
The spot package:

spotlight highlighting for Beamer∗

Anders Hendrickson
Concordia College, Moorhead, MN

ahendric@cord.edu

September 21, 2010

1 Introduction

Beamer’s \alert command is designed to call the viewer’s attention to certain
parts of the slide, but under some circumstances it can be less effective than de-
sired. First, because the actual colors produced depend on the projector hardware
used and the ambient lighting in the room, you can find to your dismay that the
color change provided by \alert is barely discernible onscreen. Of course you can
fiddle with \setbeamercolor{alerted text}{〈color〉} to achieve better results
on your own projector, but you may still face surprises when taking your presenta-
tion to another institution. Moreover, the \alert command is often ineffective at
highlighting just one or two characters on a full slide; in such a situation, a color
change alone may not be striking enough to draw the viewer’s eye. For just such
circumstances, this package provides a \spot command to paint a “spotlight” of
color painted behind the highlighted text, as in this example.this example.this example.

2 Usage

2.1 General Usage

The \spot command has the following syntax:\spot

\spot <〈overlay spec〉>(〈node name〉)[〈node options〉]{〈highlighted text〉}

The first three parameters, <〈overlay spec〉>, (〈node name〉), and [〈node
options〉], are optional, and any combination of them may be omitted, but their
order must not change. For example, \spot<5->[fill=red]{George} is legal,
but entering \spot[star](mynode){Joe} will produce erroneous output.

∗This document corresponds to spotlight v1.0, dated 2010/09/21.

1

The 〈overlay spec〉 should be a standard Beamer overlay specification; for ex-
ample, \spot<2-3>{Fred} highlights the word “Fred” only on slides 2 and 3. The
actual “spotlight” shape is a TikZ node. If you wish to access the node later—for
example, to point an arrow at it—you can specify a 〈node name〉. Consider the
following example:

WeWe can draw an arrow
from the first word of this
sentence to the lastlast.

\spot(first){We} can draw an
arrow from the first word of this
sentence to the \spot(last){last}.
\tikz[remember picture, overlay]{
\draw (first) to[->] (last);}

We

last

The default behavior of \spot is to surround its argument with a gold-colored
ellipse, most intense at its center and fading towards the edges. That behavior
can be altered—for example, to change the shape or color—for a specific instance
of \spot by specifying 〈node options〉. Consider the following example:

To be,be, or not to be:be: that
isis the question.question.

To \spot*[fill=blue!50]{be,} or not
to \spot*[star, star points=8]{be:}
that \spot*[ball color=red]{is} the
\spot*[path fading=east]{question.}

be, be:
is question.

For a complete understanding of possible 〈node options〉, please see the
PGF/TikZ documentation. To change the default behavior for subsequent calls
to \spot, the following commands are provided.

The command \setspotlightcolor{〈color〉} makes all subsequent invoca-\setspotlightcolor

\resetspotlightcolor

\spotlightcolor

tions of \spot use the specified 〈color〉. The default shade of gold is named
spotlightgold, and may be restored with the command \resetspotlightcolor.
The current color is saved in the macro \spotlightcolor, making commands
such as \setspotlightcolor{\spotlightcolor!50} possible. Note that if
fill=〈color〉 is given in the 〈node options〉 or with \setspotlightstyle, it takes
precedence over the 〈color〉 in \spotlightcolor.

The command \setspotlightstyle{〈node options〉} adds 〈node options〉 to\setspotlightstyle

\resetspotlightstyle

\spotlightnodeoptions

the nodes produced by all subsequent invocations of \spot. The effect of multiple
calls is cumulative. Default options may be restored by \resetspotlightstyle.
The current options are saved in the macro \spotlightnodeoptions.

\setspotlightcolor{red!50}
\spot{A} \quad
\setspotlightstyle{star, fill=green!50}
\spot{B} \quad

AA BB CC DD EE \setspotlightstyle{star points=7}
\spot{C} \quad
\resetspotlightstyle
\spot{D} \quad
\resetspotlightcolor
\spot{E}

A B C D E

2

2.2 Non-Beamer Usage

Although the spot package is chiefly designed for use with Beamer, it may also
be used in documents of other classes. There are two peculiarities, however, the
reasons for which will be explained in section 3. First, if \spot is used within\spot*

a \parbox, a minipage environment, a header or footer, or a p column in a
tabular environment, the error message “LaTeX Error: Float(s) lost” will
result. The remedy is to use the the starred version \spot* instead, and to follow
the instructions in the following paragraph.

Second, if the last call to \spot on a page is in math mode, in a TEX inner\dospots

mode (such as a tabular environment), or the starred version \spot*, then the
command \dospots must be issued somewhere later on that same page, after
the math mode or tabular or \parbox has ended. (The actual criterion is that
\dospots must be able to call \marginpar, which cannot be done in those envi-
ronments.) If the page ends before a \dospots is encountered, an error message
will be generated.

Remembering to place a \dospots after each problematic \spot can be a has-\dospotsheader

\dospotsfooter sle. The best solution is to use the fancyhdr package to place the command
\dospotsheader or its synonym \dospotsfooter into a header or footer appear-
ing on every page, obviating the need for any manual \dospots. Moreover, if a
spotlight is desired within a header, footer, or marginpar, \spot* should be used
and \dospotsheader or \dospotsfooter should follow.

3 Strategy

This section describes the mechanism spot uses to draw its spotlights. It would be
simple enough to wrap the highlighted texthighlighted text within a TikZ node, keeping it in line
with its surroundings, but the result is not perfect. The preceding highlighting1

was painted over previous text but under subsequent text, creating both an uneven
effect and an unintentional emphasis on the beginning of the following word. The
solution is to leave a blank space in the text, coming back once the entire frame
has been typeset to draw the text and its highlighting over their surroundings.

Suppose then that \spot<2>{foo} is called in a Beamer frame. On slide 1 of
the frame, the text foo is typeset as the sole node in a TikZ picture, with node op-

1Produced with

\tikz[baseline]{

\path[use as bounding box]

node[anchor=base, inner sep=0, outer sep=0, opacity=0]

(temp) {highlighted text};

\path (temp)

node[anchor=center, outer sep=0,

shape=ellipse, inner sep=0.5ex,

fill=\spotlightcolor, path fading=spot@fade] {highlighted text};}

3

tions chosen so that it occupies its place in the paragraph just like ordinary typeset
text. The node is given a name such as spot@vii, and the remember picture
option is used.

When slide 2 is typeset, the node spot@vii is drawn as before, except with
opacity=0 so that it is transparent. After the contents of the entire slide are
typeset, another TikZ picture uses the overlay option to return to the location
of spot@vii and typeset foo in a node with a suitably eye-catching shape, fill
color, and fading.

In Beamer, the code to paint the highlighted node is attached to \end{frame}.
The challenge for implementing spot in classes other than Beamer is the lack
of a hook for the end of a page; even the afterpage package cannot return to
the previous page to typeset new material. The solution used is to insert the
\spot@paintspot macro into a \marginpar. This is the source of the two pe-
culiarities mentioned on page 3, for under certain circumstances, LATEX cannot
process a \marginpar correctly. These circumstances include TEX’s inner ver-
tical mode, display math, and \parboxes. In these situations spot must save
its painting commands for later. The command \dospots, called from a “safe”
location, inserts those saved commands into a \marginpar. The alternative com-
mands \dospotsheader and \dospotsfooter execute the saved paint commands
immediately, making them suitable for inclusion in a header or footer. Because
this second mechanism, though more reliable, places an extra burden on the user,
it was not chosen as the default behavior for \spot.

The starred version \spot* uses the second mechanism in place of the first.
Moreover, the \spot macro will also switch to the second mechanism when it
can detect the necessity. If \ifinner is true, then \marginpar would fail; like-
wise if \ifmmode is true, then LATEX might well be in display math mode where
\marginpar fails; in these situations, \spot acts like \spot*. Unfortunately, if
\spot is called within a \parbox, there is no test that can make \spot aware of
that fact, and the user will see LaTeX Error: Float(s) lost. This warning is
an indication that even LATEX itself could not tell in advance whether \marginpar
would work properly or not.

4 Limitations and Tips

• Because \spot{foo} places the text foo in a TikZ node, it will not allow line
breaks within foo. For highlighting that permits automatic line breaking,
consider the \hl command of the soul package.

• The \spot command does not work well in a Beamer frame broken into
multiple slides by allowframebreaks.

• In non-Beamer class, spotlights meant for the bottom of one page may some-
times show up at the bottom of the next page.

• It is possible to call \spot in math mode, but as the argument will be
set in a box within a TikZ node, the results may need tinkering. For ex-

4

ample, $a^{\spot{b}}$ produces abb, not abb; to make the superscript the
correct size, you must write $a^{\spot{\scriptstyle b}}$. Likewise to
produce a==b requires writing $a\mathbin{\spot{=}}b$, since merely writ-
ing $a\spot{=}b$ produces the poorly spaced a==b.

b b

=
=

• As mentioned in section 2.2, when using spot in a document class other
than Beamer, it is best to include \dospotsheader in a header appearing
on every page. A minimal solution is to put the following in the preamble:

\usepackage{fancyhdr}

\pagestyle{fancy}

\fancyhf{}

\rhead{\dospotsheader}

5 Implementation

5.1 Packages and Hooks

The TikZ package must be loaded with the necessary libraries.
1 \RequirePackage{tikz}

2 \usetikzlibrary{shapes}

3 \usetikzlibrary{fadings}

We next check whether we are in the Beamer class or not, and we abbreviate
\expandafter in the usual way.
4 \newif\ifspot@beamer

5 \@ifundefined{beamer@frameslide}{\spot@beamerfalse}{\spot@beamertrue}

6 \let\xa=\expandafter

In Beamer, we will need hooks for running code at the beginning and end of
each frame. The commands \AtEveryBeginFrame and \AtEveryEndFrame store
commands to be run in every frame, while the command \AtEndFrame applies
only to the current frame.
7 \ifspot@beamer

8 \g@addto@macro\beamer@frameslide{\spot@everybeginframe@hook}

Whereas \g@addto@macro makes it easy to add \spot@everybeginframe@hook to
the end of the \begin{beamer@frameslide} code, adding hooks to be executed
right before the existing \end{beamer@frameslide} code is a little more involved.
9 \let\spot@oldmaterial=\endbeamer@frameslide

10 \def\spot@newmaterial{%

11 \spot@endframe@hook%

12 \gdef\spot@endframe@hook{}%

13 \spot@everyendframe@hook}

14 \xa\xa\xa\def

15 \xa\xa\xa\endbeamer@frameslide

16 \xa\xa\xa{%

17 \xa\spot@newmaterial\spot@oldmaterial}%

5

Having placed hooks into the beamer@frameslide environment, we now initialize
those hooks as empty and create the commands \AtEndFrame, \AtEveryEndFrame,
and \AtEveryBeginFrame.
18 \def\spot@endframe@hook{}

19 \def\spot@everyendframe@hook{}

20 \def\spot@everybeginframe@hook{}

21 \long\def\AtEndFrame#1{\g@addto@macro\spot@endframe@hook{#1}}

22 \long\def\AtEveryEndFrame#1{\g@addto@macro\spot@everyendframe@hook{#1}}

23 \long\def\AtEveryBeginFrame#1{\g@addto@macro\spot@everybeginframe@hook{#1}}

In classes other than Beamer, we will need the afterpage package to run code
between pages.
24 \else

25 \RequirePackage{afterpage}

26 \fi

5.2 Spotlight options

We next define the options. The \spotlightcolor macro stores the work-
ing color; it can be edited with the commands \setspotlightcolor and
\resetspotlightcolor.
27 \def\spotlightcolor{spotlightgold}

28 \def\setspotlightcolor#1{\xdef\spotlightcolor{#1}}

29 \def\resetspotlightcolor{\gdef\spotlightcolor{spotlightgold}}

Likewise the command \spotlightnodeoptions stores additional node options
chosen by the user. The command \setspotlightstyle adds to it, and
\resetspotlightstyle empties it.
30 \def\spotlightnodeoptions{}

31 \def\setspotlightstyle#1{\g@addto@macro\spotlightnodeoptions{#1, }}

32 \def\resetspotlightstyle{\gdef\spotlightnodeoptions{}}

Finally, here are the default color and fading.
33 \definecolor{spotlightgold}{RGB}{255,204,51}

34 \tikzfading[name=spot@fade,

35 inner color=transparent!0,

36 outer color=transparent!60]

The count register \c@spot@spots numbers each spotlight on the frame or page.
37 \newcount\c@spot@spots

38 \c@spot@spots=1

39 \ifspot@beamer

40 \AtEveryBeginFrame{\global\c@spot@spots=1\relax}

41 \else

42 \afterpage{\global\c@spot@spots=1\relax}

43 \fi

6

5.3 Input parsing

\spot The macro \spot comes in starred and unstarred versions. We first check for the
presence of the star, and set a flag if it is present.
44 \newif\ifspot@star

45 \spot@starfalse

46 \def\spot{\@ifnextchar*{\spot@star}{\spot@nostar}}

47 \def\spot@star#1{\global\spot@startrue\spot@nostar}

\spot@nostar As described in section 2, the full syntax of \spot is

\spot <〈overlay spec〉>(〈node name〉)[〈node options〉]{〈highlighted text〉}

with each of 〈overlay spec〉, 〈node name〉, and 〈node options〉 being optional. If
any is not specified, we fill in the appropriate default value.

The default overlay specification is <1->.
48 \def\spot@nostar{%

49 \@ifnextchar<{\spot@in}{\spot@in<1->}%

50 }

\spot@in The default 〈node name〉 is spot@dummynode.
51 \def\spot@in<#1>{%

52 \@ifnextchar({\spot@inte<#1>}%

53 {\spot@inte<#1>(spot@dummynode)}%

54 }

\spot@inte The default is to have no extra 〈node options〉.
55 \def\spot@inte<#1>(#2){%

56 \@ifnextchar[{\spot@intern<#1>(#2)}{\spot@intern<#1>(#2)[]}%

57 }

\spot@intern Because the spotlight is painted after the rest of the page is drawn, it is im-
portant to expand the node options now (including \spotlightcolor and the
user-defined \spotlightnodeoptions), so that they will not be affected by redef-
initions later on the page. Note that the order of parameters is changed to make
the \expandafters work.
58 \def\spot@intern<#1>(#2)[#3]#4{%

59 \edef\spot@totaloptions{fill=\spotlightcolor, \spotlightnodeoptions, #3}%

60 \xa\spot@internal\xa[\spot@totaloptions]<#1>(#2){#4}%

61 }

\spot@internal Finally, we are ready to call the macros which actually do the work, depending on
whether we are running Beamer or some other class. We return the parameters
to their normal order.
62 \def\spot@internal[#1]<#2>(#3)#4{%

63 \ifspot@beamer%

64 \spot@internal@beamer<#2>(#3)[#1]{#4}%

65 \else%

66 \spot@internal@static<#2>(#3)[#1]{#4}%

67 \fi%

68 }

7

5.4 Beamer version

\spot@internal@beamer The macro \spot@internal@beamer implements the \spot command when used
in a Beamer presentation.
69 \def\spot@internal@beamer<#1>(#2)[#3]#4{%

The text to be highlighted is first saved in a box named something like
\spot@box@vii, where the roman numeral represents the spot counter \c@spot@spots.
In this way it will automatically have the correct font size and shape (italics, bold-
face, etc.). It is set in math mode if necessary. For the sake of readability of the
code, \spot@currentbox is let equal to \spot@box@vii.
70 \@ifundefined{spot@box@\romannumeral\c@spot@spots}%

71 {\xa\newbox\csname spot@box@\romannumeral\c@spot@spots\endcsname}{}%

72 \ifmmode

73 \global\xa\setbox\csname spot@box@\romannumeral\c@spot@spots\endcsname=\hbox{$#4$}%

74 \else

75 \global\xa\setbox\csname spot@box@\romannumeral\c@spot@spots\endcsname=\hbox{#4}%

76 \fi

77 \xa\let\xa\spot@currentbox\csname spot@box@\romannumeral\c@spot@spots\endcsname%

Now we are ready to set the text. On the highlighted slides, we actually produce
two TikZ nodes at this time. The first is merely a transparent copy of the text
itself; the second is a transparent copy of the entire highlighted node shape, and
receives the 〈node name〉 called by the user. We require the first node (with
the use as bounding box option) so as to fit the text seamlessly in line with
its surroundings. The second node, bearing 〈node name〉, must be drawn now,
so that the user can refer to 〈node name〉 within the frame; the 〈node name〉
could not simply be attached to the visible spotlight, since that is drawn with
\AfterEndFrame, after all the user’s code has been processed. On unhighlighted
slides, we simply draw an opaque copy of the text in a TikZ node.
78 \tikz[remember picture, baseline]{

79 \alt<#1>{\path[use as bounding box]

80 node[anchor=base, inner sep=0, outer sep=0, opacity=0]

81 (spot@\romannumeral\c@spot@spots) {\usebox\spot@currentbox};

82 \path (spot@\romannumeral\c@spot@spots)

83 node[anchor=center, outer sep=0,

84 shape=ellipse, inner sep=0.5ex,

85 #3, opacity=0] (#2) {\usebox\spot@currentbox};}

86 {\path node[anchor=base, inner sep=0, outer sep=0, opacity=1]

87 (#2) {\usebox\spot@currentbox};}

88 }%

Finally, we save the information needed to paint the spotlight at the end of the
slide. Sometimes calling \AtEndFrame adds a little extra height to the frame’s
contents, which could cause a slight movement of the frame between highlighted
and unhighlighted slides. We therefore make a call to \AtEndFrame on unhigh-
lighted slides as well, to ensure that the same extra height be added even when
we’re not painting spotlights.
89 \alt<#1>{\xa\spot@savepaint\xa{\romannumeral\c@spot@spots}[#3]}%

90 {\AtEndFrame{\rule{0pt}{0pt}}}%

8

Finally, we increment the counter \c@spot@spots and end the macro.
91 \global\advance\c@spot@spots by 1\relax%

92 }

\spot@savepaint The following macro saves the actual spotlight-drawing command to be executed
at the end of the slide. The first parameter is a roman numeral labeling the
spotlight, while the second contains the node options.
93 \def\spot@savepaint#1[#2]{%

94 \AtEndFrame{\spot@paintspot(spot@#1)[#2]{\usebox{\csname spot@box@#1\endcsname}}}%

95 }

\spot@paintspot The command \spot@paintspot actually draws the spotlight at the saved loca-
tion. Note that the first parameter is not the user-specified 〈node name〉, but an
automatically generated name such as spot@vii.
96 \def\spot@paintspot(#1)[#2]#3{%

97 \begin{tikzpicture}[remember picture, overlay, baseline]

98 \path (#1) node[anchor=center, outer sep=0,

99 shape=ellipse, inner sep=0.5ex, text opacity=1,

100 path fading=spot@fade, text=black, #2] {#3};

101 \end{tikzpicture}%

102 }

5.5 non-Beamer version

To make the spotlight turn out correctly, it is vital to run \spot@paintspot
after all surrounding text has been typeset. Whereas in Beamer the code can be
attached to a hook in the \end{frame}, in other document classes we place the
code in a \marginpar, which (being a TEX insertion) is typeset after the rest of
the page. If \spot is called in certain TEX modes, however, \marginpar would
produce an error. In this case, \spot saves up the commands to be placed into a
\marginpar later.

\spot@savedpaintcommands

\dospots

Whenever \spot is called, the \spot@paintspot commands will be saved up in
the macro \spot@savedpaintcommands. A subsequent call to \dospots, by the
user if necessary, executes those commands and resets the macro to empty.

103 \gdef\spot@savedpaintcommands{}

104 \def\dospots{%

105 \marginpar{\spot@savedpaintcommands}%

106 \gdef\spot@savedpaintcommands{}%

107 }

\dospotsheader

\dospotsfooter

Since headers and footers are also TEX insertions, the \spot@savedpaintcommands
could also be run there. The following commands are synonyms.

108 \def\dospotsheader{%

109 \spot@savedpaintcommands%

110 \gdef\spot@savedpaintcommands{}%

111 }

112 \let\dospotsfooter=\dospotsheader

9

\spot@internal@static Much of the code in \spot@internal@static is identical with that of \spot@internal.
The chief difference is that the overlay specification is completely ignored.

113 \def\spot@internal@static<#1>(#2)[#3]#4{%

114 \@ifundefined{spot@box@\romannumeral\c@spot@spots}%

115 {\xa\newbox\csname spot@box@\romannumeral\c@spot@spots\endcsname}{}%

116 \ifmmode

117 \global\xa\setbox\csname spot@box@\romannumeral\c@spot@spots\endcsname=\hbox{$#4$}%

118 \else

119 \global\xa\setbox\csname spot@box@\romannumeral\c@spot@spots\endcsname=\hbox{#4}%

120 \fi

121 \xa\let\xa\spot@currentbox\csname spot@box@\romannumeral\c@spot@spots\endcsname%

122 \tikz[remember picture, baseline]{

123 \path[use as bounding box]

124 node[anchor=base, inner sep=0, outer sep=0, opacity=0]

125 (spot@\romannumeral\c@spot@spots) {\usebox\spot@currentbox};

126 \path (spot@\romannumeral\c@spot@spots)

127 node[anchor=center, inner sep=0, outer sep=0,

128 shape=ellipse, inner sep=0.5ex,

129 #3, opacity=0] (#2) {\usebox\spot@currentbox};

130 }%

131 \xa\spot@static@savepaint\xa{\romannumeral\c@spot@spots}[#3]%

132 \global\advance\c@spot@spots by 1\relax%

133 \global\spot@starfalse%

134 }

\spot@static@savepaint When \spot@static@savepaint is called, it first checks whether TEX is in an
inner mode and/or math mode, and whether the starred version spot* was used.
If any of these three conditions holds, a call to \marginpar would likely fail, so the
\marginpar command is saved to be executed by a \dospots command sometime
later, and \spot@checkforlostspots will be run after the current page is pro-
cessed. Otherwise, the appropriate \spot@paintspot command is immediately
placed in a \marginpar, and any saved \marginpar commands are run at this
time with \dospots. As with \spot@savepaint, the first parameter is the roman
numeral identifying which spotlight is being painted, and the second contains the
node options.

135 \def\spot@static@savepaint#1[#2]{%

136 \def\spot@saveit{%

137 \g@addto@macro\spot@savedpaintcommands{%

138 \spot@paintspot(spot@#1)[#2]{\usebox{\csname spot@box@#1\endcsname}}}%

139 \afterpage{\spot@checkforlostspots}%

140 }%

141 \ifspot@star

142 \spot@saveit

143 \else

144 \ifinner

145 \spot@saveit

146 \else

147 \ifmmode

148 \spot@saveit

10

149 \else

150 \marginpar{\spot@paintspot(spot@#1)[#2]{\usebox{\csname spot@box@#1\endcsname}}}%

151 \dospots

152 \fi

153 \fi

154 \fi

155 }

\spot@checkforlostspots Between pages, the command \spot@checkforlostspots checks whether any
\spot@paintspot commands were saved into \spot@savedpaintcommands but
never executed by a \dospots. If so, it issues an error message to the user.

156 \def\spot@checkforlostspots{%

157 \def\spot@empty{}%

158 \ifx\spot@savedpaintcommands\spot@empty%

159 \relax%

160 \else%

161 \bgroup

162 \advance\count0 by -1

163 \PackageError{spot}%

164 {A \protect\dospots\space command is missing

165 from page \the\count0.\MessageBreak

166 Some highlighted text will not appear in the output}%

167 {If the last \protect\spot\space command on a

168 page is issued in math mode or a \MessageBreak

169 TeX inner mode (such as a tabular environment),

170 it must be followed by a \MessageBreak

171 \protect\dospots\space command somewhere later

172 on the page, outside such a mode.\MessageBreak

173 You could also put \protect\dospotsheader\space

174 in a header or footer on each page.}

175 \egroup

176 \fi%

177 }

11

