
The STEX3 Manual ∗

Michael Kohlhase, Dennis Müller
FAU Erlangen-Nürnberg

http://kwarc.info/

2022-02-26

Abstract

STEX is a collection of LATEX package that allow to markup documents seman-
tically without leaving the document format, essentially turning LATEX into a doc-
ument format for mathematical knowledge management (MKM).
STEX augments LATEX with

• Semantic macros that denote and distinguish between mathematical concepts,
operators, etc. independent of their notational presentation,

• A powerful module system that allows for authoring and importing individual
fragments containing document text and/or semantic macros, independent of
– and without hard coding – directory paths relative to the current document,

• A mechanism for exporting STEX documents to (modular) XHTML, preserving
all the semantic information for semantically informed knowledge management
services.

This is the user manual for the STEX package and associated software. It is primarily
directed at end-users who want to use STEX to author semantically enriched documents.
For the full documentation, see the STEX documentation

∗Version 3.0 (last revised 2022-02-26)

i

http://kwarc.info/
https://github.com/slatex/sTeX/blob/latex3/doc/stex.pdf

Contents

1 What is STEX? 1

2 Quickstart 2
2.1 Setup . 2

2.1.1 The STEX IDE . 2
2.1.2 Manual Setup . 2

2.2 A First STEX Document . 3

3 Using STEX 5

4 STEX Archives 6
4.1 The Local MathHub-Directory . 6
4.2 The Structure of STEX Archives . 6
4.3 MANIFEST.MF-Files . 7

5 Creating New Modules and Symbols 8
5.1 Advanced Structuring Mechanisms . 8
5.2 Primitive Symbols (The STEX Metatheory) 9

6 STEX Statements (Definitions, Theorems, Examples, ...) 10

7 Additional Packages 11
7.1 Modular Document Structuring . 11
7.2 Slides and Course Notes . 11
7.3 Homework, Problems and Exams . 11

8 Stuff 12
8.1 Modules . 12

8.1.1 Semantic Macros and Notations . 12
Other Argument Types . 14
Precedences . 16

8.1.2 Archives and Imports . 16
Namespaces . 16
Paths in Import-Statements . 17

ii

Chapter 1

What is STEX?

Formal systems for mathematics (such as interactive theorem provers) have the potential
to significantly increase both the accessibility of published knowledge, as well as the confi-
dence in its veracity, by rendering the precise semantics of statements machine actionable.
This allows for a plurality of added-value services, from semantic search up to verifica-
tion and automated theorem proving. Unfortunately, their usefulness is hidden behind
severe barriers to accessibility; primarily related to their surface languages reminiscent
of programming languages and very unlike informal standards of presentation.

STEX minimizes this gap between informal and formal mathematics by integrating
formal methods into established and widespread authoring workflows, primarily LATEX,
via non-intrusive semantic annotations of arbitrary informal document fragments. That
way formal knowledge management services become available for informal documents,
accessible via an IDE for authors and via generated active documents for readers, while
remaining fully compatible with existing authoring workflows and publishing systems.

Additionally, an extensible library of reusable document fragments is being devel-
oped, that serve as reference targets for global disambiguation, intermediaries for content
exchange between systems and other services.

Every component of the system is designed modularly and extensibly, and thus lay
the groundwork for a potential full integration of interactive theorem proving systems
into established informal document authoring workflows.

The general STEX workflow combines functionalities provided by several pieces of soft-
ware:

• The STEX package to use semantic annotations in LATEX documents,

• RUSTEX to convert tex sources to (semantically enriched) xhtml,

• The Mmt software, that extracts semantic information from the thus generated
xhtml and provides semantically informed added value services.

1

Chapter 2

Quickstart

2.1 Setup
2.1.1 The STEX IDE
TODO: VSCode Plugin

2.1.2 Manual Setup
Foregoing on the STEX IDE, we will need several pieces of software; namely:

• The STEX-Package available here1. Note, that the CTAN repository for LATEXEdN:1
packages may contain outdated versions of the STEX package, so make sure, that
your TEXMF system variable is configured such that the packages available in the
linked repository are prioritized over potential default packages that come with
your TEX distribution.

• The Mmt System available here2. We recommend following the setup routineEdN:2
documented here.
Following the setup routine (Step 3) will entail designating a MathHub-directory
on your local file system, where the Mmt system will look for STEX/Mmt content
archives.

• To make sure that STEX too knows where to find its archives, we need to set a
global system variable MATHHUB, that points to your local MathHub-directory (see
chapter 4).

• STEX Archives If we only care about LATEX and generating pdfs, we do not
technically need Mmt at all; however, we still need the MATHHUB system variable to
be set. Furthermore, Mmt can make downloading content archives we might want
to use significantly easier, since it makes sure that all dependencies of (often highly
interrelated) STEX archives are cloned as well.
Once set up, we can run mmt in a shell and download an archive along with all of
its dependencies like this: lmh install <name-of-repository>, or a whole group
of archives; for example, lmh install smglom will download all smglom archives.

1EdNote: For now, we require the latex3-branch
2EdNote: For now, we require the sTeX-branch, requiring manually compiling the MMT sources

2

https://github.com/slatex/sTeX/blob/latex3/doc/stex.pdf
https://github.com/uniformal/MMT/tree/sTeX
https://uniformal.github.io//doc/setup/

• RUSTEX The Mmt system will also set up RUSTEX for you, which is used to generate
(semantically annotated) xhtml from tex sources. In lieu of using Mmt, you can
also download and use RUSTEX directly here.

2.2 A First STEX Document
Having set everything up, we can write a first STEX document. As an example, we will
use the smglom/calculus and smglom/arithmetics archives, which should be present
in the designated MathHub-folder.

The document we will consider is the following:

\ d o c u m e n t cl a s s { a r t i c l e }
\usepackage { s t e x }
\usepackage { x c o l o r }
\def\compemph#1{ \ t e x t c o l o r { b l u e }{#1}}

\begin {document}
\usemodule [smglom/ c a l c u l u s] { s e r i e s }
\usemodule [smglom/ a r i t h m e t i c s] { r e a l a r i t h }

The \symref { s e r i e s }{ s e r i e s } $ \ i n f i n i t e s u m {n}{1}{
\ r e a l d i v i d e [f r a c]{1}{

\ r e a l p o w e r {2}{n}
}

}$ \symref { c o n v e r g e s }{ c o n v e r g e s } towards 1 .

\end{document}

Compiling this document with pdflatex should yield the output

The series
∑∞

n=1
1

2n converges towards 1.

Note that the
∑

and ∞-symbols are highlighted in blue, and the words “series” and
“converges” in bold. This signifies that these words and symbols reference STEX symbols
formally declared somewhere; associating their presentation in the document with their
(formal) definition - i.e. their semantics. The precise way in which they are highlighted
(if at all) can of course be customized (see 3).EdN:3

The command \usemodule[some/archive]{modulename} finds some module in the ap-
propriate archive – in the first case (\usemodule[smglom/calculus]{series}), STEX
looks for the archive smglom/calculus in our local MathHub-directory (see chapter 4),
and in its source-folder for a file series.tex. Since no such file exists, and by default
the document is assumed to be in english, it picks the file series.en.tex, and indeed,
in here we find a statement \begin{smodule}{series}.

STEX now reads this file and makes all semantic macros therein available to use,
along with all its dependencies. This enables the usage of \infinitesum later on.

Analogously, \usemodule[smglom/arithmetics]{realarith} opens the file realarith.en.tex
in the .../smglom/arithmetics/source-folder and makes its contents available, e.g.
\realdivide and \realpower.

\usemodule

3EdNote: somewhere later

3

https://github.com/slatex/RusTeX

The command \symref{symbolname}{text} marks the text in the second argument as
representing the symbolname in the first argument – which is why the word “series” is set
in boldface. In the pdf, this is all that happens. In the xhtml (which we will investigate
shortly) however, we will note that the word “series” is now annotated with the full URI
of the symbol denoting the mathematical concept of a series. In other words, the word
is associated with an unambiguous semantics.

Notably, in both cases above (series and converges) the text that references the
symbol and the name of the symbol are identical. Since this occurs quite often, the
shorthand \symname{converges} would have worked as well, where \symname{foo-bar}
behaves exactly like \symref{foo-bar}{foo bar} - i.e. the text is simply the name of
the symbol with “-” replaced by a space.

\symref
\symname

If you investigated the contents of the imported modules (realarith and series) more
closely, you’ll note that none of them contain a symbol “converges”. Yet, we can
use \symref to refer to “converges”. That is because the symbol converges is found
in smglom/calculus/source/sequenceConvergence.en.tex, and series.en.tex con-
tains the line \importmodule{sequenceConvergence}. The \importmodule-statement
makes the module referenced available to all documents that include the current module.
As such, a “current module” has to exist for \importmodule to work, which is why the
command is only allowed within a module-environment.

\importmodule

TODO explain xhtml conversion, MMT compilation (requires an archive...?).

4

Chapter 3

Using STEX

Both the stex package and document class offer the following options:

lang (⟨language⟩∗) Languages to load with the babel package.

mathhub (⟨directory⟩) MathHub folder to search for repositories.

sms (⟨boolean⟩) use persisted mode (not yet implemented).

image (⟨boolean⟩) passed on to tikzinput.

debug (⟨log-prefix⟩∗) Logs debugging information with the given prefixes to the terminal,
or all if all is given.

TODO: terms documentation
TODO: references documentation

5

Chapter 4

STEX Archives

4.1 The Local MathHub-Directory
\usemodule, \importmodule, \inputref etc. allow for including content modularly
without having to specify absolute paths, which would differ between users and ma-
chines. Instead, STEX uses archives that determine the global namespaces for symbols
and statements and make it possible for STEX to find content referenced via such URIs.

All STEX archives need to exist in the local MathHub-directory. STEX knows where
this folder is via one of three means:

1. If the STEX package is loaded with the option mathhub=/path/to/mathhub, then
STEX will consider /path/to/mathhub as the local MathHub-directory.

2. If the mathhub package option is not set, but the macro \mathhub exists when the
STEX-package is loaded, then this macro is assumed to point to the local MathHub-
directory; i.e. \def\mathhub{/path/to/mathhub}\usepackage{stex} will set the
MathHub-directory as path/to/mathhub.

3. Otherwise, STEX will attempt to retrieve the system variable MATHHUB, assuming it
will point to the local MathHub-directory. Since this variant needs setting up only
once and is machine-specific (rather than defined in tex code), it is compatible with
collaborating and sharing tex content, and hence recommended.

4.2 The Structure of STEX Archives
An STEX archive group/name needs to be stored in the directory /path/to/mathhub/group/name;
e.g. assuming your local MathHub-directory is set as /user/foo/MathHub, then in order
for the smglom/calculus-archive to be found by the STEX system, it needs to be in
/user/foo/MathHub/smglom/calculus.

Each such archive needs two subdirectories:

• /source – this is where all your tex files go.

• /META-INF – a directory containing a single file MANIFEST.MF, the content of which
we will consider shortly

6

An additional lib-directory is optional, and is where STEX will look for files included via
\libinput.

Additionally a group of archives group/name may have an additional archive
group/meta-inf. If this meta-inf-archive has a /lib-subdirectory, it too will be
searched by \libinput from all tex files in any archive in the group/*-group.

4.3 MANIFEST.MF-Files
The MANIFEST.MF in the META-INF-directory consists of key-value-pairs, instructing
STEX (and associated software) of various properties of an archive. For example, the
MANIFEST.MF of the smglom/calculus-archive looks like this:

id: smglom/calculus
source-base: http://mathhub.info/smglom/calculus
narration-base: http://mathhub.info/smglom/calculus
dependencies: smglom/arithmetics,smglom/sets,smglom/topology,

smglom/mv,smglom/linear-algebra,smglom/algebra
responsible: Michael.Kohlhase@FAU.de
title: Elementary Calculus
teaser: Terminology for the mathematical study of change.
description: desc.html

Many of these are in fact ignored by STEX, but some are important:

id: The name of the archive, including its group (e.g. smglom/calculus),

source-base or

ns: The namespace from which all symbol and module URIs in this repository are
formed, see (TODO),

narration-base: The namespace from which all document URIs in this repository are formed, see
(TODO),

url-base: The URL that is formed as a basis for external references, see (TODO),

dependencies: All archives that this archive depends on. STEX ignores this field, but Mmt can
pick up on them to resolve dependencies, e.g. for lmh install.

7

Chapter 5

Creating New Modules and
Symbols

TODO
Example 1

\begin { smodule }{ a s s o c t e s t }
\symdef { f o o } [a r g s=i i a] { \comp{ a : }#1\comp { ; b : }#2\comp { ; c : }#3}{\comp[#1\comp{;}##1\comp+##2\comp;#2\comp] }
$ \ f o o {w_1}{w_2}{ x , y , z }$
\end{ smodule }

Module 1: a :w1; b :w2; c :[w1;x+[w1;y+z;w2];w2]

˙
TODO: modules documentation
TODO: symbols documentation
TODO: inheritance documentation

5.1 Advanced Structuring Mechanisms
Given modules:

Example 2

\begin { smodule }{magma}
\symdef { u n i v e r s e }{\comp{ \mathcal U}}
\symdef { o p e r a t i o n } [a r g s=2, o p=\ c i r c]{#1 \comp\circ #2}
\end{ smodule }
\begin { smodule }{monoid}
\importmodule {magma}
\symdef { u n i t }{\comp e }
\end{ smodule }
\begin { smodule }{ group }
\importmodule {monoid}
\symdef { i n v e r s e } [a r g s =1]{{#1}^{\comp{−1}}}
\end{ smodule }

Module 2:
Module 3:
Module 4:

8

˙
We can form a module for rings by “cloning” an instance of group (for addition)

and monoid (for multiplication), respectively, and “glueing them together” to ensure they
share the same universe:

Example 3

\begin { smodule }{ r i n g }
\begin { copymodule }{ group }{ a d d i t i o n }
\renamedecl [name=u n i v e r s e] { u n i v e r s e }{ r u n i v e r s e }
\renamedecl [name=p l u s] { o p e r a t i o n }{ r p l u s }
\renamedecl [name=z e r o] { u n i t }{ r z e r o }
\renamedecl [name=uminus] { i n v e r s e }{ ruminus }
\end{ copymodule }
\ n o t a t i o n ∗ { r p l u s } [p l u s , o p=+, p r e c =60]{#1 \comp+ #2}
\ n o t a t i o n ∗ { r z e r o } [z e r o] { \comp0}
\ n o t a t i o n ∗ { ruminus } [uminus,op=−]{\comp− #1}
\begin { copymodule }{monoid}{ m u l t i p l i c a t i o n }
\ a s s i g n { u n i v e r s e }{ \ r u n i v e r s e }
\renamedecl [name=t i m e s] { o p e r a t i o n }{ r t i m e s }
\renamedecl [name=one] { u n i t }{ rone }
\end{ copymodule }
\ n o t a t i o n ∗ { r t i m e s } [c d o t , o p=\ c d o t , p r e c =50]{#1 \comp\cdot #2}
\ n o t a t i o n ∗ { rone } [one] { \comp1}
T e s t : $ \ r t i m e s a{ \ r p l u s c { \ r t i m e s de }}$
\end{ smodule }

Module 5: Test: a·(c+d·e)

˙
TODO: explain donotclone

Example 4

\begin { smodule }{ i n t }
\symdef { I n t e g e r s }{\comp{\mathbb Z}}
\symdef { p l u s } [a r g s=2, o p =+]{#1 \comp+ #2}
\symdef { z e r o }{\comp0}
\symdef {uminus } [a r g s=1, o p =−]{\comp−#1}

\begin { i n t e r p r e t m o d u l e }{ group }{ i n t i s g r o u p }
\ a s s i g n { u n i v e r s e }{ \ I n t e g e r s }
\ a s s i g n { o p e r a t i o n }{ \ p l u s ! }
\ a s s i g n { u n i t }{ \ z e r o }
\ a s s i g n { i n v e r s e }{\uminus ! }
\end{ i n t e r p r e t m o d u l e }
\end{ smodule }

Module 6:

˙

5.2 Primitive Symbols (The STEX Metatheory)
TODO: metatheory documentation

9

Chapter 6

STEX Statements (Definitions,
Theorems, Examples, ...)

TODO: statements documentation
TODO: sproofs documentation

10

Chapter 7

Additional Packages

TODO: tikzinput documentation

7.1 Modular Document Structuring
TODO: document-structure documentation

7.2 Slides and Course Notes
TODO: notesslides documentation

7.3 Homework, Problems and Exams
TODO: problem documentation

TODO: hwexam documentation

11

Chapter 8

Stuff

8.1 Modules

Both print this STEX logo.\sTeX
\stex

8.1.1 Semantic Macros and Notations
Semantic macros invoke a formally declared symbol.

To declare a symbol (in a module), we use \symdecl, which takes as argument the
name of the corresponding semantic macro, e.g. \symdecl{foo} introduces the macro
\foo. Additionally, \symdecl takes several options, the most important one being its
arity. foo as declared above yields a constant symbol. To introduce an operator which
takes arguments, we have to specify which arguments it takes.

Module 7: For example, to introduce binary multiplication, we can do
\symdecl{mult}[args=2]. We can then supply the semantic macro with arbitrarily
many notations, such as \notation{mult}{#1 #2}.

Example 5

\symdecl {mult } [a r g s =2]
\ n o t a t i o n {mult}{#1 #2}
$ \mult{a}{b}$

ab

˙
Since usually, a freshly introduced symbol also comes with a notation from the start,

the \symdef command combines \symdecl and \notation. So instead of the above, we
could have also written

\symdef{mult}[args=2]{#1 #2}

12

Adding more notations like \notation{mult}[cdot]{#1 \comp{\cdot} #2} or
\notation{mult}[times]{#1 \comp{\times} #2} allows us to write $\mult[cdot]{a}{b}$
and $\mult[times]{a}{b}$:

Example 6

\ n o t a t i o n {mult } [cdot]{#1 \comp{ \cdot } #2}
\ n o t a t i o n {mult } [t i m e s]{#1 \comp{ \times } #2}
$ \mult [cdot] { a}{b}$ and $ \mult [t i m e s] { a}{b}$

a·b and a×b

˙
Not using an explicit option with a semantic macro yields the first declared notation,

unless changed4.EdN:4
Outside of math mode, or by using the starred variant \foo*, allows to provide a

custom notation, where notational (or textual) components can be given explicitly in
square brackets.

Example 7

$ \mult∗{ \arg {a}\comp{ \ a s t } \arg {b}}$ i s the
\mult{\comp{ product o f } \arg {a} \comp{and} \arg {b}}

a∗b is the product of a and b

˙
In custom mode, prefixing an argument with a star will not print that argument,

but still export it to OMDoc:
Example 8

\mult{\comp{ M u l t i p l y i n g } \arg∗ {$ \mult{a}{b}$} a g a i n by \arg {$b$}} y i e l d s . . .

Multiplying again by b yields...

˙The syntax *[⟨int⟩] allows switching the order of arguments. For example, given
a 2-ary semantic macro \forevery with exemplary notation \forall #1. #2, we can
write

Example 9

\symdecl { f o r e v e r y } [a r g s =2]
\ f o r e v e r y { \arg [2] { The p r o p o s i t i o n P} \comp{ h o l d s f o r e v e r y } \arg [1] { $ x\in A$}}

The proposition P holds for every x ∈ A

˙
4EdNote: TODO

13

When using *[n], after reading the provided (nth) argument, the “argument
counter” automatically continues where we left off, so the *[1] in the above example
can be omitted.

For a macro with arity > 0, we can refer to the operator itself semantically by
suffixing the semantic macro with an exclamation point ! in either text or math mode.
For that reason \notation (and thus \symdef) take an additional optional argument
op=, which allows to assign a notation for the operator itself. e.g.

Example 10

\symdef {add } [a r g s=2, o p ={+}]{#1 \comp+ #2}
The o p e r a t o r $\add ! $ adds two e l e m e n t s , as i n $\add ab$.

The operator + adds two elements, as in a+b.

˙
* is composable with ! for custom notations, as in:

Example 11

\mult ! { \comp{ M u l t i p l i c a t i o n }} (denoted by $ \mult ! ∗{\comp\cdot}$) i s d e f i n e d by . . .

Multiplication (denoted by ·) is defined by...

˙
The macro \comp as used everywhere above is responsible for highlighting, linking,

and tooltips, and should be wrapped around the notation (or text) components that
should be treated accordingly. While it is attractive to just wrap a whole notation, this
would also wrap around e.g. the arguments themselves, so instead, the user is tasked
with marking the notation components themself.

The precise behaviour of \comp is governed by the macro \@comp, which takes two
arguments: The tex code of the text (unexpanded) to highlight, and the URI of the
current symbol. \@comp can be safely redefined to customize the behaviour.

The starred variant \symdecl*{foo} does not introduce a semantic macro, but
still declares a corresponding symbol. foo (like any other symbol, for that matter) can
then be accessed via \STEXsymbol{foo} or (if foo was declared in a module Foo) via
\STEXModule{Foo}?{foo}.

both \STEXsymbol and \STEXModule take any arbitrary ending segment of a full
URI to determine which symbol or module is meant. e.g. \STEXsymbol{Foo?foo} is also
valid, as are e.g. \STEXModule{path?Foo}?{foo} or \STEXsymbol{path?Foo?foo}

There’s also a convient shortcut \symref{?foo}{some text} for \STEXsymbol{?foo}![some text].

Other Argument Types

So far, we have stated the arity of a semantic macro directly. This works if we only have
“normal” (or more precisely: i-type) arguments. To make use of other argument types,
instead of providing the arity numerically, we can provide it as a sequence of characters
representing the argument types – e.g. instead of writing args=2, we can equivalently
write args=ii, indicating that the macro takes two i-type arguments.

14

Besides i-type arguments, STEX has two other types, which we will discuss now.
The first are binding (b-type) arguments, representing variables that are bound by

the operator. This is the case for example in the above \forevery-macro: The first
argument is not actually an argument that the forevery “function” is “applied” to;
rather, the first argument is a new variable (e.g. x) that is bound in the subsequent
argument. More accurately, the macro should therefore have been implemented thusly:

\symdef{forevery}[args=bi]{\forall #1.\; #2}

Module 8: b-type arguments are indistinguishable from i-type arguments within
STEX, but are treated very differently in OMDoc and by Mmt. More interesting within
STEX are a-type arguments, which represent (associative) arguments of flexible arity,
which are provided as comma-separated lists. This allows e.g. better representing the
\mult-macro above:

Example 12

\symdef {mult } [a r g s=a]{#1}{##1 \comp\cdot ##2}
$ \mult{ a , b , c , {d ^ e } , f }$

a·b·c·de·f

˙As the example above shows, notations get a little more complicated for associative
arguments. For every a-type argument, the \notation-macro takes an additional argu-
ment that declares how individual entries in an a-type argument list are aggregated. The
first notation argument then describes how the aggregated expression is combined into
the full representation.

For a more interesting example, consider a flexary operator for ordered sequences in
ordered set, that taking arguments {a,b,c} and \mathbb{R} prints a ≤ b ≤ c ∈ R. This
operator takes two arguments (an a-type argument and an i-type argument), aggregates
the individuals of the associative argument using \leq, and combines the result with \in
and the second argument thusly:

Example 13

\symdef {numseq } [a r g s=a i]{#1 \comp\in #2}{##1 \comp\leq ##2}
$\numseq{ a , b , c }{\mathbb R}$

a≤b≤c∈R

˙
Finally, B-type arguments combine the functionalities of a and b, i.e. they represent

flexary binding operator arguments.
5 6EdN:5EdN:6

5EdNote: what about e.g. \int _x\int _y\int _z f dx dy dz?
6EdNote: “decompose” a-type arguments into fixed-arity operators?

15

Precedences

Every notation has an (upwards) operator precedence and for each argument a (down-
wards) argument precedence used for automated bracketing. For example, a notation for
a binary operator \foo could be declared like this:

\notation{foo}[prec=200;500x600]{#1 \comp{+} #2}

assigning an operator precedence of 200, an argument precedence of 500 for the first
argument, and an argument precedence of 600 for the second argument.

STEX insert brackets thusly: Upon encountering a semantic macro (such as \foo),
its operator precedence (e.g. 200) is compared to the current downwards precedence
(initially \neginfprec). If the operator precedence is larger than the current downwards
precedence, parentheses are inserted around the semantic macro.

Notations for symbols of arity 0 have a default precedence of \infprec, i.e. by
default, parentheses are never inserted around constants. Notations for symbols with
arity > 0 have a default operator precedence of 0. If no argument precedences are
explicitly provided, then by default they are equal to the operator precedence.

Consequently, if some operator A should bind stronger than some operator B, then
As operator precedence should be smaller than Bs argument precedences.

For example:
Module 9:

Example 14

\ n o t a t i o n { p l u s } [p r e c =100]{#1 \comp{+} #2}
\ n o t a t i o n { t i m e s } [p r e c =50]{#1 \comp{ \cdot } #2}
$ \ p l u s {a}{ \times {b}{ c }}$ and $ \times {a}{ \ p l u s {b}{ c }}$

a+b·c and a·(b+c)

˙

8.1.2 Archives and Imports
Namespaces

Ideally, STEX would use arbitrary URIs for modules, with no forced relationships between
the logical namespace of a module and the physical location of the file declaring the
module – like Mmt does things.

Unfortunately, TEX only provides very restricted access to the file system, so we are
forced to generate namespaces systematically in such a way that they reflect the physical
location of the associated files, so that STEX can resolve them accordingly. Largely, users
need not concern themselves with namespaces at all, but for completenesses sake, we
describe how they are constructed:

• If \begin{module}{Foo} occurs in a file /path/to/file/Foo[.⟨lang⟩].tex which
does not belong to an archive, the namespace is file://path/to/file.

• If the same statement occurs in a file /path/to/file/bar[.⟨lang⟩].tex, the
namespace is file://path/to/file/bar.

16

In other words: outside of archives, the namespace corresponds to the file URI with
the filename dropped iff it is equal to the module name, and ignoring the (optional)
language suffix1.

If the current file is in an archive, the procedure is the same except that the initial
segment of the file path up to the archive’s source-folder is replaced by the archive’s
namespace URI.

Paths in Import-Statements

Conversely, here is how namespaces/URIs and file paths are computed in import state-
ments, examplary \importmodule:

• \importmodule{Foo} outside of an archive refers to module Foo in the current
namespace. Consequently, Foo must have been declared earlier in the same docu-
ment or, if not, in a file Foo[.⟨lang⟩].tex in the same directory.

• The same statement within an archive refers to either the module Foo declared
earlier in the same document, or otherwise to the module Foo in the archive’s top-
level namespace. In the latter case, is has to be declared in a file Foo[.⟨lang⟩].tex
directly in the archive’s source-folder.

• Similarly, in \importmodule{some/path?Foo} the path some/path refers to either
the sub-directory and relative namespace path of the current directory and names-
pace outside of an archive, or relative to the current archive’s top-level namespace
and source-folder, respectively.
The module Foo must either be declared in the file ⟨top-directory⟩/some/path/Foo[.⟨lang⟩].tex,
or in ⟨top-directory⟩/some/path[.⟨lang⟩].tex (which are checked in that order).

• Similarly, \importmodule[Some/Archive]{some/path?Foo} is resolved like the
previous cases, but relative to the archive Some/Archive in the mathhub-directory.

• Finally, \importmodule{full://uri?Foo} naturally refers to the module Foo in
the namespace full://uri. Since the file this module is declared in can not be
determined directly from the URI, the module must be in memory already, e.g. by
being referenced earlier in the same document.
Since this is less compatible with a modular development, using full URIs directly
is discouraged.

1which is internally attached to the module name instead, but a user need not worry about that.

17

	Contents
	1 What is ?
	2 Quickstart
	2.1 Setup
	2.1.1 The IDE
	2.1.2 Manual Setup

	2.2 A First Document

	3 Using
	4 Archives
	4.1 The Local MathHub-Directory
	4.2 The Structure of Archives
	4.3 MANIFEST.MF-Files

	5 Creating New Modules and Symbols
	5.1 Advanced Structuring Mechanisms
	5.2 Primitive Symbols (The Metatheory)

	6 Statements (Definitions, Theorems, Examples, ...)
	7 Additional Packages
	7.1 Modular Document Structuring
	7.2 Slides and Course Notes
	7.3 Homework, Problems and Exams

	8 Stuff
	8.1 Modules
	8.1.1 Semantic Macros and Notations
	Other Argument Types
	Precedences

	8.1.2 Archives and Imports
	Namespaces
	Paths in Import-Statements

