
Creating More Than One Index Using splitidx And

SplitIndex∗

Markus Kohm†‡

2013/04/04

Abstract

With makeidx, there’s a standard package in LATEX to create one index for
each document. But sometimes more than one index is needed. There are
different packages with different solutions and different problems to generate
multiple indices. splitidx implements another solution to this problem. In
addition, splitidx also lets you customize the typesetting and appearance of
these indices, as well as the formatting of individual index entries.

Contents

1 Introduction 2

2 The SplitIndex program 3
2.1 Purpose . 3
2.2 Implementation . 3

3 Using the splitidx package 4
3.1 Setup . 4
3.2 Marking up index entries . 5
3.3 Suppressing multiple index generation 5
3.4 Customizing index entries . 6
3.5 Automatic custom index commands 7
3.6 Preventing premature expansion of index entries 7
3.7 Including the generated indices in your document 8
3.8 Typesetting the generated indices 8
3.9 Examples . 9
3.10 Splitting intermediate index files 12
3.11 Using splitindex.pl . 14

∗This file is version v1.2 of file splitidx.dtx. Nevertheless it should be stable.
†Markus Kohm <komascript at©gmx.info>
‡Many thanks to Michael Palmer who improved the English user manual of the SplitIndex.

1

3.12 Using splitindex.jar . 16
3.13 Using splitindex or splitindex.exe . 16
3.14 Using splitindex.tex . 17
3.15 Merging Indices . 17

4 Implementation of splitidx 18
4.1 Options . 18
4.2 Setting an Index Entry . 19
4.3 Printing One Or More Indices . 22

1 Introduction

Standard LATEX provides for only a single document index. To produce such an
index, one usually loads makeidx and marks up index entries in the document using
the \index command. When the document is processed with LATEX, the \index

commands from the document are written as \indexentry commands to the raw
index file “\jobname.idx”. The raw index file is then processed with MakeIndex or
another auxiliary program like xindy, which will produce a sorted index file named
“\jobname.ind”. This file is then included at the end of the document using the
\printindex command.1

The splitidx package extends this process to permit the creation of multiple
indices. Separate indices are declared and given unique shortcut identifiers with
the \newindex command. In the document, individual index entries are marked
up and assigned to specific indices with the \sindex command. For each of the
declared indices, a separate .idx file is generated, each of which is post-processed
into a separate .ind file. These .ind files are then included in the document using
a modified version of the \printindex command.

The process outlined thus far resembles that of other multi-index packages
such as multind. The most straightforward way to implement this scheme, which
is the one used by package multind and others, is to directly write a separate .idx

file for each declared index when processing the document with LATEX, and then
to separately post-process each .idx file with MakeIndex. However, this approach
can run into technical limitations. TEX can have no more than 16 files open for
writing at any one time. Several of these file handles are required by LATEX itself
for other purposes, such as cross references, the table of contents, and possibly
others, depending on the structure of your document. Therefore, if you need a
large number of separate indices, the limited number of available file handles may
become a problem. The splitidx package provides a solution to this problem.

If the number of indices can be accommodated within the number of available
file handles, you can use splitidx with the package option split. Then, splitidx
will directly write multiple raw index files, that is, it will behave according to the
scheme just described. On the other hand, if the number of indices exceeds the
number of available file handles, you can request splitidx to write all index entries
to a single intermediate index file, which must then be post-processed in order to

1For further details, read [1] and e.g. [2].

2

obtain the separate raw index files. The post-processing of the intermediate file is
done with the SplitIndex program, which exists in several different implementations
(see below). This behavior of splitidx is activated by omitting option split, that
is, it is the package’s default behavior.

In addition to the construction of separate indices, splitidx also offers help
with customizing the typesetting and appearance of these indices, as well as the
formatting of individual index entries.

2 The SplitIndex program

2.1 Purpose

While the number of files TEX can open for writing is limited, using multiple
indices is normally limited too. As already mentioned in section 1 this limitation
may be neutralized using a single intermediate index file, that will be split into
several raw index files by an external post-processor: SplitIndex.

2.2 Implementation

The program has been implemented in five different languages, as follows:

splitindex.pl This is written in perl. You need a perl interpreter to run it. If you
are a Unix user, you have a perl interpreter and you can call splitindex.pl like
you would call a binary program or a shell script from your shell. This is
the reference implementation. I prefer to use this, because it was the first,
the easiest and the shortest to be written.

splitindex.java This is written using Sun Java 1.4.1. I wrote it because Java
is everywhere and may be installed everywhere and a lot of people are
able to understand Java source files. Nevertheless There’s no longer a pre-
compiled version of this in the main distribution. But you may download
it from the repository at http://sarovar.org/plugins/scmcvs/cvsweb.

php/binaries/?cvsroot=splitindex

splitindex.c: This is a C source of splitindex. I wrote the C version because a
lot of people like to have a binary and most software authors understand
C, and some people want fast binaries instead of slow Java byte code —
even, if the Java program is fast enough. Nevertheless, there are no longer
binaries of generated from this source in the main distribution. But you
may download some from the repository at http://sarovar.org/plugins/
scmcvs/cvsweb.php/binaries/?cvsroot=splitindex

splitindex.tex: This is a TEX version of the program. Yes, you are right: it is
a program written in TEX. It has not the whole functionality of the other
programs (see subsection 3.14), but it is system-independent and you don’t
need to install any other program like perl or Sun Java 1.4. It is not im-
possible to fix all the disadvantages of this program — but it isn’t easy and
much more work than all the other programs.

3

http://sarovar.org/plugins/scmcvs/cvsweb.php/binaries/?cvsroot=splitindex
http://sarovar.org/plugins/scmcvs/cvsweb.php/binaries/?cvsroot=splitindex
http://sarovar.org/plugins/scmcvs/cvsweb.php/binaries/?cvsroot=splitindex
http://sarovar.org/plugins/scmcvs/cvsweb.php/binaries/?cvsroot=splitindex

splitindex.tlu: This is a new TEXLua version of the program. It is platform in-
dependent like the perl script. Note, that the syntax for regular expressions
in Lua differs from the perl syntax, if you use it instead of the perl version.
Distributors should prefere the perl version, if they also provide perl for the
installation platform.

With the exception of the TEX version, all of these programs are also able to call
the index processor on each of the resulting raw index files.

And where is the lisp, the smalltalk, the prolog, the . . . version of splitindex?
Hey, five languages are enough for me! If you need one more, write it!

3 Using the splitidx package

3.1 Setup

You can use splitidx as a drop-in-replacement for makeidx. If you do so, you just
have to replace

\usepackage{makeidx}

by

\usepackage{splitidx}

To activate index generation, you can use \makeindex, which is declared by\makeindex

the LATEX kernel. You can also load the package with the option makeindex:

\usepackage[makeindex]{splitidx}

which is almost the same like:

\usepackage{splitidx}\makeindex

Other package options are available. The effect of the split option was already
described in section 1; further options are discussed below.

If you want to generate more than one index without shortcut, you should\newindex

declare this using \newindex with syntax:

\newindex[〈index name〉]{〈shortcut〉}.

The mandatory argument 〈shortcut〉 is used to distinguish the different indices.
See description of \sindex for more information about this. The optional argu-
ment 〈index name〉 is the name of the index. This is also the default heading of
this index used by the macros \printindex and \printsubindex (see below). If
you omit 〈index name〉, the shortcut will be used as index name.

While it is always good practice to declare all index explicitly in the preamble
of the document, this must be done if you also use the package option split. In
this case, the \newindex command opens a raw index file to write to for each
declared index. As the only exception, the raw index file for the index entries
with the default shortcut (idx) will be created automatically. As noted above,

4

the number of index files that you can create in this way is limited, which is due
to the limited number of output streams provided by TEX. If you exceed this
number, not only the \newindex macro itself may result in an error, but also
\tableofcontents, \listoffigures, \listoftables and any other command
that implicitly allocates an output stream.

A unique shortcut declared with \newindex to refer to a specific index becomes
part of the filenames of the corresponding .idx and .ind files. Therefore, when
you choose a shortcut, make sure that you only use characters or symbols in the
〈shortcut〉 that are allowed in filenames. On file systems that treat file names as
case-insensitive, you should not mix uppercase and lowercase letters. For max-
imum portability and minimum hassle, it is best to always use only lowercase
letters.

3.2 Marking up index entries

After loading the splitidx package, you may use the \index command to mark up\index

index entries in your manuscript as usual. You can find the description of the
argument and features of this command in reference [1]. The splitindex program
(see subsection 3.10) will put all index entries that were produced with \index

into the same raw index file, which is tagged with the unique shortcut “idx”; that
is, the \index command does not allow you to assign index entries to separate
indices. However, the useindex option allows you to change this behavior; this is
discussed below.

The splitidx package also defines the command \sindex with the syntax:\sindex

\sindex[〈shortcut〉]{〈index-entry〉}

The \sindex command is splitidx’ mechanism for placing individual index entries
into specific indices. The target index is identified by passing its unique shortcut,
as declared with \newindex, in the optional argument to \sindex. If not given,
the shortcut defaults to “idx”, which should therefore be used to identify some
sort of general index.

If you like, you may also request that \index should be an alias for \sindex.
To do so, you use the package option useindex, e.g.:

\usepackage[useindex]{splitidx}

This may be useful when using packages like jurabib that expect \index to be the
index command.

3.3 Suppressing multiple index generation

Under some unfortunate circumstances, for example when working with a pub-
lisher that enforces a rigid document format, it may be necessary to merge the
separate indices back into a single index. In this case, it is not necessary to strip
out all the individually marked up index identifiers. Instead, you may load the
splitidx package with the allintoone option:

5

\usepackage[allintoone]{splitidx}

or

\usepackage[allintoone,makeindex]{splitidx}

With this option, splitidx will do the stripping for you, that is, \sindex[〈shortcut〉]
{〈indexentry〉} will be substituted with \index{〈indexentry〉} during LATEX pro-
cessing.

Note: Currently only one of the options allintoone and useindex can be used
at same time. If you try to use both, useindex will be disabled! This may result
in many error messages!

3.4 Customizing index entries

splitidx uses \protected@write to write the index entries to its output files. The\AtWriteToIndex

\AtWriteToIndex macro lets you execute a piece of code each time an index is
written to a specific index. Usage:

\AtWriteToIndex{〈shortcut〉}{〈code〉}

This may be useful if you want your index entries to reference not the page number
but some other counter instead. For example, in order to make each index entry
in the general index (identified by the idx shortcut) point to the corresponding
section number, you would write

\AtWriteToIndex{idx}{\let\thepage\thesection}

Note that this will work only if the shortcut of the index is given explicitly in each
marked-up index entry; for example,

\sindex[idx]{Roller blades}

instead of

\sindex{Roller blades}

Note, if you want to use command \index instead of \sindex, you should also
use the package option useindex; without it, command \index will still write the
page number to the index.

The \AtWriteToIndex command may be used only in the document preamble.
Sometimes it may be useful to execute some commands only for writing a single\AtNextWriteToIndex

index entry. To do so, you may use

\AtNextWriteToIndex{〈shortcut〉}{〈commands〉}

instead of \AtWriteToIndex.

6

3.5 Automatic custom index commands

Some people do not like to write \sindex[foo]{〈entry〉}. They want to write
\foo{〈entry〉}. For these people, the package option ‘idxcommands’ has been
implemented. This option defines a command with the name of the 〈shortcut〉
for each declared index. If you use this option, you’ll get an error if a command
with this name is already defined. Also note that if you are using this option, the
characters of the shortcuts must be letters.

3.6 Preventing premature expansion of index entries

When using the standard index package makeidx, the LATEX kernel command\newprotectedindex

\index may expand its argument. The kernel uses \@sanitize to avoid expansion
in some cases. But this fails if the argument was already read by another macro.
So if you define a macro that reads its argument, does something with it and then
writes it to the index, this may expand the argument. For illustration, try the
following:

\documentclass{article}

\usepackage{ngerman}

\usepackage{makeidx}\makeindex

\newcommand*{\Test}[1]{#1\index{#1}}

\begin{document}

\Test{"Anderung}

"Anderung\index{"Anderung}

\end{document}

This will result in two entries in the .idx file:

\indexentry{\active@dq \dq@prtct{A}nderung}{1}

\indexentry{"Anderung}{1}

The first one is something expanded that is not wanted. Package splitindx behaves
the same way by default. But if you use \newprotectedindex to define a new
index, it uses a trick to avoid expansion. If all indices should behave like this, you
may simply use the package option protected.

\documentclass{article}

\usepackage{ngerman}

\usepackage[protected,useindex,makeindex]{makeidx}

\newcommand*{\Test}[1]{#1\index{#1}}

\begin{document}

\Test{"Anderung}

"Anderung\index{"Anderung}

\end{document}

Will result in two entries at the .idx file:

\indexentry{"Anderung}{1}

\indexentry{"Anderung}{1}

If you want to know more about the trick, see the command \@onelevel@sanitize

in the LATEX kernel documentation, source2e.

7

3.7 Including the generated indices in your document

The \printindex command is used to print one index or all indices that are\printindex

declared using \newindex. How it behaves depends on the syntax you are using.
Used like this:

\printindex[〈shortcut〉][〈index name〉]

the index file with the optional shortcut will be included and printed, with the
optional 〈index name〉 being used as the title. If 〈index name〉 is omitted, the
default index name declared with \newindex will be used instead. If this name
was omitted as well, the shortcut itself will be used as the title.

If both optional arguments, 〈shortcut〉 and 〈index name〉, are omitted, and you
are using simply

\printindex

this command behaves like \printindex from package makeidx. You should not
use this if you are using multiple indices.

You may also print all indices that were declared using \newindex at once.
Use the syntax:

\printindex*

to do so. The indices will be printed in the order you declared them using
\newindex.

3.8 Typesetting the generated indices

\printindex uses the default index output of the class and the index processor
you are using. Usually, this will be theindex environment, but it doesn’t have to
be this way. Note, however, that \printindex expects the name of the index to
be contained in the \indexname macro; otherwise, it will fail to typeset the index
name.2

The \printsubindex command is analogous to \printindex, but it performs\printsubindex

some redefinitions before printing the index, as follows:

• demote the index heading level by 1, that is, format the index title using
\section* instead of \chapter* with classes that define \chapter (such
as book and report), and using \subsection* instead of \section* with
classes that don’t define \chapter (such as article);

• deactivate \onecolumn, \twocolumn and \clearpage, \cleardoublepage

that are otherwise used to start a new page in each index,

• change the mark mechanism to use \markright instead of \markboth for
setting up the running headers.

2This would be a failure of the class, not of the splitidx package. I don’t know of any class
with this failure.

8

Using this macro, you can print multiple indices in one chapter, if you are using a
class with \chapter, or in one section, if you are using a class without \chapter.

If you are using a KOMA-Script class, you’ll know this command. Package\setindexpreamble

splitidx redefines this command as follows:

\setindexpreamble[〈shortcut〉]{〈preamble〉}

This allows you to define a separate preamble for each index. Note: Package
splitidx doesn’t print the preamble itself. Instead, before typesetting an index
with a given shortcut using \printindex or \printsubindex, it assigns the user-
defined preamble for this shortcut to the internal macro \index@preamble. At
the user level, its value can be accessed with the \useindexpreamble macro (see
below).

If you are defining your own index environment or if you extend the exist-\useindexpreamble

ing theindex environment using \extendtheindex or otherwise, you can use
\useindexpreamble to retrieve the preamble previously defined for the current
index using \setindexpreamble:

\useindexpreamble[〈additional commands〉]

This macro is not limited to the KOMA-Script classes; it can also be used e.g. with
the standard classes. The commands passed in the optional argument 〈additional
commands〉 are only used if the preamble for the current index is defined and not
empty. Authors of wrapper classes may use this, e.g. to add additional vertical
spaces after the index preamble if and only if an index preamble will be printed.

The macro \indexshortcut is only defined within the body of \printindex\indexshortcut

and \printsubindex. It expands to the shortcut of the specific index that is being
printed. It may be useful when defining your own index environment or extending
the theindex environment using e.g. \extendtheindex.

Most classes define the environment theindex to be used for printing the index.\extendtheindex

Using \extendtheindex with this syntax:

\extendtheindex{〈before begin〉}{〈after begin〉}{〈before end〉}{〈after end〉}

you may extend this environment. The commands passed in 〈before begin〉 are
inserted in \begin{theindex} just after starting the group but before the existing
code defined for this code block. The commands passed in 〈after begin〉 are inserted
after \begin{theindex}. Analogously, the commands passed in 〈before end〉 are
inserted before \end{theindex}, while those passed in 〈after end〉 are used within
\end{theindex} just after ending the index but just before ending the group.

3.9 Examples

Let’s see how you may get more than one index. The text of the example is silly,
so don’t think about the text, think about the usage of splitidx.

\documentclass{article} % We use article class ...

\usepackage{splitidx} % ... and the splitidx package

9

\makeindex % And we want index generation

% We define 4 indices:

\newindex[General Index]{idx} % Name and shortcut of the 1st index

\newindex[Index of Animals]{ani} % ... 2nd index

\newindex[Index of Fruits]{fru} % ... 3rd index

\newindex[Index of Vegetables]{veg} % ... 4th index

\begin{document}
Apples\sindex[fru]{apple} % an entry to fru index

and oranges\sindex[fru]{orange} % an entry to fru index

are fruits\sindex{fruits}. % an implicit entry to idx index

Tomatoes\sindex[veg]{tomato} % an entry to veg index

are

vegetables\index{vegetables}. % an implicit entry to idx index

Cats\sindex[ani]{cat} % an entry to ani index

are animals\sindex[idx]{animals}. % an explicite entry to idx index

\printindex* % print all indices

\end{document}

After processing the file above with LATEX you’ll get a raw index file with following
contents:

\indexentry[fru]{apple}{1}

\indexentry[fru]{orange}{1}

\indexentry{fruits}{1}

\indexentry[veg]{tomato}{1}

\indexentry{vegetables}{1}

\indexentry[ani]{cat}{1}

\indexentry[idx]{animals}{1}

Section 3.10 explains how to convert this intermediate file into separate raw index
files and index files. In the above example, all four index files are input with a
single \printindex* command. Each file will produce a single section that start
on a new page. The section headings “General Index”, “Index of Animals”, “Index
of Fruits” and “Index of Vegetables” will be printed in onecolumn mode, followed
by the index entries printed in twocolumn mode.

Maybe you would like to format all indices as subsections within one section.
You can do this by replacing the \printindex* command in the example above
with the following:

\twocolumn[% set the title onecolumn

\section*{Indices} % the section with the indices %

\markboth{Indices}{Indices} % setting up the running headline %

]% but the indices twocolumn

\printsubindex* % print all indices

10

Note that I’ve used \printsubindex* instead of \printindex* in this modified
example.

We now turn to the running headers for the index pages. If you are using
page style plain, which is default at article class, the running headers are empty,
so you don’t need to set them up. However, if you’re using page style headings

for your index pages and the \section* command to format the headings of the
several indices, you should set up the running headers to match the current index
titles. If you are using a KOMA-Script class, you can use \addsec or \addsec*

instead of \section* to format the index titles, in which case you will not need
to manually update the running headers.

Maybe you want the general index to be the section, while the other indices
should be subsections of the general index. You might then try to replace the code
above with the following:

%##### This will not do the thing you wanted! #####

\printindex[idx] % print index idx as section

\printsubindex[ani] % print index ani as subsection

\printsubindex[fru] % print index fru as subsection

\printsubindex[veg] % print index veg as subsection

But this will result in a twocolumn section containing the general index (identified
by idx) and three onecolumn subsections containing the other indices, and a page
break after the general index. Why is this? LATEX will switch to twocolumn mode
as it enters the theindex environment (which is created by the \printindex com-
mand) and will revert to onecolumn mode when it exits theindex. If twocolumn
mode was active before \printindex, a \clearpage command will be issued at
the end of theindex. So what’s the solution? Remembering the \extendtheindex
command, you can write:

\begingroup % keep the following extension local to this group

\extendtheindex% some changes of theindex environment

{}% no change before beginning

{}% no change after beginning

{\let\onecolumn\relax % deactivate \onecolumn before ending

\let\clearpage\relax % deactivate \clearpage before ending

}% changes before ending

{}% no change after ending

\printindex[idx] % print index idx as section

\endgroup % end group with extended theindex environment

\printsubindex[ani] % print index ani as subsection

\printsubindex[fru] % print index fru as subsection

\printsubindex[veg] % print index veg as subsection

\onecolumn % finish the indices

With this extension, the whole index will be set in twocolumn mode, with no page
break before the first subsection. However, you have to switch back to onecolumn
mode manually at the end of the indices.

The example above may be modified as follows to obtain a onecolumn index:

11

\begingroup % hold following extension local to this group

\makeatletter % allow @ at macro names

\extendtheindex% some changes of theindex environment

{\let\twocolumn\@firstoptofone % deactivate \twocolumn

\let\onecolumn\@firstoptofone % deactivate \twocolumn

\let\clearpage\relax % deactivate \clearpage

}% changes before beginning

{}% no change after beginning

{}% no change before ending

{}% no change after ending

\makeatother % deactivate \makeatletter

\printindex % print index

\endgroup % end group with extended theindex environment

This not only works with splitted indices but also with one single index.
I hope that these examples were useful to understand how to format indices

using splitidx. The next section will show you how to generate separate indices
from a single intermediate index file.

3.10 Splitting intermediate index files

Most commonly, it will be sufficient to call one of the splitindex programs with one
parameter, the name of the intermediate index file. This will split the intermediate
file into several raw index files, and then call MakeIndex on each of these. The
program splitindex can be instructed to use another index processor such as xindy,
or to pass additional options along to the index processor, e.g. “-g” to use German
sorting with MakeIndex. While it may be a rare need, it is also possible to modify
the parsing of the intermediate index file and the generation of the filenames and
contents of the resulting raw index files.

The names of the options and the syntax of the Arguments is same at all of
the programs except splitindex.tex (see subsection 3.14):

--help
-h Show information about usage, options and arguments and terminate with-

out processing an index file.

--makeindex 〈program name〉
-m 〈program name〉 Call 〈program name〉 instead of makeindex to process each

generated raw index file. You may set this variable to an empty value. How
this may be done depends on the shell, which you are using. Using bash you
may achieve an empty value using "" or ’’. An empty value means that no
index processor will be called on the generated raw index files.

--identify 〈regular expression〉
-i 〈regular expression〉 Uses 〈regular expression〉 to identify the index short-

cut and the contents of the raw index file with this shortcut in the interme-
diate file. The default value is: “^(\\indexentry)\[([^]]*)\](.*)$” for
all but splitindex.tlu. This means:

12

^ Search from beginning of the line.

(\\indexentry)

Search for “\indexentry” and set group 1 to this.

\[Search for “[” and ignore it.

([^]]*)

Search for any character which is not “]” and set group 2 to this.

\] Search for “]” and ignore it.

(.*)$

Search for all characters till end of line and set group 3 to these.

The 〈regular expression〉 is POSIX 1003.2 compatible. For splitindex.tlu the
default is: “^(\\indexentry)%[([^]]*)%](.*)$”.

--resultis 〈pattern〉
-r 〈pattern〉 Set the lines, which are written to the generated raw index files

after identification (see option --identify) to 〈pattern〉. Each $〈digit〉 at
〈pattern〉 will be replaced by the corresponding group, e.g. $1 will be re-
placed by the first group (see --identify). The default is: “$1$3” for all
but splitindex.tlu resp. “%1%3” for splitindex.tlu, which means: contents of
group 1 and group 3.

If the 〈regular expression〉 of option --identify doesn’t match a line at the
raw index file the line itself will be written.

--suffixis 〈pattern〉
-s 〈pattern〉 Set the suffix of the names of the generated raw index files af-

ter identification (see option --identify) to 〈pattern〉. Each $〈digit〉 at
〈pattern〉 will be replaced by the corresponding group, e.g. $1 will be re-
placed by the first group (see --identify). The default is: “-$2” resp.
“-%2”, which means: character ‘-’ followed by contents of group 2.

If the 〈regular expression〉 of option --identify doesn’t match a line at the
raw index file, all groups will be set to “idx”.

--verbose
-v Increase verbosity by one. More verbose means: tell the user more about,

what the program is doing.

--version
-V Show information about program version and terminate without processing

a index file.

Some of the binaries compiled from the C source won’t understand the long
option names (--makeindex, --identify . . .). In this case you’d have to use the
alternative short option names (-m, -i . . .).

The first non-option-argument in the command line is used as the name of
the intermediate index file to be processed. All arguments that follow the argu-
ment “--” are interpreted as non-option arguments. All but the first non-option-
arguments will be passed to the index processor.

You will find some examples in the following subsections.

13

3.11 Using splitindex.pl

This is the reference implementation. Let’s use an example to demonstrate its
use. If you have the following LATEX file “allabout.tex”:

\documentclass{article}

\usepackage[makeindex]{splitidx}

\begin{document}

Apples\sindex[fru]{apple} and oranges\sindex[fru]{orange} are

fruits\sindex{fruits}.

Tomatos\sindex[veg]{tomato} are vegetables\sindex{vegetables}.

Cats\sindex[ani]{cat} are animals\sindex[idx]{animals}.

\end{document}

this generates the intermediate index file “Fileallabout.idx”:

\indexentry[fru]{apple}{1}

\indexentry[fru]{orange}{1}

\indexentry{fruits}{1}

\indexentry[veg]{tomato}{1}

\indexentry{vegetables}{1}

\indexentry[ani]{cat}{1}

\indexentry[idx]{animals}{1}

This file can’t be processed by an index processor like MakeIndex. In order to
split this intermediate file into several raw index files and run the default index
processor, you do the following call (the $ is a symbol for the shell prompt):

$splitindex.pl allabout.idx

You may omit the extension “.idx”:

$splitindex.pl allabout

Both commands will result in a file allabout-fru.idx:

\indexentry[fru]{apple}{1}

\indexentry[fru]{orange}{1}

a file allabout-idx.idx

\indexentry{fruits}{1}

\indexentry{vegetables}{1}

\indexentry{animals}

a file allabout-veg.idx:

\indexentry[veg]{tomato}{1}

and a file allabout-ani.idx:

\indexentry[ani]{cat}{1}

14

After generation of these files, it calls the default index processor using the com-
mand lines:

makeindex allabout-fru.idx

makeindex allabout-idx.odx

makeindex allabout-veg.idx

makeindex allabout-ani.idx

These calls create the index files allabout-fru.ind, allabout-idx.ind,
allabout-veg.ind and allabout-ani.ind, which can be loaded into the doc-
ument using e.g. \printindex from package splitidx.

If you don’t want splitindex to call any index processor, use

$splitindex.pl -m "" allabout

instead of the shell command above.
You may obtain the same files as above using (it’s one input line not two as

shown here):

$splitindex.pl -i ’^\\indexentry\[([^]]*)\](.*)$’ -s ’-$1’

-r ’\\indexentry$2’ allabout

If you want splitindex to call makeindex with the additional option “-s foo.ist”
to make it use the MakeIndex style file foo.ist, you can do so as follows:

$splitindex.pl allabout -- -s foo.ist

As you can see “--” is used to prevent splitindex from interpreting “-s foo.ist”
as option “--suffixis foo.ist”. All splitindex options must be put before “--”,
but you can put the raw file argument “allabout” after that:

$splitindex.pl -- allabout -s foo.ist

If you want so use the index processor xindy instead of default index processor
MakeIndex, you can use this call:

$splitindex.pl -m xindy allabout

If xindy is not in your standard PATH, you may set the whole path:

$splitindex.pl -m /home/me/bin/xindy allabout

With most perl implementations, the perl module Getopt::Long allows to put
options after no-option-arguments. So you may also write:

$splitindex.pl allabout -m /home/me/bin/xindy

with the same result.

15

3.12 Using splitindex.jar

This implementation should also be portable. If you are not using Sun Java 1.4.1
or higher, you may try to recompile this using the shell command:

$javac splitindex.java

This should result in a new splitindex.class. But it will fail e.g. with Sun Java
1.3, because regular expressions are needed, which are not available in Sun Java
1.3.

The call of splitindex.class is almost the same as shown for subsection 3.11 for
splitindex.pl, but you have to replace “splitindex.pl” by “java splitindex”.
So the last example from subsection 3.11 becomes:

$java splitindex allabout -m /home/me/bin/xindy

3.13 Using splitindex or splitindex.exe

The Linux program splitindex was compiled using glibc, so it works the same as
splitindex.pl and you may use not only:

$splitindex -m /home/me/bin/xindy allabout

but also:

$splitindex allabout -m /home/me/bin/xindy

But the CygWin program splitindex.exe was compiled using a CygWin library.
Because of this, all options must be put before the first non-option argument. So
you have to use:

$splitindex.exe -m /home/me/bin/xindy allabout

With:

$splitindex.exe allabout -m /home/me/bin/xindy

the argument “-m /home/me/bin/xindy” will be passed to the default index pro-
cessor MakeIndex!

You need the CygWin-DLL cygwin1.dll to run splitindex.exe. If you haven’t
already installed it, you may download the DLL from http://cygwin.com/

snapshots. You need bzip2, which can be found at http://source.redhat.

com/bzip2, to decompress it. Alternatively, you may use http://cygwin.com/

setup.exe to download and install a minimal CygWin environment.
The Linux-i386-ELF binary splitindex was compiled and linked using:

$gcc -O3 -Wall -osplitindex splitindex.c

$strip splitindex

The gcc was:

gcc (GCC) 3.2

Copyright (C) 2002 Free Software Foundation, Inc.

16

http://cygwin.com/snapshots
http://cygwin.com/snapshots
http://source.redhat.com/bzip2
http://source.redhat.com/bzip2
http://cygwin.com/setup.exe
http://cygwin.com/setup.exe

The used glibc is version 2.1.
If you compile another binary e.g. for BSD, please contact me, so we may put

the new binary into the distribution or can build another binary distribution.

3.14 Using splitindex.tex

The TEX or LATEX program splitindex.tex doesn’t know any options or arguments.
The number of files that it can generate is limited to to number of TEX’s free write
handles. If there are any other lines than “\indexentry”-lines in the raw index
file, running splitindex.tex will result in an error.

You may use splitindex.tex interactively:

$tex splitindex

or

$latex splitindex

If you do so, you will be asked for the name of the raw index file. You have to
omit the extension “.idx” answering that question.

You may also use the splitindex.tex not interactively, e.g. if you are working
with a batch. To do so you have to define macro \IDX to the name of the raw
index file without the extension “.idx”. So the first example of subsection 3.11
would become:

$tex \def\IDX{allabout}\input splitindex

You may also use LATEX instead of TEX:

$latex \def\IDX{allabout}\input splitindex

The current version of splitindex.tex doesn’t call any index processor. But
maybe a future version will be able to do so.

3.15 Merging Indices

Now you should know how to use package splitidx and the SplitIndex programs to
split the index. But what about combining two or more indices to one, e.g. you
want vegetables and fruits in the same index? Try this:

\documentclass{article} % We use article class ...

\usepackage{splitidx} % ... and the splitidx package

\makeindex % And we want index generation

% We define 4 indices:

\newindex[General Index]{idx} % Name and shortcut of the 1st index

\newindex[Index of Animals]{ani} % ... 2nd index

\newindex[Index of Fruits And Vegetables]{fru} % ... 3rd index

17

\begin{document}
Apples\sindex[fru]{apple} % an entry to fru index

and oranges\sindex[fru]{orange} % an entry to fru index

are fruits\sindex{fruits}. % an implicit entry to idx index

Tomatoes\sindex[veg]{tomato} % an entry to veg index

are

vegetables\index{vegetables}. % an implicit entry to idx index

Cats\sindex[ani]{cat} % an entry to ani index

are animals\sindex[idx]{animals}. % an explicite entry to idx index

\printindex* % print all indices

\end{document}

And do the following call after splitting the index using SplitIndex:

$makeindex allabout-veg.idx allabout-fru.idx

Alternatively you can concatenate allabout-fru.idx to allabout-veg.idx be-
fore running the index processor on allabout-veg.idx.

4 Implementation of splitidx

1 〈*package〉

4.1 Options

The first option is used to activate index generation.

2 \DeclareOption{makeindex}{\AtEndOfPackage{\makeindex}}

With option useindex the original command \index behaves like \sindex.

3 \DeclareOption{useindex}{%

4 \def\@se@nd@xc@d@{\let\index\sindex}%

5 \AtEndOfPackage{\@se@nd@xc@d@}%

6 }

7 \let\@se@nd@xc@d@\relax

There is also an option to make \sindex ignores the optional argument and
behaves like \index.

8 \DeclareOption{allatone}{%

9 \PackageWarning{splitidx}{Option ‘allatone’ deprecated!\MessageBreak

10 You should replace it by ‘allintoone’}%

11 \ifx\@se@nd@xc@d@\relax\else

12 \PackageInfo{splitidx}{option ‘allatone’ overwrites option ‘useindex’}%

13 \let\@se@nd@xc@d@\relax

14 \fi

15 \AtEndOfPackage{%

16 \renewcommand*{\sindex}[1][]{\index}%

17 \g@addto@macro\makeindex{\renewcommand*{\sindex}[1][]{\index}}%

18 }%

19 }

18

20 \DeclareOption{allintoone}{%

21 \ifx\@se@nd@xc@d@\relax\else

22 \PackageInfo{splitidx}{option ‘allintoone’ overwrites option ‘useindex’}%

23 \let\@se@nd@xc@d@\relax

24 \fi

25 \AtEndOfPackage{%

26 \renewcommand*{\sindex}[1][]{\index}%

27 \g@addto@macro\makeindex{\renewcommand*{\sindex}[1][]{\index}}%

28 }%

29 }

Do not expand index arguments.

30 \newif\if@verbindex\@verbindexfalse

31 \DeclareOption{protected}{\@verbindextrue}

With option idxcommands every \newindex also defines a new index command.

32 \newif\if@newidxcmd\@newidxcmdfalse

33 \DeclareOption{idxcommands}{\@newidxcmdtrue}

With option split each index uses its own index file.

34 \newif\if@splitidx\@splitidxfalse

35 \DeclareOption{split}{\@splitidxtrue}

Processing the options

36 \ProcessOptions\relax

4.2 Setting an Index Entry

\see

\seealso

\seename

\alsoname

These are four standard macros, which are also defined at makeidx. Hey, these
definitions are stolen from makeidx! No, no, I’m not a bad guy, read “legal.txt”,
which comes with makeidx.

37 \newcommand*\see[2]{\emph{\seename} #1}

38 \providecommand*\seealso[2]{\emph{\alsoname} #1}

39 \providecommand\seename{see}

40 \providecommand*\alsoname{see also}

\sindex

\@wrsindex

\@@wrsindex

This works similar to original \index but uses a splitted index. So it allows an
optional argument.

41 \newcommand*{\sindex}[2][]{%

42 }

43 \g@addto@macro\makeindex{%

44 \renewcommand*{\sindex}{%

45 \@bsphack\begingroup

46 \@sanitize

47 \@wrsindex

48 }%

49 \typeout{Using splitted index at \jobname.idx}%

50 \@se@nd@xc@d@

51 }

19

At the following \@@wrsindex is used as a hook. If it is defines, it is used to write
out the index entry. This hook may be used from e.g. hyperref to add hyperpage

to the font selection of the page number. This only works with encap |.

52 \newcommand*{\@wrsindex}[2][]{%

53 \ifx\relax#1\relax

54 \if@splitidx

55 \@wrsindex[idx]{#2}%

56 \else

57 \def\@tempa{#2}%

58 \if@verbindex\@onelevel@sanitize\@tempa\fi

59 \@wrindex{\@tempa}%

60 \fi

61 \else

62 \def\@tempa{#2}%

63 \csname index@#1@hook\endcsname

64 \expandafter\ifx\csname @@wrsindex\endcsname\relax

65 \@@@wrsindex{#1}{{\@tempa}{\thepage}}%

66 \else

67 \def\@tempb{\@@wrsindex{#1}}%

68 \expandafter\@tempb\@tempa||\\%

69 \fi

70 \endgroup

71 \@esphack

72 \fi

73 }

74 \newcommand*{\@@@wrsindex}[2]{%

75 \begingroup

76 \if@splitidx

77 \expandafter\ifx\csname @indexfile@#1\endcsname\relax

78 \PackageError{splitidx}{%

79 Index entry for not existing index%

80 }{%

81 You’ve tried to set an index to index ‘#1’, without

82 defining\MessageBreak

83 that index before using \string\newindex.\MessageBreak

84 This is only allowed, if you are not using package option

85 ‘split’.%

86 }%

87 \else

88 \expandafter\protected@write\csname @indexfile@#1\endcsname{%

89 \csname index@#1@writehook\endcsname

90 \csname index@#1@writehook@once\endcsname

91 }{%

92 \string\indexentry#2%

93 }%

94 \fi

95 \else

96 \protected@write\@indexfile{%

97 \csname index@#1@writehook\endcsname

20

98 \csname index@#1@writehook@once\endcsname

99 }{%

100 \string\indexentry[#1]#2%

101 }%

102 \fi

103 \endgroup

104 }

If hyperref was loaded at \begin{document} and hyperref-option hyperindex isn’t
disabled, and the hook is not used, define it:

105 \AtBeginDocument{%

106 \begingroup\expandafter\expandafter\expandafter\endgroup

107 \expandafter\ifx\csname ifHy@hyperindex\endcsname\relax

108 \else

109 \csname ifHy@hyperindex\endcsname

110 \expandafter\ifx\csname @@wrsindex\endcsname\relax

111 \def\@@wrsindex#1#2|#3|#4\\{%

112 \ifx\\#3\\%

113 \@@@wrsindex{#1}{{#2|hyperpage}{\thepage}}%

114 \else

115 \def\Hy@temp@A{#3}%

116 \ifx\Hy@temp@A\HyInd@ParenLeft

117 \@@@wrsindex{#1}{{#2|#3hyperpage}{\thepage}}%

118 \else

119 \ifx\Hy@temp@A\HyInd@ParenRight

120 \@@@wrsindex{#1}{{#2|#3hyperpage}{\thepage}}%

121 \else

122 \@@@wrsindex{#1}{{#2|#3}{\thepage}}%

123 \fi

124 \fi

125 \fi

126 }%

127 \fi

128 \csname fi\endcsname

129 \fi

130 }

\AtWriteToIndex Add commands to the write hook.

131 \newcommand*{\AtWriteToIndex}[1]{%

132 \expandafter\ifx\csname index@#1@writehook\endcsname\relax

133 \expandafter\let\csname index@#1@writehook\endcsname\@empty

134 \fi

135 \expandafter\g@addto@macro\csname index@#1@writehook\endcsname

136 }

\AtNextWriteToIndex Like \AtWriteToIndex only once.

137 \newcommand*{\AtNextWriteToIndex}[1]{%

138 \expandafter\ifx\csname index@#1@writehook@once\endcsname\relax

139 \expandafter\gdef\csname index@#1@writehook@once\endcsname{%

140 \expandafter\global\expandafter\let\expandafter

21

141 \csname index@#1@writehook@once\endcsname\relax

142 }%

143 \fi

144 \expandafter\g@addto@macro\csname index@#1@writehook@once\endcsname

145 }

4.3 Printing One Or More Indices

\printindex

\printindex*

This is used to print an index in the normal way. In most cases this uses theindex
environment, but it need not.

146 \newcommand*{\printindex}{%

The command may be called in the star version, which prints all defined indices.
This is same as \printindices.

147 \@ifstar {%

148 \begingroup

149 \let\printindex@@endhook=\printindex@endhook

150 \let\printindex@endhook=\relax

151 \printindices%

152 \csname printindex@@endhook\endcsname

153 \endgroup

154 }{%

It may also be called with optional arguments to print one of the indices:

155 \@ifnextchar [\@printindex%] brace check comment

Or it is called without any parameter and so it is same as at makeidx package:

156 {%

157 \@input@{\jobname.ind}%

158 \csname printindex@endhook\endcsname

159 }%

160 }%

161 }

\@printindex This is used to print one of the indices. The optional (here obligatory) argument
is the shortcut of the index.

162 \newcommand*{\@printindex}{}

163 \def\@printindex[#1]{%

There can be one more optional argument, which is the title of the index. If not,
the default title \index@〈shortcut 〉@name is used.

164 \@ifnextchar [%

165 {\@@printindex[{#1}]}%

166 {\@@printindex[{#1}][\csname index@#1@name\endcsname]}%

167 }

\@@pintindex We use the default environment to print one of the indices, but we redefine
\indexname to the title of the wanted index, \indexshortcut to the shortcut
of the wanted index and \index@preamble to the preamble of the wanted index.
We do this in a group so it is local.

22

168 \newcommand*{\@@printindex}{}

169 \def\@@printindex[#1][#2]{%

170 \begingroup

171 \edef\indexshortcut{#1}%

172 \def\indexname{#2}%

173 \let\index@preamble\relax

174 \expandafter\let\expandafter\index@preamble

175 \csname index@\indexshortcut @preamble\endcsname

176 \if@splitidx

177 \def\@tempa{idx}\def\@tempb{#1}%

178 \ifx\@tempa\@tempb\let\@indexsuffix\@gobble\fi

179 \fi

180 \@input@{\jobname\@indexsuffix{#1}.ind}%

181 \endgroup

182 \csname printindex@endhook\endcsname

183 }

\@indexsuffix This generated the suffix from the shortcut. You may redefine this function, if you
need. I‘m using a trick here, to define the macro with proper catcodes but not to
define it global. You may also use \@firstofone instead of \lowercase.

184 \begingroup

185 \catcode‘\-12

186 \lowercase{\endgroup

187 \newcommand*{\@indexsuffix}[1]{-#1}%

188 }

\printindices This is used to print all defined indices in the order of their definition and with
their default titles. If the list is empty, is behaves like \printindex without star
and optional arguments.

189 \newcommand*{\printindices}{%

190 \ifx\@indices\@empty

191 \printindex

192 \else

193 \begingroup

194 \@for\@tempa:=\@indices\do{%

195 \expandafter\printindex\expandafter[\@tempa]%

196 }%

197 \endgroup

198 \fi

199 }

\newindex The definition of a new index has an obligatory argument, the shortcut for this
index, and an optional argument, the name of this index. If you omit the optional
argument the shortcut is used for the default name if the index. The definition
will be done global!

200 \newcommand*{\newindex}[2][\relax]{%

201 \@ifundefined{index@#2@name}{%

202 \if@verbindex

203 \expandafter\gdef\csname index@#2@hook\endcsname{%

23

204 \@onelevel@sanitize\@tempa

205 }%

206 \else

207 \expandafter\gdef\csname index@#2@hook\endcsname{}%

208 \fi

209 \ifx\@indices\@empty

210 \xdef\@indices{#2}%

211 \else

212 \xdef\@indices{\@indices,#2}%

213 \fi

214 \ifx \relax#1

215 \expandafter\xdef\csname index@#2@name\endcsname{#2}%

216 \else

217 \expandafter\xdef\csname index@#2@name\endcsname{#1}%

218 \fi

219 \if@newidxcmd

220 \expandafter\newcommand\expandafter*\csname #2\endcsname{}%

221 \expandafter\gdef\csname #2\endcsname{%

222 \sindex[#2]%

223 }%

224 \fi

225 \if@splitidx

226 \def\@tempa{#2}\def\@tempb{idx}%

227 \ifx\@tempa\@tempb

228 \global\let\@indexfile@idx=\@indexfile

229 \else

230 \expandafter\newwrite\csname @indexfile@#2\endcsname

231 \expandafter\immediate\expandafter\openout

232 \csname @indexfile@#2\endcsname=\jobname-#2.idx

233 \fi

234 \fi

235 }{%

If the index is already defined, an error occurs:

236 \PackageError{splitidx}{%

237 index ‘#2’ already defined%

238 }{%

239 You have already defined an index with shortcut ‘#2’.\MessageBreak

240 You can’t define a new index with the same shortcut. If you’ll continue

241 \MessageBreak

242 The new definition will be ignored.%

243 }%

244 }%

245 }

246 \if@splitidx

247 \@onlypreamble\newindex

248 \fi

\newprotectedindex Same like \newindex but always define an index with protected arguments.

249 \newcommand*{\newprotectedindex}[2][\relax]{%

24

250 \begingroup\@verbindextrue\newindex[{#1}]{#2}\endgroup

251 }

\@indices This macro stores a list of the index shortcuts. This is needed by e.g.
\printindices and build by \newindex.

252 \newcommand*{\@indices}{}

253 \gdef\@indices{}

\extendtheindex Extend theindex by some macros called before starting the index, after starting
the index, before stopping the index and after stopping the index. This may be
used to change index behaviour. One additional change is done, which may be use-
ful: before the index \index@preamble is set to \index@〈shortcut 〉@preamble.

254 \newcommand{\extendtheindex}[4]{%

255 \begingroup\expandafter\expandafter\expandafter\endgroup

256 \expandafter\ifx\csname splitindex@theindex\endcsname\relax

257 \let\splitindex@theindex=\theindex

258 \let\endsplitindex@theindex=\endtheindex

259 \fi

260 \renewcommand*{\theindex}{%

261 #1\splitindex@theindex #2%

262 }%

263 \renewcommand*{\endtheindex}{%

264 #3\endsplitindex@theindex #4%

265 }%

266 }

\setindexpreamble Set one of the splitted index preambles or the original one.

267 \newcommand{\splitindex@setip}{}

268 \let\splitindex@setip\setindexpreamble

269 \let\setindexpreamble\relax

270 \newcommand{\setindexpreamble}[2][]{%

271 \ifx \relax#1\relax

272 \begingroup\expandafter\expandafter\expandafter\endgroup

273 \expandafter\ifx\csname splitindex@setip\endcsname\relax

274 \@namedef{index@preamble}{#2}%

275 \else

276 \splitindex@setip{#2}%

277 \fi

278 \else

279 \@namedef{index@#1@preamble}{#2}%

280 \fi

281 }

\useindexpreamble Use the index preamble and optional add additional information after it, if it exists
and if it is not empty:

282 \newcommand{\useindexpreamble}[1][]{%

283 \begingroup\expandafter\expandafter\expandafter\endgroup

284 \expandafter\ifx\csname index@preamble\endcsname\relax\else

285 \ifx\index@preamble\@empty\else

25

286 \index@preamble #1%

287 \fi

288 \fi

289 }

\printsubindex

\printsubindex*

Works like \printindex but changes some macros before to level down the head-
ings at the index generation.

290 \newcommand*{\printsubindex}{%

291 \begingroup

292 \begingroup\expandafter\expandafter\expandafter\endgroup

293 \expandafter\ifx\csname chapter\endcsname\relax

294 \let\section\subsection

295 \begingroup\expandafter\expandafter\expandafter\endgroup

296 \expandafter\ifx\csname addsec\endcsname\relax\else

297 \def\addsec{\setcounter{secnumdepth}{0}\subsection}%

298 \fi

299 \else

300 \let\chapter\section

301 \def\@makeschapterhead{\section*}

302 \let\@makechapterhead\section

303 \begingroup\expandafter\expandafter\expandafter\endgroup

304 \expandafter\ifx\csname addchap\endcsname\relax\else

305 \let\addchap\addsec

306 \fi

307 \fi

Also, \onecolumn and \twocolumn and even \clearpage must be disabled. The
macros \onecolumn and \twocolumn cannot be let \relax because the have an
optional argument which must be used.

308 \let\onecolumn\@firstoptofone

309 \let\twocolumn\@firstoptofone

310 \let\clearpage\relax

311 \let\cleardoublepage\relax

And the mark mechanism must also use one down:

312 \def\markboth{\expandafter\markright\@gobble}%

313 \ifx\@mkboth\@gobble\else\let\@mkboth\markboth\fi

And the page style shouldn’t change too:

314 \let\thispagestyle\@gobble

Now, using \printindex enables all of it’s features:

315 \let\printindex@endhook=\endgroup

316 \printindex

317 }

\@firstoptofone Read the optional argument and do it.

318 \providecommand{\@firstoptofone}[1][]{#1}

319 〈/package〉

26

References

[1] Leslie Lamport: MakeIndex: An Index Processor For LATEX, 17 February
1987

[2] Pehong Chen, Rick P. C. Rodgers: MAKEINDEX(1L), Manual page,
10 December 1991

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\@@@wrsindex . 65, 74,

113, 117, 120, 122
\@@pintindex 168
\@@printindex

. 165, 166, 168, 169
\@@wrsindex 41
\@firstoptofone . . .

. . . . 308, 309, 318
\@indexfile@idx . . . 228
\@indexsuffix

. . . . 178, 180, 184
\@indices . 190, 194,

209, 210, 212, 252
\@makechapterhead . 302
\@makeschapterhead . 301
\@mkboth 313
\@newidxcmdfalse . . 32
\@newidxcmdtrue . . . 33
\@onelevel@sanitize

. 58, 204
\@printindex . . 155, 162
\@se@nd@xc@d@ . 4, 5,

7, 11, 13, 21, 23, 50
\@splitidxfalse . . . 34
\@splitidxtrue 35
\@verbindexfalse . . 30
\@verbindextrue 31, 250
\@wrsindex 41

A
\addchap 305
\addsec 297, 305
\alsoname 37

\AtNextWriteToIndex

. 6, 137
\AtWriteToIndex . 6, 131

C
\chapter 300
\cleardoublepage . . 311
\clearpage 310

E
\endsplitindex@theindex

. 258, 264
\endtheindex . . 258, 263
\extendtheindex . 9, 254

G
\global 140, 228

I
\if@newidxcmd . . 32, 219
\if@splitidx . . . 34,

54, 76, 176, 225, 246
\if@verbindex 30, 58, 202
\index 4, 5, 16, 17, 26, 27
\index@preamble . . .

. 173, 174, 285, 286
\indexentry 92, 100
\indexname 172
\indexshortcut

. 9, 171, 175

M
\makeindex 2, 4, 17, 27, 43
\markboth 312, 313

\markright 312

N

\newindex 4, 83, 200, 250

\newprotectedindex .
. 7, 249

O

\onecolumn 308

P

\PackageInfo 12, 22

\PackageWarning 9

\printindex 8,
146, 191, 195, 316

\printindex* 146

\printindex@@endhook

. 149

\printindex@endhook

. . . . 149, 150, 315

\printindices . 151, 189

\printsubindex . . 8, 290

\printsubindex* . . . 290

S

\section
. 294, 300, 301, 302

\see 37

\seealso 37

\seename 37

\setindexpreamble 9, 267

\sindex 4, 5, 16,
17, 26, 27, 41, 222

27

\splitindex@setip .
. . . . 267, 268, 276

\splitindex@theindex

. 257, 261

\subsection . . . 294, 297

T
\theindex 257, 260
\thispagestyle 314

\twocolumn 309

U

\useindexpreamble 9, 282

Change History

v0.2
\@@pintindex: with option split

general index has no suffix . . . 22
General: new option idxcommands 19

new option split 19
\newindex: optional definition of

index-shortcut-command 23
optional opening a new index file 23

v0.2a
General: fix of documentation bug 8

v0.9
\@wrsindex: optionally do not ex-

pand the index argument 19
General: new option protected . 19

new option useindex 18

\newprotectedindex: new com-
mand 24

v1.0
\@@wrsindex: one level expansion of

\tempa for hyperref hook 20
v1.1

\AtNextWriteToIndex: New 21
\AtWriteToIndex: New 21

v1.2
General: new option ‘allintoone’ . 18

new TEXLua implementation of
SplitIndex 3

option ‘allatone’ deprecated . . 18
several improvements of the user
manual by Michael Palmer . . . 2

28

	Contents
	1 Introduction
	2 The SplitIndex program
	2.1 Purpose
	2.2 Implementation

	3 Using the splitidx package
	3.1 Setup
	3.2 Marking up index entries
	3.3 Suppressing multiple index generation
	3.4 Customizing index entries
	3.5 Automatic custom index commands
	3.6 Preventing premature expansion of index entries
	3.7 Including the generated indices in your document
	3.8 Typesetting the generated indices
	3.9 Examples
	3.10 Splitting intermediate index files
	3.11 Using splitindex.pl
	3.12 Using splitindex.jar
	3.13 Using splitindex or splitindex.exe
	3.14 Using splitindex.tex
	3.15 Merging Indices

	4 Implementation of splitidx
	4.1 Options
	4.2 Setting an Index Entry
	4.3 Printing One Or More Indices

	References

