
sproof.sty: Structural Markup for Proofs∗

Michael Kohlhase
Jacobs University, Bremen

http://kwarc.info/kohlhase

April 7, 2016

Abstract

The sproof package is part of the STEX collection, a version of TEX/LATEX
that allows to markup TEX/LATEX documents semantically without leaving
the document format, essentially turning TEX/LATEX into a document format
for mathematical knowledge management (MKM).

This package supplies macros and environment that allow to annotate
the structure of mathematical proofs in STEX files. This structure can be
used by MKM systems for added-value services, either directly from the

STEX sources, or after translation.

∗Version v1.1 (last revised 2016/04/06)

1

http://kwarc.info/kohlhase

Contents

1 Introduction 3

2 The User Interface 4
2.1 Package Options . 4
2.2 Proofs and Proof steps . 4
2.3 Justifications . 4
2.4 Proof Structure . 6
2.5 Proof End Markers . 6
2.6 Configuration of the Presentation 7

3 Limitations 7

4 The Implementation 8
4.1 Package Options . 8
4.2 Proofs . 8
4.3 Justifications . 13

2

1 Introduction

The sproof (semantic proofs) package supplies macros and environment that allow
to annotate the structure of mathematical proofs in STEX files. This structure can
be used by MKM systems for added-value services, either directly from the STEX
sources, or after translation. Even though it is part of the STEX collection, it can
be used independently, like it’s sister package statements.

STEX is a version of TEX/LATEX that allows to markup TEX/LATEX documents
semantically without leaving the document format, essentially turning TEX/LATEX
into a document format for mathematical knowledge management (MKM).

% \begin{sproof}[id=simple-proof,for=sum-over-odds]
% {We prove that $\sum_{i=1}^n{2i-1}=n^{2}$ by induction over n}
% \begin{spfcases}{For the induction we have to consider the following cases:}
% \begin{spfcase}{$n=1$}
% \begin{spfstep}[display=flow] then we compute $1=1^2$\end{spfstep}
% \end{spfcase}
% \begin{spfcase}{$n=2$}
% \begin{sproofcomment}[display=flow]
% This case is not really necessary, but we do it for the
% fun of it (and to get more intuition).
% \end{sproofcomment}
% \begin{spfstep}[display=flow] We compute $1+3=2^{2}=4$.\end{spfstep}
% \end{spfcase}
% \begin{spfcase}{$n>1$}
% \begin{spfstep}[type=assumption,id=ind-hyp]
% Now, we assume that the assertion is true for a certain $k\geq 1$,
% i.e. $\sum_{i=1}^k{(2i-1)}=k^{2}$.
% \end{spfstep}
% \begin{sproofcomment}
% We have to show that we can derive the assertion for $n=k+1$ from
% this assumption, i.e. $\sum_{i=1}^{k+1}{(2i-1)}=(k+1)^{2}$.
% \end{sproofcomment}
% \begin{spfstep}
% We obtain $\sum_{i=1}^{k+1}{2i-1}=\sum_{i=1}^k{2i-1}+2(k+1)-1$
% \begin{justification}[method=arith:split-sum]
% by splitting the sum.
% \end{justification}
% \end{spfstep}
% \begin{spfstep}
% Thus we have $\sum_{i=1}^{k+1}{(2i-1)}=k^2+2k+1$
% \begin{justification}[method=fertilize]
% by inductive hypothesis.
% \end{justification}
% \end{spfstep}
% \begin{spfstep}[type=conclusion]
% We can \begin{justification}[method=simplify]simplify\end{justification}
% the right-hand side to ${k+1}^2$, which proves the assertion.
% \end{spfstep}
% \end{spfcase}
% \begin{spfstep}[type=conclusion]
% We have considered all the cases, so we have proven the assertion.
% \end{spfstep}
% \end{spfcases}
% \end{sproof}
%

Example 1: A very explicit proof, marked up semantically

We will go over the general intuition by way of our running example (see
Figure 1 for the source and Figure 2 for the formatted result).1EdN:1

1EdNote: talk a bit more about proofs and their structure,... maybe copy from OMDoc spec.

3

2 The User Interface

2.1 Package Options

The sproof package takes a single option: showmeta. If this is set, then theshowmeta

metadata keys are shown (see [Koh15a] for details and customization options).

2.2 Proofs and Proof steps

The proof environment is the main container for proofs. It takes an optionalsproof

KeyVal argument that allows to specify the id (identifier) and for (for which as-
sertion is this a proof) keys. The regular argument of the proof environment con-
tains an introductory comment, that may be used to announce the proof style. The
proof environment contains a sequence of \step, proofcomment, and pfcases en-
vironments that are used to markup the proof steps. The proof environment has
a variant Proof, which does not use the proof end marker. This is convenient, if
a proof ends in a case distinction, which brings it’s own proof end marker with
it. The Proof environment is a variant of proof that does not mark the end ofsProof

a proof with a little box; presumably, since one of the subproofs already has one
and then a box supplied by the outer proof would generate an otherwise empty
line. The \spfidea macro allows to give a one-paragraph description of the proof\spfidea

idea.
For one-line proof sketches, we use the \spfsketch macro, which takes thespfsketch

KeyVal argument as sproof and another one: a natural language text that
sketches the proof.

Regular proof steps are marked up with the step environment, which takes anspfstep

optional KeyVal argument for annotations. A proof step usually contains a local
assertion (the text of the step) together with some kind of evidence that this can
be derived from already established assertions.

Note that both \premise and \justarg can be used with an empty second
argument to mark up premises and arguments that are not explicitly mentioned
in the text.

2.3 Justifications

This evidence is marked up with the justification environment in the sproofjustification

package. This environment totally invisible to the formatted result; it wraps the
text in the proof step that corresponds to the evidence. The environment takes
an optional KeyVal argument, which can have the method key, whose value is the
name of a proof method (this will only need to mean something to the application
that consumes the semantic annotations). Furthermore, the justification can con-
tain “premises” (specifications to assertions that were used justify the step) and
“arguments” (other information taken into account by the proof method).

The \premise macro allows to mark up part of the text as reference to an\premise

assertion that is used in the argumentation. In the example in Figure 1 we have
used the \premise macro to identify the inductive hypothesis.

4

Proof : We prove that
∑n

i=1 2i− 1 = n2 by induction over n

P.1 For the induction we have to consider the following cases:

P.1.1 n = 1: then we compute 1 = 12

P.1.2 n = 2: This case is not really necessary, but we do it for the fun of it
(and to get more intuition). We compute 1 + 3 = 22 = 4

P.1.3 n > 1:

P.1.3.1 Now, we assume that the assertion is true for a certain k ≥ 1, i.e.∑k
i=1 (2i− 1) = k2.

P.1.3.2 We have to show that we can derive the assertion for n = k + 1 from this
assumption, i.e.

∑k+1
i=1 (2i− 1) = (k + 1)2.

P.1.3.3 We obtain
∑k+1

i=1 (2i− 1) =
∑k

i=1 (2i− 1) + 2(k + 1)− 1 by splitting the
sum

P.1.3.4 Thus we have
∑k+1

i=1 (2i− 1) = k2 + 2k + 1 by inductive hypothesis.

P.1.3.5 We can simplify the right-hand side to (k + 1)2, which proves the asser-
tion.

P.1.4 We have considered all the cases, so we have proven the assertion.

Example 2: The formatted result of the proof in Figure 1

5

The \justarg macro is very similar to \premise with the difference that it\justarg

is used to mark up arguments to the proof method. Therefore the content of the
first argument is interpreted as a mathematical object rather than as an identifier
as in the case of \premise. In our example, we specified that the simplification
should take place on the right hand side of the equation. Other examples include
proof methods that instantiate. Here we would indicate the substituted object in
a \justarg macro.

2.4 Proof Structure

The pfcases environment is used to mark up a subproof. This environment takessubproof

an optional KeyVal argument for semantic annotations and a second argument that
allows to specify an introductory comment (just like in the proof environment).
The method key can be used to give the name of the proof method executed tomethod

make this subproof.
The pfcases environment is used to mark up a proof by cases. Technicallyspfcases

it is a variant of the subproof where the method is by-cases. Its contents are
spfcase environments that mark up the cases one by one.

The content of a pfcases environment are a sequence of case proofs markedspfcase

up in the pfcase environment, which takes an optional KeyVal argument for
semantic annotations. The second argument is used to specify the the description
of the case under consideration. The content of a pfcase environment is the
same as that of a proof, i.e. steps, proofcomments, and pfcases environments.
\spfcasesketch is a variant of the spfcase environment that takes the same\spfcasesketch

arguments, but instead of the spfsteps in the body uses a third argument for a
proof sketch.

The proofcomment environment is much like a step, only that it does notsproofcomment

have an object-level assertion of its own. Rather than asserting some fact that
is relevant for the proof, it is used to explain where the proof is going, what we
are attempting to to, or what we have achieved so far. As such, it cannot be the
target of a \premise.

2.5 Proof End Markers

Traditionally, the end of a mathematical proof is marked with a little box at the
end of the last line of the proof (if there is space and on the end of the next line
if there isn’t), like so:

The sproof package provides the \sproofend macro for this. If a different\sproofend

symbol for the proof end is to be used (e.g. q.e.d), then this can be obtained by
specifying it using the \sProofEndSymbol configuration macro (e.g. by specifying\sProofEndSymbol

\sProofEndSymbol{q.e.d}).
Some of the proof structuring macros above will insert proof end symbols for

sub-proofs, in most cases, this is desirable to make the proof structure explicit, but
sometimes this wastes space (especially, if a proof ends in a case analysis which
will supply its own proof end marker). To suppress it locally, just set proofend={}
in them or use use \sProofEndSymbol{}.

6

2.6 Configuration of the Presentation

Finally, we provide configuration hooks in Figure 1 for the keywords in proofs.
These are mainly intended for package authors building on statements, e.g.
for multi-language support.2. The proof step labels can be customized viaEdN:2

Environment configuration macro value

sproof \spf@proof@kw Proof
sketchproof \spf@sketchproof@kw Proof Sketch

Figure 1: Configuration Hooks for Semantic Proof Markup

the \pstlabelstyle macro: \pstlabelstyle{〈style〉} sets the style; see Fig-\pstlabelstyle

ure 2 for an overview of styles. Package writers can add additional styles by
adding a macro \pst@make@label@〈style〉 that takes two arguments: a comma-
separated list of ordinals that make up the prefix and the current ordinal.
Note that comma-separated lists can be conveniently iterated over by the LATEX
\@for. . . :=. . . \do{. . . } macro; see Figure 2 for examples.

style example configuration macro

long 0.8.1.5 \def\pst@make@label@long#1#2{\@for\@I:=#1\do{\@I.}#2}

angles 〉〉〉5 \def\pst@make@label@angles#1#2

{\ensuremath{\@for\@I:=#1\do{\rangle}}#2}

short 5 \def\pst@make@label@short#1#2{#2}

empty \def\pst@make@label@empty#1#2{}

Figure 2: Configuration Proof Step Label Styles

3 Limitations

In this section we document known limitations. If you want to help alleviate
them, please feel free to contact the package author. Some of them are currently
discussed in the TRAC.

1. The numbering scheme of proofs cannot be changed. It is more geared for
teaching proof structures (the author’s main use case) and not for writing
papers. (reported by Tobias Pfeiffer; see [sTeX:online], issue 1658)
(fixed)

2. currently proof steps are formatted by the LATEX description environment.
We would like to configure this, e.g. to use the inparaenum environment for
more condensed proofs. I am just not sure what the best user interface would
be I can imagine redefining an internal environment spf@proofstep@list or
adding a key prooflistenv to the proof environment that allows to specify
the environment directly. Maybe we should do both.

2EdNote: we might want to develop an extension sproof-babel in the future.

7

4 The Implementation

4.1 Package Options

We declare some switches which will modify the behavior according to the package
options. Generally, an option xxx will just set the appropriate switches to true
(otherwise they stay false).3EdN:3

1 〈∗package〉
2 \DeclareOption*{\PassOptionsToPackage{\CurrentOption}{sref}}

3 \ProcessOptions

Then we make sure that the sref package is loaded [Koh15b].

4 \RequirePackage{sref}

5 \RequirePackage{etoolbox}

6 \RequirePackage[base]{babel}

4.2 Proofs

We first define some keys for the proof environment.

7 \srefaddidkey{spf}

8 \addmetakey*{spf}{display}

9 \addmetakey{spf}{for}

10 \addmetakey{spf}{from}

11 \addmetakey*[\sproof@box]{spf}{proofend}

12 \addmetakey{spf}{type}

13 \addmetakey*{spf}{title}

14 \addmetakey{spf}{continues}

15 \addmetakey{spf}{functions}

16 \addmetakey{spf}{method}

\spf@flow We define this macro, so that we can test whether the display key has the value
flow

17 \def\spf@flow{flow}

For proofs, we will have to have deeply nested structures of enumerated list-
like environments. However, LATEX only allows enumerate environments up to
nesting depth 4 and general list environments up to listing depth 6. This is not
enough for us. Therefore we have decided to go along the route proposed by Leslie
Lamport to use a single top-level list with dotted sequences of numbers to identify
the position in the proof tree. Unfortunately, we could not use his pf.sty package
directly, since it does not do automatic numbering, and we have to add keyword
arguments all over the place, to accomodate semantic information.

pst@with@label This environment manages1 the path labeling of the proof steps in the description
environment of the outermost proof environment. The argument is the label
prefix up to now; which we cache in \pst@label (we need evaluate it first, since

3EdNote: need an implementation for LaTeXML
1This gets the labeling right but only works 8 levels deep

8

are in the right place now!). Then we increment the proof depth which is stored in
\count10 (lower counters are used by TEX for page numbering) and initialize the
next level counter \count\count10 with 1. In the end call for this environment,
we just decrease the proof depth counter by 1 again.

18 \newenvironment{pst@with@label}[1]{%

19 \edef\pst@label{#1}%

20 \advance\count10 by 1%

21 \count\count10=1%

22 }{%

23 \advance\count10 by -1%

24 }%

\the@pst@label \the@pst@label evaluates to the current step label.

25 \def\the@pst@label{%

26 \pst@make@label\pst@label{\number\count\count10}\pstlabel@postfix%

27 }%

\setpstlabelstyle \setpstlabelstyle{metaKey-Val pairs} makes the labeling style customizable.
\setpstlabelstyle{prefix=Pr,delimiter=-,postfix=\dag} will change the
labeling style from P.1.2.3 to Pr-1-2-3†. \setpstlabelstyledefault will set
the labeling style back to default.

28 \addmetakey[P]{pstlabel}{prefix}[]

29 \addmetakey[.]{pstlabel}{delimiter}[]

30 \addmetakey[]{pstlabel}{postfix}[]

31 \metasetkeys{pstlabel}{}% initialization

32 \newrobustcmd\setpstlabelstyle[1]{%

33 \metasetkeys{pstlabel}{#1}%

34 }%

35 \newrobustcmd\setpstlabelstyledefault{%

36 \metasetkeys{pstlabel}{prefix=P,delimiter=.,postfix=}%

37 }%

\pstlabelstyle \pstlabelstyle just sets the \pst@make@label macro according to the style.

38 \def\pst@make@label@long#1#2{\@for\@I:=#1\do{\expandafter\@I\pstlabel@delimiter}#2}

39 \def\pst@make@label@angles#1#2{\ensuremath{\@for\@I:=#1\do{\rangle}}#2}

40 \def\pst@make@label@short#1#2{#2}

41 \def\pst@make@label@empty#1#2{}

42 \def\pstlabelstyle#1{%

43 \def\pst@make@label{\@nameuse{pst@make@label@#1}}%

44 }%

45 \pstlabelstyle{long}%

\next@pst@label \next@pst@label increments the step label at the current level.

46 \def\next@pst@label{%

47 \global\advance\count\count10 by 1%

48 }%

\sproofend This macro places a little box at the end of the line if there is space, or at the end
of the next line if there isn’t

9

49 \def\sproof@box{%

50 \hbox{\vrule\vbox{\hrule width 6 pt\vskip 6pt\hrule}\vrule}%

51 }%

52 \def\spf@proofend{\sproof@box}%

53 \def\sproofend{%

54 \ifx\spf@proofend\@empty%

55 \else%

56 \hfil\null\nobreak\hfill\spf@proofend\par\smallskip%

57 \fi%

58 }%

59 \def\sProofEndSymbol#1{\def\sproof@box{#1}}%

spf@*@kw

60 \def\spf@proofsketch@kw{Proof Sketch}

61 \def\spf@proof@kw{Proof}

62 \def\spf@step@kw{Step}

For the other languages, we set up triggers

63 \AfterBabelLanguage{ngerman}{\input{sproof-ngerman.ldf}}

spfsketch

64 \newrobustcmd\spfsketch[2][]{%

65 \metasetkeys{spf}{#1}%

66 \sref@target%

67 \ifx\spf@display\spf@flow%

68 \else%

69 {\stDMemph{\ifx\spf@type\@empty\spf@proofsketch@kw\else\spf@type\fi}:}

70 \fi{ #2}%

71 \sref@label@id{this \ifx\spf@type\@empty\spf@proofsketch@kw\else\spf@type\fi}\sproofend%

72 }%

spfeq This is very similar to \spfsketch, but uses a computation array45EdN:4
EdN:5

73 \newenvironment{spfeq}[2][]{%

74 \metasetkeys{spf}{#1}\sref@target%

75 \ifx\spf@display\spf@flow%

76 \else%

77 {\stDMemph{\ifx\spf@type\@empty\spf@proof@kw\else\spf@type\fi}:} #2%

78 \fi% display=flow

79 \begin{displaymath}\begin{array}{rcll}%

80 }{%

81 \end{array}\end{displaymath}%

82 }%

sproof In this environment, we initialize the proof depth counter \count10 to 10, and set
up the description environment that will take the proof steps. At the end of the
proof, we position the proof end into the last line.

4EdNote: This should really be more like a tabular with an ensuremath in it. or invoke text on
the last column

5EdNote: document above

10

83 \newenvironment{spf@proof}[2][]{%

84 \metasetkeys{spf}{#1}%

85 \sref@target%

86 \count10=10%

87 \par\noindent%

88 \ifx\spf@display\spf@flow%

89 \else%

90 \stDMemph{\ifx\spf@type\@empty\spf@proof@kw\else\spf@type\fi}:%

91 \fi{ #2}%

92 \sref@label@id{this \ifx\spf@type\@empty\spf@proof@kw\else\spf@type\fi}%

93 \def\pst@label{}%

94 \newcount\pst@count% initialize the labeling mechanism

95 \begin{description}\begin{pst@with@label}{\pstlabel@prefix}%

96 }{%

97 \end{pst@with@label}\end{description}%

98 }%

99 \newenvironment{sproof}[2][]{\begin{spf@proof}[#1]{#2}}{\sproofend\end{spf@proof}}%

100 \newenvironment{sProof}[2][]{\begin{spf@proof}[#1]{#2}}{\end{spf@proof}}%

spfidea

101 \newrobustcmd\spfidea[2][]{%

102 \metasetkeys{spf}{#1}%

103 \stDMemph{\ifx\spf@type\@empty{Proof Idea}\else\spf@type\fi:} #2\sproofend%

104 }%

The next two environments (proof steps) and comments, are mostly semantical,
they take KeyVal arguments that specify their semantic role. In draft mode, they
read these values and show them. If the surrounding proof had display=flow,
then no new \item is generated, otherwise it is. In any case, the proof step number
(at the current level) is incremented.

spfstep 6EdN:6

105 \newenvironment{spfstep}[1][]{%

106 \metasetkeys{spf}{#1}%

107 \@in@omtexttrue%

108 \ifx\spf@display\spf@flow%

109 \else%

110 \item[\the@pst@label]%

111 \fi%

112 \ifx\spf@title\@empty\else{(\stDMemph{\spf@title})}\fi%

113 \sref@label@id{\pst@label}\ignorespaces%

114 }{%

115 \next@pst@label\@in@omtextfalse\ignorespaces%

116 }%

sproofcomment

117 \newenvironment{sproofcomment}[1][]{%

118 \metasetkeys{spf}{#1}%

6EdNote: MK: labeling of steps does not work yet.

11

119 \ifx\spf@display\spf@flow\else\item[\the@pst@label]\fi%

120 }{%

121 \next@pst@label%

122 }%

The next two environments also take a KeyVal argument, but also a regular
one, which contains a start text. Both environments start a new numbered proof
level.

subproof In the subproof environment, a new (lower-level) proof environment is started.

123 \newenvironment{subproof}[2][]{%

124 \metasetkeys{spf}{#1}%

125 \def\@test{#2}%

126 \ifx\@test\empty%

127 \else%

128 \ifx\spf@display\spf@flow {#2}%

129 \else%

130 \item[\the@pst@label]{#2} %

131 \fi%

132 \fi%

133 \begin{pst@with@label}{\pst@label,\number\count\count10}%

134 }{%

135 \end{pst@with@label}\next@pst@label%

136 }%

spfcases In the pfcases environment, the start text is displayed as the first comment of
the proof.

137 \newenvironment{spfcases}[2][]{%

138 \def\@test{#1}%

139 \ifx\@test\empty%

140 \begin{subproof}[method=by-cases]{#2}%

141 \else%

142 \begin{subproof}[#1,method=by-cases]{#2}%

143 \fi%

144 }{%

145 \end{subproof}%

146 }%

spfcase In the pfcase environment, the start text is displayed specification of the case
after the \item

147 \newenvironment{spfcase}[2][]{%

148 \metasetkeys{spf}{#1}%

149 \ifx\spf@display\spf@flow\else\item[\the@pst@label]\fi%

150 \def\@test{#2}%

151 \ifx\@test\@empty%

152 \else%

153 {\stDMemph{#2}: }% need blank here

154 \fi%

155 \begin{pst@with@label}{\pst@label,\number\count\count10}

12

156 }{%

157 \ifx\spf@display\spf@flow%

158 \else%

159 \sproofend%

160 \fi%

161 \end{pst@with@label}%

162 \next@pst@label%

163 }%

spfcase similar to spfcase, takes a third argument.

164 \newrobustcmd\spfcasesketch[3][]{%

165 \metasetkeys{spf}{#1}%

166 \ifx\spf@display\spf@flow%

167 \else%

168 \item[\the@pst@label]%

169 \fi%

170 \def\@test{#2}%

171 \ifx\@test\@empty%

172 \else%

173 {\stDMemph{#2}: }%

174 \fi#3%

175 \next@pst@label%

176 }%

4.3 Justifications

We define the actions that are undertaken, when the keys for justifications are
encountered. Here this is very simple, we just define an internal macro with the
value, so that we can use it later.

177 \srefaddidkey{just}

178 \addmetakey{just}{method}

179 \addmetakey{just}{premises}

180 \addmetakey{just}{args}

The next three environments and macros are purely semantic, so we ignore the
keyval arguments for now and only display the content.7EdN:7

justification

181 \newenvironment{justification}[1][]{}{}

\premise

182 \newrobustcmd\premise[2][]{#2}

\justarg the \justarg macro is purely semantic, so we ignore the keyval arguments for
now and only display the content.

183 \newrobustcmd\justarg[2][]{#2}

184 〈/package〉

7EdNote: need to do something about the premise in draft mode.

13

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

LaTeXML, 8 proofs
semantic, 3

semantic
proofs, 3

14

References

[Koh15a] Michael Kohlhase. metakeys.sty: A generic framework for extensible
Metadata in LATEX. Tech. rep. Comprehensive TEX Archive Network
(CTAN), 2015. url: http://www.ctan.org/tex-archive/macros/
latex/contrib/stex/metakeys/metakeys.pdf.

[Koh15b] Michael Kohlhase. sref.sty: Semantic Crossreferencing in LATEX.
Tech. rep. Comprehensive TEX Archive Network (CTAN), 2015. url:
http://www.ctan.org/tex-archive/macros/latex/contrib/stex/

sref/sref.pdf.

15

http://www.ctan.org/tex-archive/macros/latex/contrib/stex/metakeys/metakeys.pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/stex/metakeys/metakeys.pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/stex/sref/sref.pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/stex/sref/sref.pdf

	Introduction
	The User Interface
	Package Options
	Proofs and Proof steps
	Justifications
	Proof Structure
	Proof End Markers
	Configuration of the Presentation

	Limitations
	The Implementation
	Package Options
	Proofs
	Justifications

