
The stackengine Package
Highly customized stacking of objects, insets, baseline changes, etc.

Steven B. Segletes
steven.b.segletes.civ@mail.mil

June 20, 2013
v1.0

1 Definitions and Terms

Before I describe the various commands of this package, it is best for you to
familiarize yourself with a few terms as used in this package.

1.1 Short Stacks and Long Stacks

In this package, “Short” refers to squeezing the extra space out of glyphs
comp.rising the stack, so that the inter-item gap is solely what is set. Likewise,
“Long” refers to a stack kept at constant inter-item baseline spacing. Let’s look
at the following two examples to see this clearly.

Notice the consistent inter-item gap on a short stack: e
k
y
t

Notice the consistent inter-baseline spacing on a long stack: e
k
y
t

In this package, the default spacing for the long stack, saved in the length
\Lstackgap is the value \baselineskip. For short stacks, the default length,
stored in \Sstackgap, is 3pt, which corresponds to the same spacing found
in TEX’s \shortstack command. The default stack type constructed by this

1

packkage (short or long) is indicated by the definition of \stacktype. These
defaults can be changed.

1.2 (Over)Stacks and Understacks

In general terms, a stack is built up from the baseline, while an understack is
built down from the baseline.

So, for example, c
b
a

is a stack, while a
b
c

is an understack.

With this package, both stacks and understacks can be long or short, depending
on how the invocation is made. Sometimes, in this documentation, a stack will
be called an “overstack” in order to avoid confusion with “understack.”

1.3 Anchors

The term “anchor” is used to denote an item in the stack whose baseline does
not change in the course of the stacking operation. In essence, stacking is done
relative to the anchor.

For example, in c
b
a

, the letter “c” is the anchor.

In the understack a
b
c

, “a” is the anchor.

1.4 Alignment

Anyone familiar with LATEX knows something about the horizontal alignment
settings “l”, “c” and “r”. As pertains to a stack, we refer to the alignment of
the various rows of the stack, as shown in the following examples.

Left: a
ab
abc
abcd

Center: a
ab
abc
abcd

Right: a
ab

abc
abcd

The default alignment within a stack may be set with the \stackalignment

definition, to possible values of l, c, or r, denoting left, center, and right align-
ments, respectively. In addition, a number of the stacking macros provide the

2

alignment as an argument or optional argument that can be specified at time
of invocation.

The stackengine package defaults to center alignment, unless reset by way of the
\stackalignment definition.

2 Defaults and Macros Provided by stackengine

2.1 Defaults

There are several lengths and \def’s that serve to store package default defini-
tions. When a macro does NOT explicitly ask for one of the quantities defined
by these defaults, it will use the values of these parameters to serve as the de-
fault value. However, some macros may ask the user to specify an explicit value
for any number of these parameters in the calling arguments. In that case, an
explicit value may be provided or else the variable holding the default value may
itself be provided as the argument.

Let us first consider the length defaults:

\Sstackgap=length
\Lstackgap=length
\stackgap

The parameter \Sstackgap is the default inter-item gap for any stacking com-
mand that builds a short stack. It defaults to 3pt. Correspondingly, \Lstackgap
is the inter-item baselineskip for any stacking command that builds a long stack.
It defaults to \baselineskip. The macro \stackgap is not actually a length,
but a command that will look at the current value of \stacktype and will de-
fine itself as either \the\Sstackgap or \the\LStackgap, depending on whether
\stacktype is defined as “S” or “L”.

In addition to these lengths, there are several parameter definitions that define
default behaviors for those macros where explict values of these settings are not
requested. The parameters, each set with a \def command, are

\def\stackalignment{l or c or r}

\def\quietstack{T or F}

\def\useanchorwidth{T or F}

\def\stacktype{S or L}

\def\usestackstrut{T or F}

The parameter \stackalignment defaults to “c” (center) and defines the default
stacking alignment. Other options include “l” (left) and “r” (right). See §1.4

3

for more discussion of this parameter.

The parameter \quietstack defaults to “F” (false) and determines whether
the result of a stacking operation is supressed from the output. If the output is
suppressed by setting this parameter to “T”, the most recent stacking operation
may be recovered with a \usebox{\stackedbox}. See §3.1 for more discussion
of this parameter.

The parameter \useanchorwidth defaults to “F” (false) and indicates that,
upon creation, the stack width should be taken as the widest element of the
stack. When set to “T”, the stack width, upon creation, is instead taken as
the width of the anchor. Note that this parameter applies at the time of stack
creation and cannot be used to retroactively change the characteristics of an
existing stack. See §9 for more discussion of this parameter.

The parameter \stacktype defaults to “S” (short stack) and defines the default
type of stack to build. When set to “L”, newly created stacks are, by default,
long stacks. Refer to §1.1 for a definition of these terms.

The parameter \usestackstrut defaults to “T” (true) and has limited applica-
tion. It only comes into play when using \stackanchor with \stacktype “S”.
It is described in more detail in §6.1.

For macros which require explicit specification of some of these parameters,
the parameter token itself (e.g., \stackalignment, \quietstack, etc.) may be
provided as the argument, if the default behavior is desired.

2.2 Macros

2.2.1 \stackengine

The basic (and most general) stacking macro provided by this package is \stackengine.
Nearly all other macros of this package merely provide an abbreviated invocation
form of this macro, tailored for a particular application. The syntax is:

\stackengine{\Sstackgap or \Lstackgap or \stackgap or stacklength}
{anchor}
{item}

{O or U}

{\stackalignment or l or c or r}

{\quietstack or T or F}

{\useanchorwidth or T or F}

{\stacktype or S or L}

There are no optional arguments with \stackengine. The first item is a stack-

4

ing length, which can mean different things depending on whether a short- or
long-stack is being created, as discussed in §1.1. The second argument is the
stack anchor, whose baseline does not change. The third argument is the item
stacked relative to the anchor. The fourth argument is either an “O” (for a
normal or overstack) or a “U” (for an understack). The fifth argument denotes
a left, center, or right alignment of the stack items with the use of “l”, “c”, or
“r”. The sixth argument is either a “T” or “F” to denote whether the resulting
stack is NOT printed (“T” denotes “do NOT print”). The seventh argument,
also a “T” or an “F”, denotes when “T” that the width of the whole stack is to
be taken as the width of the anchor. Otherwise, the width of the stack conforms
to the width of the widest item in the stack. The final argument is defined as
either an “S” or an “L” to denote whether a short stack or a long stack is being
requested.

While none of the arguments to \stackengine have default values, there are
various definitions in the package that store default values. When one wishes
a stack to possess certain default properties, these default definitions may be
passed as the values for the respective arguments to \stackengine. Arguments
1, 5, 6, 7, and 8 each possess a corresponding parameter containing the default
variable. So, for example,

\stackengine{\stackgap}{A}{BC}{O}{\stackalignment}

{\quietstack}{\useanchorwidth}{\stacktype}

will stack the letters “BC” over “A” using the default values of \stackalignment,
\quietstack, \useanchorwidth, and \stacktype. In addition, the stackgap
will be set to \Sstackgap if \stacktype is “S” or to \Lstackgap if \stacktype
is “L”. Alternately, the samestack could be forced to be a long stack with right-
alignment and be typeset using

\stackengine{\Lstackgap}{A}{BC}{O}{r}{F}{\useanchorwidth}{L}

2.2.2 \stackon and \stackunder

The \stackon and \stackunder macros are abbreviated forms of \stackengine
in which the default values of parameters are taken. The only exception is the
stacklength, which may be provided as an optional argument.

\stackon[stacklength]{anchor}{item }

\stackunder[stacklength]{anchor}{item }

In the case of \stackon, an (over)stack is created, whereas an understack is
created with \stackunder. With both of these commands, the anchor is the

5

first mandatory argument, and the item to be stacked above or below it is the
second mandatory argument.

2.2.3 \Shortstack and \Longstack

The \Shortstack and \Longstack commands are stacking commands that al-
low more than two stacking rows to be specified at once. The items of a stack
are provided in a space-separated list, as follows:

\Shortstack[alignment]{item {it em} {\item} $item$... anchor}
\Longstack[alignment]{item {it em} {\item} $item$... anchor}

The first item is at the top of the stack, farthest from the baseline, while the
last item is the anchor of the stack. If an item (the contents of a single row)
contains spaces, enclose the item in braces. If the item ends with a macro,
enclose the item in braces. While not particularly intended for math mode (see
§13 for more details), math items may be enclosed within dollar-sign delimiters.

The alignment may be spacified as an optional argument, with other parameters
taken by their defaults. The stacklength is taken as \stackgap, which will
depend on the value of \stacktype.

To give an example of the braced syntax described above, the stack

\Shortstack[r]{a {b c} {\P} β^2 ANCHOR} will produce ANCHOR
β2

¶
b c

a

.

2.2.4 \Shortunderstack and \Longunderstack

The \Shortunderstack and \Longunderstack commands are the understack-
ing equivalents of \Shortstack and \Longstack.

\Shortunderstack[alignment]{anchor item {it em} {\item} $item$...}
\Longunderstack[alignment]{anchor item {it em} {\item} $item$...}

The caveats to the specification of the space-separated list of items is the same
as that mentioned above for \Shortstack and \Longstack.

Note that the items are still specified from the top downward. In the case of
understacks, however, that means that the anchor is the first item specified,
while the last item in the list is farthest below the baseline.

6

2.2.5 Top and bottom lapping macros

Top
and
bottom

lapping is achievable through the creation of various long stacks. The

syntax is the same for all six of the macros provided. The six names differentiate
whether the lap is to the top (t) or the bottom (b) of the calling point, and
whether it should appear to the left (l), centered (c), or to the right (r) of the
calling location. The long-stacklength may be provided as an optional argument.

\tllap[stacklength]{item}

\tclap[stacklength]{item}

\trlap[stacklength]{item}

\bllap[stacklength]{item}

\bclap[stacklength]{item}

\brlap[stacklength]{item}

See §5 for more information and examples of use for these lapping commands.

2.2.6 \stackanchor

The \stackanchor macro is one way to create a stack where the baseline is split
between two items in the stack. The syntax is

\stackanchor[stackgap]{top item}{bottom item}

The stacking gap may be provided as an optional argument. All other param-
eters taken are the defaults. There are subtle differences in the way a short
stack anchor versus a long stack anchor is split. One should consult §6.1 for a
description of how the stack is constructed.

If a short stack is being created with a split anchor, the \usestackstrut param-
eter will determine whether the split occurs at the mid-height of the strutbox
(“T”) or whether it will occur about the baseline (“F”).

2.2.7 \belowbaseline

The macro \belowbaseline also creates the means to shift an item’s baseline.
The syntax is

\belowbaseline[stackgap]{item}

where the stackgap defines the stackgap distance. In a long stack, it will define
the downward shift of the baseline of the item. In a short stack, it will define

7

the downward gap from the new baseline to the top of the item. One should
consult §6.2 for more details.

This command can also be employed to redefine the baseline of graphical objects,
which can provide useful vertical alignment techniques. A negative stack gap
can be specified to raise the item’s baseline above its original value.

2.2.8 \topinset and \bottominset

The macros \topinset and \bottominset are for insetting smaller items (e.g.,
images) inside of a larger background items (e.g., images). The syntax is

\topinset{inset item}{background item}{V-offset}{H-offset}
\bottominset{inset item}{background item}{V-offset}{H-offset}

In addition to providing the inset and background items as the first two argu-
ments, the inset may be vertically and horizontally offset though the use of the
last two arguments. The vertical offset is relative to the top of the \topinset

background and relative to the bottom of the \bottominset background. The
horizontal offset is relative to the left edge of the background for left stackalign-
ment and relative to the right edge of the background for right stackalignment.
Horizontal offset is meaningless for center stackalignment.

While these commands were designed with inlaid images in mind (see §10), there
is nothing that prevents their use to inlay character glyphs upon each other, as
in O* , accomplished with \topinset{*}{O}{0.2ex}{0.0ex}.

2.2.9 \savestack

The macro \savestack provides a means to save an intermediate result (in a
box that can be recalled with the specified macro) without printing it. It’s
syntax is

\savestack{macro token}{stacking operation}

The macro token is a backslashed name that you can later use to recall the
boxed intermediate result. The stacking operation is the intermediate result
you wish to save in a box without printing. Reasons why this might be a useful
macro are described in §3.2.

Note that while \savestack is designed to save an intermediate stacking oper-
ation in a box, the reality is that you can use this macro to save any sequence
of boxable output, even if it is not a stacking operation. So, for example,
\savestack{\mymacro}{\fbox{A}} can later be recalled with an invocation of

8

\mymacro, to yield A.

3 Making a Stack in Stages

There are times where one needs to make a stack in several consecutive steps.
In order to do so, there are several ways, detailed below.

3.1 Supressing Output

One can define \quietstack as T to supress output. Then, the intermediate
stack can be passed to the next stacking operation with a \usebox{\stackedbox}.
Finally, \quietstack must again be made false to re-enable output.

3.2 Saving a Stack without Printing It

Perhaps a quicker and better way is to use the package’s \savestack macro, of
the form \savestack{macro token}{stacking operation} . This will perform the
stacking operation and place it into the supplied token (without printing it), so
that ths intermediate stack can be passed to the subsequent stacking operation
by executing the token macro.

For example,

\savestack{\pdq}{\Longstack[r]{6 5 4 {3 3}}}%

\Longstack[l]{{\pdq} 2 1 0}%

would first place “3 3
4
5
6

” into \pdq, without printing it, in a right-aligned fashion,
with the “3 3” on the baseline. Then, the second \Longstack would place the
first stack atop of the “2” in a left-aligned fashion. The resulting stack would
look as follows, with the “0” on the final baseline.

0
1
2
3 3

4
5
6

Baseline

9

4 Choosing the Anchor Element

All stacking done with the stackengine has a designated anchor element. The
baseline of the anchor does not change. Instead, the other items are placed
relative to the anchor. By adding items at first above and then below the
anchor, any arbitrary stack can be built around the anchor.

Here is a Longstack/understack example: 0
1
2
3

-1
-2
-3
-4
-5

that was achieved as follows:

\savestack{\pdq}{\Longstack{3 2 1 0}}%

\Longunderstack[r]{{\pdq} -1 -2 -3 -4 -5}

In the first stack, “0” is the anchor of \pdq. In the second stack, \pdq is the
anchor (which means that “0” remains the anchor of the composite stack).

5 Top and Bottom Lapping

Top and bottom lapping can be accomplished with a long stack, using a null item
as the anchor, and \useachorwidth set to T. This technique is encoded in six
\xylap commands, where x can be t or b (for “top” and “bottom,” respectively)
and y can be l, c, or r (for “left,” “center,” and “right,” respectively). Note
that this y is not the same as the \stackalignment, but rather refers to the
direction where the lapped item is placed relative to the lap invocation.

For illustration only, laps will be shown at a visible lapmark (given by). In
these examples, I lap a \parbox above or below the selected location.

For example here
this is a
bottom-left
lap \bllap

or el
this is a
bottom-right
lap \brlap

se here, or else I can put it here

this is a
top-left lap
\tllap

or here

this is a
top-right
lap \trlap

.

10

Of course, I can per
this is a bottom-
center lap \bclap

form center lapping, as we

this is a top-center
lap \tclap

ll. To see, for example, how the

above was achieved, the last lap in the prior sentence was achieved by invoking

\tclap{\fbox{\parbox[b]{1.1in}{this is a top-center lap \tcl}}}

in the middle of the word “well.”

6 Shifting the Anchor’s Baseline

By default, the baseline of the anchor becomes the baseline of the stack. If one
wanted the stack baseline to not conform to the baseline of any of the individual
stacked items, something needs to change. If one quantitatively knows the shift
desired, a simple \raisebox could be used to vertically shift the anchor, after
(or possibly prior to) stacking. There are also some other options provided by
the package.

6.1 The \stackanchor Macro for “L” and “S” Stack Types

If one would like the anchor’s baseline to be “midway” between two vertically
arrayed items, the \stackanchor macro attempts to provide that capability for
both “L” and “S” stack types, though the definitions of “midway” are different
for each. The macro \stackanchor works for two-item stacks in both “L” and
“S” stack types, as shown below.

In the case on a long stack, what is satisfied is that the baseline of the anchor
is made equidistant from the baselines of the two respective items comprising
the stacked anchor.

Baseline top
L-bottom Baseline

In the case of a short stack, the middle of the inter-item gap is vertically located
at the center of the font’s \strutbox, so that the middle of the stackgap would
be at the same vertical level as the middle of parentheses, were they located on
the original baseline.

Baseline
top

S-bottom
(Mid-strut) Baseline

11

If one does not want to have the short-stack gap split at the mid-strut height,
but rather at the baseline, the parameter \def\usestackstrut{F} may be set
prior to the \stackanchor invocation.

Baseline top

S-bottom
Baseline

The \usestackstrut parameter will only affect short stacks (\stacktype “S”),
since long stacks do not use a strut as part of the \stackanchor definition.

For stacks with more items, one can add stacks atop or under these shifted
anchors.

top

S-bottom

over text

under text

(Mid-strut)

6.2 \belowbaseline for Moving the Anchor’s Baseline

The command \belowbaseline is intended to be used to set an item, such as a
stack anchor, below the baseline. The macro accomplishes this task by stacking
the item below a null object. However, \useanchorwidth is set to F so that the
stacked object takes on the width of the under-placed object.

The command can be used with both stacktypes. With \stacktype “S”,
the optional argument will denote the stackgap below the baseline (default
\Sstackgap),

Short stacktype
0pt below baseline 6pt

When used in with a \stacktpe “L”, the optional length denotes the distance
to the baseline of the understacked object (default \Lstackgap).

Long stacktype 0pt below baseline
18pt

There is nothing to prevent the use of negative numbers being used to raise the
the object above the baseline.

The \belowbaseline command is also useful for forcing objects, such as images,
to be top-aligned. This can be a useful feature when trying to achieve a desired

12

vertical alignment of disparate elements in tabular columns.

\def\stacktype{S}\belowbaseline[0pt]{\imgi}

\belowbaseline[-\baselineskip]{\imgi}:

Baseline Baseline

7 Stack Gap “Quirk”

This “quirk” is not peculiar to this package, but is true of all lengths in LATEX.
It is mentioned here as worthwhile to keep in mind if you build stacks in different
font sizes.

The stackengine package will honor your default gap sizes (\Sstackgap and
\Lstackgap) at the time of their definition, rather than at the time of their in-
vocation. Thus, if \Sstackgap is specified as 0.7ex when the text is \normalsize,
the gap length is set in a \normalsize font, even if the fontsize is later changed.
To overcome this behavior, the stackgap must be redefined at the new fontsize.

For example, operating at \normalsize,

\Sstackgap=0.7ex gives d
c
b
a

. However, in the case of a transition to \LARGE the
same stack gives a larger text, but an unchanged gap size,

d
c
b
a

. Only when the gap is reset to 0.7ex under \LARGE does it give d
c
b
a

. In the
first stack the gap size is \normalsize 0.7ex and in the latter stack, the gap is
\LARGE 0.7ex. Of course, if the gap is specified in fontsize independent units,
such as pts, there is no confusion.

8 Negative Stack Gap

A negative gap can be used to overlap things. For example, .plus “i” can
make, when the stack gap is suitably negative, the following:

13

i
.

Note that the use of a negative stack gap for a two-item stack is actually very
similar to the inset commands described in §2.2.8 and §10.

9 The \useanchorwidth Option

Because.has width larger than the dot glyph itself (we box its extent here:.), stacking it could otherwise be a problem. For example, th i
.

s uses the
whole stackwidth to set the dotted-i in its place. On the other hand, when
\useanchorwidth is defined as T, “thi

.
s” uses only the anchor width to set the

stack (where the “i” is the anchor).

Below, we show an \fbox around the dotted i, clearly demonstrating that the
dot does not influence the width of the stack when \useanchorwidth is defined
as “T”.

thi
.
s

10 Image Insets

The commands \topinset and \bottominset allow images be stacked atop one
another, to produce the effect of an inset image. In addition to specifying the
two images, the effect can be tailored by specifying the vertical and horizontal
offsets of the inset image.

Note that the horizontal offset only works when \stackalignment is set to l

or r.

The last figure was obtained with \bottominset{\imgii}{\imgi}{2pt}{3pt},
showing that \imgii was offset 2pt from the bottom and 3pt from the left edge
of \imgi.

14

11 Stacking for Subfiguring and Baseline Ma-
nipulation

The stacking commands provide a convenient way to underset a subfigure no-
tation under the corresponding image. Furthermore, because of the flexibility
of the stacking commands, the baselines of the subfigures can be manipulated
in many ways, which may come in handy depending on how you are choosing
to lay out your subfigures.

Examples of this are shown in figure 1.

baseline (a)
(b)

(c2)

(c1)

(d)

Figure 1. Image stacking with stacktype “S”, stack gap set to 3pt and using:
(a) \stackon{(a)}{\imga}, (b) \stackunder{\imgb}{(b)},
(c) \Shortstack{{\protect\imgi} (c1) {} {\protect\imgi} (c2)},
and (d) \belowbaseline[0pt]{\stackunder{\imgi}{(d)}}.

Note from the definition used for figure 1c that when a \savestack has been
used to place a graphic into a token (e.g., \imgi) that it must be protected when
used inside a space-separated argument, such as \Shortstack, \Longstack, and
the corresponding understacks.

12 Nested Stacking Commands

The macros \Shortstack, \Longstack, and the corresponding understack macros
are set up to conveniently stack multiple objects using a space separated argu-

15

ment list. There may, however, be times that you would prefer building stacks
by way of nesting the more primative stacking macros.

Nesting can be accomplished, but some care must be taken, in the case of long
stacks. But first, let us see the ways in which nesting may be applied for short
stacks:

\stackunder{1}{\stackunder{2}{\stackunder{3}{\stackunder{4}{5}}}}

\stackunder{\stackunder{\stackunder{\stackunder{1}{2}}{3}}{4}}{5}

\stackon{1}{\stackon{2}{\stackon{3}{\stackon{4}{5}}}}

\stackon{\stackon{\stackon{\stackon{1}{2}}{3}}{4}}{5}

will produce the following: 1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

In these cases, the nesting could be applied on either the first or the second
argument of the \stackunder or \stackon commands, with the same end result.

In the case of long stacks however, employing the identical methodology gives

a different, at first unexpected, result: 1
2
3
4
5

1
2345

1
2
3
4
5

1
2345

In this case, nesting the second argument works as hoped, but nesting the first
argument does not. The reason for this “failure” stems not from a failure of
logic, but an enforcement of it. It stems from the very definition of a long stack,
in which the baseline of the second argument is placed \LStackgap below or
above the baseline of the first argument. By nesting the first argument, all the
second arguments are placed \Lstackgap from the unchanging stack baseline
(thus overlapping), and not relative to the current top or bottom of the nested
stack.

Therefore, to nest long stacks, only the second argument of the stackengine may
be nested.

16

13 Math Mode Usage

The stackengine package is not really intended for math mode, since there are
many packages that already cater directly to the need to stack and align math-
ematical objects. However, if there is a need to use stackengine there, because
of its particular facility with stacking gaps, there are several hints to remember.

1. Stacking commands from this package can be used in math mode, but will
set their arguments as text, not math.

\(y = \stackunder{a}{+} x\): y = a
+
x

2. To set an argument in math, it must be set between math delimiters.

\(y = \stackunder{\(a\)}{+} x\): y = a
+
x

3. Each space-separated item of the argument to \Shortstack, \Longstack,
and the corresponding understacks must each be enclosed in their own
set of dollar-sign math delimiters (Because of the way the argument is
parsed, the \(and \[delimiters can not be used for these space-separated
argument lists).

\(y = \Shortstack{a . b} x\): y = b
.a
x

4. As described in §2.2.3, if the math argument has spaces in a command
which uses space-separated lists, the argument must be enclosed in braces.

\(y = \Shortstack{{$a + b$} . b} x\): y = b
.a+ b
x

5. For more complex items, the \savestack command can be used to save
an intermediate math expression (even if it isn’t actually a stack).

\savestack{\a}{\(\sqrt{a + b}\)}

\savestack{\dash}{- - - - -}

\(y = \stackunder{\stackon{\dash}{\a}}{b} x\):
y = - - - - -

√
a+ b

b
x

6. In math mode, the \stackanchor command seems to preserve the math
axis better with an “S” \stacktype, rather than type “L”.

14 Acknowledgements

I would like to thank Prof. Enrico Gregorio at tex.stackexchange for providing
three lines of code to strip a leading backslash from an argument:
http://tex.stackexchange.com/questions/42318/
removing-a-backslash-from-a-character-sequence

17

15 Code Listing

\ProvidesPackage{stackengine}

[2013/06/12 v1.0

Stacking text and objects in convenient ways]

% This work may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3

% of this license or (at your option) any later version.

% The latest version of this license is in

% http://www.latex-project.org/lppl.txt

% and version 1.3c or later is part of all distributions of LaTeX

% version 2005/12/01 or later.

%

% This work has the LPPL maintenance status ‘maintained’.

%

% The Current Maintainer of this work is Steven B. Segletes.

%

% V1.0 Initial release.

\usepackage{calc}

\usepackage{readarray}

\newcounter{stackindex}

\newlength\Sstackgap

\newlength\Lstackgap

\newlength\boxshift

\newlength\stack@tmplength

\global\newlength\stackedboxwidth

\newsavebox\addedbox

\newsavebox\anchorbox

\newsavebox\stackedbox

\newcommand\stackgap{\if S\stacktype\the\Sstackgap\else\the\Lstackgap\fi}

\global\Sstackgap=3pt % SHORTSTACKING GAP BETWEEN ITEMS (SAME AS \shortstack)

\global\Lstackgap=\baselineskip % LONGSTACKING GAP BETWEEN ITEMS (def. \baselineskip)

\def\useanchorwidth{F}% T= FORCE BOX WIDTH TO ANCHOR-WIDTH

\def\quietstack{F}% T = SUPPRESS OUTPUT OF ALL COMMANDS

% (USE \usebox{\stackedbox} TO RETRIEVE)

\def\stackalignment{c}% l, c, or r for left, center or right alignment

\def\stacktype{S}% S for constant gap shortstack;

% L for constant baselineskip longstack

\def\usestackstrut{T}%

%\stackengine{\Sstackgap or \Lstackgap or \stackgap or stacklength}

% {anchor}

% {item}

% {O or U}

% {\stackalignment or l or c or r}

% {\quietstack or T or F}

% {\useanchorwidth or T or F}

% {\stacktype or S or L}

\newcommand*\stackengine[8]{%

\sbox{\stackedbox}{%

\sbox{\anchorbox}{#2}%

\sbox{\addedbox}{#3}%

18

\settowidth{\stackedboxwidth}{#2}%

\if F#7%

\ifdim\wd\addedbox>\stackedboxwidth%

\settowidth{\stackedboxwidth}{#3}%

\fi%

\fi%

\setlength{\boxshift}{#1}%

\if L#8%

\if U#4%

\setlength{\boxshift}{-\boxshift}%

\fi%

\else%

\if U#4%

\setlength{\boxshift}{-\dp\anchorbox -\ht\addedbox -\boxshift}%

\else%

\setlength{\boxshift}{\ht\anchorbox +\dp\addedbox +\boxshift}%

\fi%

\fi%

\if c#5%

\hspace{.5\stackedboxwidth}%

\hspace{-.5\wd\anchorbox}%

\usebox{\anchorbox}%

\hspace{-.5\wd\anchorbox}%

\hspace{-.5\wd\addedbox}%

\raisebox{\boxshift}{#3}%

\hspace{-.5\wd\addedbox}%

\hspace{.5\stackedboxwidth}%

\else%

\if l#5%

\usebox{\anchorbox}%

\hspace{-\wd\anchorbox}%

\raisebox{\boxshift}{#3}%

\hspace{-\wd\addedbox}%

\hspace{\stackedboxwidth}%

\else%

\if r#5%

\hspace{\stackedboxwidth}%

\hspace{-\wd\anchorbox}%

\usebox{\anchorbox}%

\hspace{-\wd\addedbox}%

\raisebox{\boxshift}{#3}%

\fi%

\fi%

\fi%

}%

\if F#6\usebox{\stackedbox}\fi%

}

\newcommand*\stackunder[3][\stackgap]{%

\stackengine{#1}{#2}{#3}{U}{\stackalignment}{\quietstack}{\useanchorwidth}%

{\stacktype}}

\newcommand*\stackon[3][\stackgap]{%

\stackengine{#1}{#2}{#3}{O}{\stackalignment}{\quietstack}{\useanchorwidth}%

{\stacktype}}

\newcommand*\Shortstack[2][\stackalignment]{%

19

\getargsC{#2}%

\setcounter{stackindex}{1}%

\sbox{\stackedbox}{\argi}%

\whiledo{\thestackindex < \narg}{%

\stepcounter{stackindex}%

\stackengine{\Sstackgap}{\csname arg\roman{stackindex}\endcsname}%

{\usebox{\stackedbox}}{O}{#1}{T}{\useanchorwidth}{S}%

}%

\if F\quietstack\usebox{\stackedbox}\fi%

}

\newcommand*\Shortunderstack[2][\stackalignment]{%

\getargsC{#2}%

\setcounter{stackindex}{\narg}%

\sbox{\stackedbox}{\csname arg\roman{stackindex}\endcsname}%

\whiledo{\thestackindex > 1}{%

\addtocounter{stackindex}{-1}%

\stackengine{\Sstackgap}{\csname arg\roman{stackindex}\endcsname}%

{\usebox{\stackedbox}}{U}{#1}{T}{\useanchorwidth}{S}%

}%

\if F\quietstack\usebox{\stackedbox}\fi%

}

\newcommand*\Longstack[2][\stackalignment]{%

\getargsC{#2}%

\setcounter{stackindex}{1}%

\sbox{\stackedbox}{\argi}%

\whiledo{\thestackindex < \narg}{%

\stepcounter{stackindex}%

\stackengine{\Lstackgap}{\csname arg\roman{stackindex}\endcsname}%

{\usebox{\stackedbox}}{O}{#1}{T}{\useanchorwidth}{L}%

}%

\if F\quietstack\usebox{\stackedbox}\fi%

}

\newcommand*\Longunderstack[2][\stackalignment]{%

\getargsC{#2}%

\setcounter{stackindex}{\narg}%

\sbox{\stackedbox}{\csname arg\roman{stackindex}\endcsname}%

\whiledo{\thestackindex > 1}{%

\addtocounter{stackindex}{-1}%

\stackengine{\Lstackgap}{\csname arg\roman{stackindex}\endcsname}%

{\usebox{\stackedbox}}{U}{#1}{T}{\useanchorwidth}{L}%

}%

\if F\quietstack\usebox{\stackedbox}\fi%

}

\newcommand*\tllap[2][\Lstackgap]{%

\stackengine{#1}{}{#2}{O}{r}{\quietstack}{T}{L}%

}

\newcommand*\tclap[2][\Lstackgap]{%

\stackengine{#1}{}{#2}{O}{c}{\quietstack}{T}{L}%

}

\newcommand*\trlap[2][\Lstackgap]{%

\stackengine{#1}{}{#2}{O}{l}{\quietstack}{T}{L}%

20

}

\newcommand*\bllap[2][\Lstackgap]{%

\stackengine{#1}{}{#2}{U}{r}{\quietstack}{T}{L}%

}

\newcommand*\bclap[2][\Lstackgap]{%

\stackengine{#1}{}{#2}{U}{c}{\quietstack}{T}{L}%

}

\newcommand*\brlap[2][\Lstackgap]{%

\stackengine{#1}{}{#2}{U}{l}{\quietstack}{T}{L}%

}

\newcommand*\stackanchor[3][\stackgap]{%

\setlength{\stack@tmplength}{#1}%

\setlength{\stack@tmplength}{.5\stack@tmplength}%

\if T\usestackstrut%

\if S\stacktype\addtolength{\stack@tmplength}%

{.5\ht\strutbox-.5\dp\strutbox}\fi%

\fi%

\stackengine{\stack@tmplength}{}{#2}{O}{\stackalignment}{T}{F}{\stacktype}%

\if T\usestackstrut%

\if S\stacktype\addtolength{\stack@tmplength}%

{-\ht\strutbox+\dp\strutbox}\fi%

\fi%

\stackengine{\stack@tmplength}{\usebox{\stackedbox}}{#3}{U}%

{\stackalignment}{\quietstack}{F}{\stacktype}%

}

\newcommand*\belowbaseline[2][\stackgap]{%

\stackengine{#1}{}{#2}{U}{\stackalignment}{\quietstack}{F}%

{\stacktype}}

\newcommand*\topinset[4]{\stack@inset{#1}{#2}{#3}{#4}{O}}

\newcommand*\bottominset[4]{\stack@inset{#1}{#2}{#3}{#4}{U}}

\newcommand*\stack@inset[5]{%

\ifthenelse{\equal{#3}{}}

{\setlength{\stack@tmplength}{0pt}}%

{\setlength{\stack@tmplength}{#3}}%

\ifthenelse{\equal{#4}{}}{\def\stack@tmp{0pt}}{\def\stack@tmp{#4}}%

\def\stack@lroffset{\rule{\stack@tmp}{0pt}}%

\addtolength{\stack@tmplength}{\heightof{#1}}%

\stackengine{-\stack@tmplength}{#2}{\stack@lroffset#1\stack@lroffset}%

{#5}{\stackalignment}{\quietstack}{\useanchorwidth}{S}%

}

\newcommand*\savestack[2]{%

\global\edef\sv@name{\stack@macro@name{#1}}%

\@ifundefined{\sv@name content}{%

\expandafter\newsavebox\expandafter{\csname\sv@name content\endcsname}%

}{}%

\expandafter\sbox\csname\sv@name content\endcsname{#2}%

\protected@edef#1{\usebox{\csname\sv@name content\endcsname}}%

}

21

% Following 3 lines thanks to Prof. Enrico Gregorio, from:

% http://tex.stackexchange.com/questions/42318/

% removing-a-backslash-from-a-character-sequence

\begingroup\lccode‘\|=‘\\

\lowercase{\endgroup\def\removebs#1{\if#1|\else#1\fi}}

\newcommand{\stack@macro@name}[1]{\expandafter\removebs\string#1}

%

\endinput

22

