spreadtab

v0.1

User's manual

Christian Tellechea
unbonpetit@gmail.com
November $3^{\text {rd }} 2009$

[^0]
Contents

1 Introduction 2
1.1 Presentation 2
1.2 Motivation 2
2 Basic features 3
2.1 Absolute references 3
2.2 Relative references 3
2.3 Text cells 4
2.4 Mixed cells 4
3 Features for formatting the table 5
3.1 End of lines and horizontal rules 5
3.2 Hide a row or column 6
3.3 Save the result of a cell 6
3.4 The use of \multicolumn 7
3.5 Number formatting and the fp package 8
4 Macro-functions 8
4.1 Mathematical macro-functions 8
4.1.1 Sum cells 8
4.1.2 The fact macro 9
4.1.3 The sumprod macro 9
4.1.4 Random numbers 9
4.2 Tests 10
4.3 Macro-functions manipulating dates 11
4.3.1 Date to number with engshortdatetonum 11
4.3.2 From a number to a date 11
5 Particular care 12
5.1 Defining new commands with \hline 12
5.2 The use of \multicolumn and \SThidecol. 13
5.3 Messages delivered by spreadtab 14
6 Examples 14
6.1 The Pascal's triangle again! 15
6.2 The convergence of a series 15
6.3 Convergence on the golden ration 16
6.4 A billing table 17
6.5 A magic square 17
6.6 A pyramid of additions 18

1 Introduction

1.1 Presentation

This package allows us to construct tables in a manner similar to a spreadsheet. The cells of a table have row and column indices and these can be used in formulas to generate values in other cells.

The package requires $\varepsilon-\mathrm{T}_{\mathrm{E}} \mathrm{X}, \mathrm{IAT}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}$ and the fp package, which performs arithmetic on cell values. Also, the xstring package is needed in its v1.5c [2009/06/05] version or later.

The package is compatible with all tabular environments, and assumes that ' $\&$ ' is used to delimit columns and ' $\backslash \backslash$ ' to end the lines. This compatibility requirement led me to program spreadtab so that it works independently of the table environment. Thus, reading the table, processing and calculating the formulas is done before the environment table 'sees' the body of the table.

Consequently, spreadtab proceeds in 3 main stages before \begin } \{ < table environment > \} sees the table:

- first, it reads the body of the table, divides it in lines and cells, and in each cell, seeks a possible formula;
- then, it computes the formulas in the cells, taking care for each to previously calculate all the dependent cells. The calculations are done by the fp package;
- finally, it is necessary to rebuild the table, replacing each formula by its numerical calculated value and handing over to the environment name specified by the user.

Here is the syntax:

```
\begin{spreadtab}{{<name of table environment>}<parameters of environment>}
    table with formulas and numbers
\end{spreadtab}
```

after the work of spreadtab, we get a display as if we had written:

```
\begin{<name of table environment>}<parameters of environment>
    table with numbers
\end{<name of table environment >}
```

Although having features resembling those of a spreadsheet with $\mathrm{IATEX}_{\mathrm{E}}$ is appreciable, the 3 stages described above take time, and above all, $f p$ is slow in its calculations. The spreadtab environment leads to much slower compilation than with a classical table.

Moreover, spreadtab cannot stand in for a spreadsheet program. Indeed, it has very few features, and it does not provide visual assistance. This point may cause difficulty ${ }^{1}$ for big or complex tables. The syntax of spreadtab is also another difficulty. In fact, the advantage of this package is that it makes possible to write in the $L^{A} T_{E} X$ code tables invloving calculation when these tables are usually exported ${ }^{2}$ from a spreadsheet program to $\mathrm{LA}_{\mathrm{EX}}$ code. Consequently, it becomes possible to avoid the disadvantages of the exportation programs: fine tuning often necessary to obtain exactly what you want, exported tables containing the values only (formulas are lost when exportation is done), no compatibility with all types of environments, exportation must be started again if a single number or formulas is modified in the table.

1.2 Motivation

A few months before I started to write this package, Derek O'Connor had pointed out that nothing was available in the world of $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ packages to imitate - even a little - the behaviour of spreadsheet programs. I found the challenge interesting and I started writing in this package which is only a good programming exercise.

[^1]Indeed, the main algorithm contained in spreadtab that determines the order in which the cells must be calculated is quite general and not specific to $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$. Other $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ oriented algorithms analyze cells and formulas to find references to other cells. The exercise is interesting because for programming, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ does not provide anything resembling a pointer, useful to build linked lists of cells to calculate. Nothing is available either to attach to a 'variable' 'chils fields' which you can choose the type.

The road was long before reaching this first version and I especially want to thank Christophe Casseau for his early interest and for the suggestions he made, and more recently Derek O'Connor for his advice and for the constructive discussions we have had. I also thank Huu Dien Khue Le for the Vietnamese translation of this manual.

2 Basic features

A table is a rectangular array of cells which may be viewed as a set cells arranged in horizontal rows or vertical columns.

2.1 Absolute references

A table cell is identified by the pair <colref><rowref> ${ }^{3}$, where:

- <colref> is a letter from a to \mathbf{z}, and a is the first column on the left: it is limited to 26 columns, which should be sufficient for the majority of cases; the letter can be upper or lowercase;
- <rowref> is a positive integer representing row number. The row number 1 is the top row.

Here are examples of absolutes references: b4 or C1 or d13.
This example calculates the sum each row and each column and then calculates the grand total:

```
\begin{spreadtab}{{tabular}{rr|r}}
22 & 54 & a 1+b1 \\
43 & 65 & a 2+b2 \\
49 & 37 & a 3+b3 \\
\hline
a1+a2+a3 & b1+b2+b3 & a4+b4
\end{spreadtab}
```

For people familiar with maths, this other example calculates the first lines of Pascal's triangle:

22	54	76
43	65	108
49	37	86
114	156	270

```
\begin{spreadtab}{{tabular}{ccccc}}
```

$$
\begin{spreadtab}{{tabular}{ccccc}}
1 & & & & \
1 & & & & \
a1 & a1
a1 & a1
a2 & a2+b2 & b2 & & \\
a2 & a2+b2 & b2 & & \\
a3 & a 3+b3 & b 3+c3 & c3 & \\
a3 & a 3+b3 & b 3+c3 & c3 & \\
a2 & a4+b4 & b4+c4 & c4+d4 & d4
a2 & a4+b4 & b4+c4 & c4+d4 & d4
\end{spreadtab}
$$

```
\end{spreadtab}
```

```
1
```

1
1 1
1 1
1 2 1
1 2 1
1 3 3 1
1 3 3 1
14 4 6 4 1

```
14 4 6 4 1
```


2.2 Relative references

To refer to a cell, it may be convenient to specify its position relatively to where the formula is written. Thus, the relative coordinates of a cell are 2 relative numbers written using this syntax: [x, y] where x is the horizontal offset from the cell containing the formula and y is the vertical offset. For example, $[-2,3]$ refers to the cell located 2 columns before (on the left) and 3 rows after (below) the cell where the formula is located.

[^2]Here is the same table as above but the references are relatives and the matrix environment of the amsmath is used:

```
$ \begin{spreadtab}{{matrix}{}}
1\\
[0,-1] & [-1, -1]\\
[0,-1] & [-1,-1]+[0, -1] & [-1, -1]\\
[0,-1] & [-1, -1]+[0,-1] & [-1, -1]+[0, -1] & [-1, -1]\\
[0,-1] & [-1,-1]+[0,-1] & [-1,-1]+[0,-1] & [-1,-1]+[0,-1] & [-1,-1]
\end{spreadtab}
$
```

We note that relative references are more appropriate here, since only 2 different references are used: $[0,1]$ which refers to the cell below and $[-1,1]$ which refers to the cell located at the SW of the current cell.

Absolute and relative references can be mixed in a formula.

2.3 Text cells

If you want to put only text in a cell, you must tell spreadtab that the cell should not be calculated. Simply place somewhere in the cell character ' $@$ ' with its usual catcode 12 . The cell will be ignored by spreadtab which will consider it as an inert cell impossible to refer ${ }^{4}$ elsewhere in the table.

Example:

```
\begin{spreadtab}{{tabular}{|r|ccc|}}
\hline
@ values of de $x$ & -5 & -1 & 4 \\
@ $f(x)=2x$ & 2*[0,-1] & 2*[0,-1] & 2*[0,-1] \\\hline
\end{spreadtab}
```

values of x	-5	-1	4
$f(x)=2 x$	-10	-2	8

The control sequence \STtextcell expands to the character ' $@$ '. It is possible to redefine it, for example, after }, a cell containing $\backslash c e l l t e x t$ will be understood as a text cell.

Moreover, if a cell is empty or filled with spaces, spreadtab will consider it as a text cell.

2.4 Mixed cells

In reality, each cell is composed of two fields. The first is a numeric field containing the formula; the second is a text field, ignored by fp and not taken into account for calculations:

 - if nothing is specified in a cell, the entire cell is the number field, and the text field is empty (this was the case for all table cells of Pascal's triangle seen above);
 - if the cell contains the ' $@$ ' character, then the entire cell is the text field. The numeric field is empty and inaccessible;
 - if the cell contains the marker ' $:=$ ', then the following argument between braces is the numeric field, and everthing else is the text field. The cell has this structure:

```
<text field>:={numeric field}<end of text field>
```

The marker ' $:=$ ' is the expansion of the control sequence \STnumericfieldmarker. It is possible to redefine it, for example:

[^3]

In this case, the expansion of the marker ' $\backslash=$ ' would have no importance and would not be invloved in the process. For spreadtab, it is only a token showing where the formula begins. This token is sought and recognized but is never expanded.

Once the numeric field is computed, ':=\{numeric field\}' is replaced by the numeric value.
Note that ':=\{numeric field\}' may be inside brackets, whatever be the level of nesting. For example, if a cell contains \backslash textbf $\{:=\{a 1+1\}\}$ and if the numeric value of the cell a1 is 5 , then finally, the cell will contain \textbf $\{6\}$

Here is a simple example:

```
\begin{spreadtab}{{tabular}{|c|c||c|}}\hline
value 1 : :={50} & value 2 : :={29} & average : \textbf{:={(a1+b1)/2}}\\\hline
\end{spreadtab}
```

value $1: 50$ value $2: 29 \quad$ average : 39.5

If ' $:=$ ' has an empty argument like this ' $:=\{ \}^{‘}$, then the cell is understood as a text cell. It is a synonym of '@'.

3 Features for formatting the table

3.1 End of lines and horizontal rules

spreadtab recognizes the usual line breaks and horizontal rules $\backslash \backslash$ and $\backslash h l i n e$. Also, it may use the optional argument in line break: $\backslash \backslash[<$ dimension $>]$.
For horizontal rule, it is possible to use:

 - \hline;
 - \cline $\{x-y\}$ where x and y define the start and the end of the rule;
 - \hhline\{<type>\} where <type> is the type of rule (read the manual of the hhline package).

Example:

```
\begin{spreadtab}{{tabular}{*5c}}
[0,1] & [-1,1]+[0,1] & [-1,1]+[0,1] & [-1,1]+[0,1] & [-1, 1]\\[1 em]
[0,1] & [-1,1]+[0,1] & [-1,1]+[0,1] & [-1,1] \ \
[0,1] & [-1,1]+[0,1] & [-1,1] & & \\ \hline\hline
[0,1] & [-1,1] & & & \\ \cline{2-4}
1 & & & & \\ \hline
\end{spreadtab}
```

1	4	6	4	1
1	3	3	1	
1	2	1		
1	1			

3.2 Hide a row or column

Sometimes, a column or a row is intended for intermediate calculations and does not need to be displayed in the final table. For this, spreadtab provides two control sequences \backslash SThiderow and \backslash SThidecol which, when placed in a cell, hide the row or column that contains the cell.

An example:

```
\begin{spreadtab}{{tabular}{|r|ccc|}}
\hline
@ values of $x$ & -1 & O\SThidecol & 2 & 3 \\\hline
@$f(x)=2x-1$ & 2*[0,-1]-1 & 2*[0,-1]-1 & 2*[0,-1]-1 & 2*[0,-1]-1 \\
@$g(x)=x-10$\SThiderow & [0,-2]-10 & [0,-2]-10 & [0,-2]-10 & [0,-2]-10}\
@$h(x)=1-x$ & 1-[0,-3] & 1-[0,-3] & 1-[0,-3] & 1-[0,-3] \\\hline
\end{spreadtab}
```

values of x	-1	2	3
$f(x)=2 x-1$	-3	3	5
$h(x)=1-x$	2	-1	-2

The row containing $g(x)$ and column corresponding to the value 0 are hidden.
You must be remember that the hidden rows and columns are invisible to the tabular environment chosen by the user. Thus, only 4 columns have been defined ($|r| c c c \mid$) and not 5 as seen by spreadtab.
Just to see the difference, here is the table obtained when setting 5 columns in the preamble and not hiding any row or column:

values of x	-1	0	2	3
$f(x)=2 x-1$	-3	-1	3	5
$g(x)=x-10$	-11	-10	-8	-7
$h(x)=1-x$	2	1	-1	-2

3.3 Save the result of a cell

It may be necessary to save the numerical value of a cell to display it outside of a formula or even outside of the table. Here is how to do it:

```
\STsavecell{<control sequence>}{<absolute reference>}
```

With a $\backslash g l o b a l \backslash d e f{ }^{5}$, this command globally saves in <control sequence> the result of the formula contained in the cell <absolute reference>.

Only absolute references can be used since this command must be placed in the optional argument of the spreadtab environment.

Example:

```
\begin{spreadtab}[\STsavecell\result{c1}]{{tabular}{|c|c|c|c|c|}}
\hline
10 & a 1+10 & b1+10 & a1+b1+c1 & @cell c1 : \result\\\hline
\end{spreadtab}
\par\medskip
Here is the cell c1 : \result
```

10	20	30	60	cell c1:30

Here is the cell c1:30

[^4]In order to save several cells, the command \STsavecell can be put several times in the optionnal argument.

Example:

```
\begin{spreadtab}[\STsavecell\hhh{b3}\STsavecell\mmm{c3}\STsavecell\sss{d3}]{{tabular
    }{|rc|}}\hline
@Speed (km/h) &\SThidecol&\SThidecol&\SThidecol& 35 \\
@distance (km) & & & 180\\\hline
@Time (h min s) & trunc(e2/e1,0) & trunc(60*(e2/e1-b3),0) & trunc(3600*(e2/e1-b3)-60*
    c3,1) &@\hhh\ h \mmm\ min \sss\ s\\\hline
\end{spreadtab}\par\medskip
It lasts more than \hhh\ hours.
```

Speed $(\mathrm{km} / \mathrm{h})$	35
distance (km)	180
Time $(\mathrm{h} \mathrm{min} \mathrm{s})$	$5 \mathrm{~h} 8 \min 34.2 \mathrm{~s}$

It lasts more than 5 hours.

3.4 The use of \multicolumn

spreadtab is compatible with the syntax \backslash multicolumn $\{<$ number $>\}\{<$ type $>\}\{<$ content $>\}$ which merges <number> cells in unique cell whose type and content are specified in the arguments.

Even when using \multicolumn, spreadtab maintains some consistency in the references. In this table where \multicolumn is used, the absolute references are displayed:

a1	b1	c1	d1	e1	f1	g1
a2	b2		d2	e2	f2	g2
a3		d3	e3		g3	

Thus, whatever be the number of merged cells, the next cell has a column number that take into account the number of merged cells.

In the last line, cells a3, b3 and c3 are merged and consequently, the cells b3 and c3 do not exist for spreadtab: it is not possible to refer to b3 or c3 anywhere in the table.

In this example, every number in the top line is the product of the 2 numbers below:

```
\newcolumntype{K}[1]{@{}>{\centering\arraybackslash}p{#1cm}@{}}
\begin{spreadtab}{{tabular}{*6{K{0.5}}}}
\cline{2-5}
&\multicolumn{2}{|K{1}|}{:={a2*c2}} & \multicolumn{2}{K{1}|}{:={c2*e2}} &\\\hline
\multicolumn{2}{|K{1}}{:=8}&\multicolumn{2}{|K{1}}{:=7}&\multicolumn{2}{|K
    {1}|}{:=6}\\\hline
\end{spreadtab}
```

56		42	
8	7	6	

The marker ': $=$ ' is necessary in every cell where the command $\backslash m u l t i c o l u m n ~ i s ~ w r i t t e n . ~ W i t h o u t ~ i t, ~$ spreadtab would consider that the whole cell (i.e. \multicolumn $\{2\}\{|c|\}\{\langle f o r m u l a\rangle\}$) as the formula, which is impossible to calculate.

3.5 Number formatting and the fp package

All calculations are made by the \FPeval macro ${ }^{6}$ of the fp package. This package provides all necessary along with various scientific and trigonometric functions. Calculations are made with 18 decimal digits of precision, and fp displays all the decimals!

The number of digits displayed can be controlled in various ways:

 - the numprint package can be used in order to properly display numbers;
 - fp can round or truc numbers with round (number, integer) or trunc (number, integer) but the syntax makes this tedious to write if this is needed for many cells;
 - spreadtab can round all the numbers in the table with the macro \STautoround whose argument is number of digits in the decimal part. If the argument is empty, no rounding is done.

In this example, floating point numbers are rounded to 6 digits:

```
\STautoround {6}
\begin{spreadtab}{{tabular}{|l|*7{>{\centering\arraybackslash}m{1.45cm}|}}}
\hline
@$x$ & 1 & 2 & 3 & 4 & % % % % \ & \\hline
@$x~{-1}$& 1/b1 & 1/c1 & 1/d1 & 1/e1 & 1/f1 & 1/g1 & 1/h 1\\\hline
\end{spreadtab}
```

x	1	2	3	4	5	6	7
x^{-1}	1	0.5	0.333333	0.25	0.2	0.166667	0.142857

4 Macro-functions

The fp package provides a limited set of operations and functions. If these are not sufficient then spreadtab allows the advanced programmer to write macros using the operations and functions of $f p$. This section presents the macro-functions currently available ${ }^{7}$. There will be more details on how to program macro functions in the next version of this manual.

4.1 Mathematical macro-functions

4.1.1 Sum cells

The macro-function sum sums one or several ranges of cells.
It should be used like this: sum (<range $1>$; <range $2>; \ldots ;<$ range $n>$), where a range of cells is:

 - either a single cell like a1 or $[2,1]$;
 - either a rectangular area bounded by the upper-left cell and lower-right with this syntax:
<cell 1>:<cell 2>

Here are some examples of such areas: a2:d5, $[-1,-1]:[2,3], b 4:[5,1]$.

In the ranges of cell, if a cell does have a numeric field (empty cell or text cell or merged cell with \backslash mutlicolumn), it is seen as 0 by sum.

[^5]In the following table, the sum of the binomial coefficients of the Pascal's triangle is calculated:

```
\begin{spreadtab}{{tabular}{*5c}}
\multicolumn{5}{c}{sum: :={sum(a2:e6)}}\\
[0,1] & [-1, 1]+[0,1] & [-1,1]+[0,1] & [-1,1]+[0,1] & [-1, 1]
[0,1] & [-1,1]+[0,1] & [-1,1]+[0,1] & [-1,1]
[0,1] & [-1,1]+[0,1] & [-1,1] &
[0,1] & [-1,1] & & & & & & < < \
1 & & &
\end{spreadtab}
```


4.1.2 The fact macro

The macro-function fact (<number>) computes the factorial of its argument, assumed it is an integer between 0 and 18 to avoid overflows ${ }^{8}$. The <number> can also be a reference to a cell whose numeric field contains an integer.

Here are the factorial from 0 to 8:

```
\begin{spreadtab}{{tabular}{*9c}}
0 & 1 & & 2 & 3 & 4 & & 5 & & % & 7 & %\\\hline
fact(a1)&fact(b1)&fact(c1)&fact(d1) &fact(e1)&fact(f1)&fact(g1)&fact(h1)&fact(i1)
\end{spreadtab}
```

0	1	2	3	4	5	6	7	8
1	1	2	6	24	120	720	5040	40320

4.1.3 The sumprod macro

The function sumprod multiplies the corresponding elements of 2 or more rectangular ranges and then adds these products.
It should be used like this: sumprod(<range $1>$; <range $2>; \ldots ;<$ range $n>$). All the ranges must have the same dimensions.

In this simple example, the average age of a group of children aged from 10 to 15 years old is calculated:

```
\begin{spreadtab}{{tabular}{r*6c}}
@\Ages & 10 & 11 & 12 & 13 & 14 & 15\\
@Number & 5 & 8 & 20 & 55 & 9 & 3\\\hline
@Average&\multicolumn{6}{l}{:={sumprod(b1:g1;b2:g2)/sum(b2:g2)}}
\end{spreadtab}
```

Ages	10	11	12	13	14	15
Number	5	8	20	55	9	3
Average	12.64					

If any cell in the rages is empty, pure text or merged with \multicolumn, its numeric field is replaced by 0 .

4.1.4 Random numbers

The macro-functions randint and rand return a random number depending of its argument.
It should be noted that the seed initializing the random sequence depends on the date and the minute at which the compilation is done. Thus, the random sequence of numbers given by this function will change between two compilations made at times which minutes differ. If randoms numbers need to be repeatable, the private macro \backslash ST@seed must be cancelled and a seed should be chosen for $f p$. Here is the code to do this:

[^6]```
\makeatletter
\renewcommand\ST@seed{}% redefines the private macro
\makeatletter
\FPseed=27% gives a seed (any integer) to fp.
```

The macro-function randint returns a random integer depending on its argument. Here is the syntax: randint ([<number1>,]<number2>), where <number1> is an optional integer which default value is 0 . The random integer returned is in the interval [<number1>; <number2>].

The macro-function rand() returns a random number between 0 and 1.

```
\STautoround{6}
\begin{spreadtab}{{tabular}{|l|cccc|}}\hline
@numbers in [0;1] &rand() &rand() &rand() &rand() \\
@numbers in [-5;5] &randint(-5,5) &randint(-5,5) &randint(-5,5) &randint(-5,5)\\
@numbers in [0;20] &randint(20) &randint(20) &randint(20) &randint(20) \\
\hline
\end{spreadtab}
```

| numbers in $[0 ; 1]$ | 0.173889 | 0.549332 | 0.629985 | 0.160506 |
| :--- | :---: | :---: | :---: | :---: |
| numbers in $[-5 ; 5]$ | 1 | -2 | -1 | -5 |
| numbers in $[0 ; 20]$ | 5 | 0 | 18 | 9 |

### 4.2 Tests

Three macro-functions provide tests:

```
ifeq(number1,number2,number3, number4)
ifgt(number1,number2,number3,number4)
iflt(number1,number2,number3, number4)
```

number1 and number2 are compared:

  - for ifeq, is number $1=$ number2?
  - for ifgt, is number $1>$ number2?
  - for iflt, is number1 < number2?

If the test is positive, number3 is returned, otherwise it is number4.
Here are some values of the function $f(x)= \begin{cases}10 & \text { if } x<1 \\ 0 & \text { if } x=1 \\ -10 & \text { if } x>1\end{cases}$

```
\begin{spreadtab}{{tabular}{|*2c|}}\hline
@x & @$f(x)$ \\\hline
-0.5 & iflt([-1,0],1,10,ifeq([-1,0],1,0,-10))\\
[0,-1]+0.5 & iflt ([-1,0],1,10,ifeq([-1,0],1,0,-10))\\
[0,-1]+0.5 & iflt([-1,0],1,10,ifeq([-1,0],1,0,-10))\\\hline
\end{spreadtab}
```

| $x$ | $f(x)$ |
| :---: | :---: |
| -0.5 | 10 |
| 0 | 10 |
| 0.5 | 10 |
| 1 | 0 |
| 1.5 | -10 |
| 2 | -10 |
| 2.5 | -10 |

### 4.3 Macro-functions manipulating dates

### 4.3.1 Date to number with engshortdatetonum

The macro engshortdatetonum converts a short date like $1789 / 7 / 14$ to an integer which is the number of days passed since the 1 st march of the year $0^{9}$. It is important to note that this macro-function requires a textual argument and not a number or the result of a mathematical calculation. Therefore, if the argument of this macro-function refers to a cell, that cell must be a text cell, i.e. a cell containing '©' or ${ }^{\prime}:=\{ \}$ '

In the example below, the first two lines show how to refer to a text cell. The third line displays the date 0 on the left, and more interesting on the right, it shows how to calculate the number corresponding to the current date with the use of the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ counters \year, \month and \day which contain the numbers of the current year, month and day.

```
\begin{spreadtab}{{tabular}{cc}}
@1789/7/14 & engshortdatetonum(a1)\\
2001/1/1 :={} & engshortdatetonum(a2)\\\hline
engshortdatetonum(0/3/1) & engshortdatetonum(\number\year/\number\month/\number\day)
\end{spreadtab}
```

| $1789 / 7 / 14$ | 653554 |
| :---: | :---: |
| $2001 / 1 / 1$ | 730791 |
| 0 | 734019 |

Another macro-function provides the same feature but with a long date like 'December 25, 1789' or the string contained in \today:

```
\begin{spreadtab}{{tabular}{cc}}
englongdatetonum(February 13, 2005) & englongdatetonum(\today)\\
@July 1, 1970 & englongdatetonum(a2)
\end{spreadtab}
```

$\begin{array}{cr}732295 & 734019 \\ \text { July 1, } 1970 & 719649\end{array}$

### 4.3.2 From a number to a date

Several macro-functions enable to translate a number into a date. All these macro-functions have in common that their result is text. Therefore, the cells containing such results become cells containing text: the numeric field becomes empty and the text field becomes this result.

This macro-functions are:

  - numtoengshortdate translate a number into a short date like '1789/7/14';
  - numtoenglongdate translate a number into a long date like 'July 14, 1789';
  - numtoengmonth given a number representing a date, it finds the name of the month;
  - numtoengday same as above but it finds the name of the day.

Here is an example in which we consider 1000 days before and 1000 days after 2009/6/1. For each of these 2 dates, we calculate the short date, long date, month and day of the week.

[^7]```
\begin{spreadtab}{{tabular}{cc}}
\hline
\multicolumn{2}{|c|}{@2009/6/1} \\\hline\hline
1000 & numtoengshortdate(engshortdatetonum(a1) +[-1,0])\\
1000 & numtoenglongdate(engshortdatetonum(a1)+[-1,0]) \\
1000 & numtoengmonth(engshortdatetonum(a1)+[-1,0]) \\
1000 & numtoengday(engshortdatetonum(a1)+[-1,0]) \\\hline
-1000 & numtoengshortdate(engshortdatetonum(a1) +[-1,0])\\
-1000 & numtoenglongdate(engshortdatetonum(a1) +[-1,0]) \\
-1000 & numtoengmonth(engshortdatetonum(a1)+[-1,0]) \\
-1000 & numtoengday(engshortdatetonum(a1)+[-1,0])
\end{spreadtab}
```

$2009 / 6 / 1$	
1000	$2012 / 2 / 26$
1000	February 26,2012
1000	February
1000	sunday
-1000	$2006 / 9 / 5$
-1000	September 5, 2006
-1000	September
-1000	tuesday

5 Particular care

5.1 Defining new commands with \hline

It may be useful to define a new command to produce, for example, a double horizontal line:
\newcommand\dline\{\hline\hline\}
and then try to use it in a table as in this simple example that computes Fibonnacci sequence in the second line:

$$
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \hline 1 & 1 & 2 & 3 & 5 & 8 & 13
\end{array}
$$

But, if you write the following code, there is a problem when compiling:

```
\newcommand\dline{\hline\hline}
\begin{spreadtab}{{tabular}{*7c}}
0}&&
1 & 1 & a2+b2 & b2+c2 & c2+d2 & d2+e2 & e2+f2
\end{spreadtab}
```

In the \log file, you can read that $\backslash F P e v a l$ fails and complains:

```
! Improper alphabetic constant.
```

The reason is simple, \dline in line 4 is not recognized by spreadtab as an horizontal rule and therefore, it is placed in the cell next line. For spreadtab, the cell b1 contains:

\dline 1

Since there is no @ or :=\{<formula>\}, spreadtab considers that the whole cell is a numeric field and \backslash FPeval tries valiantly to calculate this content and obviously fails.
To compile without error, the cell a2 must contains a numeric field marker:

```
\newcommand\dline{\hline\hline}
\begin{spreadtab}{{tabular}{*7c}}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\\dline
:={1} & 1 & a2+b2 & b2+c2 & c2+d2 & d2+e2 & e2+f2
\end{spreadtab}
```

$$
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \hline 1 & 1 & 2 & 3 & 5 & 8 & 13
\end{array}
$$

5.2 The use of \multicolumn and \SThidecol

Firstly, in normal use, joint use of \multicolumn and \SThiderow should not happen, and most users should not encounter this situation and should not read this section.

For the brave here is the problem: first, a hidden column must not contain a cell with the command \multicolumn! But what happens if a hidden column hides cells merged with \multicolumn?
In general, there is no compilation error or error messages, but there are some subtleties about the references that are a bit turned upside down in the line after the \multicolumn command...

Let's take an example, and let's say that, in the following table, we want to merge the cell b2 to h2 and we also want to hide the colomns c, d and f , here in gray:

a1	b1	c1	d1	e1	f1	g1	h1	i1	j1
a2	b2							i2	j2

There are 4 visible merged cells, so we write \multicolumn\{4\} because hidden columns are never taken into account when counting the number of \multicolumn.

Then we count 4 letters from b (this letter included): we obtain the letter e. In the range $b-e$, let's count: 2 gray hidden columns are included (c and d) and 1 hidden column is not included (f). These numbers are important to understand the following, also let's call them a and b in the general case.
The rule is:

 - it is necessary to add b signs \& after \multicolumn (in the example above, it would be 1);
 - references to columns of cells after the \multicolumn will be shifted a to the beginning of the alphabet. For the example given, if we want to refer to the cell i2, we should write g2 instead of $i 2$.

Here is an example with a similar structure than the previous ($a=2$ and $b=1$) with simple formulas: add 1 to the number above.

```
\begin{spreadtab}{{tabular}{|*{7}{c|}}}
\hline
1 & 2 & \SThidecol3 & \SThidecol4 & 5& \SThidecol6 & 7& 8& 9 & 10 \\\hline
a1+1& \multicolumn 4{l|}{:={b1+1}} & & i 1+1 & j1+1\\\hline
a2+1& b2+1 & & & & & & & g2+1 & h2+1\\\hline
\end{spreadtab}
```

1	2	5	7	8	9	10
2	3				10	11
3	4				11	12

And another example with $a=1$ and $b=0$ where a single column is hidden d:

```
\begin{spreadtab}{{tabular}{|*{9}{c|}}}
\hline
1 & 2 & 3 & \SThidecol4 & 5 & 6 & 7 & 8 & 9 & 10 \\\hline
a1+1& \multicolumn6{l|}{:={b1+1}} & i 1+1 & j1+1\\\hline
a2+1& b2+1 & & & & & & & & & & i 2+1\\\hline
\end{spreadtab}
```

1	2	3	5	6	7	8	9	10	
2	3								
3	4						11	12	

5.3 Messages delivered by spreadtab

The package delivers error messages and abort compilation in these cases:

 - a circular reference is found in a cell. In this case, the dependant cells are displayed;
 - a cell refers to an empty cell or a text cell when a non empty numeric field is expected;
 - a cell refers to an undefined cell (outside the table);
 - a cell refers to a merged cell by a \multicolumn command;
 - a relative reference has a bad syntax.

The package can deliver information messages (in the log file), which it does by default. If the user wants or not the delivery of information messages, the syntax is \STmessage\{true\} or \STmessage\{false\}.

To understand the meaning of these messages, let's take a simple table:

```
\STmessage{true}% already set by default
\begin{spreadtab}{{tabular}{|ccoc|c|}}\hline
b1+1 & c 1+1 & d 1+1 & 10 & a 1+b b +c 1+d 1\\\hline
\end{spreadtab}
```

Here are the messages deliverd by spreadtab:

```
[spreadtab] New spreadtab {tabular}{|cccc|c|}
* reading tab: ok
* computing formulas:
    cell A1-B1-C1
    cell B1
    cell C1
    cell D1
    cell E1
* building tab: ok
[spreadtab] End of spreadtab
```

Preceded by a star, we recognize the 3 steps necessary to spreadtab to complete its task: reading the table, calculation of the formulas and building the final table.
For the second step, cells are evaluated from top to bottom, left to right: at line 4 in the code above, spreadtab says that it begins by trying to calculate the first cell A1. After a dash, we see that for this, it must first compute the cell B 1 , which itself requires that the cell C 1 is calculated: the latter can be calculated since it depends only on D1 which is a cell containing the number 10.

In the following (lines 5 to 8), there is only one cell per line which means that when spreadtab tries to evaluate the cell, either it contains a number or dependant cells are already calculated.

6 Examples

In the examples of this section, the numbers entered by the user are in red and the calculated numbers are in black

In these tables, lots of tricks (struts, \multicolumn commands) and packages (including the numprint package and its columns ' N^{\prime}, which aligns the decimal points) were used to obtain a satisfactory result. The code is sometimes cumbersome and difficult to read, but these tables are not basic but well-groomed examples!

6.1 The Pascal's triangle again!

```
\begin\{spreadtab\}\{\{tabular\}\{*7r\}\} }
\([0,1] \&[-1,1]+[0,1] \&[-1,1]+[0,1] \&[-1,1]+[0,1] \&[-1,1]+[0,1]\) \& \([-1,1]+[0,1]\) \&
    \([-1,1] \backslash \backslash\)
\([0,1] \&[-1,1]+[0,1] \&[-1,1]+[0,1] \&[-1,1]+[0,1] \&[-1,1]+[0,1] \&[-1,1] \quad \&\)
\([0,1] \&[-1,1]+[0,1] \&[-1,1]+[0,1] \&[-1,1]+[0,1] \&[-1,1]\) \&
\([0,1] \&[-1,1]+[0,1] \&[-1,1]+[0,1] \&[-1,1]\) \& \&
\([0,1] \&[-1,1]+[0,1] \&[-1,1]\) \& \& \&
\([0,1] \&[-1,1] \quad \& \quad \& \quad \& \quad \&\)
```



```
\end\{spreadtab\} }
```

1	6	15	20	15	6	1
1	5	10	10	5	1	
1	4	6	4	1		
1	3	3	1			
1	2	1				
1	1					
1						

6.2 The convergence of a series

For people familiar with maths, here is the series of the exponential. Indeed,

$$
\forall x \in \mathbf{R} \quad e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

and this table shows the speed of convergence for $x=0.5$

```
\STautoround{15}
\begin{spreadtab}[\STsavecell\xvalue{a1}]{{tabular}{cN{2}{15}}}
\multicolumn{2}{c}{Convergence for $x=\color{red}{\numprint{:={0.5}}}$}\\[1.5ex]
@$n$ & e^a1\SThidecol & \hfill{@ $\displaystyle e^{\
    numprint\xvalue}-\sum_{k=0}`n\frac{\numprint\xvalue^k}{k!}$}\hfill\\[3ex]\hline
\color{red}:={0}& a1-[-1,0]/fact([-1,0]) & b2-[-1,0] \\
[0,-1]+1 & a1-[-1,0]/fact ([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1-[-1,0]/fact ([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a 1 [-1,0]/fact ([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1-[-1,0]/fact ([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1 [-1,0]/fact ([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1^[-1,0]/fact ([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a 1-[-1,0]/fact ([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a1-[-1,0]/fact ([-1,0])+[0,-1] & b2-[-1,0] \\
[0,-1]+1 & a 1^[-1,0]/fact([-1,0])+[0,-1] & b2-[-1,0] \\\hline
\end{spreadtab}
```

Convergence for $x=0,5$

n	$e^{0,5}-\sum_{k=0}^{n} \frac{0,5^{k}}{k!}$
0	0,648721270700128
1	0,148721270700128
2	0,023721270700128
3	0,002887937366795
4	0,000283770700128
5	0,000023354033461
6	0,000001652644572
7	0,000000102545366
8	0,000000005664166
9	0,000000000281877

6.3 Convergence on the golden ration

In mathematical terms, the sequence F_{n} of Fibonacci numbers is defined by the recurrence relation:

$$
F_{0}=1 \quad F_{1}=1 \quad F_{n+2}=F_{n+1}+F_{n}
$$

The golden ratio is the limit of the ratios of successive terms of the Fibonacci sequence. We show here that the quotients F_{n+1} / F_{n} approximate the golden ration $\varphi=\frac{1+\sqrt{5}}{2}$ alternately lower and higher than φ.

```
\STautoround{9}
$
\begin{spreadtab}{{matrix}{}}
@n & @F_n & @\dfrac{F_n}{F_{n-1}} & @\varphi-\dfrac{F_n}{F_{n
    -1}}\\[2ex]\hline
\color{red}:=1 & \color{red}:=1 & & \\
[0,-1]+1 & \color{red}:=1 & [-1,0]/[-1,-1] & (1+5-0.5)/2-[-1,0] \\
[0,-1]+1 & [0,-1]+[0,-2] & [-1,0]/[-1,-1] & d3+1-[-1,0] \\
[0,-1]+1 & [0,-1]+[0,-2] & [-1,0]/[-1, -1] & d3+1-[-1,0] \\
[0,-1]+1 & [0,-1]+[0,-2] & [-1,0]/[-1,-1] & d3+1-[-1,0] \\\hline
\end{spreadtab}
$
```

n	F_{n}	$\frac{F_{n}}{F_{n-1}}$	$\varphi-\frac{F_{n}}{F_{n-1}}$
1	1		0.618033989
2	1	1	-0.381966011
3	2	2	0.118033989
4	3	1.5	0.0180339899
5	5	1.666666667	-0.04832678
6	8	1.6	-0.006966011
7	13	1.625	0.002649374
8	21	1.615384615	0.00101363
9	34	1.619047619	-0.00038693
10	55	1.617647059	0.00000147829
11	89	1.618181818	-0.000056461
12	144	1.617977528	0.000050256
13	233	1.618055556	-0.000021567
14	377	1.618025751	0.000008238
15	610	1.618037135	-0.000003146
16	987	1.618032787	0.000001202
17	1597	1.618034448	-0.000000459

6.4 A billing table

Here is a billing table where the decimal points are aligned in columns with the column specifier ' N ' of the package numprint.

This table is generated by the environment tabularx stretched to fit 80% of the width of the line. The


```
\nprounddigits2
\let\PC\%
\begin{spreadtab}{{tabularx}{0.8\linewidth}{|>{\rule[-1.2ex]{0pt}{4ex}}X>{{\ color{red
    }}}N42>{\color{red}}cN42>{\color{red}}cN42|}}
\hline
@Items &@\multicolumn{1}{c}{Price/U}& @\multicolumn{1}{c}{Qty} & @\multicolumn{1}{c}{
    Price} & @\multicolumn{1}{c}{Reduction} & @\textbf{Net}\\\hline
@Item 1 & 5.99 & 20 & [-2,0]*[-1,0] & $-:={20}\PC$ & [-2,0]*(1-[-1,0]/100)\\
@Item 2 & 12 & 7 & [-2,0]*[-1,0] & $-:={10}\PC$ & [-2,0]*(1-[-1,0]/100)\\
@Item 3 & 4.50 & 40 & [-2,0]*[-1,0] & $-:={35}\PC$ & [-2,0]*(1-[-1,0]/100)\\
@Item 4 & 650 & 2 & [-2,0]*[-1,0] & $-:={15}\PC$ & [-2,0]*(1-[-1,0]/100)\\\hline
@\multicolumn{6}{c}{\vspace{-1.5ex}}\\\cline{4-6}% empty line and raise it a little
@\multicolumn{1}{c}{\rule[-1.2ex]{0pt}{4ex}}&@\multicolumn{2}{r|}{\textbf{Total}}&
    sum(d2:[0, -2]) & \multicolumn{1}{c}{$:={round(([1,0]/[-1,0]-1)*100,0)}\PC$} & {\
    fontseries{b}\selectfont}:={sum(f2:[0, -2])}\\
\cline{4-6}
\end{spreadtab}
```

Items	Price/U	Qty	Price	Reduction	Net
Item 1	5,99	20	119,80	-20%	95,84
Item 2	12,00	7	84,00	-10%	75,60
Item 3	4,50	40	180,00	-35%	117,00
Item 4	650,00	2	1300,00	-15%	1105,00

Total $1683,80 \quad-17 \% \quad \mathbf{1 3 9 3}, \mathbf{4 4}$

6.5 A magic square

```
\begin{spreadtab}{{tabular}{|*3{>{\hfill\rule[-0.4cm]{0pt}{1cm}$}m{0.7cm}<{$\hfill\
    null}|}}}
\hline
```

```
\color{red}:=2 & 5*b2-4*a1 & 3*a1-2*b2 \\\hline
2*a1-b2 & \color{red}:={-1} & 3*b2-2*a1 \\\hline
4*b2-3*a1 & 4*a1-3*b2 & 2*b2-a1 \\\hline
\end{spreadtab}
```

2	-13	8
5	-1	-7
-10	11	-4

6.6 A pyramid of additions

Each number is the sum of two numbers located below it.

```
\newlength\cellsize
\setlength\cellsize{1.5cm}
\newcolumntype{K}{@{}>{\rule{0pt}{2.5ex}\centering\arraybackslash$}p{\cellsize}<$@{}}
\begin{spreadtab}{{tabular}{*{8}{@{}p{.5\cellsize}@{}}}}
\cline{4-5}
&&&\multicolumn{2}{|K|}{:={[-1,1]+[1,1]}}&&&\\\cline{3-6}
&&\multicolumn{2}{|K}{:={[-1,1]+[1,1]}}&\multicolumn{2}{|K|}{:={[-1, 1]+[1, 1]}}&&\\\
    cline{2-7}
&\multicolumn{2}{|K}{:={[-1,1]+[1,1]}}&\multicolumn{2}{|K}{:={[-1,1]+[1,1]}}&\
    multicolumn{2}{|K|}{:={[-1,1]+[1,1]}}&\\\hline
\multicolumn{2}{|K}{\color{red}:={-5}}&\multicolumn{2}{|K}{\color{red}:={3}}&\
    multicolumn{2}{|K}{\color{red}:={-2}}&\multicolumn{2}{|K|}{\color{red}:={-3}}\\\
    hline
\end{spreadtab}
```


That's all, I hope we will find this package useful!
Given the youth of this package, please, be tolerant if you find bugs: with comments from users, better versions should be available soon. Indeed, this version is just beginning and, though rather stable, many things are still imperfect. Especially, it is obvious that many other macro-functions need to be written.
I thank you in advance for sending by email any bug you find, any macro-function or improvment you would like to be implemented, assumed that it must be realistic. This package has to be modest and spreadtab is not excel or calc: it is impossible to implement some advanced features of these spreadsheets....

Christian Tellechea

[^0]: Abstract
 This package provides spreadsheet features for $\mathrm{LA}^{\mathrm{A}} \mathrm{T} \mathrm{X}$ table environments.
 The main feature allows the user to construct tables in a manner similar to a spreadsheet where cells are used in formulas to generate values in other cells. The package computes the formulas in the correct order and finally displays the table with the numeric results.

[^1]: ${ }^{1}$ I certify that, with the use, this discomfort tends to disappear (if you do not work with huge tables, of course).
 ${ }^{2}$ I mention the main two exportation programs: cacl2latex for 'calc' (Open Office), and excel2latex for 'excel' (Microsoft Office).

[^2]: ${ }^{3}$ Note: this is the opposite to the standard matrix convention

[^3]: ${ }^{4}$ There is an exception, see page 11.

[^4]: ${ }^{5}$ The \def command does not check if the macro it defines already exists.

[^5]: ${ }^{6}$ This macro accepts infix or postfix notation. Consequently, both can be used to write formulas in a cell. For example the infix formula 'a1+b1' is equivalent to the postfix ones 'a1 b1 add' or 'a1 b1 +'.
 ${ }^{7}$ Many others should be written soon and be available in future versions of the package.

[^6]: ${ }^{8}$ Indeed, for fp the greatest integer is $10^{18}-1$. The factorial of 19 is greater than it.

[^7]: ${ }^{9}$ This year 0 does not exists but this should not be a problem with recent dates.

