problem.sty: An Infrastructure for formatting
Problems*
Michael Kohlhase

Jacobs University, Bremen
http://kwarc.info/kohlhase

April 7, 2016

Abstract

The problem package supplies an infrastructure that allows specify prob-
lems and to reuse them efficiently in multiple environments.

Contents

[I__Introductionl

2__The User Interfacel
2.1 Package Options|
22 Problems and Solufions« . .o e e

[2.3 Starting and Stopping Solutions|.o

P4 Tocluding Problems|
2.5 Reporting Metadata]

B Tinian |
[4__The Implementation|

[£1 Package Options
M2 Problems and Solutionsl
4.3 Including Problems|.o
4.4 Reporting Metadata] L.

*Version v1.2 (last revised 2016/04,/06)

[N R S O NN

oo 0o Ut ot Ot

http://kwarc.info/kohlhase

solutions
notes
hints
pts

min

boxed
test

showmeta

problem

id
pts
min

title

solution
solutions

id

for
height
test
hint
note

1 Introduction

The problem package supplies an infrastructure that allows specify problem. Prob-
lems are text fragments that come with auxiliary functions: hints, notes, and so-
lutionsﬂ Furthermore, we can specify how long the solution to a given problem is
estimated to take and how many points will be awarded for a perfect solution.

Finally, the problem package facilitates the management of problems in small
files, so that problems can be re-used in multiple environment.

2 The User Interface

2.1 Package Options

The problem package takes the options solutions (should solutions be output?),
notes (should the problem notes be presented?), hints (do we give the hints?),
pts (do we display the points awarded for solving the problem?), min (do we
display the estimated minutes for problem soling). If theses are specified, then the
corresponding auxiliary parts of the problems are output, otherwise, they remain
invisible.

The boxed option specifies that problems should be formatted in framed boxes
so that they are more visible in the text. Finally, the test option signifies that
we are in a test situation, so this option does not show the solutions (of course),
but leaves space for the students to solve them.

Finally, if the showmeta is set, then the metadata keys are shown (see [Koh15]
for details and customization options).

2.2 Problems and Solutions

The main environment provided by the problem package is (surprise surprise)
the problem environment. It is used to mark up problems and exercises. The
environment takes an optional KeyVal argument with the keys id as an identifier
that can be reference later, pts for the points to be gained from this exercise in
homework or quiz situations, min for the estimated minutes needed to solve the
problem, and finally title for an informative title of the problem. For an example
of a marked up problem see Figure [1] and the resulting markup see Figure

The solution environment can be to specify a solution to a problem. If the
solutions option is set or \solutionstrue is set in the text, then the solution
will be presented in the output. The solution environment takes an optional
KeyVal argument with the keys id for an identifier that can be reference for to
specify which problem this is a solution for, and height that allows to specify the
amount of space to be left in test situations (i.e. if the test option is set in the
\usepackage statement).

, the hint and exnote environments can be used in a problem environment to

Lfor the moment multiple choice problems are not supported, but may well be in a future
version

\usepackage [solutions,hints,pts,min] {problem}
\begin{document}

\begin{problem} [id=elefants,pts=10,min=2,title=Fitting Elefants]

How many Elefants can you fit into a Volkswagen beetle?

\begin{hint}

Think positively, this is simple!
\end{hint}
\begin{exnote}

Justify your answer
\end{exnote}
\begin{solution}[for=elefants,height=3cm]

Four, two in the front seats, and two in the back.
\end{solution}

\end{problem}
\end{document}

Example 1: A marked up Problem

Problem 1 (Fitting Elefants)
How many Elefants can you fit into a Volkswagen beetle?

Hint: Think positively, this is simple!

Note: Justify your answer

Solution: Four, two in the front seats, and two in the back.

Example 2: The Formatted Problem from Figure

\startsolutions
\stopsolutions

\includeproblem

title
min
pts

give hints and to make notes that elaborate certain aspects of the problem.

2.3 Starting and Stopping Solutions

Sometimes we would like to locally override the solutions option we have given
to the package. To turn on solutions we use the \startsolutions, to turn them
off, \stopsolutions. These two can be used at any point in the documents.

2.4 Including Problems

The \includeproblem macro can be used to include a problem from another file.
It takes an optional KeyVal argument and a second argument which is a path to
the file containing the problem (the macro assumes that there is only one problem
in the include file). The keys title, min, and pts specify the problem title, the
estimated minutes for solving the problem and the points to be gained, and their
values (if given) overwrite the ones specified in the problem environment in the
included file.

2.5 Reporting Metadata

The sum of the points and estimated minutes (that we specified in the pts and
min keys to the problem environment or the \includeproblem macro) to the log
file and the screen after each run. This is useful in preparing exams, where we
want to make sure that the students can indeed solve the problems in an allotted
time period.

The \min and \pts macros allow to specify (i.e. to print to the margin) the
distribution of time and reward to parts of a problem, if the pts and pts package
options are set. This allows to give students hints about the estimated time and
the points to be awarded.

3 Limitations

In this section we document known limitations. If you want to help alleviate
them, please feel free to contact the package author. Some of them are currently
discussed in the §TEX GitHub repository [sTeX].

1. none reported yet

\prob@*Qkw

4 The Implementation

4.1 Package Options

The first step is to declare (a few) package options that handle whether certain
information is printed or not. They all come with their own conditionals that are
set by the options.

1 (xpackage)

2 \newif\if@problem@mh@\@problem@mh@false

3 \DeclareOption{mh}{\@problem@mh@true}

4 \newif\ifexnotes\exnotesfalse

5 \DeclareOption{notes}{\exnotestrue}

6 \newif\ifhints\hintsfalse

7 \DeclareOption{hints}{\hintstrue}

8 \newif\ifsolutions\solutionsfalse

9 \DeclareOption{solutions}{\solutionstrue}
10 \newif\ifpts\ptsfalse

11 \DeclareOption{pts}{\ptstrue}

12 \newif\ifmin\minfalse

13 \DeclareOption{min}{\mintrue}

14 \newif\ifboxed\boxedfalse

15 \DeclareOption{boxed}{\boxedtrue}

16 \DeclareOption*{\PassOptionsToPackage{\CurrentOption}{omtext}}
17 \ProcessOptions

Then we make sure that the necessary packages are loaded (in the right ver-
sions).
18 \if@problem@mh@\RequirePackage{problem-mh}\fi
19 \RequirePackage{omtext}
20 \RequirePackage{comment}
21 \RequirePackage{mdframed}
22 \RequirePackage [base] {babel}

For multilinguality, we define internal macros for keywords that can be specialized
in *.1df files.

23 \AfterBabelLanguage{ngerman}{\input{problem-ngerman.1df}}

24 \def \prob@problem@kw{Problem}

25 \def\prob@solution@kw{Solution}

4.2 Problems and Solutions

We now prepare the KeyVal support for problems. The key macros just set ap-
propriate internal macros.

26 \srefaddidkey [prefix=prob.]{problem}
27 \addmetakey{problem}{pts}

28 \addmetakey{problem}{min}

29 \addmetakey*{problem}{title}

30 \addmetakey{problem}{refnum}

\numberproblemsin

\prob@label

\prob@number

\prob@title

\prob@heading

problem

\record@problem

Then we set up a counter for problems.

31 \newcounter{problem}
32 \newcommand\numberproblemsin[1]{\@addtoreset{problem}{#1}}

We provide the macro \prob@label to redefine later to get context involved.
33 \newcommand\prob@label [1]{#1}

We consolidate the problem number into a reusable internal macro
34 \def\prob@number{\ifx\inclprob@refnum\Q@empty%

35 \ifx\problem@refnum\Qempty\prob@label\theproblemy,

36 \else\prob@label\problem@refnum\fi}

37 \else\prob@label\inclprob@refnum\fi}

We consolidate the problem title into a reusable internal macro as well. \prob@title
takes three arguments the first is the fallback when no title is given at all, the sec-
ond and third go around the title, if one is given.

38 \newcommand\prob@title [3]{%

39 \ifx\inclprob@title\@empty’, if there is no outside title

40 \ifx\problem@title\Q@empty{#1}\else{#2\problem@title{#3}}\fi

41 \else{#2}\inclprob@title{#3}\fi}/), else show the outside title

With these the problem header is a one-liner

We consolidate the problem header line into a separate internal macro that can
be reused in various settings.

42 \def\prob@heading{\prob@problem@kw~ \prob@number\prob@title{ }{ (}{)\strut\\}%
43 \sref@label@id{\prob@problem@kw"~ \prob@number}}

With this in place, we can now define the problem environment. It comes in
two shapes, depending on whether we are in boxed mode or not. In both cases we
increment the problem number and output the points and minutes (depending)
on whether the respective options are set.

44 \newenvironment{problem} [1] []{\metasetkeys{problem}{#1}\sref@target,

45 \@in@omtexttrue), we are in a statement (for inline definitions)

46 \stepcounter{problem}\record@problemy,

47 \def\current@section@level{\prob@problem@kw}y,

48 \par\noindent\textbf\probGheading\show@pts\show@min\rm\noindent\ignorespaces}
49 {\smallskip}

50 \ifboxed\surroundwithmdframed{problem}\fi

This macro records information about the problems in the *.aux file.

51 \def\record@problem{\protected@urite\Q@auxout{}%

52 {\string\@problem{\prob@number}y,

53 {\ifx\inclprob@pts\@empty\problem@pts\else\inclprob@pts\fi}%
54 {\ifx\inclprob@min\@empty\problem@min\else\inclprob@min\fi}}}

\@problem This macro acts on a problem’s record in the *.aux file. It does not have any
functionality here, but can be redefined elsewhere (e.g. in the assignment pack-
age).

55 \def\@problem#1#2#3{}

solution The solution environment is similar to the problem environment, only that
it is independent of the boxed mode. It also has it’s own keys that we need to
define first.

56 \srefaddidkey{soln}

57 \addmetakey{soln}{for}

58 \addmetakey{soln}{height}

59 \addmetakey{soln}{creators}

60 \addmetakey{soln}{contributors}

61 \addmetakey{soln}{srccite}

62 % \begin{macrocode}

63 % the next step is to define a helper macro that does what is needed to start a solution.
64 % \begin{macrocode}

65 \newcommand\@startsolution[1] []{\metasetkeys{soln}{#1}/

66 \@in@omtexttruel we are in a statement.

67 \ifboxed\else\hrule\fi\smallskip\noindent{\textbf\prob@solution@kw: }\begin{smalll}%
68 \def\current@section@level{\prob@solution@kwl}7

69 \ignorespaces}

\startsolutions for the \startsolutions macro we use the \specialcomment macro from the
comment package. Note that we use the \@startsolution macro in the start
codes, that parses the optional argument.

70 \newcommand\startsolutions{\specialcomment{solution}{\@startsolution}’
71 {\ifboxed\else\hrule\medskip\fi\end{smalll}}/,
72 \ifboxed\surroundwithmdframed{solution}\fi}

\stopsolutions

73 \newcommand\stopsolutions{\excludecomment{solution}}

so it only remains to start/stop solutions depending on what option was spec-
ified.

74 \ifsolutions\startsolutions\else\stopsolutions\fi

75 \ifexnotes

76 \newenvironment{exnote}[1] [1%

77 {\par\smallskip\hrule\smallskip\noindent\textbf{Note: }\small}
78 {\smallskip\hrule}

79 \else)ifexnotes

80 \excludecomment{exnote}

81 \fi%ifexnotes

82 \ifhints

83 \newenvironment{hint}[1] [1%

84 {\par\smallskip\hrule\smallskip\noindent\textbf{Hint: }\small}
85 {\smallskip\hrule}

86 \newenvironment{exhint}[1] [1%

\includeproblem

\show@pts

\show@min

87 {\par\smallskip\hrule\smallskip\noindent\textbf{Hint: }\small}
88 {\smallskip\hrule}

89 \elseifhints

90 \excludecomment{hint}

91 \excludecomment{exhint}

92 \fi)ifhints

4.3 Including Problems

The \includeproblem command is essentially a glorified \input statement, it sets
some internal macros first that overwrite the local points. Importantly, it resets
the inclprob keys after the input.

93 \addmetakey{inclprob}{pts}

94 \addmetakey{inclprob}{min}

95 \addmetakey*{inclprob}{title}

96 \addmetakey{inclprob}{refnum}

97 \addmetakey{inclprob}{mhrepos}

98 \clear@inclprob@keys¥%initially

99 \newcommand\includeproblem[2] []{\metasetkeys{inclprob}{#11}/
100 \input{#2}\clear@inclprob@keys}

4.4 Reporting Metadata

101 \def\pts#1{\ifpts\marginpar{#1 pt}\fi}
102 \def\min#1{\ifmin\marginpar{#1 min}\fi}

103 \AtEndDocument{\ifpts\message{Total: \arabic{pts} points}\fi
104 \ifmin\message{Total: \arabic{min} minutes}\fi}

The \show@pts shows the points: if no points are given from the outside and also
no points are given locally do nothing, else show and add. If there are outside
points then we show them in the margin.

105 \newcounter{pts}

106 \def\show@pts{\ifx\inclprob@pts\Cempty’

107 \ifx\problem@pts\Qempty\else,

108 \ifpts\marginpar{\problem@pts pt\smallskip}\addtocounter{pts}{\problem@pts}\£fiy
109 \fi\else% inclprob@pts nonempty

110 \ifpts\marginpar{\inclprob@pts pt\smallskip}\addtocounter{pts}{\inclprob@pts}\fi%
111 \fi}

and now the same for the minutes

112 \newcounter{min}

113 \def\show@min{\ifx\inclprob@min\@empty%

114 \ifx\problem@min\@empty\elsey,

115 \ifmin\marginpar{\problem@min min}\addtocounter{min}{\problem@min}\fi%
116 \fi\else%

117 \ifmin\marginpar{\inclprob@min min}\addtocounter{min}{\inclprob@min}\fi
118 \fi}

119 (/package)

	Introduction
	The User Interface
	Package Options
	Problems and Solutions
	Starting and Stopping Solutions
	Including Problems
	Reporting Metadata

	Limitations
	The Implementation
	Package Options
	Problems and Solutions
	Including Problems
	Reporting Metadata

