}$
6 \}\$ yields...

Output:

Given $n+m$, then $+k$ yields...

### 4.3 Referencing Symbols and Statements

TODO: references documentation

[^5]
## Chapter 5

## STEX Statements

### 5.1 Definitions, Theorems, Examples, Paragraphs

As mentioned earlier, we can semantically mark-up statements such as definitions, theorems, lemmata, examples, etc.

The corresponding environments for that are:

- sdefinition for definitions,
- sassertion for assertions, i.e. propositions that are declared to be true, such as theorems, lemmata, axioms,
- sexample for examples and counterexamples, and
- sparagraph for "other" semantic paragraphs, such as comments, remarks, conjectures, etc.

The presentation of these environments can be customized to use e.g. predefined theorem-environments, see chapter 6 for details.

All of these environments take optional arguments in the form of key=value-pairs. Common to all of them are the keys id= (for cross-referencing, see section 4.3), type= for customization (see chapter 6) and additional information (e.g. definition principles, "difficulty" etc), as well as title= (for giving the paragraph a title), and finally for=.

The for= key expects a comma-separated list of existing symbols, allowing for e.g. things like

Example 38
Input:
1 \begin\{sexample\}[ }
id=additionandmultiplication.ex,
for=\{addition, multiplication\},
type $=\{$ trivial, boring $\}$,
title=\{An Example\}
6 ]
7 \$ \addition\{2,3\}\$ is \$5\$, \$\multiplication\{2,3\}\$ is \$6\$.
8 \end\{sexample\} }

Output:
\definiendum
\definame
\Definame
\definiens
sdefinition (and sparagraph with type=symdoc) introduce three new macros: definiendum behaves like symref (and definame/Definame like symname/Symname, respectively), but highlights the referenced symbol as being defined in the current definition.
$\smile^{-} \rightarrow$ The special type=symdoc for sparagraph is intended to be used for "informal $\hookrightarrow$ definitions", or encyclopedia-style descriptions for symbols.
$\sim T$ The Mmт system can use those (in lieu of an actual sdefinition in scope) to
$\sim \mathrm{T} \leadsto$ present to users, e.g. when hovering over symbols.

Additionally, sdefinition (and sparagraph with type=symdoc) introduces \definiens [<optional syn which marks up <code> as being the explicit definiens of <optional symbolname> (in case for= has multiple symbols).

All four statement environments - i.e. sdefinition, sassertion, sexample, and sparagraph - also take an optional parameter name $=-$ if this one is given a value, the environment will generate a symbol by that name (but with no semantic macro). Not only does this allow for \symref et al, it allows us to resume our earlier example for monoids much more nicely: ${ }^{3}$

Example 39
Input:

[^6]```
\begin{mathstructure}{monoid}
    \symdef{universe}[type=\set]{\comp{U}}
    \symdef{op}[
        args=2,
        type=\funtype{\universe,\universe}{\universe},
        op=\circ
    ]{#1 \comp{\circ} #2}
    \symdef{unit}[type=\universe]{\comp{e}}
    \begin{sparagraph}[type=symdoc,for=monoid]
            A \definame{monoid} is a structure
            $\mathstruct{\universe, \op!, \unit}$
            where $\op!:\funtype{\universe}{\universe}$ and
            $\inset{\unit}{\universe}$ such that
            \begin{sassertion}[name=associative,
                type=axiom,
                title=Associativity]
                $\op!$ is associative
            \end{sassertion}
            \begin{sassertion}[name=isunit,
                type=axiom,
                title=Unit]
                $\equal{\op{\svar{x}}{\unit}}{\svar{x}}$
                for all $\inset{\svar{x}}{\universe}$
            \end{sassertion}
    \end{sparagraph}
\end{mathstructure}
An example for a \symname{monoid} is...
```

29

Output:
A monoid is a structure $\langle U, \circ, e\rangle$ where $\circ: U \rightarrow U$ and $e \in U$ such that
Axiom 5.1.2 (Associativity). ○ is associative
Axiom 5.1.3 (Unit). $x \circ e=x$ for all $x \in U$
An example for a monoid is...

The main difference to before ${ }^{4}$ is that the two sassertions now have name= attributes. Thus the mathstructure monoid now contains two additional symbols, namely the axioms for associativity and that e is a unit. Note that both symbols do not represent the mere propositions that e.g. - is associative, but the assertion that it is actually true that \circ is associative.

If we now want to instantiate monoid (unless with a variable, of course), we also need to assign associative and neutral to analogous assertions. So the earlier example

```
1 \instantiate{intmonoid}{monoid}{\mathbb{Z}_{+,0}}[
u universe = Int ,
    op = addition ,
    unit = zero
5]
```

[^7]...will not work anymore. We now need to give assertions that addition is associative and that zero is a unit with respect to addition. ${ }^{2}$

The stex-proof package supplies macros and environment that allow to annotate the structure of mathematical proofs in $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ document. This structure can be used by MKM systems for added-value services, either directly from the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ sources, or after translation.

We will go over the general intuition by way of a running example:

```
\begin{sproof}[id=simple-proof]
    {We prove that $\sum_{i=1}^n{2i-1}=n^{2}$ by induction over $n$}
    \begin{spfcases}{For the induction we have to consider three cases:}
    \begin{spfcase}{$n=1$}
            \begin{spfstep}[type=inline] then we compute $1=1^2$\end{spfstep}
    \end{spfcase}
    \begin{spfcase}{$n=2$}
            \begin{spfcomment}[type=inline]
                This case is not really necessary, but we do it for the
                fun of it (and to get more intuition).
            \end{spfcomment}
            \begin{spfstep}[type=inline] We compute $1+3=2^{2}=4$.\end{spfstep}
    \end{spfcase}
    \begin{spfcase}{$n>1$}
            \begin{spfstep}[type=assumption,id=ind-hyp]
                Now, we assume that the assertion is true for a certain $k\geq 1$,
                i.e. $\sum_{i=1}^k{(2i-1)}=k^{2}$.
            \end{spfstep}
            \begin{spfcomment}
                We have to show that we can derive the assertion for $n=k+1$ from
                this assumption, i.e. $\sum_{i=1}^{k+1}{(2i-1)}=(k+1)^{2}$.
            \end{spfcomment}
            \begin{spfstep}
                We obtain $\sum_{i=1}^{k+1}{2i-1}=\sum_{i=1}^k{2i-1}+2(k+1)-1$
                \spfjust[method=arith:split-sum]{by splitting the sum}.
            \end{spfstep}
            \begin{spfstep}
                Thus we have $\sum_{i=1}^{k+1}{(2i-1)}=k^2+2k+1$
                \spfjust[method=fertilize]{by inductive hypothesis}.
            \end{spfstep}
            \begin{spfstep}[type=conclusion]
                We can \spfjust[method=simplify]{simplify} the right-hand side to
                ${k+1}^2$, which proves the assertion.
            \end{spfstep}
    \end{spfcase}
        \begin{spfstep}[type=conclusion]
            We have considered all the cases, so we have proven the assertion.
            \end{spfstep}
    \end{spfcases}
\end{sproof}
```

This yields the following result:
Proof: We prove that $\sum_{i=1}^{n} 2 i-1=n^{2}$ by induction over n

[^8]1. For the induction we have to consider the following cases:
1.1. $n=1$: then we compute $1=1^{2}$
1.2. $n=2$: \quad This case is not really necessary, but we do it for the fun of it (and to get more intuition). We compute $1+3=2^{2}=4$
1.3. $n>1$:
1.3.1. Now, we assume that the assertion is true for a certain $k \geq 1$, i.e. $\sum_{i=1}^{k}(2 i-1)=k^{2}$.
1.3.2. We have to show that we can derive the assertion for $n=k+1$ from this assumption, i.e. $\sum_{i=1}^{k+1}(2 i-1)=(k+1)^{2}$.
1.3.3. We obtain $\sum_{i=1}^{k+1}(2 i-1)=\sum_{i=1}^{k}(2 i-1)+2(k+1)-1$ by splitting the sum.
1.3.4. Thus we have $\sum_{i=1}^{k+1}(2 i-1)=k^{2}+2 k+1$ by inductive hypothesis.
1.3.5. We can simplify the right-hand side to $(k+1)^{2}$, which proves the assertion.
1.4. We have considered all the cases, so we have proven the assertion.
sproof The sproof environment is the main container for proofs. It takes an optional KeyVal argument that allows to specify the id (identifier) and for (for which assertion is this a proof) keys. The regular argument of the proof environment contains an introductory comment, that may be used to announce the proof style. The proof environment contains a sequence of spfstep, spf comment, and spf cases environments that are used to markup the proof steps.
\spfidea The \spfidea macro allows to give a one-paragraph description of the proof idea.
\spfsketch For one-line proof sketches, we use the \spfsketch macro, which takes the same optional argument as sproof and another one: a natural language text that sketches the proof.
spfstep Regular proof steps are marked up with the step environment, which takes an optional KeyVal argument for annotations. A proof step usually contains a local assertion (the text of the step) together with some kind of evidence that this can be derived from already established assertions.
\spfjust This evidence is marked up with the \spfjust macro in the stex-proofs package. This environment totally invisible to the formatted result; it wraps the text in the proof step that corresponds to the evidence. The environment takes an optional KeyVal argument, which can have the method key, whose value is the name of a proof method (this will only need to mean something to the application that consumes the semantic annotations). Furthermore, the justification can contain "premises" (specifications to assertions that were used justify the step) and "arguments" (other information taken into account by the proof method).
\premise The \premise macro allows to mark up part of the text as reference to an assertion that is used in the argumentation. In the running example we have used the \premise macro to identify the inductive hypothesis.
\justarg The \justarg macro is very similar to \premise with the difference that it is used to mark up arguments to the proof method. Therefore the content of the first argument is interpreted as a mathematical object rather than as an identifier as in the case of \backslash premise. In our example, we specified that the simplification should take place on the right hand side of the equation. Other examples include proof methods that instantiate. Here we would indicate the substituted object in a \justarg macro.

Note that both \premise and \justarg can be used with an empty second argument to mark up premises and arguments that are not explicitly mentioned in the text.
subproof The spfcases environment is used to mark up a subproof. This environment takes an optional KeyVal argument for semantic annotations and a second argument that allows to specify an introductory comment (just like in the proof environment). The method key can be used to give the name of the proof method executed to make this subproof.
spfcases The spfcases environment is used to mark up a proof by cases. Technically it is a variant of the subproof where the method is by-cases. Its contents are spfcase environments that mark up the cases one by one.
spfcase The content of a spfcases environment are a sequence of case proofs marked up in the spfcase environment, which takes an optional KeyVal argument for semantic annotations. The second argument is used to specify the the description of the case under consideration. The content of a spfcase environment is the same as that of a sproof, i.e. spfsteps, spfcomments, and spfcases environments.
\spfcasesketch $\backslash \operatorname{spfcasesketch}$ is a variant of the spfcase environment that takes the same arguments, but instead of the spfsteps in the body uses a third argument for a proof sketch.
spfcomment The spfcomment environment is much like a step, only that it does not have an objectlevel assertion of its own. Rather than asserting some fact that is relevant for the proof, it is used to explain where the proof is going, what we are attempting to to, or what we have achieved so far. As such, it cannot be the target of a \premise.
\sproofend Traditionally, the end of a mathematical proof is marked with a little box at the end of the last line of the proof (if there is space and on the end of the next line if there isn't), like so:

The stex-proofs package provides the \sproofend macro for this.
\sProofEndSymbol
If a different symbol for the proof end is to be used (e.g. q.e.d), then this can be obtained by specifying it using the \sProofEndSymbol configuration macro (e.g. by specifying \sProofEndSymbol\{q.e.d\}).

Some of the proof structuring macros above will insert proof end symbols for subproofs, in most cases, this is desirable to make the proof structure explicit, but sometimes this wastes space (especially, if a proof ends in a case analysis which will supply its own proof end marker). To suppress it locally, just set proofend=\{\} in them or use use \sProofEndSymbol\{\}.

Chapter 6

Highlighting and Presentation Customizations

The environments starting with s (i.e. smodule, sassertion, sexample, sdefinition, sparagraph and sproof) by default produce no additional output whatsoever (except for the environment content of course). Instead, the document that uses them (whether directly or e.g. via \inputref) can decide how these environments are supposed to look like.

The stexthm package defines some default customizations that can be used, but of course many existing $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ templates come with their own definition, theorem and similar environments that authors are supposed (or even required) to use. Their concrete syntax however is usually not compatible with all the additional arguments that $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ allows for semantic information.

Therefore we introduced the separate environments sdefinition etc. instead of using definition directly. We allow authors to specify how these environments should be styled via the commands stexpatch*.
\stexpatchmodule
\stexpatchdefinition \stexpatchassertion
\stexpatchexample
\stexpatchparagraph
\stexpatchproof

All of these commands take one optional and two proper arguments, i.e.
\stexpatch*[<type>] \{<begin-code>\} \{<end-code>\}.
After $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ reads and processes the optional arguments for these environments, (some of) their values are stored in the macros $\backslash s *<f i e l d>$ (i.e. sexampleid, \sassertionname, etc.). It then checks for all the values <type> in the type=-list, whether an \stexpatch* [<type>] for the current environment has been called. If it finds one, it uses the patches <begin-code> and <end-code> to mark up the current environment. If no patch for (any of) the type(s) is found, it checks whether and \stexpatch* was called without optional argument.

For example, if we want to use a predefined theorem environment for sassertions with type=theorem, we can do
1 \stexpatchassertion[theorem] \{\begin\{theorem\}\}\{\end\{theorem\}\} }
...or, rather, since e.g. theorem-like environments defined using amsthm take an optional title as argument, we can do:
1 \stexpatchassertion[theorem]
2 \{\ifx\sassertiontitle\@empty
3 \begin\{theorem\} }

```
\else
    \begin{theorem}[\sassertiontitle]
\fi}
{\end{theorem}}
```

Or, if we want all kinds of sdefinitions to use a predefined definitionenvironment irrespective of their type=, then we can issue the following customization patch:

```
1 \stexpatchdefinition
    {\ifx\sdefinitiontitle\@empty
        \begin{definition}
        \else
            \begin{definition}[\sdefinitiontitle]
    \fi}
    {\end{definition}}
```

\compemph \varemph \symrefemph \defemph

Apart from the environments, we can control how STEX^{2} highlights variables, notation components, \symrefs and \definiendums, respectively.

To do so, we simply redefine these four macros. For example, to highlight notation components (i.e. everything in a \comp) in blue, as in this document, we can do \def \backslash compemph\#1\{\textcolor\{blue\}\{\#1\}\}. By default, \compemph et al do nothing.

For each of the four macros, there exists an additional macro that takes the full URI of the relevant symbol currently being highlighted as a second argument. That allows us to e.g. use pdf tooltips and links. For example, this document uses ${ }^{5}$

```
protected\def\symrefemph@uri#1#2{
\pdftooltip{
    \srefsymuri{#2}{\symrefemph{#1}}
}{
    URI: ~\detokenize{#2}
    }
7}
```

By default, \compemph@uri is simply defined as \compemph\{\#1\} (analogously for the other three commands).

Chapter 7

Additional Packages

7.1 Tikzinput: Treating TIKZ code as images

image The behavior of the ikzinput package is determined by whether the image option is given. If it is not, then the tikz package is loaded, all other options are passed on to it and \tikzinput $\{\langle$ file $\rangle\}$ inputs the TIKZ file \langle file \rangle.tex; if not, only the graphicx package is loaded and \backslash tikzinput $\{\langle f i l e\rangle\}$ loads an image file \langle file \rangle. $\langle e x t\rangle$ generated from \langle file \rangle.tex.

The selective input functionality of the tikzinput package assumes that the TIKZ pictures are externalized into a standalone picture file, such as the following one
1 \}2\usepackage\{tikz\}3\usetikzpackage\{...\}4\begin\{document\}}\begin\{tikzpicture\}}67\end\{tikzpicture\}}8\end\{document\}}Thestandaloneclassisaminimal$\mathrm{IA}_{\mathrm{E}}\mathrm{X}$classthatwhenloadedinadocumentthatusesthestandalonepackage:thepreambleandthedocumenatenvironmentaredisregardedduringloading,sotheydonotposeanyproblems.Ineffect,an\inputofthefileaboveonlyseesthetikzpictureenvironment,butthefileitselfisstandaloneinthesensethatwecanrun$\mathrm{EA}_{\mathrm{E}}\mathrm{X}$overitseparately,e.g.forgeneratinganimagefilefromit.\tikzinput\ctikzinputundefined

This is exactly where the tikzinput package comes in: it supplies the \tikzinput macro, which - depending on the image option - either directly inputs the TIKZ picture (source) or tries to load an image file generated from it.

Concretely, if the image option is not set for the tikzinput package, then \backslash tikzinput $[\langle o p t\rangle]\{\langle f i l e\rangle\}$ disregards the optional argument $\langle o p t\rangle$ and inputs $\langle f i l e\rangle$. tex via \input and resizes it to as specified in the width and height keys. If it is, \tikzinput $[\langle o p t\rangle]\{\langle f i l e\rangle\}$ expands to \).
\ctizkinput is a version of \tikzinput that is centered.
\mhtikzinput
\cmhtikzinput
\mhtizkinput is a variant of \tikzinput that treats its file path argument as a relative path in a math archive in analogy to \inputref. To give the archive path, we use the mhrepos= key. Again, \cmhtizkinput is a version of \mhtikzinput that is centered.

Sometimes, we want to supply archive-specific TIKZ libraries in the lib folder of the archive or the meta-inf/lib of the archive group. Then we need an analogon to \libinput for \usetikzlibrary. The stex-tikzinput package provides the libusetikzlibrary for this purpose.

7.2 Modular Document Structuring

The document-structure package supplies an infrastructure for writing OMDoc documents in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$. This includes a simple structure sharing mechanism for $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ that allows to to move from a copy-and-paste document development model to a copy-and-reference model, which conserves space and simplifies document management. The augmented structure can be used by MKM systems for added-value services, either directly from the STEX sources, or after translation.

The document-structure package supplies macros and environments that allow to label document fragments and to reference them later in the same document or in other documents. In essence, this enhances the document-as-trees model to documents-as-directed-acyclic-graphs (DAG) model. This structure can be used by MKM systems for added-value services, either directly from the $S_{5}{ }_{E} X$ sources, or after translation. Currently, trans-document referencing provided by this package can only be used in the STEX collection.

DAG models of documents allow to replace the "Copy and Paste" in the source document with a label-and-reference model where document are shared in the document source and the formatter does the copying during document formatting/presentation.

The document-structure package accepts the following options:

class $=\langle$ name \rangle	load \langle name $\rangle . c l s$ instead of article.cls
topsect=\langle sect \rangle	The top-level sectioning level; the default for \langle sect \rangle is section

sfragment The structure of the document is given by nested sfragment environments. In the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ route, the sfragment environment is flexibly mapped to sectioning commands, inducing the proper sectioning level from the nesting of sfragment environments. Correspondingly, the sfragment environment takes an optional key/value argument for metadata followed by a regular argument for the (section) title of the sfragment. The optional metadata argument has the keys id for an identifier, creators and contributors for the Dublin Core metadata [DCM03]. The option short allows to give a short title for the generated section. If the title contains semantic macros, they need to be protected by \backslash protect ${ }^{6}$, and we need to give the loadmodules key it needs no value. For instance we would have

```
\begin{smodule}{foo}
\symdef{bar}{B`a_r}
\begin{sfragment}[id=sec.barderiv,loadmodules]
            {Introducing $\protect\bar$ Derivations}
```

[^9]STEX automatically computes the sectioning level, from the nesting of sfragment environments.

But sometimes, we want to skip levels (e.g. to use a \subsection* as an introduction for a chapter).
blindfragment Therefore the document-structure package provides a variant blindfragment that does not produce markup, but increments the sectioning level and logically groups document parts that belong together, but where traditional document markup relies on convention rather than explicit markup. The blindfragment environment is useful e.g. for creating frontmatter at the correct level. The example below shows a typical setup for the outer document structure of a book with parts and chapters.

```
1 \begin{document}
2 \begin{blindfragment}
3\begin{blindfragment}
4 \begin{frontmatter}
5\maketitle\newpage
6\begin{sfragment}{Preface}
7... <<preface>> ...
8 \end{sfragment}
9\clearpage\setcounter{tocdepth}{4}\tableofcontents\clearpage
\ \end{frontmatter}
\end{blindfragment}
... <<introductory remarks>> ...
\end{blindfragment}
\begin{sfragment}{Introduction}
... <<intro>> ...
16 \end{sfragment}
17... <<more chapters>> ...
18 \bibliographystyle{alpha}\bibliography{kwarc}
19 \end{document}
```

Here we use two levels of blindfragment:

- The outer one groups the introductory parts of the book (which we assume to have a sectioning hierarchy topping at the part level). This blindfragment makes sure that the introductory remarks become a "chapter" instead of a "part".
- The inner one groups the frontmatter ${ }^{3}$ and makes the preface of the book a section-level construct. ${ }^{7}$

[^10]\currentsectionlevel \CurrentSectionLevel
\prematurestop
\afterprematurestop

The \currentsectionlevel macro supplies the name of the current sectioning level, e.g. "chapter", or "subsection". \CurrentSectionLevel is the capitalized variant. They are useful to write something like "In this \currentsectionlevel, we will..." in an sfragment environment, where we do not know which sectioning level we will end up.

For prematurely stopping the formatting of a document, STEX provides the \backslash prematurestop $^{\text {I }}$ macro. It can be used everywhere in a document and ignores all input after that - backing out of the sfragment environment as needed. After that - and before the implicit \end\{document\} it calls the internal \afterprematurestop, which can be customized } to do additional cleanup or e.g. print the bibliography.
\prematurestop is useful when one has a driver file, e.g. for a course taught multiple years and wants to generate course notes up to the current point in the lecture. Instead of commenting out the remaining parts, one can just move the \prematurestop macro. This is especially useful, if we need the rest of the file for processing, e.g. to generate a theory graph of the whole course with the already-covered parts marked up as an overview over the progress; see import_graph.py from the lmhtools utilities [LMH].

Text fragments and modules can be made more re-usable by the use of global variables. For instance, the admin section of a course can be made course-independent (and therefore re-usable) by using variables (actually token registers) courseAcronym and courseTitle instead of the text itself. The variables can then be set in the $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ preamble of the course notes file.
\setSGvar
\useSGvar
\setSGvar\{ \langle vname $\rangle\}\{\langle t e x t\rangle\}$ to set the global variable \langle vname \rangle to \langle text \rangle and $\backslash u s e S G v a r\{\langle v n a m e\rangle\}$ to reference it.
\ifSGvar
With\ifSGvar we can test for the contents of a global variable: the macro call \ifSGvar $\{\langle$ vname $\rangle\}\{\langle$ val $\rangle\}\{\langle$ ctext $\rangle\}$ tests the content of the global variable \langle vname \rangle, only if (after expansion) it is equal to $\langle v a l\rangle$, the conditional text \langle ctext \rangle is formatted.

7.3 Slides and Course Notes

The notesslides document class is derived from beamer.cls [Tana], it adds a "notes version" for course notes that is more suited to printing than the one supplied by beamer.cls.

The notesslides class takes the notion of a slide frame from Till Tantau's excellent beamer class and adapts its notion of frames for use in the $\mathrm{S}^{T} \mathrm{E} \mathrm{X}$ and OMDoc. To support semantic course notes, it extends the notion of mixing frames and explanatory text, but rather than treating the frames as images (or integrating their contents into the flowing text), the notesslides package displays the slides as such in the course notes to give students a visual anchor into the slide presentation in the course (and to distinguish the different writing styles in slides and course notes).

In practice we want to generate two documents from the same source: the slides for presentation in the lecture and the course notes as a narrative document for home study. To achieve this, the notesslides class has two modes: slides mode and notes mode which are determined by the package option.
slides
notes
sectocframes
frameimages
fiboxed The notesslides class takes a variety of class options:

- The options slides and notes switch between slides mode and notes mode (see Section ??).
- If the option sectocframes is given, then for the sfragments, special frames with the sfragment title (and number) are generated.
- If the option frameimages is set, then slide mode also shows the \frameimagegenerated frames (see section ??). If also the fiboxed option is given, the slides are surrounded by a box.
frame, note Slides are represented with the frame environment just like in the beamer class, see [Tanb] for details. The notesslides class adds the note environment for encapsulating the course note fragments. ${ }^{4}$

Note that it is essential to start and end the notes environment at the start of the line - in particular, there may not be leading blanks - else ${ }^{A} T_{E} \mathrm{X}$ becomes confused and throws error messages that are difficult to decipher.

By interleaving the frame and note environments, we can build course notes as shown here:
1 \ifnotes \backslash maketitle\else
$2 \backslash$ frame[noframenumbering] \maketitle $\backslash f i$
3
4 \begin\{note\} }
5 We start this course with ...
6 \end\{note\} }
7
8 \begin\{frame\} }
9 \frametitle\{The first slide\}
10 ...
11 \end\{frame\} }
2 \begin\{note\} }
... and more explanatory text
4 \end\{note\} }
15
16 \begin\{frame\} }
\frametitle\{The second slide\}
8 ...
\end\{frame\} }
...
\ifnotes Note the use of the \ifnotes conditional, which allows different treatment between notes and slides mode - manually setting \notestrue or \notesfalse is strongly discouraged however.

[^11]We need to give the title frame the noframenumbering option so that the frame numbering is kept in sync between the slides and the course notes.

The beamer class recommends not to use the allowframebreaks option on frames (even though it is very convenient). This holds even more in the notesslides case: At least in conjunction with
, frame numbering behaves funnily (we have tried to fix this, but who knows).
\inputref* If we want to transclude a the contents of a file as a note, we can use a new variant \inputref* of the \inputref macro: \inputref*\{foo\} is equivalent to \begin\{note\} \inputref\{foo\}\end\{note\}. }
nexample, nsproof, nassertion
There are some environments that tend to occur at the top-level of note environments. We make convenience versions of these: e.g. the nparagraph environment is just an sparagraph inside a note environment (but looks nicer in the source, since it avoids one level of source indenting). Similarly, we have the nfragment, ndefinition, nexample, nsproof, and nassertion environments.
\setslidelogo The default logo provided by the notesslides package is the $\mathrm{ST}^{\mathrm{E}} \mathrm{X}$ logo it can be customized using \setslidelogo\{〈logo name〉\}.
\setsource
The default footer line of the notesslides package mentions copyright and licensing. In the beamer class, \source stores the author's name as the copyright holder. By default it is Michael Kohlhase in the notesslides package since he is the main user and designer of this package. \setsource $\{\langle$ name $\rangle\}$ can change the writer's name.

For licensing, we use the Creative Commons Attribuition-ShareAlike license by default to strengthen the public domain. If package hyperref is loaded, then we can attach a hyperlink to the license logo. \setlicensing $[\langle u r l\rangle]\{\langle\operatorname{logo}$ name $\rangle\}$ is used for customization, where $\langle u r l\rangle$ is optional.

Sometimes, we want to integrate slides as images after all - e.g. because we already have a PowerPoint presentation, to which we want to add STEX notes.
\frameimage \mhframeimage

In this case we can use \frameimage $[\langle o p t\rangle]\{\langle p a t h\rangle\}$, where $\langle o p t\rangle$ are the options of \includegraphics from the graphicx package [CR99] and $\langle p a t h\rangle$ is the file path (extension can be left off like in \includegraphics). We have added the label key that allows to give a frame label that can be referenced like a regular beamer frame.

The \mhframeimage macro is a variant of \frameimage with repository support. Instead of writing

1 \frameimage\{\MathHub\{fooMH/bar/source/baz/foobar\}\}

we can simply write (assuming that \backslash MathHub is defined as above)
1 \mhframeimage[fooMH/bar] \{baz/foobar\}
Note that the \mhframeimage form is more semantic, which allows more advanced document management features in MathHub.

If baz/foobar is the "current module", i.e. if we are on the MathHub path ...MathHub/fooMH/bar..., then stating the repository in the first optional argument is redundant, so we can just use
1 \mhframeimage\{baz/foobar\}

\textwarning

The \textwarning macro generates a warning sign: ©
In course notes, we sometimes want to point to an "excursion" - material that is either presupposed or tangential to the course at the moment - e.g. in an appendix. The typical setup is the following:
1 \excursion\{founif\}\{../ex/founif\}\{We will cover first-order unification in\} 2 ...
$3 \backslash$ begin\{appendix\}\printexcursions\end\{appendix\} }

```
\excursion The \excursion{\langleref\rangle}{\langlepath\rangle}{\langletext\rangle} is syntactic sugar for
1 \begin{nparagraph}[title=Excursion]
2 \activateexcursion{founif}{../ex/founif}
3 We will cover first-order unification in \sref{founif}.
4 \end{nparagraph}
```

Here \activateexcursion $\{\langle p a t h\rangle\}$ augments the \printexcursions macro by a call \inputref $\{\langle p a t h\rangle\}$. In this way, the \backslash printexcursions macro (usually in the appendix) will collect up all excursions that are specified in the main text.

Sometimes, we want to reference - in an excursion - part of another. We can use \excursionref $\{\langle l a b e l\rangle\}$ for that.

Finally, we usually want to put the excursions into an sfragment environment and add an introduction, therefore we provide the a variant of the \printexcursions macro: \excursiongroup[id=$\langle i d\rangle$,intro $=\langle p a t h\rangle]$ is equivalent to
1 \begin\{note\} }
2 \begin\{sfragment\}[id=<id>]\{Excursions\} }
\inputref $\{<$ path>\}
\printexcursions
5 \end\{sfragment\} }
6 \end\{note\} }

When option book which uses \pagestyle\{headings\} is given and semantic macros are given in the sfragment titles, then they sometimes are not defined by the time the heading is formatted. Need to look into how the headings are made. This is a problem of the underlying document-structure package.

7.4 Representing Problems and Solutions

The problem package supplies an infrastructure that allows specify problem. Problems are text fragments that come with auxiliary functions: hints, notes, and solutions ${ }^{5}$. Furthermore, we can specify how long the solution to a given problem is estimated to take and how many points will be awarded for a perfect solution.

Finally, the problem package facilitates the management of problems in small files, so that problems can be re-used in multiple environment.
solutions
notes
hints gnotes pts
min
boxed
test

The problem package takes the options solutions (should solutions be output?), notes (should the problem notes be presented?), hints (do we give the hints?), gnotes (do we show grading notes?), pts (do we display the points awarded for solving the problem?), \min (do we display the estimated minutes for problem soling). If theses are specified, then the corresponding auxiliary parts of the problems are output, otherwise, they remain invisible.

The boxed option specifies that problems should be formatted in framed boxes so that they are more visible in the text. Finally, the test option signifies that we are in a test situation, so this option does not show the solutions (of course), but leaves space for the students to solve them.
problem The main environment provided by the problempackage is (surprise surprise) the problem environment. It is used to mark up problems and exercises. The environment takes an optional KeyVal argument with the keys id as an identifier that can be reference later, pts for the points to be gained from this exercise in homework or quiz situations, min for the estimated minutes needed to solve the problem, and finally title for an informative title of the problem.

[^12]
Example 40

Input:

```
\documentclass{article}
\usepackage[solutions,hints,pts,min] {problem}
\begin{document}
\begin{sproblem}[id=elefants,pts=10,min=2,title=Fitting Elefants]
        How many Elefants can you fit into a Volkswagen beetle?
        \begin{hint}
            Think positively, this is simple!
        \end{hint}
        \begin{exnote}
            Justify your answer
        \end{exnote}
\begin{solution}[for=elefants,height=3cm]
        Four, two in the front seats, and two in the back.
        \begin{gnote}
        if they do not give the justification deduct 5 pts
        \end{gnote}
\end{solution}
\end{sproblem}
\end{document}
```

Output:

```
Problem 7.4.1 (Fitting Elefants)
How many Elefants can you fit into a Volkswagen beetle?
Hint: Think positively, this is simple!
Note: Justify your answer
Solution: Four, two in the front seats, and two in the back.
Grading: if they do not give the justification deduct 5 pts
```

solution The solution environment can be to specify a solution to a problem. If the package option solutions is set or thetext,thenthesolutionwillbepresentedintheoutput.ThesolutionenvironmenttakesanoptionalKeyValargumentwiththekeysidforanidentifierthatcanbereferencefortospecifywhichproblemthisisasolutionfor,andheightthatallowstospecifytheamountofspacetobeleftintestsituations(i.e.ifthetestoptionissetinthe\usepackagestatement).hint,exnote,gnoteThehintandexnoteenvironmentscanbeusedinaproblemenvironmenttogivehintsandtomakenotesthatelaboratecertainaspectsoftheproblem.Thegnote(gradingnotes)environmentcanbeusedtodocumentsitutationsthatmayariseingrading.\startsolutions\stopsolutionsundefined

Sometimes we would like to locally override the solutions option we have given to the package. To turn on solutions we use the \startsolutions, to turn them off, \stopsolutions. These two can be used at any point in the documents.
\ifsolutions Also, sometimes, we want content (e.g. in an exam with master solutions) conditional on whether solutions are shown. This can be done with the \ifsolutions conditional.
mcb Multiple choice blocks can be formatted using the mcb environment, in which single choices are marked up with \mcc macro.
$\backslash \operatorname{mcc}[\langle k e y v a l s\rangle]\{\langle t e x t\rangle\}$ takes an optional key/value argument $\langle k e y v a l s\rangle$ for choice metadata and a required argument $\langle t e x t\rangle$ for the proposed answer text. The following keys are supported

- T for true answers, F for false ones,
- Ttext the verdict for true answers, Ftext for false ones, and
- feedback for a short feedback text given to the student.

If we start the solutions, then we get
Example 41
Input:

```
\startsolutions
2 \begin{sproblem}[title=Functions,name=functions1]
    What is the keyword to introduce a function definition in python?
    \begin{mcb}
        \mcc[T]{def}
        \mcc[F,feedback=that is for C and C++]{function}
        \mcc[F,feedback=that is for Standard ML]{fun}
        \mcc[F,Ftext=Noooo00000,feedback=that is for Java]{public static void}
        \end{mcb}
\end{sproblem}
```

Output:
Problem 7.4.2 (Functions)
What is the keyword to introduce a function definition in python?def
(true)function
(false) (that is for C and $C++$)fun
(false) (that is for Standard ML)public static void
(false) (that is for Java)
without solutions (that is what the students see during the exam/quiz) ${ }^{8}$

[^13]
Example 42

Input:

```
\stopsolutions
2 \begin{sproblem}[title=Functions,name=functions1]
    What is the keyword to introduce a function definition in python?
        \begin{mcb}
            \mcc[T]{def}
            \mcc[F,feedback=that is for C and C++]{function}
            \mcc[F,feedback=that is for Standard ML]{fun}
            \mcc[F,Ftext=Nooooooooo,feedback=that is for Java]{public static void}
        \end{mcb}
\end{sproblem}
```

Output:
Problem 7.4.3 (Functions)
What is the keyword to introduce a function definition in python?
\square def
(true)
\square function
(false) (that is for C and $C++$)
\square fun
(false) (that is for Standard ML)
\square public static void
(false) (that is for Java)

The \includeproblem macro can be used to include a problem from another file. It takes an optional KeyVal argument and a second argument which is a path to the file containing the problem (the macro assumes that there is only one problem in the include file). The keys title, min, and pts specify the problem title, the estimated minutes for solving the problem and the points to be gained, and their values (if given) overwrite the ones specified in the problem environment in the included file.

The sum of the points and estimated minutes (that we specified in the pts and min keys to the problem environment or the \includeproblem macro) to the log file and the screen after each run. This is useful in preparing exams, where we want to make sure that the students can indeed solve the problems in an allotted time period.

The \backslash min and $\backslash p t s$ macros allow to specify (i.e. to print to the margin) the distribution of time and reward to parts of a problem, if the pts and pts options are set. This allows to give students hints about the estimated time and the points to be awarded.

7.5 Homeworks, Quizzes and Exams

The hwexam package and class supplies an infrastructure that allows to format nicelooking assignment sheets by simply including problems from problem files marked up
with the roblem package. It is designed to be compatible with problems.sty, and inherits some of the functionality.

```
    solutions The wexam package and class take the options solutions, notes, hints, gnotes, pts,
    notes
    hints
    gnotes
    pts
    min
    assignment
        number
            title
            type
        given
            due
        multiple
            tes
    \testspace
    \testnewpage
\testemptypage
testheading
    duration
            min
        reqpts
1 \title{320101 General Computer Science (Fall 2010)}
2 \begin{testheading}[duration=one hour,min=60,reqpts=27]
3 Good luck to all students!
4 \end{testheading}
```

Will result in

Name:
Matriculation Number:

320101 General Computer Science (Fall 2010)

2022-05-24

You have one hour (sharp) for the test;

Write the solutions to the sheet.
The estimated time for solving this exam is 60 minutes, leaving you 0 minutes for revising your exam.
You can reach 40 points if you solve all problems. You will only need 27 points for a perfect score, i.e. 13 points are bonus points.

You have ample time, so take it slow and avoid rushing to mistakes!

Different problems test different skills and knowledge, so do not get stuck on one problem.

	To be used for grading, do not write here											
prob.	7.4.1	7.4.2	7.4.3	1.1	2.1	2.2	2.3	3.1	3.2	3.3	Sum	grade
total	10			4	4	6	6	4	4	2	40	
reached												

good luck

[^14]
References

[Bus+04] Stephen Buswell et al. The Open Math Standard, Version 2.0. Tech. rep. The OpenMath Society, 2004. URL: http://www.openmath.org/standard/om20.
[CR99] David Carlisle and Sebastian Rathz. The graphicxl package. Part of the TEX distribution. The Comprehensive TE_{E} Archive Network. 1999. URL: https: / / www . tug . org / texlive / devsrc / Master / texmf - dist / doc / latex / graphics/graphicx.pdf.
[DCM03] The DCMI Usage Board. DCMI Metadata Terms. DCMI Recommendation. Dublin Core Metadata Initiative, 2003. URL: http://dublincore . org/ documents/dcmi-terms/.
[Koh06] Michael Kohlhase. OMDoc - An open markup format for mathematical documents [Version 1.2]. LNAI 4180. Springer Verlag, Aug. 2006. URL: http: //omdoc.org/pubs/omdoc1.2.pdf.
[LMH] LMH Scripts. URL: https://github.com/sLaTeX/lmhtools.
[MMT] MMT - Language and System for the Uniform Representation of Knowledge. Project web site. URL: https://uniformal.github.io/ (visited on 01/15/2019).
[MRK18] Dennis Müller, Florian Rabe, and Michael Kohlhase. "Theories as Types". In: 9th International Joint Conference on Automated Reasoning. Ed. by Didier Galmiche, Stephan Schulz, and Roberto Sebastiani. Springer Verlag, 2018. URL: https://kwarc.info/kohlhase/papers/ijcar18-records.pdf.
[Rab15] Florian Rabe. "The Future of Logic: Foundation-Independence". In: Logica Universalis 10.1 (2015). 10.1007/s11787-015-0132-x; Winner of the Contest "The Future of Logic" at the World Congress on Universal Logic, pp. 1-20.
[RK13] Florian Rabe and Michael Kohlhase. "A Scalable Module System". In: Information \mathcal{G} Computation 0.230 (2013), pp. 1-54. URL: https://kwarc.info/ frabe/Research/mmt.pdf.
[RT] sLaTeX/RusTeX. URL: https://github.com/sLaTeX/RusTeX (visited on 04/22/2022).
[SIa] sLaTeX/sTeX-IDE. URL: https://github.com/slatex/sTeX-IDE (visited on $04 / 22 / 2022$).
[SIb] sLaTeX/stexls-vscode-plugin. URL: https://github.com/slatex/stexls-vscode-plugin (visited on 04/22/2022).
[SLS] sLaTeX/stexls. URL: https://github.com/slatex/stexls (visited on 04/22/2022).
[ST] sTeX - An Infrastructure for Semantic Preloading of LaTeX Documents. URL: https://ctan.org/pkg/stex (visited on 04/22/2022).
[sTeX] sTeX: A semantic Extension of $T e X / L a T e X$. URL: https://github.com/ sLaTeX/sTeX (visited on 05/11/2020).
[Tana] Till Tantau. beamer - A LaTeX class for producing presentations and slides. URL: http://ctan.org/pkg/beamer (visited on 01/07/2014).
[Tanb] Till Tantau. User Guide to the Beamer Class. URL: http://ctan.org/ macros/latex/contrib/beamer/doc/beameruserguide.pdf.
[TL] TeX Live. URL: http://www.tug.org/texlive/ (visited on 12/11/2012).

[^0]: *Version 3.1 (last revised 2022-05-24)

[^1]: \stexpatchmodule We can customize this behavior either for all modules or only for modules with a specific type using the command \stexpatchmodule[optional-type] \{begin-code\}\{end-code\}. Some optional parameters are then available in \smodule*-macros, specifically \smoduletitle, \smoduletype and \smoduleid.

 For example:
 Example 2
 Input:

[^2]: \symdef In the vast majority of cases where a symbol declaration should come with a semantic macro, we will want to supply a notation immediately. For that reason, the \symdef command combines the functionality of both \symdecl and \notation with the optional arguments of both:

[^3]: \varinstantiate
 The answer is that we can also instantiate a mathstructure with a variable. The syntax of \varianstantiate is equivalent to that of \instantiate, but all of the key-valuepairs are optional, and if not explicitly assigned (to a symbol or a variable declared with \vardef) inherit their notation from the one in the mathstructure environment.

 This allows us to do things like:
 Example 27
 Input:

[^4]: ${ }^{1}$ EdNote: MK: I do not understand why we have to/want to give the second arg*; I think this must be elaborated on.

[^5]: ${ }^{2}$ EdNote: MK: I do not understand this at all.

[^6]: ${ }^{3}$ EdNote: MK: we should reference the example explicitly here.

[^7]: ${ }^{4}$ EdNote: MK: reference

[^8]: ${ }^{2}$ Of course, $\mathrm{ST}_{\mathrm{E}} \mathrm{X}$ can not check that the assertions are the "correct" ones - but if the assertions (both in monoid as well as those for addition and zero) are properly marked up, MmT can. TODO: should

[^9]: ${ }^{6}$ EdNote: MK: still?

[^10]: \skipfragment The \skipfragment "skips an sfragment", i.e. it just steps the respective sectioning counter. This macro is useful, when we want to keep two documents in sync structurally, so that section numbers match up: Any section that is left out in one becomes a \skipfragment.
 ${ }^{3}$ We shied away from redefining the frontmatter to induce a blindfragment, but this may be the "right" way to go in the future.
 ${ }^{7}$ EdNote: MK: We need a substitute for the "Note that here the display=flow on the sfragment environment prevents numbering as is traditional for prefaces."

[^11]: ${ }^{4} \mathrm{MK}$: it would be very nice, if we did not need this environment, and this should be possible in principle, but not without intensive LaTeX trickery. Hints to the author are welcome.

[^12]: ${ }^{5}$ for the moment multiple choice problems are not supported, but may well be in a future version

[^13]: ${ }^{8}$ EdNote: MK: that did not work!

[^14]: ${ }^{9}$ EdNote: MK: The first three "problems" come from the stex examples above, how do we get rid of this?

