
Creating More Than One Index Using splitidx And

SplitIndex∗

Markus Kohm†

2006/03/07

Abstract

With makeidx there’s a standard package at LATEX to create one index to
each document. But some times more than one index is needed. There are
different packages with different solutions and different problems to achieve
multiple indices. Here is one more.

Contents

1 Introduction 1

2 Using the splitidx package 3
2.1 Generating a raw index . 3
2.2 Printing an index . 4
2.3 Examples . 7

3 Splitting the index 9
3.1 Using splitindex.pl . 10
3.2 Using splitindex.jar . 12
3.3 Using splitindex or splitindex.exe . 12
3.4 Using splitindex.tex . 13

4 Combining Indices 14

5 Implementation of splitidx 14
5.1 Options . 14
5.2 Setting an Index Entry . 15
5.3 Printing One Or More Indices . 17

1 Introduction

First of all you have to know how index generation normally would be done. Read
[1] and e.g. [2] if you don’t.

Generally you load a package e.g. makeidx, put \index commands into your
document, which are written as \indexentry commands to the raw index file

∗This file is version v0.9 of file splitidx.dtx. Nevertheless it should be stable.
†Markus Kohm <kohm@gmx.de>

1

“\jobname.idx”. Then you call an index processor like MakeIndex or xindy, which
generates a sorted index file “\jobname.ind”. This will be included with a com-
mand like \printindex at the end of your document.

Most packages, which allows more than one index, open more than one raw
index file. Each of these files costs a write file handle. TEX has only 16 of these.
LATEX itself needs some of these for e.g. .aux, .toc, .lot, .lof and maybe other
more or less temporary files depends on what you are doing. With package option
split package splitidx works like those packages.

Without option split the splitidx package needs only one raw index file like
makeidx would. This one raw index files contains all the index entries for all the
indices you defined. But to do so splitidx and the index processor need help.
Before calling the index processor the one raw index file has to be splitted into
multiple raw index files. Each of these contains the index entries of one index.
This splitting can be done with the splitindex program.

There is not only one SplitIndex program, there are SplitIndex programs in
different programming languages:

splitindex.pl This is written in perl. You need a perl interpreter to run it. If you
are a Unix user, you have a perl interpreter and you can call splitindex.pl
like you would call a binary program or a shell script from your shell. This
is the reference implementation. I prefers to use this — because it was the
first, the easiest and the shortest to be written.

splitindex.jar This is written using Sun Java 1.4.1. You can find the source at
splitindex.java. I wrote it, because Java is everywhere and may be in-
stalled everywhere and a lot of people are able to understand Java source
files. But if you don’t have Sun Java 1.4 the start of this program will result
in errors — e.g.

Exception in thread "main" java.util.zip.ZipException: No
such file or directory

if you try to start it with Sun Java 1.3.

splitindex-Linux-i386 This is a Linux-i386-ELF binary from the C source file
splitindex.c. It will be renamed to splitindex during installation, if you
are using Linux-i386. At section 3.3 you find a introduction in how to com-
pile splitindex.c yourself e.g. if you are using Linux-PPC. I wrote the
C source, because a lot of people like to have a binary and most software
authors understand C and some people want fast binaries instead of slow
Java bit code — even, if the Java program is fast enough.

splitindex-OpenBSD-i386 This is a OpenBSD-i386 binary from the C source file
splitindex.c. It will be renamed to splitindex during installation, if you are
using OpenBSD-i386. It is almost the same like splitindex-Linux-i386 — but
it doesn’t understand long option names.

splitindex.exe This is a CygWin binary from the C source file splitindex.c. A
CygWin binary is a Windows (Win32) binary using the CygWin DLL. At
section 3.3 you find a introduction in how to use a CygWin binary without
installing a whole CygWin environment —nevertheless it is nice to have a
almost complete CygWin.

2

splitindex.tex This is a TEX version of the program. Yes, you are right: it is a
program written in TEX. It has not the whole functionality of the other
programs (see section 3.4), but it is system independent and you don’t need
to install a other program like perl or Sun Java 1.4. It is not impossible to
fix all the disadvantages of this program — but it isn’t easy and much more
work than all the other program.

Without the TEX version of splitindex all of these programs are also able to call
the index processor after creating the raw index files.

And where is the lisp, the smalltalk, the prolog, the . . . version of splitindex?
Hey, four languages are enough for me! If you need one more, write it!

2 Using the splitidx package

2.1 Generating a raw index

You may use splitidx as a drop-in-replacement for makeidx. If you do so, you just
have to replace:

\usepackage{makeidx}

by

\usepackage{splitidx}

To activate index generation you may use \makeindex, which is declared by\makeindex

the LATEX kernel. You may also load the package with option makeindex:

\usepackage[makeindex]{splitidx}

which is almost the same like:

\usepackage{splitidx}\makeindex

After loading the package you may use command \index. You can find the\index

description of the argument and features of this command at [1]. The splitindex
programs (see section 3) put all index entries, which are produced with \index to
the index with shortcut “idx”.

The splitidx package also defines the command \sindex with the syntax:\sindex

\sindex[〈shortcut〉]{〈index-entry〉}

to be used to put an index entry into the index with the optional given shortcut. If
you omit optional 〈shortcut〉 the shortcut “idx” will be used. If you use \sindex
you need to split the raw index file into several raw index files, before generating the
index with an index processor like MakeIndex. See section 3 for more information
about splitting the raw index file.

The shortcut is used not only to distinguish between the different indices. It
is also used as part of the name of the raw index file generated by a splitindex
program (see section 3) and the corresponding index file generated by an index
processor like MakeIndex (see [2]). So you should not use characters or symbols
at 〈shortcut〉 which are not allowed at filenames. At file systems, which are not
case sensitive, you should not mix upper and lower case letters. Best would be, if
you’ll use only lower case letters.

3

Under some unfortunate circumstances you may be forced to put all your index
entries back to one index. The easiest way to do this without changing all \sindex
commands into \index commands is the package option allatone. If you load
the package with:

\usepackage[allatone]{splitidx}

or

\usepackage[allatone,makeindex]{splitidx}

\sindex[〈shortcut〉]{〈indexentry〉} will result in \index{〈indexentry〉}.
If you like, you may also declare that \index should be the same like command

\sindex. In this case, you may use package option useindex, e.g.:

\usepackage[useindex]{splitidx}

This may be usefull using packages like jurabib that expects \index to be the index
command.

Note: Currently only one of the options allatone and useindex can be used
at same time. If you are using both useindex will be disabled! This may result in
many error messages!

2.2 Printing an index

If you want to generate more than one index without shortcut, you should declare\newindex

this using \newindex with syntax:

\newindex[〈index name〉]{〈shortcut〉}.

The mandatory argument 〈shortcut〉 is used to distinguish the different indices.
See description of \sindex for more information about this. The optional argu-
ment 〈index name〉 is the name of the index. This is also the default heading
of this index used from \printindex and \printsubindex. If you omit 〈index
name〉 the shortcut will be used as index name.

Some people do not like to call an extra program like splitindex. For those
the package option split has been implemented. With this option splitidx opens
a new file for each index, which is declared using \newindex. If you are using
this option, you have to declare all indices you want to use at the preamble of
your document. This also uses the default idx file for index entries to index
with shortcut idx. The number of index files, you can open is limited, if you
are using this option. This is because of the limitation of output streams TEX
provides. With this option not only \newindex may result in an error but also
\tableofcontents, \listoffigures, \listoftables and each other command,
which allocates an output stream.

Some people do not like to write \sindex[foo]{〈entry〉}. They want to write
\foo{〈entry〉}. For those of you the package option ‘idxcommands’ has been im-
plemented. This defines a command with the name of the 〈shortcut〉 for each
declared index. If you are using this option, you’ll get an error, if a shortcut is
the name of an already defined command. And if you are using this option, the
characters of the shortcuts must be letters.

Using standard index package makeidx the LATEX kernel command \index may\newprotectedindex

expand the argument of \index. The kernel uses \@santize to avoid this in some

4

cases. But this fails, if the argument was already read e.g. by another macro. So
if you define a macro, that reads an argument, does something with the argument
and write it to the index this may expand the argument. Try following:

\documentclass{article}

\usepackage{ngerman}

\usepackage{makeidx}\makeindex

\newcommand*{\Test}[1]{#1\index{#1}}

\begin{document}

\Test{"Anderung}

"Anderung\index{"Anderung}

\end{document}

This will result in two entries at the .idx file:

\indexentry{\active@dq \dq@prtct{A}nderung}{1}

\indexentry{"Anderung}{1}

The first one is something expanded that is not wanted. Package splitindx behaves
same by default. But if you are using \newprotectedindex to define a new index,
it uses a trick so avoid expansion. If all indices should behave like this, you may
simply use package option protected.

\documentclass{article}

\usepackage{ngerman}

\usepackage[protected,useindex,makeindex]{makeidx}

\newcommand*{\Test}[1]{#1\index{#1}}

\begin{document}

\Test{"Anderung}

"Anderung\index{"Anderung}

\end{document}

Will result in two entries at the .idx file:

\indexentry{"Anderung}{1}

\indexentry{"Anderung}{1}

If you want to know more about the trick, see command \@onelevel@sanitize
at the LATEX kernel documentation, source2e.

The \printindex command is used to print one index or all indices, which are\printindex

declared using \newindex. How it behaves depends on the syntax you are using.
With syntax

\printindex[〈shortcut〉][〈index name〉]

the index file with the optional shortcut will be loaded and titled with optional
given index name. If 〈index name〉 is omitted the default index name declared
with \newindex will be used.

If the both optional arguments, 〈shortcut〉 and 〈index name〉, are omitted and
you are using simply

\printindex

it behaves like \printindex from package makeidx. You should not use this, if
you are using \sindex with optional argument.

You may also print all indices, which were declared using \newindex. Use
syntax:

5

\printindex*

to do so. The indices will be printed in the order you declared them using
\newindex.

\printindex uses the default index output of the class and the index processor
you are using. Most this will be theindex environment, but it needn’t. But
\printindex will fail to set the name of the index if \indexname isn’t use to print
the name of the index. This would be a failure of the class not of the splitidx
package. I don’t know any class with this failure.

The \printsubindex command behaves like \printindex with same syntax\printsubindex

but it does some redefinitions before printing the index, to:

• use \section instead of \chapter level at classes, which have \chapter and
\subsection instead of \section level at classes, which haven’t \chapter,

• deactivate \onecolumn, \twocolumn and \clearpage, \cleardoublepage
to start a new page at each index,

• change the mark mechanism not to use \markboth but \markright for set-
ting up the running headline.

Using this you can print multiple indices at one chapter, if you are using a class
with \chapter, or at one section, if you are using a class without \chapter.

If you are using a KOMA-Script class, you’ll know this command. Package\setindexpreamble

splitidx redefines this command to syntax:

\setindexpreamble[〈shortcut〉]{〈preamble〉}

So you can define a preamble for each index. Note: Package splitidx doesn’t
print the preamble itself. But it lets \index@preamble to be the preamble of the
index with the actual shortcut, before printing an index using \printindex or
\printsubindex.

If you are defining your own index environment or if you extend theindex\useindexpreamble

environment using e.g. \extendtheindex, you may use \useindexpreamble with
syntax:

\useindexpreamble[〈additional commands〉]

to print the preamble of the actual index, which was set using \setindexpreamble.
This is not related to the KOMA-Script classes, it can also be used e.g. with the
standard classes. The commands from optional argument 〈additional commands〉
are only used, if the preamble is defined and not empty.

The macro \indexshortcut is only defined at \printindex and \printsubindex.\indexshortcut

It expands to the shortcut of the actual index. So you may use it at your own index
environment or extending the theindex environment using e.g. \extendtheindex.

Most classes define the environment theindex to be used for printing the index.\extendtheindex

Using \extendtheindex with syntax

\extendtheindex{〈before begin〉}{〈after begin〉}{〈before end〉}{〈after end〉}

you may extend this command. The commands from 〈before begin〉 are used at
\begin{theindex} just after starting the group but before starting the index. The
commands from 〈after begin〉 are used after \begin{theindex}. The commands
from 〈before end〉 are used before \end{theindex}. The commands from 〈after
end〉 are used at \end{theindex} just after ending the index but just before ending
the group.

6

2.3 Examples

Let’s see how you may get more than one index. The text of the example is silly,
so don’t think about the text, think about the usage of splitidx.

\documentclass{article} % We use article class ...

\usepackage{splitidx} % ... and the splitidx package

\makeindex % And we want index generation

% We define 4 indices:

\newindex[General Index]{idx} % Name and shortcut of the 1st index

\newindex[Index of Animals]{ani} % ... 2nd index

\newindex[Index of Fruits]{fru} % ... 3rd index

\newindex[Index of Vegetables]{veg} % ... 4th index

\begin{document}
Apples\sindex[fru]{apple} % an entry to fru index
and oranges\sindex[fru]{orange} % an entry to fru index
are fruits\sindex{fruits}. % an implicit entry to idx index

Tomatoes\sindex[veg]{tomato} % an entry to veg index

are
vegetables\index{vegetables}. % an implicit entry to idx index

Cats\sindex[ani]{cat} % an entry to ani index

are animals\sindex[idx]{animals}. % an explicite entry to idx index

\printindex* % print all indices

\end{document}

After processing the file above with LATEX you’ll get a raw index file with following
contents:

\indexentry[fru]{apple}{1}

\indexentry[fru]{orange}{1}

\indexentry{fruits}{1}

\indexentry[veg]{tomato}{1}

\indexentry{vegetables}{1}

\indexentry[ani]{cat}{1}

\indexentry[idx]{animals}{1}

Section 3 shows, how you can process this raw index file to get several raw index
files and several index files. You will get four index files. Each of it will be input
with the single \printindex* command at the example above. Each will produce
a single section starting on an new page with one column section headings “General
Index”, “Index of Animals”, “Index of Fruits” and “Index of Vegetables”. Each
index is printed in twocolumn mode.

Maybe you would like to have all indices being subsections at one section. You
can do this, if you replace the \printindex* command at the example above by
the following:

\twocolumn[% set the title onecolumn

\section*{Indices} % the section with the indices %
\markboth{Indices}{Indices} % setting up the running headline %

7

]% but the indices twocolumn

\printsubindex* % print all indices

Note that I’ve used \printsubindex* instead of \printindex* at this modifica-
tion. You don’t need to setup the running headline, if you are using page style
plain, which is default at article class. But if you’re using page style headings
you should do this, if you are using \section*. If you are using a KOMA-Script
class, you can use \addsec or \addsec* instead of \section* to not need manual
updating of the running headline.

Maybe you want the general index to be the section, while the other indices
should be subsections of the general index. Maybe you’ll try to replace the above
by the following:

%##### This will not do the thing you wanted! #####

\printindex[idx] % print index idx as section

\printsubindex[ani] % print index ani as subsection

\printsubindex[fru] % print index fru as subsection

\printsubindex[veg] % print index veg as subsection

But this will result in a twocolumn section with general index idx and three
onecolumn subsections with the other indices and a page break after the general
index. Why? At the end of theindex environment of \printindex the onecolumn
mode, which was valid before \printindex will be restored. If twocolumn mode
was valid before \printindex a \clearpage command will be included at the
end of theindex. So what’s the solution? Remembering the \extendtheindex
command you can write:

\begingroup % hold following extension local to this group

\extendtheindex% some changes of theindex environment

{}% no change before beginning

{}% no change after beginning

{\let\onecolumn\relax % deactivate \onecolumn before ending

\let\clearpage\relax % deactivate \clearpage before ending

}% changes before ending

{}% no change after ending

\printindex[idx] % print index idx as section

\endgroup % end group with extended theindex environment

\printsubindex[ani] % print index ani as subsection

\printsubindex[fru] % print index fru as subsection

\printsubindex[veg] % print index veg as subsection

\onecolumn % finish the indices

With this extension the whole index will be set twocolumn with no page break
before the first subsection. But you have to switch back to onecolumn mode
manually at the end of the indices.

The example above may be modified, if you want a onecolumn index:

\begingroup % hold following extension local to this group

\makeatletter % allow @ at macro names

\extendtheindex% some changes of theindex environment

{\let\twocolumn\@firstoptofone % deactivate \twocolumn

\let\onecolumn\@firstoptofone % deactivate \twocolumn

8

\let\clearpage\relax % deactivate \clearpage

}% changes before beginning

{}% no change after beginning

{}% no change before ending

{}% no change after ending

\makeatother % deactivate \makeatletter

\printindex % print index

\endgroup % end group with extended theindex environment

This not only works with splitted index. You may use this also with one single
index.

I hope, that these examples were useful to understand, how to use splitidx.
Next section will show you, how to generate the indices from a single raw index.

3 Splitting the index

At most you’ll call one of the splitindex programs with one parameter, the name of
the raw index file, to split the raw index file into several raw index files and call the
index processor MakeIndex. Some of you will also set options to use another index
processor e.g. xindy or to set some options of the index processor e.g. “-g” to use
German sorting with MakeIndex. Only few of you will also change the parsing of
the raw index file and the generation if the filenames and contents of the several
new raw index files.

The names of the options and the syntax of the Arguments is same at all of
the programs except splitindex.tex (see section 3.4):

--help
-h Show information about usage, options and arguments and terminate with-

out processing a index file.

--makeindex 〈program name〉
-m 〈program name〉 Call 〈program name〉 instead of makeindex to process each

generated raw index file. You may set this variable to an empty value. How
this may be done depends on the shell, which you are using. Using bash you
may achieve an empty value e.g. using "" or ’’. An empty value means:
Don’t call an index processor.

--identify 〈regular expression〉
-i 〈regular expression〉 Uses 〈regular expression〉 to identify the index short

cut and the contents of the raw index file with this shortcut. The default
value is: “^(\\indexentry)\[([^]]*)\](.*)$”. This means:

^ Search from beginning of the line.

(\\indexentry)

Search for “\indexentry” and set group 1 to this.

\[Search for “[” and ignore it.

([^]]*)

Search for any character which is not “]” and set group 2 to this.

\] Search for “]” and ignore it.

9

(.*)$

Search for all characters till end of line and set group 3 to these.

The 〈regular expression〉 is POSIX 1003.2 compatible.

--resultis 〈pattern〉
-r 〈pattern〉 Set the lines, which are written to the generated raw index files

after identification (see option --identify) to 〈pattern〉. Each $〈digit〉 at
〈pattern〉 will be replaced by the corresponding group, e.g. $1 will be re-
placed by the first group (see --identify). The default is: “$1$3”, which
means: contents of group 1 and group 3.

If the 〈regular expression〉 of option --identify doesn’t match a line at the
raw index file the line itself will be written.

--suffixis 〈pattern〉
-s 〈pattern〉 Set the suffix of the names of the generated raw index files af-

ter identification (see option --identify) to 〈pattern〉. Each $〈digit〉 at
〈pattern〉 will be replaced by the corresponding group, e.g. $1 will be re-
placed by the first group (see --identify). The default is: “-$2”, which
means: character ‘-’ followed by contents of group 2.

If the 〈regular expression〉 of option --ifentify doesn’t match a line at the
raw index file, all groups will be set to “idx”.

--verbose
-v Increase verbosity by one. More verbose means: tell the user more about,

what the program is doing.

--version
-V Show information about program version and terminate without processing

a index file.

The OpenBSD binary splitindex-OpenBSD-i386 doesn’t understand the long option
names (--makeindex, --identify . . .). But you can use the alternative short
option names (-m, -i . . .).

The first no-option-argument at the command line is the name if the raw index
file, which has to be processed. All arguments, which follow the argument “--”
are interpreted as no-optional-arguments. All but the first no-option-arguments
will be passed to the index processor.

You will find some examples at the following subsections.

3.1 Using splitindex.pl

This is the reference implementation. Let’s use an example to demonstrate, how
it works. If you have following LATEX file “allabout.tex”:

\documentclass{article}

\usepackage[makeindex]{splitidx}

\begin{document}

Apples\sindex[fru]{apple} and oranges\sindex[fru]{orange} are

fruits\sindex{fruits}.

Tomatos\sindex[veg]{tomato} are vegetables\sindex{vegetables}.

Cats\sindex[ani]{cat} are animals\sindex[idx]{animals}.

\end{document}

10

this generates a file “Fileallabout.idx”:

\indexentry[fru]{apple}{1}

\indexentry[fru]{orange}{1}

\indexentry{fruits}{1}

\indexentry[veg]{tomato}{1}

\indexentry{vegetables}{1}

\indexentry[ani]{cat}{1}

\indexentry[idx]{animals}{1}

This file can’t be processed by a index processor like MakeIndex. If you want
so split these raw index file into several and run the default index processor, you
do the following call (the $ is a symbol for the shell prompt):

$splitindex.pl allabout.idx

You may omit the extension “.idx”:

$splitindex.pl allabout

Both commands will result in a file allabout-fru.idx:

\indexentry[fru]{apple}{1}

\indexentry[fru]{orange}{1}

a file allabout-idx.idx

\indexentry{fruits}{1}

\indexentry{vegetables}{1}

\indexentry{animals}

a file allabout-veg.idx:

\indexentry[veg]{tomato}{1}

and a file allabout-ani.idx:

\indexentry[ani]{cat}{1}

After generation of these files, it calls the default index processor using the com-
mand lines:

makeindex allabout-fru.idx

makeindex allabout-idx.odx

makeindex allabout-veg.idx

makeindex allabout-ani.idx

These calls create the raw index files allabout-fru.ind, allabout-idx.ind,
allabout-veg.ind and allabout-ani.ind, which can be loaded to the docu-
ment using e.g. \printindex from package splitidx.

If you don’t want splitindex to call any index processor, use

$splitindex.pl -m "" allabout

instead of the shell command above.
You may achieve the same files like above using (it’s one input line not two

like shown here):

11

$splitindex.pl -i ’^\\indexentry\[([^]]*)\](.*)$’ -s ’-$1’
-r ’\\indexentry$2’ allabout

If you want splitindex to call makeindex with additional options “-s foo.ist”
to use the MakeIndex style file foo.ist, you can do this call:

$splitindex.pl allabout -- -s foo.ist

As you see “--” is used to tell splitindex to not interprete “-s foo.ist” as option
“--suffixis foo.ist”. All splitindex options must be put before “--” but you
can put the raw file argument “allabout” after that:

$splitindex.pl -- allabout -s foo.ist

If you want so use index processor xindy instead of default index processor
MakeIndex you can do this call:

$splitindex.pl -m xindy allabout

If this is not at the standard PATH you may set the whole path:

$splitindex.pl -m /home/me/bin/xindy allabout

With most perl implementations perl module Getopt::Long allows to put options
after no-option-arguments. So you may also write:

$splitindex.pl allabout -m /home/me/bin/xindy

with the same result.

3.2 Using splitindex.jar

This should also be portable. If you are not using Sun Java 1.4.1 you may try to
recompile this using the shell command:

$javac splitindex.java

This should result in a new splitindex.class. But it will fail e.g. with Sun Java
1.3, because regular expressions are needed, which are not available at Sun Java
1.3.

The call of splitindex.class is almost the same like shown at section 3.1 for
splitindex.pl, but you have to replace “splitindex.pl” by “java splitindex”.
So the last example from section 3.1 becomes:

$java splitindex allabout -m /home/me/bin/xindy

3.3 Using splitindex or splitindex.exe

The Linux program splitindex was compiled using glibc, so it works same like
splitindex.pl and you may use not only:

$splitindex -m /home/me/bin/xindy allabout

but also:

$splitindex allabout -m /home/me/bin/xindy

12

But the CygWin program splitindex.exe was compiled using a CygWin library.
Because of this all options must be put before the first no-option-argument. So
you have to use:

$splitindex.exe -m /home/me/bin/xindy allabout

At:

$splitindex.exe allabout -m /home/me/bin/xindy

the arguments “-m /home/me/bin/xindy” will be passed to the default index
processor MakeIndex!

You need the CygWin-DLL cygwin1.dll to run splitindex.exe. If you haven’t
already installed it, you may download the DLL from http://cygwin.com/snapshots.
You need bzip2, which can be found at http://source.redhat.com/bzip2, to
decompress it. You may use http://cygwin.com/setup.exe to download and
install a minimal CygWin environment alternatively.

The Linux-i386-ELF binary splitindex was compiled and linked using:

$gcc -O3 -Wall -osplitindex splitindex.c
$strip splitindex

The gcc was:

gcc (GCC) 3.2

Copyright (C) 2002 Free Software Foundation, Inc.

The used glibc is version 2.1.
If you compile another binary e.g. for BSD, please contact me, so we may put

the new binary into the distribution or can build another binary distribution.

3.4 Using splitindex.tex

The TEX or LATEX program splitindex.tex doesn’t know any options or arguments.
It number of files, which can be generated, is limited to to number of TEX’s free
write handles. If there are other lines than “\indexentry”-lines at the raw index
file, running splitindex.tex will result in an error.

You may use splitindex.tex interactive:

$tex splitindex

or

$latex splitindex

If you do so, you will be asked for the name of the raw index file. You have to
omit the extension “.idx” answering that question.

You may also use the splitindex.tex not interactive e.g. if you are working with
a batch. To do so you have to define macro \IDX to the name of the raw index
file without extension “.idx”. So the first example of section 3.1 would become:

$tex \def\IDX{allabout}\input splitindex

You may also use LATEX instead of TEX:

$latex \def\IDX{allabout}\input splitindex

The current version of splitindex.tex doesn’t call any index processor. But
maybe in future a version will be able to do so.

13

4 Combining Indices

Now you should know, how to use package splitidx and the SplitIndex programs to
split the index. But what about combining two or more indices to one, e.g. you
don’t want vegetables and fruits in the same index? Try this:

\documentclass{article} % We use article class ...

\usepackage{splitidx} % ... and the splitidx package

\makeindex % And we want index generation

% We define 4 indices:

\newindex[General Index]{idx} % Name and shortcut of the 1st index

\newindex[Index of Animals]{ani} % ... 2nd index

\newindex[Index of Fruits And Vegetables]{fru} % ... 3rd index

\begin{document}
Apples\sindex[fru]{apple} % an entry to fru index
and oranges\sindex[fru]{orange} % an entry to fru index
are fruits\sindex{fruits}. % an implicit entry to idx index

Tomatoes\sindex[veg]{tomato} % an entry to veg index

are
vegetables\index{vegetables}. % an implicit entry to idx index

Cats\sindex[ani]{cat} % an entry to ani index

are animals\sindex[idx]{animals}. % an explicite entry to idx index

\printindex* % print all indices

\end{document}

And do the following call after splitting the index using SplitIndex:

$makeindex allabout-veg.idx allabout-fru.idx

Alternatively you can concatenate allabout-fru.idx to allabout-veg.idx be-
fore running the index processor on allabout-veg.idx.

5 Implementation of splitidx

1 〈∗package〉

5.1 Options

The first option is used to activate index generation.
2 \DeclareOption{makeindex}{\AtEndOfPackage{\makeindex}}

With option useindex the original command \index behaves like \sindex.
3 \DeclareOption{useindex}{%

4 \def\@se@nd@xc@d@{\let\index\sindex}%

5 \AtEndOfPackage{\@se@nd@xc@d@}%

6 }

7 \let\@se@nd@xc@d@\relax

There is also an option to make \sindex ignores it optional argument and
behaves like \index.

14

8 \DeclareOption{allatone}{%

9 \ifx\@se@nd@xc@d@\relax\else

10 \PackageInfo{splitidx}{option ‘allatone’ overwrites option ‘useindex’}%

11 \let\@se@nd@xc@d@\relax

12 \fi

13 \AtEndOfPackage{%

14 \renewcommand*{\sindex}[1][]{\index}%

15 \g@addto@macro\makeindex{\renewcommand*{\sindex}[1][]{\index}}%

16 }%

17 }

Do not expand index arguments.
18 \newif\if@verbindex\@verbindexfalse

19 \DeclareOption{protected}{\@verbindextrue}

With option idxcommands every \newindex also defines a new index command.
20 \newif\if@newidxcmd\@newidxcmdfalse

21 \DeclareOption{idxcommands}{\@newidxcmdtrue}

With option split each index uses its own index file.
22 \newif\if@splitidx\@splitidxfalse

23 \DeclareOption{split}{\@splitidxtrue}

Processing the options
24 \ProcessOptions\relax

5.2 Setting an Index Entry

\see

\seealso

\seename

\alsoname

These are four standard macros, which are also defined at makeidx. Hey, these
definitions are stolen from makeidx! No, no, I’m not a bad guy, read “legal.txt”,
which comes with makeidx.
25 \newcommand*\see[2]{\emph{\seename} #1}

26 \providecommand*\seealso[2]{\emph{\alsoname} #1}

27 \providecommand\seename{see}

28 \providecommand*\alsoname{see also}

\sindex

\@wrsindex

\@@wrsindex

This works similar to original \index but uses a splitted index. So it allows an
optional argument.
29 \newcommand*{\sindex}[2][]{%

30 }

31 \g@addto@macro\makeindex{%

32 \renewcommand*{\sindex}{%

33 \@bsphack\begingroup

34 \@sanitize

35 \@wrsindex

36 }%

37 \typeout{Using splitted index at \jobname.idx}%

38 \@se@nd@xc@d@

39 }

At the following \@@wrsindex is used as a hook. If it is defines, it is used to write
out the index entry. This hook may be used from e.g. hyperref to add hyperpage
to the font selection of the page number. This only works with encap |.
40 \newcommand*{\@wrsindex}[2][]{%

41 \ifx\relax#1\relax

15

42 \if@splitidx

43 \@wrsindex[idx]{#2}%

44 \else

45 \def\@tempa{#2}%

46 \if@verbindex\@onelevel@sanitize\@tempa\fi

47 \@wrindex{\@tempa}%

48 \fi

49 \else

50 \def\@tempa{#2}%

51 \csname index@#1@hook\endcsname

52 \expandafter\ifx\csname @@wrsindex\endcsname\relax

53 \@@@wrsindex{#1}{{\@tempa}{\thepage}}%

54 \else

55 \@@wrsindex{#1}\@tempa||\\%

56 \fi

57 \endgroup

58 \@esphack

59 \fi

60 }

61 \newcommand*{\@@@wrsindex}[2]{%

62 \begingroup

63 \if@splitidx

64 \expandafter\ifx\csname @indexfile@#1\endcsname\relax

65 \PackageError{splitidx}{%

66 Index entry for not existing index%

67 }{%

68 You’ve tried to set an index to index ‘#1’, without

69 defining\MessageBreak

70 that index before using \string\newindex.\MessageBreak

71 This is only allowed, if you are not using package option

72 ‘split’.%

73 }%

74 \else

75 \expandafter\protected@write\csname @indexfile@#1\endcsname{}{%

76 \string\indexentry#2%

77 }%

78 \fi

79 \else

80 \protected@write\@indexfile{}{%

81 \string\indexentry[#1]#2%

82 }%

83 \fi

84 \endgroup

85 }

If hyperref was loaded at \begindocument and hyperref-option hyperindex isn’t
disabled, and the hook is not used, define it:
86 \AtBeginDocument{%

87 \begingroup\expandafter\expandafter\expandafter\endgroup

88 \expandafter\ifx\csname ifHy@hyperindex\endcsname\relax

89 \else

90 \csname ifHy@hyperindex\endcsname

91 \expandafter\ifx\csname @@wrsindex\endcsname\relax

92 \def\@@wrsindex#1#2|#3|#4\\{%

16

93 \ifx\\#3\\%

94 \@@@wrsindex{#1}{{#2|hyperpage}{\thepage}}%

95 \else

96 \def\Hy@temp@A{#3}%

97 \ifx\Hy@temp@A\HyInd@ParenLeft

98 \@@@wrsindex{#1}{{#2|#3hyperpage}{\thepage}}%

99 \else

100 \ifx\Hy@temp@A\HyInd@ParenRight

101 \@@@wrsindex{#1}{{#2|#3hyperpage}{\thepage}}%

102 \else

103 \@@@wrsindex{#1}{{#2|#3}{\thepage}}%

104 \fi

105 \fi

106 \fi

107 }%

108 \fi

109 \csname fi\endcsname

110 \fi

111 }

5.3 Printing One Or More Indices

\printindex

\printindex*

This is used to print an index in the normal way. In most cases this uses theindex
environment, but it need not.

112 \newcommand*{\printindex}{%

The command may be called in the star version, which prints all defined indices.
This is same as \printindices.

113 \@ifstar {%

114 \begingroup

115 \let\printindex@@endhook=\printindex@endhook

116 \let\printindex@endhook=\relax

117 \printindices%

118 \csname printindex@@endhook\endcsname

119 \endgroup

120 }{%

It may also be called with optional arguments to print one of the indices:
121 \@ifnextchar [\@printindex%] brace check comment

Or it is called without any parameter and so it is same as at makeidx package:
122 {%

123 \@input@{\jobname.ind}%

124 \csname printindex@endhook\endcsname

125 }%

126 }%

127 }

\@printindex This is used to print one of the indices. The optional (here obligatory) argument
is the shortcut of the index.

128 \newcommand*{\@printindex}{}

129 \def\@printindex[#1]{%

There can be one more optional argument, which is the title of the index. If not,
the default title \index@〈shortcut 〉@name is used.

17

130 \@ifnextchar [%

131 {\@@printindex[{#1}]}%

132 {\@@printindex[{#1}][\csname index@#1@name\endcsname]}%

133 }

\@@pintindex We use the default environment to print one of the indices, but we redefine
\indexname to the title of the wanted index, \indexshortcut to the shortcut
of the wanted index and \index@preamble to the preamble of the wanted index.
We do this in a group so it is local.

134 \newcommand*{\@@printindex}{}

135 \def\@@printindex[#1][#2]{%

136 \begingroup

137 \edef\indexshortcut{#1}%

138 \def\indexname{#2}%

139 \let\index@preamble\relax

140 \expandafter\let\expandafter\index@preamble

141 \csname index@\indexshortcut @preamble\endcsname

142 \if@splitidx

143 \def\@tempa{idx}\def\@tempb{#1}%

144 \ifx\@tempa\@tempb\let\@indexsuffix\@gobble\fi

145 \fi

146 \@input@{\jobname\@indexsuffix{#1}.ind}%

147 \endgroup

148 \csname printindex@endhook\endcsname

149 }

\@indexsuffix This generated the suffix from the shortcut. You may redefine this function, if you
need. I‘m using a trick here, to define the macro with proper catcodes but not to
define it global. You may also use \@firstofone instead of \lowercase.

150 \begingroup

151 \catcode‘\-12

152 \lowercase{\endgroup

153 \newcommand*{\@indexsuffix}[1]{-#1}%

154 }

\printindices This is used to print all defined indices in the order of their definition and with
their default titles. If the list is empty, is behaves like \printindex without star
and optional arguments.

155 \newcommand*{\printindices}{%

156 \ifx\@indices\@empty

157 \printindex

158 \else

159 \begingroup

160 \@for\@tempa:=\@indices\do{%

161 \expandafter\printindex\expandafter[\@tempa]%

162 }%

163 \endgroup

164 \fi

165 }

\newindex The definition of a new index has an obligatory argument, the shortcut for this
index, and an optional argument, the name of this index. If you omit the optional

18

argument the shortcut is used for the default name if the index. The definition
will be done global!

166 \newcommand*{\newindex}[2][\relax]{%

167 \@ifundefined{index@#2@name}{%

168 \if@verbindex

169 \expandafter\gdef\csname index@#2@hook\endcsname{%

170 \@onelevel@sanitize\@tempa

171 }%

172 \else

173 \expandafter\gdef\csname index@#2@hook\endcsname{}%

174 \fi

175 \ifx\@indices\@empty

176 \xdef\@indices{#2}%

177 \else

178 \xdef\@indices{\@indices,#2}%

179 \fi

180 \ifx \relax#1

181 \expandafter\xdef\csname index@#2@name\endcsname{#2}%

182 \else

183 \expandafter\xdef\csname index@#2@name\endcsname{#1}%

184 \fi

185 \if@newidxcmd

186 \expandafter\newcommand\expandafter*\csname #2\endcsname{}%

187 \expandafter\gdef\csname #2\endcsname{%

188 \sindex[#2]%

189 }%

190 \fi

191 \if@splitidx

192 \def\@tempa{#2}\def\@tempb{idx}%

193 \ifx\@tempa\@tempb

194 \global\let\@indexfile@idx=\@indexfile

195 \else

196 \expandafter\newwrite\csname @indexfile@#2\endcsname

197 \expandafter\immediate\expandafter\openout

198 \csname @indexfile@#2\endcsname=\jobname-#2.idx

199 \fi

200 \fi

201 }{%

If the index is already defined, an error occurs:
202 \PackageError{splitidx}{%

203 index ‘#2’ already defined%

204 }{%

205 You have already defined an index with shortcut ‘#2’.\MessageBreak

206 You can’t define a new index with the same shortcut. If you’ll continue

207 \MessageBreak

208 The new definition will be ignored.%

209 }%

210 }%

211 }

212 \if@splitidx

213 \@onlypreamble\newindex

214 \fi

19

\newprotectedindex Same like \newindex but always define an index with protected arguments.
215 \newcommand*{\newprotectedindex}[2][\relax]{%

216 \begingroup\@verbindextrue\newindex[{#1}]{#2}\endgroup

217 }

\@indices This macro stores a list of the index shortcuts. This is needed by e.g.
\printindices and build by \newindex.

218 \newcommand*{\@indices}{}

219 \gdef\@indices{}

\extendtheindex Extend theindex by some macros called before starting the index, after starting
the index, before stopping the index and after stopping the index. This may be
used to change index behaviour. One additional change is done, which may be use-
ful: before the index \index@preamble is set to \index@〈shortcut 〉@preamble.

220 \newcommand{\extendtheindex}[4]{%

221 \begingroup\expandafter\expandafter\expandafter\endgroup

222 \expandafter\ifx\csname splitindex@theindex\endcsname\relax

223 \let\splitindex@theindex=\theindex

224 \let\endsplitindex@theindex=\endtheindex

225 \fi

226 \renewcommand*{\theindex}{%

227 #1\splitindex@theindex #2%

228 }%

229 \renewcommand*{\endtheindex}{%

230 #3\endsplitindex@theindex #4%

231 }%

232 }

\setindexpreamble Set one of the splitted index preambles or the original one.
233 \newcommand{\splitindex@setip}{}

234 \let\splitindex@setip\setindexpreamble

235 \let\setindexpreamble\relax

236 \newcommand{\setindexpreamble}[2][]{%

237 \ifx \relax#1\relax

238 \begingroup\expandafter\expandafter\expandafter\endgroup

239 \expandafter\ifx\csname splitindex@setip\endcsname\relax

240 \@namedef{index@preamble}{#2}%

241 \else

242 \splitindex@setip{#2}%

243 \fi

244 \else

245 \@namedef{index@#1@preamble}{#2}%

246 \fi

247 }

\useindexpreamble Use the index preamble and optional add additional information after it, if it exists
and if it is not empty:

248 \newcommand{\useindexpreamble}[1][]{%

249 \begingroup\expandafter\expandafter\expandafter\endgroup

250 \expandafter\ifx\csname index@preamble\endcsname\relax\else

251 \ifx\index@preamble\@empty\else

252 \index@preamble #1%

253 \fi

20

254 \fi

255 }

\printsubindex

\printsubindex*

Works like \printindex but changes some macros before to level down the head-
ings at the index generation.

256 \newcommand*{\printsubindex}{%

257 \begingroup

258 \begingroup\expandafter\expandafter\expandafter\endgroup

259 \expandafter\ifx\csname chapter\endcsname\relax

260 \let\section\subsection

261 \begingroup\expandafter\expandafter\expandafter\endgroup

262 \expandafter\ifx\csname addsec\endcsname\relax\else

263 \def\addsec{\setcounter{secnumdepth}{0}\subsection}%

264 \fi

265 \else

266 \let\chapter\section

267 \def\@makeschapterhead{\section*}

268 \let\@makechapterhead\section

269 \begingroup\expandafter\expandafter\expandafter\endgroup

270 \expandafter\ifx\csname addchap\endcsname\relax\else

271 \let\addchap\addsec

272 \fi

273 \fi

Also, \onecolumn and \twocolumn and even \clearpage must be disabled. The
macros \onecolumn and \twocolumn cannot be let \relax because the have an
optional argument which must be used.

274 \let\onecolumn\@firstoptofone

275 \let\twocolumn\@firstoptofone

276 \let\clearpage\relax

277 \let\cleardoublepage\relax

And the mark mechanism must also use one down:
278 \def\markboth{\expandafter\markright\@gobble}%

279 \ifx\@mkboth\@gobble\else\let\@mkboth\markboth\fi

And the page style shouldn’t change too:
280 \let\thispagestyle\@gobble

Now, using \printindex enables all of it’s features:
281 \let\printindex@endhook=\endgroup

282 \printindex

283 }

\@firstoptofone Read the optional argument and do it.
284 \providecommand{\@firstoptofone}[1][]{#1}

285 〈/package〉

References

[1] Leslie Lamport: MakeIndex: An Index Processor For LATEX, 17 February
1987

21

[2] Pehong Chen, Rick P. C. Rodgers: MAKEINDEX(1L), Manual page,
10 December 1991

22

