
spectralsequences

Hood Chatham
hood@mit.edu

Version 1.2.0
2017/12/10

The spectralsequences package is a specialized tool built on top of PGF/TikZ
for drawing spectral sequence charts. It provides a powerful, concise syntax for
specifying the data of a spectral sequence, and then allows the user to print
various pages of a spectral sequence, automatically choosing which subset of the
classes, differentials, and structure lines to display on each page. It also handles
most of the details of the layout. At the same time, spectralsequences is
extremely flexible. It is closely integrated with TikZ to ensure that users can take
advantage of as much as possible of its expressive power. It is possible to turn
off most of the automated layout features and draw replacements using TikZ
commands. spectralsequences also has a carefully designed error reporting
system intended to ensure that it is as clear as possible what is going wrong.

Many thanks to the authors of TikZ for producing such a wonderful package
with such thorough documentation. I would have needed to spend a lot more
time reading the TikZ code if the documentation weren’t so excellent. I took
ideas or code or both from tikzcd (part of the code for turning quotes into class
or edge labels), pgfplots (axes labels), and sseq (the grid types, the stack). I
lifted a fair amount of code from TEXstack exchange. Thanks to Eva Belmont for
tons of helpful suggestions, bug reports, and productive conversations. Talking
to her has helped to clarify many design concepts for the package. Thanks to
Eric Peterson for being a very early adopter and reporting many bugs. Also
thanks to all my friends, family, and acquaintances listened to me talk about
LATEX programming even though they probably found it dreadfully boring.

mailto:<hood@mit.edu>%20Hood%20Chatham?subject=[spectralsequences%20package]

Contents

1 Introduction 3

1.1 Installation . 3

1.2 Memory Constraints . 3

1.3 A warning about fragile macros . 4

2 Package Options and Environments 4

3 The Main Commands 4

4 Options for the main commands 9

4.1 Universal options . 9

4.2 Options for \class . 12

4.3 Options for \d and \structline . 17

4.4 Options for \circleclass . 19

4.5 Options for TikZ primitives . 20

5 Miscellaneous Commands 23

5.1 Settings . 23

5.2 Code reuse commands . 24

5.3 Families . 27

5.4 Utilities . 28

5.5 Coordinate parsers and related . 30

5.6 The class stack . 32

6 Styles 33

6.1 Style-like options . 37

7 Global Options 39

7.1 Global coordinate transformations . 45

7.2 Plot options and axes style . 45

7.3 Layout . 49

1 Introduction

The spectralsequences package consists of two main environments – the {sseqdata} environment, which
specifies the data for a named spectral sequence, and the {sseqpage} environment, which prints a single
page of a spectral sequence. The \printpage command is also available as a synonym for a {sseqpage}
environment with an empty body.

Here is a basic example:

0 1 2 3

0

1

2

0 1 2 3

0

1

2

\begin{sseqdata}[name = basic, xscale = 0.6,
cohomological Serre grading]

\class(0,0)
\class(0,2)
\class(3,0)
\class(3,2)
\d3(0,2)
\end{sseqdata}
\printpage[name = basic, page = 3] \quad
\printpage[name = basic, page = 4]

\begin{sseqdata}[name = basic, cohomological Serre grading] starts the declaration of the data of
a spectral sequence named basic with cohomological Serre grading – that is, the page r differentials go
r to the right and down r− 1. Then we specify four classes and one page 3 differential, and we ask
spectralsequences to print the third and fourth pages of the spectral sequence. Note that on the fourth
page, the source and target of the differential have disappeared.

1.1 Installation

In both MiKTEX and TEX Live installation should be automatic – your TEX distribution should automatically
install the package the first time you include \usepackage{spectralsequences} in a document and compile
it. However, in 2016, TEX Live made an incompatible change to their database, so no new packages will run
on versions of TEX Live from before 2016. This includes spectralsequences. If you have an old version of
TEX Live, you can either perform a manual install, or, better, you should install an up to date version of
TEX Live. If you want to do a manual install, see this TEXstack exchange post for instructions.

1.2 Memory Constraints

In a default TEX install, PDFLATEX has small static memory caps that prevent it from using more than about
60 megabytes of total ram. However, spectralsequences and PGF/TikZ use a large amount of memory. For
this reason, using PDFLATEX with a default install, you cannot draw more than about 2500 classes across
all of your diagrams (fewer if you include differentials, structure lines, and other features). There are a few
solutions to this.

The easiest solution is to run LuaLATEX. LuaLATEX dynamically allocates memory and so is unlikely to run
out of it. Using LuaLATEX on my computer, I can compile a document that draws two copies of a diagram
with 20,000 classes in it (so a total of 40,000 classes). This takes about 50 seconds and 250 megabytes of
ram. I expect any real-world use case will compile fine on a modern computer using LuaLATEX. This option
has the advantage that any modern TEX install comes with a copy of LuaLATEX, and that LuaLATEX is the
designated successor to PDFLATEX. It has the disadvantage that there are some incompatibilities between
LuaLATEX and PDFLATEX so if your document depends on PDFLATEX-specific features, it might be a pain
to switch to LuaLATEX.

Another option is to increase the static memory caps for PDFLATEX. See this TEXstack exchange post for
instructions on how to do this.

3

https://tex.stackexchange.com/a/73017
https://tex.stackexchange.com/a/26213

1.3 A warning about fragile macros

All the data in a spectralsequences environment is stored and used later. As a result, most of the spec-
tralsequences commands currently cannot tolerate fragile macros. Unfortunately, it is impossible for spec-
tralsequences to warn you about this situation – if you use a fragile command in a place that it doesn’t
belong, the result will be an incomprehensible error message. If you are getting nonsense error messages,
this might be why. The solution is to convert fragile macros into robust ones. See here for more information.

2 Package Options and Environments
Draft Mode

The drawings that spectralsequences produces can be quite slow, especially if they are large. Draft
mode skips drawing the content of the spectral sequence, but still takes up exactly the same amount
of space in the document, so that you can deal with formatting issues. To active draft mode, load the
package by saying \usepackage[draft]{spectralsequences}.

\begin{sseqdata}[〈options〉]
〈environment contents〉

\end{sseqdata}

The {sseqdata} environment is for storing a spectral sequence to be printed later. This environment is
intended for circumstances where you want to print multiple pages of the same spectral sequence. When
using the {sseqdata} environment, you must use the name option to tell spectralsequences where to
store the spectral sequence so that you can access it later.

\begin{sseqpage}[〈options〉]
〈environment contents〉

\end{sseqpage}

This environment is used for printing a page of existing spectral sequence that was already specified using
the {sseqdata} environment. The body of the environment adds local changes – classes, differentials,
structure lines, and arbitrary TikZ options that are by default only printed on this particular page. The
{sseqpage} environment can also be used to print a stand-alone page of a spectral sequence – that is,
if you only want to print a single page of the spectral sequence, you can skip using the {sseqdata}
environment.

\printpage[〈options〉]
This command prints a single page of an existing spectral sequence as-is. This is equivalent to a
{sseqpage} environment with an empty body.

3 The Main Commands
\class[〈options〉](〈x 〉,〈y〉)

This places a class at (x,y) where x and y are integers. If multiple classes occur at the same position,
spectralsequences will automatically arrange them in a pre-specified pattern. This pattern may be
altered using the class pattern option.

\begin{sseqpage}[no axes, ymirror, yscale = 0.8]
\class(0,0)
\class(1,0) \class(1,0)
\class(0,1) \class(0,1) \class(0,1)
\class(1,1) \class(1,1) \class(1,1) \class(1,1)
\class(0,2) \class(0,2) \class(0,2) \class(0,2) \class(0,2)
\class(1,2) \class(1,2) \class(1,2) \class(1,2) \class(1,2) \class(1,2)
\end{sseqpage}

4

http://www.tex.ac.uk/FAQ-protect.html

The effect of the \class command is to print a TikZ node on a range of pages. Any option that would
work for a TikZ \node command will also work in the same way for the \class, \replaceclass, and
\classoptions commands.
If a class is the source or the target of a differential on a certain page, then the page of the class is set
to that page, and the class is only rendered on pages up to that number:

0 1

0

1

2

3

0 1

0

1

2

3

\begin{sseqdata}[name = class example,
Adams grading,
yscale = 0.53]

\class(1,0)
\class(0,2)
\class(0,3)
\d2(1,0)
\end{sseqdata}
\printpage[name = class example, page = 2]
\quad
\printpage[name = class example, page = 3]

See the class options section for a list of the sort of options available for classes.

\replaceclass[〈options〉](〈x 〉,〈y〉,〈n〉)
\replaceclass[〈options〉](〈classname〉)
\replacesource[〈options〉]
\replacetarget[〈options〉]

After a class is the source or target of a differential, it disappears on the next page. However, some
differentials are not injective or not surjective. Using the command \replaceclass causes a new symbol
to appear on the page after a class supported or accepted a differential (or both). If there are multiple
classes at the coordinate (x,y) you may specify which using an integer or a tag n. By default, this
command will affect the first class placed in that position. You can also provide the name of a class.
The variants \replacesource and \replacetarget replace the source and target respectively of the
most recent differential.

0 1

0

1

2

3 Z

Z

Z

·2·2

0 1

0

1

2

3 Z/2

Z

0 1

0

1

2

3

2Z

\begin{sseqdata}[name = replace class example, Adams grading, classes = {draw = none }]
\class["\mathbb{Z}"](0,3)
\class["\mathbb{Z}"](1,1)
\class["\mathbb{Z}"](1,0)
\d["\cdot 2"]2(1,1)
\replacetarget["\mathbb{Z}/2"] %\replaceclass["\mathbb{Z}/2"](0,3)
\d[-> >]3(1,0)
\replacesource["2\mathbb{Z}"] % \replaceclass["2\mathbb{Z}"](1,0)
\end{sseqdata}
\printpage[name = replace class example, page = 2] \qquad
\printpage[name = replace class example, page = 3] \qquad
\printpage[name = replace class example, page = 4]

Note that this will not restore any structure lines coming into or off of the class, if you want the structure
lines to persist, you must call \structline again (or use the page option).

\classoptions[〈options〉](〈x 〉,〈y〉,〈n〉)

5

\classoptions[〈options〉](〈classname〉)
\classoptions[〈options〉]

This adds options to an existing class. This can be used in a {sseqpage} environment to modify the
appearance of a class for just one drawing of the spectral sequence, for instance to highlight it for
discussion purposes.
If there are multiple classes at the coordinate (x,y) you may specify which using an integer or a tag
n. By default, this command will affect the first class placed in that position. You can also provide the
name of a class. If no coordinate is indicated at all, then \lastclass is used.

0 1 2

0

1

The red class is the problem

\begin{sseqdata}[name = class options example,
classes = fill]

\class(2,1)
\foreach \x in {0,...,2} \foreach \y in {0,1} {

\class(\x,\y)
}
\end{sseqdata}
\begin{sseqpage}[name = class options example,

right clip padding = 0.6cm]
\classoptions[red](2,1,2) % Only is red on this page!
\node[background, text width = 10em] at (0.3,-2.2)

{\textup{The red class is the problem}};
\end{sseqpage}

Another reason to use this is to give a label to one instance of a class that shows up in a loop or a
command defined using \NewSseqGroup:

0 1 2 3

0

1

2

3

4

2 η

\NewSseqGroup\mygroup {} {
\class(0,0)
\class(0,1)
\class(0,2)
\class(1,1)
\class(2,2)
\structline(0,0)(0,1)
\structline(0,1)(0,2)
\structline(0,0)(1,1)
\structline(1,1)(2,2)

}
\begin{sseqpage}[classes = fill, class labels = { left = 0.3em }]
\mygroup(0,0)
\mygroup(1,2)
\classoptions["2"](0,1)
\classoptions["\eta"](1,1)
\end{sseqpage}

See the class options section for a list of the sort of options available for classes.

\d[〈options〉]〈page〉
\d[〈options〉]〈page〉(〈x 〉,〈y〉,〈source n〉,〈target n〉)
\d[〈options〉]〈page〉(〈source name〉,〈target n〉)
\d[〈options〉]〈page〉(〈source coordinate〉)(〈target coordinate〉)

Calling \d〈page〉(〈x 〉,〈y〉) creates a differential starting at (〈x 〉,〈y〉) of length determined by the speci-
fied page. In order to use the \d command like this, you must first specify the degree of the differentials
as an option to the {sseqdata} or {sseqpage} environment. The degree indicates how far to the right
and how far up a page r differential will go as a function of r. If there is a page r differential, on page
r+ 1, the source, target, and any structure lines connected to the source and target of the differential
disappear. If no class is specified, the default is to use \lastclass.
If there are multiple nodes in the source or target, you may specify which one the differential should go
to using an index or tag for 〈source n〉 or 〈target n〉. It is also possible to provide the name of the source
coordinate and an optional target, or to separately provide the source and target coordinate, either as
names or as (〈x 〉,〈y〉,〈n〉). Using \d with explicit source and target coordinates works even if you did
not provide a degree to the spectral sequence. If you did provide a degree, then spectralsequences
will check whether the difference between the source and target is appropriate for a differential of a given
page, and if not it will throw an error. If this is undesirable, you can use the lax degree option.

6

0 1

0

1

2

0 1

0

1

2

\begin{sseqdata}[name = d example, degree = {-1}{#1},
struct lines = blue, yscale = 1.3]

\class(0,2)
\class(1,2)
\class(1,1)
\class(1,0)
\structline(1,2)(0,2)
\structline(1,2)(1,1)
\structline(1,1)(1,0)
\d2(1,0)
\end{sseqdata}
\printpage[name = d example, page = 2] \quad
\printpage[name = d example, page = 3]

If there are multiple nodes in the source or target coordinate, then there is a funny syntax for indicating
which one should be the source and target: \d〈page〉(〈x 〉,〈y〉,\sourcen,\targetn)

0 1 2 3

0

1

2

\begin{sseqpage}[Adams grading, yscale = 0.8]
\class(1,0) \class(1,0)
\class(0,2) \class(0,2)
\d2(1,0,1,2)
\class(2,0) \class(2,0)
\class(1,2)
\d2(2,0,2)
\class(3,0)
\class(2,2) \class(2,2)
\d2(3,0,,2)
\end{sseqpage}

Negative indices will count from the most recent class in the coordinate (so the most recent is -1,
the second most recent is -2, etc). You can also use a tag, which works better if the situation is
complicated.

0 1

0

1

2

\begin{sseqpage}[Adams grading, yscale = 0.65]
\class(1,0)
\class(0,2) \class(0,2)
\d[blue]2(1,0,-1,-1)
\class(1,0)
\class(0,2)
\d[orange]2(1,0,-1,-1)
\class(1,0)
\d[red]2(1,0,-1,-2)
\end{sseqpage}

\doptions[〈options〉]〈page〉(〈x 〉,〈y〉,〈source n〉,〈target n〉)
\doptions[〈options〉]〈page〉(〈source name〉,〈target n〉)
\doptions[〈options〉]〈page〉(〈source coordinate〉)(〈target coordinate〉)

This command adds options to an existing differential, just like \classoptions except for differentials.
Its syntax is identical to that of \d.

\kill〈page〉[〈coord〉]
This command sets the indicated coordinate to die on the indicated page, but does not establish a target
for the differential. This is useful if you want to draw your own differential using tikz (see \getdtarget)
or if you are not drawing the class on the other side of the differential for clutter reasons. As usual, if
no coordinate is provided, the default argument is \lastclass.

\structline[〈options〉](〈source coordinate〉)(〈target coordinate〉)
This command creates a structure line from 〈source coordinate〉 to 〈target coordinate〉. The source and
target coordinates are either of the form (〈x 〉,〈y〉,〈n〉) or (〈class name〉). If there are multiple classes
at (x, y), then 〈n〉 specifies which of the classes at (x, y) the structure line starts and ends at – if n is
positive, then it counts from the first class in that position, if n is negative, it counts backwards from

7

the most recent. You can also use a tag for n. If the 〈target coordinate〉 is omitted, then \lastclass is
used, so that \structline(\sourcecoord) connects the most recent class to the specified coordinate.
If both coordinates are omitted, then \lastclass and \lastclass1 are used, and so \structline with
no arguments at all will connect the two most recent classes.
If the source or target of a structure line is hit by a differential, then on subsequent pages, the structure
line disappears.
If the source or target has had multiple generations (i.e., they got hit and you used \replaceclass),
then the \structline will only appear starting on the first page where the current generation of both
the source and target are present. If this is undesirable, you can use the page option to change it.

\DeclareSseqGroup\tower {} {
\class(0,0)
\foreach \y in {1,...,5} {

\class(0,\y)
\structline

}
\class(0,2)
\structline(0,1,-1)
\structline(0,3,-1)

}
\begin{sseqdata}[name = structline example,

classes = { circle, fill },
Adams grading, no axes,
yscale = 1.28]

\class(1,1) \class(1,2)
\class(2,3) \class(2,3) \class(2,5)
\tower[classes = blue](0,0)
\tower[struct lines = dashed,orange](1,0)
\tower[struct lines = red](2,0)
\d2(1,1,2)
\end{sseqdata}
\printpage[name = structline example, page = 2] \quad
\printpage[name = structline example, page = 3]

\structlineoptions[〈options〉](〈source coordinate〉)(〈target coordinate〉)
This command adds options to an existing structure line, just like \classoptions except for structure
lines. Its syntax is identical to \structline.

\circleclasses[〈options〉](〈source coordinate〉)(〈target coordinate〉)
This command is a lot like \structline except that it puts a circle around the classes instead of connect-
ing them with a line. It might take a certain amount of fiddling with options to get \circleclasses to
produce good results. There is no \circleclassesoptions command because it doesn’t seem necessary
and (more importantly) I didn’t feel like making one. Maybe someday I’ll put one in.

\draw
\path
\node
\clip

Any code that would work in a {tikzpicture} environment will also work unchanged in a {sseqdata}
or {sseqpage} environment, with a few minor differences. This is a very flexible way to add arbitrary
background or foreground features to the spectral sequence:

8

0 1 2

0

1

2

Consider this
differential

0 1 2

0

1

2

This is
the source

This is
the target

0 1 2

0

1

2

Now it’s gone!

\begin{sseqdata}[name = tikz example, Adams grading, math nodes = false,
tikz primitives = { blue, font = \tiny, <- }, circle classes = tikz primitive style,
x range = {0}{2}, x axis extend end = 2em]

\class(0,0)
\class(1,0)
\class(0,2)
\d2(1,0)
\end{sseqdata}

\begin{sseqpage}[name = tikz example]
\circleclasses[name path = myellipse, inner sep = 3pt, ellipse ratio = 1.6] (1,0) (0,2)
\path[name path = myline] (1.3,1.25) -- (0.6,1);
\draw[name intersections = { of = myellipse and myline }]

(intersection-1) to (1.3,1.25) node[right, text width = 1.6cm] {Consider this differential};
\end{sseqpage} \qquad

\begin{sseqpage}[name = tikz example]
\draw[xshift = 1] (0,0) to (0.6,0.2) node[right, text width = 1.1cm] {This is the source};
\draw[yshift = 2] (0,0) to (0.6,0.2) node[right, text width = 1.1cm] {This is the target};
\end{sseqpage} \qquad

\begin{sseqpage}[page = 3, name = tikz example]
\circleclasses[name path = myellipse, inner sep = 3pt, ellipse ratio = 1.6] (1,0)(0,2)
\node[right, font = \tiny] at (1.2,1.2) {Now it’s gone!};
\end{sseqpage}

4 Options for the main commands

4.1 Universal options

The following options work with all of the drawing commands in this package, including \class, \d, and
\structline, their friends \replaceclass, \classoptions, \doptions, and \structlines, as well as with
TikZ primitives.

xshift = 〈integer〉
yshift = 〈integer〉

Shifts by integer values are the only coordinate changes that are allowed to be applied to \class, \d,
\structline, their relatives, or to a {scope} environment that contains any of these commands. These
shift commands help with reusing code. For instance:

0 1 2 3

0

1

2

\begin{sseqpage}[cohomological Serre grading, yscale = 0.45]
\foreach \x in {0,1} \foreach \y in {0,1} {

\begin{scope}[xshift = \x, yshift = \y]
\class(2,0)
\class(0,1)
\d2(0,1)
\end{scope}

}
\end{sseqpage}

This code segment is very useful so spectralsequences has the command \NewSseqGroup which to

9

make code like this more convenient. The following code produces the same output as above:

\NewSseqGroup\examplegroup {} {
\class(2,0)
\class(0,1)
\d2(0,1)

}
\begin{sseqpage}
\examplegroup(0,0)
\examplegroup(0,1)
\examplegroup(1,0)
\examplegroup(1,1)
\end{sseqpage}

A word of warning: the behavior of xshift in spectralsequences is incompatible with the normal
behavior of xshift in TikZ. For some reason, saying xshift = 1 in TikZ does not shift the coordinate
(0,0) to the coordinate (1,0) – instead it shifts by 1pt. In spectralsequences , saying xshift = 1
moves the coordinate (0,0) to the coordinate (1,0). This includes TikZ primitives: saying \draw[
xshift = 1] (0,0) -- (1,0); inside a {sseqdata} or {sseqpage} environment is the same as saying
\draw(1,0) -- (2,0); despite the fact that this is not the case in the {tikzpicture} environment.

Colors
These come from the LATEX color package via TikZ, so see the color package documentation for more
information.

\begin{sseqpage}[classes = {fill,inner sep = 0.4em},
no axes, scale = 1.3]

\class[red](0,0)
\class[blue](1,0)
\class[green](2,0)
\class[cyan](0,1)
\class[magenta](1,1)
\class[yellow](2,1)
\class[blue!50!red](0,2) % a 50-50 blend of blue and red
\class[green!30!yellow](1,2) % 30% green, 70% yellow
\class[blue!50!black](2,2)
\end{sseqpage}

"〈text〉"〈options〉
Specify a label for a class, a differential, or a structure line. This uses the TikZ quotes syntax. If
the label text includes an equal sign or comma, you need to enclose the entire label in braces, e.g.,
\class["{x = y}"](0,0)". The options include anything you might pass as an option to a TikZ node,
including arbitrary coordinate transforms, colors, opacity options, shapes, fill, draw, etc. The behavior
is a little different depending on whether you use it on a class or on a differential or structure line.
For a class, the 〈text〉 is placed in the position inside the node by default – in effect, the 〈text〉 becomes
the label text of the node (so saying \class["label text"](0,0) causes a similar effect to saying
\node at (0,0) {label text};). There are other position options such as left, above left, etc
which cause the label text to be placed in a separate node positioned appropriately. If the placement is
above, left, etc, then any option that you may pass to a TikZ node will also work for the label, including
general coordinate transformations. If the placement is “inside”, then the only relevant 〈options〉 are
those that alter the appearance of text, such as opacity and color.

a a a

b

b

a \begin{sseqpage}[classes = { minimum width = width("a") + 0.5em }, no axes]
\class["a"](0,0)
\class["a",red](1,0)
\class["a" black,red](2,0)
\class["b" above](0,1)
\class["b" {below right,yshift = 0.1cm}](1,1)
\class["a" {above right = {1em}}](2,1)
\end{sseqpage}

You can adjust the default behavior of class labels using the labels style option or its relatives
class labels, inner class labels or outer class labels. Note that it is also possible to give

10

http://mirror.ctan.org/macros/latex/required/graphics/color.pdf

a label to a \node this way, although the behavior is slightly different. In particular, the label defaults
to the above position instead of going in the \node text by default. Also, this won’t respect the various
label style options like labels, etc.

a \begin{sseqpage}[no axes]
\class(0,0)
\class(2,0)
\node[circle,fill,"a"] at (1,0) {};
\end{sseqpage}

pin = 〈style〉
The pin key makes spectralsequences draw a line connecting the label to the relevant class, which
can provide necessary clarification in dense diagrams. The pin key itself can take options which
adjust the way that the line is drawn:

0

0

1

xy

\begin{sseqpage}
\class(0,0)
\class["xy" {above, xshift=-4pt, pin = red}](0,0)
\class(0,0)
\class(0,1)
\structline
\end{sseqpage}

For either a \structline or a \class the label normally goes on the right side of the edge. The special
option ’ makes it go in the opposite position from the default. I imitated the label handling in the
tikzcd package, so if you use tikzcd, this should be familiar.

0 1

0

1

2

aa bb

·2·2

\begin{sseqpage}[Adams grading, yscale = 0.63]
\class(0,0)
\class(0,1)
\class(0,2)
\structline["a"’ blue](0,0)(0,1)
\class(1,0)
\class(1,1)
\structline["b"](1,0)(1,1)
\d["\cdot 2" { pos = 0.7, yshift = -5pt }] 2 (1,0)
\end{sseqpage}

You can use the style options labels, edge labels, differential labels, and struct line labels
to adjust the styling of edge labels. For instance, if you would prefer for the labels to default to the left
hand side of the edge rather than the right hand side, you could say edge labels = {auto = left}.
You can also use quotes to label edges drawn with TikZ primitives:

hi

\begin{sseqpage}[yscale = 0.58, no axes]
\class(0,0)
\class(1,1)
\draw (1,0) to["hi"’{ pos = 0.7, yshift = -0.5em }] (0,1);
\end{sseqpage}

description

The description key, stolen from tikzcd, places the label on top of the edge. In order to make
this option work correctly, if the background coolor is not the default white, you must inform
spectralsequences about this using the key background color = 〈color〉. In this document, the
background color is called graphicbackground.

aa a′
b

a′
b

cc

\begin{sseqpage}[no axes, background color = graphicbackground]
\foreach \x in {0,1,2} \foreach \y in {0,1} {

\class(\x,\y)
}
\structline["a" red](0,0)(0,1)
\structline["a’"’blue,"b"{yshift = 1em}](1,0)(1,1)
\structline["c" description](2,0)(2,1)
\end{sseqpage}

11

4.2 Options for \class

Because the main job of the \class command is to print a TikZ \node on the appropriate pages of the
spectral sequence, most options that would work for a TikZ node also work for the commands \class,
\replaceclass, and \classoptions. Here are a few that you might care about:

A TikZ shape
If you give the name of a TikZ shape, the class node will be of that shape. The standard TikZ shapes
are circle and rectangle. spectralsequences defines two new shapes:

circlen = 〈n〉
This draws n concentric circles. It’s intended for indicating a Z/pn summand. For large values of
n the result isn’t all that appealing.

\begin{sseqpage}[no axes]
\class[circlen = 2](0,0)
\class[circlen = 2,fill](1,0)
\class[circlen = 3](0,1)
\class[circlen = 4](1,1)
\end{sseqpage}

newellipse
ellipse ratio = 〈ratio〉

This shape is used for \circleclasses. It’s a variant on the ellipse shape that gives more control
over the ellipse’s aspect ratio.

There are many more TikZ shapes in the shapes library, which you can load using the command
\usetikzlibrary{shapes}. The following are some examples:

\begin{sseqpage}[no axes, classes = { inner sep = 0.4em },
class placement transform = { scale = 1.8 },
yscale = 1.63]

\class(0,0)
\class[isosceles triangle](2,0)
\class[rectangle](1,0)
\class[diamond](0,1)
\class[semicircle](1,1)
\class[regular polygon, regular polygon sides = 5](2,2)
\class[regular polygon, regular polygon sides = 6](2,2)
\class[regular polygon, regular polygon sides = 7](2,2)
\class[regular polygon, regular polygon sides = 8](2,2)
\end{sseqpage}

See the TikZ manual for more information.

minimum width = 〈dimension〉
minimum height = 〈dimension〉
minimum size = 〈dimension〉
inner sep = 〈dimension〉
outer sep = 〈dimension〉

These options control the size of a node. This is typically useful to make the size of nodes consistent
independent of the size of their label text. For instance:

ab

a

ab

a

\begin{sseqdata}[name = minimum width example, no axes, yscale = 0.8]
\class["ab"](0,0)
\class["a"](0,1)
\class(0,2)
\end{sseqdata}
\printpage[name = minimum width example]
\printpage[name = minimum width example,

change classes = { blue, minimum width = width("ab") + 0.5em }]

12

http://math.mit.edu/~hood/pgfmanual_v3.0.1a.pdf#section.49

name = 〈node name〉
The \class command makes a TikZ node on appropriate pages. You can refer to this node using TikZ
commands by using its coordinates. Using the name option, you can give the node a name, which you
can use to refer to the class. Using names creates more readable code. The show name option can be
used to display the names of classes. You can modify the names of classes systematically using the
options class name prefix, class name postfix, and class name handler.
Named classes are immune to coordinate transformations. For example, in the following code, xshift
does not apply to the nodes specified by (id) and (eta) but does apply to the coordinate specified by
(1,1):

0 1 2

0

1

1

η \begin{sseqpage}[classes = { show name=above }]
\class[name = 1](0,0)
\class[name = \eta](1,1)
\class(2,1)
\structline[xshift = 1] (1) (\eta)
\structline[xshift = 1,blue] (1) (1,1)
\end{sseqpage}

show name = 〈label options〉
This option is like saying "class name"{〈label options〉}} if the class has a name, and does nothing if
the class has no name. If the class has multiple names, only the most recent is used. This is particularly
useful with class styles, . For instance, by saying this page classes = { show name = above } you
can display names of all of the sources and targets of differentials on each page.

0 1

0

1

2

3

a

x

0 1

0

1

2

3
b

2x

\begin{sseqdata}[
name = show name example,
this page classes = { show name = {above right, pin} }

]
\class[name=a](0,2)
\class[name=b](0,3)
\class[name=x](1,0)
\d2(x)(a)
\replacesource[name=2x]
\d3(x)(b)
\end{sseqdata}

\printpage[name=show name example,page=2]

\printpage[name=show name example,page=3]

tag = 〈tag〉
This key adds a tag to the current class. Tags are used for identifying which of multiple classes in the
same position you are referring to. They are useful when you have groups of related classes and want a
family of differentials connecting them. For instance:

13

0 1 2 3 4 5

0

1

2

3

4

5

\DeclareSseqGroup\tower {} {
\class(0,0)
\foreach \i in {1,...,11} {

\class(0,\i)
\structline(0,\i-1,-1)(0,\i,-1)

}
}
\NewSseqGroup\hvee {} {

\tower(0,0)
\foreach \i in {1,...,11} {

\class(\i,\i)
\structline(\i-1,\i-1,-1)(\i,\i,-1)

}
}
\begin{sseqpage}[degree = {-1}{1}, yscale = 1.1,

x range = {0}{5}, y range = {0}{5}]
\tower(3,0)
\hvee[tag = id](0,0)
\hvee[tag = h21](4,2)
\foreach \n in {0,...,5} {

\d2(4+\n,2+\n,h21,id)
}
\end{sseqpage}

We want each differential to go from the h21 vee to the id vee, independent of which classes are in the
same position of the two vees. The easy way to accomplish this is by giving tags to each of the two vees.

insert = 〈integer〉
If there are multiple classes in the same position, this option allows you to insert classes later into earlier
positions. This is intended to help you put logically related classes next to each other. If the integer is
positive, it inserts the class in the specified position, and if the integer is negative, it counts backwards
from the end. Providing 0 is the same as omitting the option entirely. Values larger in absolute value
than the total number of classes are truncated. Consider:

0

0

1

2

3

4

0

0

1

2

3

4

0

0

1

2

3

4

0

0

1

2

3

4

0

0

1

2

3

4

14

\DeclareSseqGroup \tower {} {
\class(0,0)
\DoUntilOutOfBounds {

\class(\lastx,\lasty+1)
\structline

}
}

\begin{sseqdata}[name=insert-example, y range={0}{4}, class pattern = linear]
\tower(0,2)
\tower(0,3)
\tower(0,1)
\end{sseqdata}
\qquad
\begin{sseqpage}[name=insert-example]
\tower[red,classes={insert=1}](0,0)
\end{sseqpage}
\qquad
\begin{sseqpage}[name=insert-example]
\tower[red,classes={insert=2}](0,0)
\end{sseqpage}
\qquad
\begin{sseqpage}[name=insert-example]
\tower[red,classes={insert=3}](0,0)
\end{sseqpage}
\qquad
\begin{sseqpage}[name=insert-example]
\tower[red,classes={insert=-2}](0,0)
\end{sseqpage}
\qquad
\begin{sseqpage}[name=insert-example]
\tower[red,classes={insert=-3}](0,0)
\end{sseqpage}

offset = {(〈x offset〉,〈y offset〉)}
By default, a class uses the offset specified by class pattern. Occasionally this is undesirable. In this
case, you can specify the offset for a particular class by hand. For example if the sum of two classes is
hit by a differential, it looks better for the class replacing them to be centered:

0 1

0

1

2

0 1

0

1

2

0 1

0

1

2

\begin{sseqdata}[name = offset example,
xscale = 0.7,
Adams grading,
class placement transform = {scale = 1.8}]

\class(0,1)
\class(0,2)\class(0,2)
\draw(0,1)--(0,2);
\class(1,0)
\d2(1,0,,1)
\replacetarget
\d2(1,0,,2)
\end{sseqdata}
\printpage[name = offset example, page=2]
\printpage[name = offset example, page=3]
\begin{sseqpage}[name = offset example, page=3]
\classoptions[offset = {(0,0)}](0,2)
\end{sseqpage}

tooltip = 〈text〉
This key generates a “tooltip” over the given class. That is, if you hover your mouse over it, a little
window will popup with the tooltip text. This is particularly useful to give the coordinates or names of
classes in large charts where it may be hard to tell from looking at the picture what position the class
is in, or there may not be room to supply names to classes.
The tooltip is made using the \pdftooltip command from the pdfcomment package. The pdfcomment
package generates two extra auxiliary files, so it is not included by default. In order to use the
tooltip option, you have to use the tooltips package option (e.g., load spectralsequences with

15

\usepackage[tooltips]{spectralsequences}). This cannot handle math, but it will print math ex-
pressions into TEX input form. Not all pdf viewers will display the tooltip correctly. If this concerns
you, the command \sseqtooltip is used to produce the tooltip, and you can redefine it as any other
command that takes \sseqtooltip{〈text〉}{〈tooltip text〉} and produces a tooltip. For instance, on this
stack exchange post, there is code that supposedly produces tooltips that work with Evince. I have
not tested whether it works by itself or whether it works with my package, but you could. You could
potentially figure out how to get math to work in tooltips too – if you find a satisfactory method, please
let me know.
Anyways, here’s an example:

0 1

0

1

\begin{sseqpage}[classes = {tooltip = {(\xcoord,\ycoord)}}]
\class(0,0)
\class(0,1)
\class(1,0)
\class(1,1)
\end{sseqpage}

There’s another example at the beginning of the section on the class stack.

page = 〈page〉--〈page max 〉
generation = 〈generation〉--〈generation max 〉

These options only work in \classoptions. The page option gives a range of pages for which the
options apply to. If only one page is specified, it is the minimum page and the option applies to all
larger pages.

1 2 4 \begin{sseqdata}[name = page_example, no axes,
title = \page, title style = {yshift = -0.5cm}]

\class(0,0)
\classoptions[page = {2–3},fill,blue](0,0)
\end{sseqdata}

\printpage[name = page_example, page = 1] \qquad
\printpage[name = page_example, page = 2] \qquad
\printpage[name = page_example, page = 4]

A “generation” of a class is the interval from one call of \class or \replaceclass to the page on
which it next supports or is hit by a differential. By default the \classoptions command adds options
only to the most recent generation of the class in a {sseqdata} environment, or on the generation
appropriate to the current page in a {sseqpage} environment. Using the generation option allows you
to provide a single generation or range of generations of the class that the options should apply to. The
first generation is generation 0, and the most recent generation is generation -1. Larger negative values
count backwards.

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

16

https://tex.stackexchange.com/a/164186/23866
https://tex.stackexchange.com/a/164186/23866

\begin{sseqdata}[name = page_example2, Adams grading, xscale = 0.6, yscale = 0.5]
\class(0,2)\class(1,0)
\d2(1,0)
\replacesource
\class(0,3)
\d3(1,0)
\replacesource
\classoptions[fill,red](1,0) % (a) applies to most recent (last) generation.
\end{sseqdata}

\printpage[name = page_example2, page = 1] % generation 0 of (1,0), not styled
\quad
\begin{sseqpage}[name = page_example2, page = 1, keep changes]
\classoptions[fill,blue](1,0) % (b) applies to the generation present on page 1, that is, generation 0.
\end{sseqpage} \quad

% generation 0 of (1,0), so class is blue from (b)
\printpage[name = page_example2, page = 2] \quad

% generation 1 of (1,0), class is not styled
\printpage[name = page_example2, page = 3] \quad

% generation 2 of (1,0), class is red from (a)
\printpage[name = page_example2, page = 4]

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

\begin{sseqdata}[name = page_example2, Adams grading, update existing]
% (c) applies to all generations, overwrites (b) and (a):
\classoptions[fill, red, generation = 0 –– -1](1,0)
\end{sseqdata}

\printpage[name = page_example2, page = 1]% generation 0 of (1,0), so class is red
\quad
\begin{sseqpage}[name = page_example2, page = 1, keep changes]
\classoptions[fill,blue](1,0) % (d) applies to the generation present on page 1, that is, generation 0.
\end{sseqpage} \quad

% generation 0 of (1,0), class is blue from (d)
\printpage[name = page_example2,page = 2] \quad

% generation 1 of (1,0), class is red from (c)
\printpage[name = page_example2, page = 3]
\quad
\printpage[name = page_example2, page = 4] % generation 2 of (1,0), class is red from (c)

\xcoord
\ycoord

These commands represent the x and y coordinate of the current class when used in class options. The
only use I have for them is in the tooltip option, but maybe there is some other purpose for them.

4.3 Options for \d and \structline

Because the main job of the \d and \structline commands is to print an edge on the appropriate pages of
the spectral sequence, most TikZ options that you could apply to a TikZ “to” operator (as in \draw (x1,y1)
to (x2,y2);) can be applied to both \d and \structline. Some such options are as follows:

17

source anchor = 〈anchor〉
target anchor = 〈anchor〉

Because you can’t use the normal TikZ mechanism for specifying the source and target anchors, spec-
tralsequences has these two keys for \d and \structline:

\begin{sseqpage}[no axes, yscale = 1.24]
\foreach \x in {0,1} \foreach \y in {0,1} {

\class(\x,\y)
}
\structline(0,0)(0,1)
\structline[source anchor = north west, target anchor = -30](1,0)(1,1)
\end{sseqpage}

shorten > = 〈distance〉
shorten < = 〈distance〉

These behave exactly like the corresponding options from TikZ , shortening the end and beginning of
the edge respectively. Note that you can lengthen the edge by shortening by a negative amount.

Dash patterns:
See the TikZ manual for a complete explanation of the dash pattern related options. Some examples:

aa aa

\begin{sseqpage}[no axes, yscale = 1.6]
\foreach \x in {0,1,2} \foreach \y in {0,1} {

\class(\x,\y)
}
\structline[densely dotted](0,0)(0,1)
\structline[dashed,red, "a"](1,0)(1,1)
\structline[dash dot,red, "a" black](2,0)(2,1)
\end{sseqpage}

bend left = 〈angle〉
bend right = 〈angle〉
in = 〈anchor〉
out = 〈anchor〉

\begin{sseqpage}[no axes,yscale = 1.6]
\foreach \x in {0,1,2} \foreach \y in {0,1} {

\class(\x,\y)
}
\structline[bend left = 20](0,0)(0,1)
\structline[bend right = 20](1,0)(1,1)
\structline[in = 20,out = north](2,0)(2,1)
\end{sseqpage}

page = 〈page〉--〈page max 〉
This key is only for \structline and \structlineoptions. By default, the \structline command
only adds a structure line starting on the page where the most recent generation of the source or target
is born:

18

http://math.mit.edu/~hood/pgfmanual_v3.0.1a.pdf#subsubsection.15.3.2

3

0 1

0

1

2

3

4

4

0 1

0

1

2

3

4

\begin{sseqdata}[name = structpage example,
title = \page, yscale = 0.53]

\class(0,2)
\class(0,4)
\class(1,0)
\class(1,1)
\d2(1,0)(0,2) \replacesource
\d3(1,1)(0,4) \replacesource
\structline(1,0)(1,1)
\end{sseqdata}
\printpage[name = structpage example,page = 3]
\qquad
\printpage[name = structpage example,page = 4]

By specifying a page number, you can adjust which page the \structline starts on:

1

0 1

0

1

2

3

4

2

0 1

0

1

2

3

4

3

0 1

0

1

2

3

4

4

0 1

0

1

2

3

4

\begin{sseqdata}[name = structpage example2, title = \page, yscale = 0.5]
\class(0,2)
\class(0,4)
\class(1,0)
\class(1,1)
\d2(1,0)(0,2) \replacesource
\d3(1,1)(0,4) \replacesource
\structline[page = 2](1,0)(1,1)
\end{sseqdata}
\printpage[name = structpage example2,page = 1]
\qquad
\printpage[name = structpage example2,page = 2]
\qquad
\printpage[name = structpage example2,page = 3]
\qquad
\printpage[name = structpage example2,page = 4]

Similarly, for \structlineoptions you can specify a minimum page on which to apply the options, or
a range of pages.

4.4 Options for \circleclass

fit = 〈coordinates or nodes〉
The \circleclasses command uses the TikZ fitting library. Sometimes it’s desirable to make the re-
sulting node fit extra things, for example a label. It doesn’t necessarily end up looking great though.

19

http://math.mit.edu/~hood/pgfmanual_v3.0.1a.pdf#section.52

0 1

0

1

2

x
x
x

x

\begin{sseqpage}[Adams grading,axes gap = 0.7cm]
\class(0,2)
\class(1,0)
% Fit in the label x and also a symmetric invisible label to maintain symmetry
\d["x"{name = x},"x"’{name = x’,opacity = 0}]2(1,0)
\circleclasses[fit = (x)(x’),rounded rectangle](1,0)(0,2)
\end{sseqpage}

rounded rectangle

You can put a shape as an option and it will change the shape of the node drawn by \circleclasses.
Any shape will do, but I think that an ellipse or rounded rectangle are the only particularly ap-
pealing options.

ellipse ratio = 〈ratio〉 (initially 1.2)
By default, the shape drawn by \circleclasses is a “newelipse” which is a custom defined shape that
respects the option elipse ratio which roughly controls how long and skinny versus short and fat the
ellipse is. If you find that the ellipse is too long, try a larger value of this option, and conversely if it’s
too fat try a smaller value. If no value is satisfactory, try out the rounded rectangle shape. (This is
stolen from the following stack exchange answer: https://tex.stackexchange.com/a/24621.)

class style
permanent cycle style
transient cycle style
this page class style
differential style
struct line style

See the corresponding entry in the TikZ primitives section.

page = 〈page〉--〈page max 〉
By default, the ellipse will be drawn on the same set of pages that a structure line between the two
classes would be drawn on. This specifies a range of pages for the ellipse to be drawn. Note that unlike
with structure lines, you can instruct \circleclasses to draw the shape even on pages where one or
both of the classes that it is fitting are dead.

4.5 Options for TikZ primitives

background

This key instructs spectralsequences to put the current TikZ primitive in the background. The way
that the spectral sequence is printed is as follows:

• The title, axes, axes ticks, and axes labels are printed (the appropriate steps are skipped when
the no title, no axes, no ticks, or no labels keys are used or if no title or axes labels are
provided).

• The TikZ background paths are printed.

• The clipping is inserted (unless the no clip key is used).

• All foreground elements (classes, differentials, structure lines, and normal TikZ paths) are printed.

In particular, this means that foreground TikZ paths can be clipped by the standard clipping, but
background paths that are outside of the clipping expand the size of the TikZ picture.

20

https://tex.stackexchange.com/a/24621

not clipped
clipped

\begin{sseqpage}[no ticks,yscale = 0.9,math nodes = false]
\class(0,0)
\class(1,1)
\begin{scope}[background]
\draw(0.1,0.1)--(1.1,1.1);
\end{scope}
\node[background] at (0.5,-1) {not clipped};
\node at (0.5,-0.4) {clipped};
\end{sseqpage}

Here is an example where TikZ labels with the background key are used to add labels and a grid. Note
that this styling is easier to make using the title, x label, y label, and grid options.

0 1 2 3

0

1

2

Page 2

H∗(B)

H
∗ (
F
)

0 1 2 3

0

1

2

Page 3

H∗(B)

H
∗ (
F
)

\begin{sseqdata}[name = tikz background example, cohomological Serre grading, classes = fill]
\begin{scope}[background]
\node at (\xmax/2,\ymax+1.2) {\textup{Page \page}};
\node at (\xmax/2,-1.7) {H^*(B)};
\node[rotate = 90] at (-1.5,\ymax/2) {H^*(F)};
\draw[step = 1cm, gray, very thin] (\xmin-0.5,\ymin-0.5) grid (\xmax+0.4,\ymax+0.5);
\end{scope}
\class(0,0)
\class(3,0)
\class(0,2)
\class(3,2)
\d3(0,2)
\end{sseqdata}
\printpage[name = tikz background example, page = 2]
\printpage[name = tikz background example, page = 3]

For this particular use case, it’s probably better to use title, x label, and y label:

Page 2

H∗(B)

H
∗ (
F
)

0 1 2 3

0

1

2

Page 3

H∗(B)

H
∗ (
F
)

0 1 2 3

0

1

2

21

\begin{sseqdata}[name = tikz background example2, cohomological Serre grading, classes = fill,
grid = go, title = { Page \page }, x label = { $H^*(B)$ }, y label = { $H^*(F)$ }]

\class(0,0)
\class(3,0)
\class(0,2)
\class(3,2)
\d3(0,2)
\end{sseqdata}
\printpage[name = tikz background example2, page = 2]
\printpage[name = tikz background example2, page = 3]

But if you need more flexible labeling, you’ll likely want to use tikz primitives with background. See
example_KF3.tex for an instance where this key is useful.
One useful tip is that you can ensure consistent bounding boxes between different diagrams using
\path[background] (smallest x, smallest y) – (largest x, largest y);:

not aligned

0 1 2

0

1

2

Hi

0 1 2

0

1

2

aligned

0 1 2

0

1

2

Hi

0 1 2

0

1

2

\begin{sseqdata}[name = boundingboxex, x range = {0}{2}, y range = {0}{2}, scale = 0.5]
\end{sseqdata}
\printpage[name = boundingboxex, title = not aligned]
\quad
\printpage[name = boundingboxex, x label = Hi]
\qquad
\begin{sseqpage}[name = boundingboxex, keep changes, title = aligned]
\path[background] (\xmin,\ymin-4) -- (\xmax,\ymax+2);
\end{sseqpage}
\quad
\printpage[name = boundingboxex, x label = Hi, title = {}]

page constraint = 〈predicate〉
page constraint or = 〈predicate〉

This places a constraint on the pages in which the TikZ primitive is printed. This predicate should look
something like (\page <= 4) && (\page >= 3). The predicate is anded together with any previous
predicates, so that you can use this as an option for a {scope} and again for the individual TikZ
primitive.

\isalive(〈coordinate〉)
\isalive{(〈coordinate 1 〉)· · ·(〈coordinate n〉)}

This command can only be used with page constraint. Saying

page constraint = {(〈x 〉,〈y〉,[〈index 〉])}}}

will print the TikZ primitive only on pages where the specified class is alive. Saying

page constraint = {\isalive(〈coordinate 1 〉) · · · (〈coordinate n〉)}

is equivalent to

page constraint = {\isalive(〈coordinate 1 〉) && · · · && \isalive(〈coordinate n〉)}

Writing
\draw[page constraint = {\isalive(1,0)(2,2)}](1,0)--(2,2);

is the same as \structline(1,0)(2,2), except that you can’t later use \structlineoptions on
it (and it won’t have the struct lines style applied).

22

class style
permanent cycle style
transient cycle style
this page class style
differential style
struct line style

These classes apply the styling of the corresponding element to your TikZ commands.

\begin{sseqpage}[differentials = blue, yscale = 0.65, no axes]
\class(0,2)
\class(1,0)
% This will be styled as if it were a differential
\draw[differential style] (1,0) -- (0,2);
\end{sseqpage}

See \getdtarget for a more natural example.

5 Miscellaneous Commands

5.1 Settings

\sseqset{〈keys〉}
The \sseqset command is for adjusting the global options for all spectral sequences in the cur-
rent scope, or for applying options to the rest of the current spectral sequence. For instance, if
most of the spectral sequences in the current document are going to be Adams graded, you can say
\sseqset{Adams grading} and all future spectral sequences in the current scope will have Adams
grading (unless you specify a different grading explicitly). As another example, \sseqset{no axes}
will suppress axes from spectral sequences in the current scope. Note that defaults only apply to
new {sseqdata} environments or to unnamed {sseqpage} environments; they won’t apply to existing
spectral sequences.
You can also use \sseqset to create styles to be used in spectral sequences.

.global sseq style = 〈keys〉

.global sseq append style = 〈keys〉

.sseq style = 〈keys〉

.sseq append style = 〈keys〉
These handlers create reusable styles to be used in spectral sequences. If this style is a set of
global options, then use the .global sseq style handler, whereas if it is supposed to be applied
to individual features (classes, differentials, structure lines, circle classes, and tikz primitives) then
use the .sseq style handler.

Page 0

0 1 2 3 4

0

1

2

\sseqset{
mysseq/.global sseq style = {

Adams grading, title = Page \page,
x range = {0}{4}, y range = {0}{2},
xscale = 0.5, yscale = 1.35

},
htwostruct/.sseq style = { gray, thin }

}
\begin{sseqpage}[mysseq]
\class(0,0) \class(0,1) \class(0,2) \class(0,3)
\class(3,1) \class(3,2) \class(3,3)
\structline(0,0)(0,1) \structline(0,1)(0,2)
\structline(0,2)(0,3)
\structline(3,1)(3,2) \structline(3,2)(3,3)
\structline[htwostruct](0,0)(3,1)
\structline[htwostruct](0,1)(3,2)
\structline[htwostruct](0,2)(3,3)
\end{sseqpage}

23

\SseqErrorToWarning〈error-name〉
Turns the error with the given name into a warning. An error message will start by saying
spectralsequences error: "error-name". This is the name you need to put into this command.

\begin{quiet}
〈environment contents〉

\end{quiet}

This environment quiets error messages that occur inside of it. spectralsequences is pretty good at
error recovery, and so most of commands will fail gracefully and do nothing if their preconditions aren’t
met. If there are any parsing errors in the body of the {quiet} environment, prepare to see low level
internal error messages. You might also run into bugs in spectralsequences – the error recovery code
hasn’t been that carefully tested. If you do get low level error messages, remember to comment out the
{quiet} environment before trying to debug.
This is particularly useful for code reuse commands. Sometimes there is a source of long differentials that
only applies to classes that haven’t already supported shorter differentials. Sometimes there should be
a structure line if a certain class exists, but it might not exist. In these cases, the {quiet} environment
will help you out. See also \DrawIfValidDifferential, which is a variant of \d that behaves as if it
were inside a {quiet} environment.

5.2 Code reuse commands

\foreach

This command is from TikZ and works in pretty much the same way in spectralsequences, though
with slightly better variants. The \foreach command is very flexible and has a lot of variants. The
basic usage is \foreach \x in {〈xmin〉,...,〈xmax 〉} {〈loop body〉} which will execute 〈loop body〉
with \x set to each value between 〈xmin〉 and 〈xmax 〉 inclusive. If you want a step greater than 1, try
\foreach \x in {〈xmin〉,〈xmin〉+〈xstep〉,...,〈xmax 〉} {〈loop body〉}.
If you need to do multiple loops with a common body, you can just stack the \foreach commands:

0 2 4 6

0

1

2

3

\begin{sseqpage}[xscale = 0.5, x tick step = 2]
\foreach \x in {0,2,...,6}
\foreach \y in {0,...,3}{

\class(\x,\y)
}
\end{sseqpage}

You can also loop through tuples, for instance:

0 1

0

1
a b

c d

\begin{sseqpage}[xscale = 0.5]
\foreach \x/\y/\label in {0/1/a,1/1/b,0/0/c,1/0/d}{

\class["\label" above](\x,\y)
}
\end{sseqpage}

See the last example for normalize monomial for a better example of this usage.
There are tons of other things you can do with \foreach, though I haven’t yet found need for them in
combination with spectralsequences. See the TikZ manual for more details.

24

http://math.mit.edu/~hood/pgfmanual_v3.0.1a.pdf#section.64

\Do{〈iterations〉}〈loop body〉
\DoUntilOutOfBounds〈loop body〉
\DoUntilOutOfBoundsThenNMore{〈extra iterations〉}〈loop body〉
\iteration

The one use case that \foreach doesn’t cover all that well is if you want the loop to always re-
peat until the features you are drawing go off the page. This is what \DoUntilOutOfBounds and
\DoUntilOutOfBoundsThenNMore are for. These help ensure that if you change the range of your chart,
infinite families will automatically be drawn correctly without the need to adjust a bunch of loop bounds.
The purpose of \DoUntilOutOfBoundsThenNMore is for towers that are receiving a differential. If your
spectral sequence is Adams graded, and a tower is receiving a dr differential from another tower, you
should use \DoUntilOutOfBoundsThenNMore{r}:

0 2 4 6 8 10

0

1

2

3

4

5

6

\begin{sseqpage}[
Adams grading, classes = fill,
x range = {0}{10}, y range = {0}{6},
x tick step = 2,
xscale = 0.3,yscale = 0.7,
run off differentials = {->}

]
\class(0,0)
\DoUntilOutOfBoundsThenNMore{3}{

\class(\lastx+1,\lasty+1)
\structline

}
\class(4,0)
\DoUntilOutOfBounds{

\class(\lastx+1,\lasty+1)
\structline
\d3

}
\end{sseqpage}

You can also nest \DoUntilOutOfBounds reasonably:

0 2 4 6

0

2

4

6

\begin{sseqpage}[
x range = {0}{6}, y range = {0}{6},
tick step = 2,
scale = 0.6

]
\class(0,0)
\DoUntilOutOfBounds{

\class(\lastx+1,\lasty+1)
\structline
\DoUntilOutOfBounds{

\class(\lastx,\lasty+1)
\structline

}
}
\end{sseqpage}

One important difference between \foreach and the \Do family of commands is that \Do has no effect
on the stack. This is in order to ensure that they nest properly.
Note that if you are using these commands and you are planning to draw several pictures of the chart
with restricted range, you need to specify a range for the {sseqdata} that contains all of the ranges
of pages that you want to draw. If you then want to set a smaller default range, specify the smaller
range the first time you use {sseqpage} or \printpage to draw the spectral sequence, and include the
keep changes key.
The \Do command is less general than \foreach; the purpose is to provide a syntax for stack-based
looping that is similar to \DoUntilOutOfBounds but with a fixed range. So \Do{n}{〈loop body〉} repeats
〈loop body〉 n times. The assumption is that the loop body draws something relative to the position of
the \lastclass.
If you need to know how many iterations one of these three commands has gone through, this is stored
in the variable \iteration.

25

\NewSseqCommand\〈command〉{〈argspec〉}{〈body〉}
\DeclareSseqCommand\〈command〉{〈argspec〉}{〈body〉}

The xparse package provides these very powerful commands for defining macros. They are used internally
to the spectralsequences package to define \class, \d, etc. To help you create variants of these
commands, I will record here the argument specifications for each of them. See the xparse manual for a
better explanation and more information.
To make a command like \class, you can use the argument specification O{}r(). The argument type
O{〈default〉} stands for a bracket delimited optional argument with default value 〈default〉. In this case,
we’ve specified the default to be empty. r() stands for a “required” argument delimited by (and). In
the command definition, access the optional argument with #1 and the coordinate with #2.

#1 = {key = value}; #2 = {x,y}

#1 = {}; #2 = {1,2,3}

\DeclareDocumentCommand\demo{ O{} r() }
{ \#1 = \textcolor{purple}{\{#1\}};

\#2 = \textcolor{purple}{\{#2\}} }
\hbox{\demo[key = value](x,y)}
\bigskip
\hbox{\demo(1,2,3)}

If you want to separate out the coordinates into different arguments, you can use O{}u(u,u). The
argument type u stands for “until” and scans up until the next instance of the given character. So
in this case, #1 is of argument type O which is an option list, #2 corresponds to the u(which is a
throw-away argument, then #3 corresponds to u, and contains the x coordinate, and #4 corresponds
to u) and contains the y coordinate. Note however that this will not match balanced parenthetical
expressions.

#1 = {hi}; #3 = {x}; #4 = {y}

#1 = {}; #3 = {1}; #4 = {2}

#1 = {}; #3 = {(1+1)*2}; #4 = {2}

#1 = {}; #3 = {1}; #4 = {(1+1} *2)

\DeclareDocumentCommand\demo{ O{} u(u, u)}
{ \#1 = \textcolor{purple}{\{#1\}};

\#3 = \textcolor{purple}{\{#3\}};
\#4 = \textcolor{purple}{\{#4\}} }

\hbox{\demo[hi](x,y)}
\bigskip
\hbox{\demo(1,2)}
\bigskip
\hbox{\demo((1+1)*2,2)}
\bigskip
\hbox{\demo(1,(1+1)*2)} % uh-oh -- *2) is left off!

You can specify an optional argument delimited by parentheses using d(). Use the commands
\IfNoValueTF, \IfNoValueT, and \IfNoValueF to test whether the user provided a value.

#1 = {hi}; #2 = {x,y}

#1 = {options}; #2 = {no value}

#1 = {}; #2 = {1,2}

#1 = {}; #2 = {no value}

\DeclareDocumentCommand\demo{ O{} d() } {
\#1 = \textcolor{purple}{\{#1\}};
\#2 = \textcolor{purple}{

\{\IfNoValueTF{#2}{no value}{#2}\} }
}
\hbox{\demo[hi](x,y)}
\bigskip
\hbox{\demo[options]}
\bigskip
\hbox{\demo(1,2)}
\bigskip
\hbox{\demo}

An example where this is actually useful:

0 1 2

0

1

2

3

\DeclareSseqCommand\etaclass{ O{} d() }{
\IfNoValueF{#2}{ \pushstack(#2) }
\class[#1] (\lastx+1, \lasty+1)
\structline

}
\begin{sseqpage}[classes = fill, yscale = 0.55]
\class(0,0)
\class(0,1)
\etaclass\etaclass
\etaclass[blue](0,0)\etaclass
\end{sseqpage}

26

http://mirror.ctan.org/macros/latex2e/contrib/l3packages/xparse.pdf

The \d command has argument specification O{} U(r(). The argument type U is special to spec-
tralsequences, and is a variant of until that reinserts the delimiting token. This allows the (token to
also delimit the beginning of the r() argument. Note that the argument type U is specially added by
spectralsequences and might be removed in the future if the LATEX3 team yells at me or something.

#1 = {opts}; #2 = {page}; #3 = {x,y}

#1 = {}; #2 = {5}; #3 = {x,y}

\DeclareDocumentCommand \demo{ O{} U(r() }
{ \#1 = \textcolor{purple}{\{#1\}};

\#2 = \textcolor{purple}{\{#2\}};
\#3 = \textcolor{purple}{\{#3\}} }

\hbox{\demo[opts]page(x,y)}
\bigskip
\hbox{\demo5(x,y)}

The \structline and \changeclasses commands have argument specification O{}r()r().

#1 = {hi}; #2 = {x,y}; #3 = {x’,y’}

#1 = {}; #2 = {x,y,2}; #3 = {x’,y’,-1}

\DeclareDocumentCommand\demo{ O{} r() r() }
{ \#1 = \textcolor{purple}{\{#1\}};

\#2 = \textcolor{purple}{\{#2\}};
\#3 = \textcolor{purple}{\{#3\}} }

\hbox{\demo[hi](x,y)(x’,y’)}
\bigskip
\hbox{\demo(x,y,2)(x’,y’,-1)}

\NewSseqGroup\〈command〉{〈argspec〉}{〈body〉}
\DeclareSseqGroup\〈command〉{〈argspec〉}{〈body〉}

These are similar to \NewSseqCommand and \DeclareSseqCommand except that the commands defined
take an optional square bracket delimited options list, followed by an optional parenthesis delimited
(x,y) pair and wraps the body of the code in \begin{scope}[xshift = 〈xcoord〉, yshift = 〈ycoord〉,
options]. For instance:

0 1

0

1

2

3

4

\DeclareSseqGroup\tower {m} {
\class(0,0)
\foreach \n in {1,...,#1} {

\class(0,\n)
\structline(0,\n-1)(0,\n)

}
}
\begin{sseqpage}
\tower[orange]{4}
\tower(1,1){2}
\end{sseqpage}

Here we define a command which takes an options list, a coordinate, and a single mandatory argument.
The options are applied to all the classes and structlines, the coordinate shifts the origin, and the
mandatory argument is the length of the tower.

\SseqCopyPage\〈command〉{〈spectral sequence name〉}{〈page〉}
This copies all of the classes and structlines on page 〈page〉 of the spectral sequence named 〈spectral
sequence name〉, throwing out differentials and tikz primitives. The resulting \cmdarg{command} has
syntax as if you had used \DeclareSseqGroup with no extra arguments – that is, it takes an optional
options list, which are passed to a scope, and an optional coordinate pair.

5.3 Families

spectralsequences has a concept of “class families” that can be drawn or suppressed as a group, and that
can have styling options applied to them as a group.

27

\SseqNewFamily{〈family name〉}
This makes a new family with name 〈family name〉. The effect of this is to define global options 〈family
name〉 style which apply options to all classes in the family, draw 〈family name〉 which causes the
family to be drawn, and no 〈family name〉 which suppresses the family (drawing is the default behavior
of course). It also defines an option 〈family name〉 which puts a feature into the family – so it can be
used as an option to any of the normal commands like \class, \d, \structline, etc and to a scope.

with image of J

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

α1

α2/2
α3

16

α4/4

β2/2

β2

without image of J

2 3 4 5 6 7 8 9

0

1

2

3

4

β2/2

β2

\SseqNewFamily{imJ}
\begin{sseqdata}[

name=ANSS-S_2, Adams grading,
class labels={below}, label distance=-1pt,
class placement transform={rotate=90,scale=2},
differentials=blue,
x range={0}{9}, y range={0}{4},
xscale=0.7, grid=go

]
% Image of J classes
\begin{scope}[imJ]
\class[rectangle,fill,inner sep=3pt](0,0)
\DoUntilOutOfBoundsThenNMore{3}{\etaclass}
\classoptions["\alpha_1" above left](1,1)
\class["\alpha_{2/2}",circlen=2](3,1)
\structline(0,0) \structline[dashed](3,3)
\class["\alpha_3"](5,1) \d3\relax
\DoUntilOutOfBounds{ \etaclass \d3 }
\class["\alpha_{4/4}", rectangle, "16" {font=\tiny,inside, inner sep=1pt](7,1)
\DoUntilOutOfBoundsThenNMore{3}{\etaclass}
\end{scope}

% Other classes
\class["\beta_{2/2}" {below right=-4pt}, insert = 1](6,2)
\structline(3,1)
\class["\beta_{2}" left](8,2)
\etaclass\structline(6,2,2) % This is a *nu
\end{sseqdata}

\printpage[name=ANSS-S_2, title = with image of J, imJ style=purple]

\printpage[name=ANSS-S_2, no imJ, x range={2}{9}, title = without image of J]

5.4 Utilities

\SseqParseInt\〈macro〉{〈integer expression〉}
Stores the result of evaluating an integer expression into \〈macro〉. An integer expression consists of +,
-, *, /, parentheses, and macros that expand to more of the same. The exact rules regarding what is a

28

valid expression are pretty much what you would expect. Note that juxtaposition is a syntax error, not
multiplication, so 2(1+1) is invalid, you must say 2*(1+1).

\SseqIfEmptyTF{〈expression〉}{〈true code〉}{〈false code〉}
\SseqIfEmptyT{〈expression〉}{〈true code〉}
\SseqIfEmptyF{〈expression〉}{〈false code〉}

This tests if an expression is the empty expression. This is mainly useful for giving systematic labels to
things.

\IfExistsTF{〈page〉}(〈coordinate〉){〈true code〉}{〈false code〉}
\IfExistsT{〈page〉}(〈coordinate〉){〈true code〉}
\IfExistsF{〈page〉}(〈coordinate〉){〈false code〉}

Test whether a class of the given description exists. The description can be any valid coordinate,
including a named coordinate. If the coordinate is not valid, this will return false.

\IfAliveTF{〈page〉}(〈coordinate〉){〈true code〉}{〈false code〉}
\IfAliveT{〈page〉}(〈coordinate〉){〈true code〉}
\IfAliveF{〈page〉}(〈coordinate〉){〈false code〉}

Test whether a class is alive on the given page. If the class doesn’t exist, this will return false.

\IfOutOfBoundsTF(〈coordinate〉){〈true code〉}{〈false code〉}
\IfOutOfBoundsT(〈coordinate〉){〈true code〉}
\IfOutOfBoundsF(〈coordinate〉){〈false code〉}
\IfInBoundsTF(〈coordinate〉){〈true code〉}{〈false code〉}
\IfInBoundsT(〈coordinate〉){〈true code〉}
\IfInBoundsF(〈coordinate〉){〈false code〉}

Test whether a class is in bounds or out of bounds. If no such class exists, returns false.

\IfValidDifferentialTF〈page〉(〈coordinate〉)(〈target coordinate〉){〈true code〉}{〈false code〉}
\IfValidDifferentialT〈page〉(〈coordinate〉)(〈target coordinate〉){〈true code〉}
\IfValidDifferentialF〈page〉(〈coordinate〉)(〈target coordinate〉){〈false code〉}
\DrawIfValidDifferentialTF[〈options〉]〈page〉(〈coordinate〉)(〈target coordinate〉){〈true code〉}{〈false

code〉}
\DrawIfValidDifferentialT[〈options〉]〈page〉(〈coordinate〉)(〈target coordinate〉){〈true code〉}
\DrawIfValidDifferentialF[〈options〉]〈page〉(〈coordinate〉)(〈target coordinate〉){〈false code〉}
\DrawIfValidDifferential[〈options〉]〈page〉(〈coordinate〉)(〈target coordinate〉){〈false code〉}

Test whether a differential is valid. There are many possible reasons for a differential to not be valid
– the source or target class could not exist, the target could not be in the correct grading, etc. If
any error would be generated if you supplied the same arguments to \d, this tests false. Other-
wise, this tests true. The command \DrawIfValidDifferental draws the differential if it is valid,
whereas \DrawIfValidDifferentalT draws the differential and executes the true code if it is valid,
\DrawIfValidDifferentalF draws the differential or executes false code if it isn’t valid, etc.

\SseqNormalizeMonomial

This command simplifies a monomial by combining like variables and removing bases that are raised
to the 0th power, removing exponents of 1, removing 1’s, and replacing the empty monomial with 1.
The variables are sorted by first occurrence, use \SseqNormalizeMonomialSetVariables to set a dif-
ferent sort order. It outputs its result into \result. This command is specifically meant to be used
as a value for class label handler or class name handler. See the example in the documenta-
tion for class label handler for a realistic example. The exponents must be integers or else it will
misbehave.

1, x2y, x42
\SseqNormalizeMonomial{x^0y^0} \result, \quad
\SseqNormalizeMonomial{x^3yx^{-1}z^0} \result, \quad
\SseqNormalizeMonomial{1x_2^2x^2_2} \result

29

\SseqNormalizeMonomialSetVariables

This command takes an undelimited list sets up \SseqNormalizeMonomial to sort the variables in the
input in the specified order. This is useful for consistency, and particularly important for when you use
it to name classes. For example:

ab, bx1, abx1x2x3 % We always want a first, then b, then x_1, then x_2, then x_3
\SseqNormalizeMonomialSetVariables{abx_1x_2x_3}
\SseqNormalizeMonomial{ba} \result, \quad
\SseqNormalizeMonomial{bx_1} \result, \quad
\SseqNormalizeMonomial{abx_2x_3x_1} \result

\SseqAHSSNameHandler

This command expects an argument of the form 〈monomial〉[〈integer expression〉] and defines \result
to be m[n] where m is the result of applying \SseqNormalizeMonomial to the monomial, and n is the
result of evaluation the integer expression plus any yshift that is present. This is intended for use
with in drawing Atiyah Hirzebruch spectral sequences. See class name handler for an example of the
calculation of KO∗RP 8.

5.5 Coordinate parsers and related

\parsecoordinate\〈macro〉(〈coordinate〉)
This command parses the coordinate and puts the triple (x,y,n) into \〈macro〉. It also puts the
components of the coordinate into macros, for instance if \〈macro〉 is \coord, then \xcoord will contain
the x coordinate, \ycoord will contain the y coordinate, and \ncoord will contain the index. The
coordinate can be anything that would be valid to use in a differential or structure line; this is the
macro that is used internally to handle coordinates.

\getdtarget\〈macro〉{〈page〉}(〈source coordinate〉)
Sets \〈macro〉 equal to the coordinates of the target position of a length 〈page〉 differential starting at
〈source coordinate〉. This helps to make commands that draw fancy differentials.

\parsedifferential〈page〉(〈differential coordinate〉)(〈differential target〉)
This has the same weird syntax of \d, except that you are required to put braces around the page
(if it has multiple digits) and you are required to provide at least one coordinate (you have to say
\parsedifferential{2}(\lastclass) for instance). This command is similar in effect to saying both
\parsecoordinate\source〈source coordinate〉 and \parsecoordinate\target〈target coordinate〉, but
it handles determination of the target coordinate for you.
For instance, consider the following example, suggested by Catherine Ray:

0 1

0

1

2

0 1

0

1

2

0 1

0

1

2

30

% O{} U(r() is the arg-spec for \d, O{} U(r() mm looks like \d with one extra mandatory arguments
\NewSseqCommand\twods{ O{} U(r() d() m }{

\parsedifferential{#2}(#3)(#4) % Store the target position in \target
\nameclass{source}(\sourcecoord,\nsource) % give names to the three classes
\nameclass{target1}(\targetcoord,\ntarget)
\nameclass{target2}(\targetcoord,#5)

%
\circleclasses[differential style, name path = circ,

#1, page = #2–#2]
(target1)(target2) % Circle the classes, use differential style

%
% record source and targets as hit.
\kill#2(source) \kill#2(target1) \kill#2(target2)

%
\path(target1)--(target2)

coordinate[midway](midpt);% put a coordinate in the center of the two classes
\path[name path = lin] (source) -- (midpt);% save path from start to midpoint

%
% draw line in "differential style" from start to intersection point of circ and lin
\draw[differential style, #1, page constraint= { \page == #2 },

name intersections = { of = circ and lin }]
(source) -- (intersection-1);

}
\begin{sseqdata}[name = cathex, Adams grading, differentials = { blue }]
\class(0,2)\class(0,2)
\class(1,0)\class(1,0)
\twods2(1,0,-1,1){2}
\end{sseqdata}
\printpage[name = cathex, page = 1]
\qquad
\printpage[name = cathex, page = 2]
\qquad
\printpage[name = cathex, page = 3]

\nameclass{〈name〉}(〈coordinate〉)
The \nameclass command gives a name to a class. It’s similar to saying \doptions[name = 〈name〉],
but faster. It’s also similar to saying \pushstack(〈coordinate〉). Giving temporary names to coordinates
that you are going to use repeatedly makes the code easier to read and is faster (though this only matters
in very large charts). See \getdtarget for an example.

\tagclass{〈tag〉}(〈coordinate〉)
The \tagclass command gives a tag to a class. It’s similar to saying \doptions[tag = 〈name〉], but
faster. See example_tmfmayss.tex for a use case for this.

\gettag\〈macro〉(〈coordinate〉)
The \gettag command finds the most recent tag applied to the coordinate and stores it into
\cmdarg{macro}. This is useful for connecting groups of nodes. For example, consider the follow-
ing code, inspired by example_tmfmayss.tex.

31

0 3 6

0

1

2

3

4

5

6

\DeclareSseqCommand \tower { O{} } {
\begin{scope}[#1]
\foreach\i in {1,...,7}{

\class(\lastx,\lasty+1)
\structline

}
\end{scope}
\restorestack

}
\DeclareSseqCommand \htwotower { O{} d() } {

\IfNoValueF{#2}{
\pushstack(#2)

}
\begin{scope}[#1]
\gettag\thetag(\lastclass)
\class(\lastx+3,\lasty+1)
\structline[gray]
\savestack
\foreach\i in {1,...,7}{

\class(\lastx,\lasty+1)
\structline
\structline[gray](\lastx-3,\lasty-1,\thetag)

}
\restorestack
\end{scope}

}
\begin{sseqpage}[y range = {0}{6}, x tick step = 3,

xscale=0.6, yscale=1.3]
\class(0,2) \class(0,3) \class(3,2)
\class[tag=h_0^i](0,0)
\tower[tag=h_0^i]
\class(0,2) \class(0,1)

\htwotower[tag=h_2 h_0^i](0,0)
\htwotower[tag=h_2 h_0^i]
\end{sseqpage}

5.6 The class stack

The class stack is a linked list of the classes in the order that they are produced that spectralsequences
maintains. I’ve only recently implemented this feature, so it is more liable to change in the future than other
things. Whenever you use the \class function, the class you added is pushed onto the stack. Here’s an
example that demonstrates basic usage:

The following commands are used to access the stack:

\lastx〈n〉
\lasty〈n〉
\lastclass〈n〉

The commands \lastx and \lasty evaluate to the x and y position, respectively, of the nth class on
the stack. If n = 0 you can leave it off. The command \lastclass evaluates to the coordinate of the
most recent class on the stack. This is useful for writing turtle-style code:

32

0 1 2 3

0

1

2

3

4

5

\DeclareSseqCommand \etaclass {}{
\class(\lastx+1,\lasty+1)
\structline

}
\DeclareSseqCommand \divtwoclass {}{

\class(\lastx,\lasty-1)
\structline

}
\begin{sseqpage}
\class(0,0)
\savestack
\foreach \y in { 1,...,5 }{

\class(0,\y)
\structline

}
\restorestack
\etaclass\etaclass\etaclass
\divtwoclass\divtwoclass
\end{sseqpage}

You can use \lastx and \lasty in other contexts than in the body of a spectralsequences command,
most notably inside \SseqParseInt (they also go fine inside \pgfmathparse if you need it or one of its
siblings). For instance, consider the following tower command:

0 1 2 3

0

1

2

3

4

5

\DeclareSseqCommand \tower { } {
\savestack
\SseqParseInt\numclasses{\ymax-\lasty0}
\foreach \n in {1,...,\numclasses}{

\class(\lastx,\lasty+1)
\structline

}
\restorestack

}
\begin{sseqpage}[y range = {0}{5}]
\class(0,0)\tower
\class(1,3)\tower
\class(3,2)\tower
\end{sseqpage}

\pushstack(〈coordinate〉)
This adds a class to the top of the stack. The coordinate is specified using the same syntax as a
coordinate for \structline or \replaceclass.

\savestack
\restorestack

This saves and reverts the stack. Saves nest. Most frequently, you will want to use these at the start
and end of a command.

6 Styles

The spectralsequences package has a large number of styles which control the appearance of specific compo-
nents (e.g., classes, differentials, or structure lines) of a spectral sequence. Each style has two corresponding
keys: classes and change classes. Saying classes = {〈keys〉} adds the keys to the list of options used

33

to style every future class, whereas change classes = {〈keys〉} only makes sense in a {sseqpage} environ-
ment, and temporarily overwrites the list of options. Note that change classes only applies to classes that
existed before the current page, and that even with the keep changes option, the change classes options
are local to the current page. Compare:

change new classes

0 1

0

1

change old classes

0 1

0

1

\begin{sseqdata}[name = style example]
\class(0,0)\class(1,1)
\end{sseqdata}
\begin{sseqpage}[name = style example,

classes = { fill, blue },
title = change new classes]

\class(0,1)\class(1,0)
\end{sseqpage}
\quad
\begin{sseqpage}[name = style example,

change classes = { fill, blue },
title = change old classes]

\class(0,1)\class(1,0)
\end{sseqpage}

You can modify these styles outside of a spectral sequence or inside it using \sseqset, you can modify them
as options to the {sseqdata} and {sseqpage} environments, or you can modify them as arguments to the
{scope} environment.

In cases where the same drawing feature is affected by multiple of these styles, the more specific style takes
precedence. For instance, for a class that is the source or target of a differential on the current page, the
precedence order from lowest to highest goes: sseq style, class style, transient cycle style, this
page cycle style, and then any options from scopes in the order they appear, and any local options (the
options that come right with the class, e.g., \class[local options](x,y)). If you don’t want the options
to your scopes to override more specific styles, use sseq:

everything
is orange

0

0

1

only structure
line is orange

0

0

1

\begin{sseqpage}[classes = { blue, fill },
title style = { align = center, text width = 2.4cm },
title = { everything is orange }]

\begin{scope}[orange]
\class(0,0) \class(0,1)
\structline(0,0)(0,1)
\end{scope}
\end{sseqpage}

\begin{sseqpage}[classes = { blue, fill },
title style = { align = center, text width = 2.4cm },
title = { only structure line is orange }]

\begin{scope}[sseq = orange]
\class(0,0) \class(0,1)
\structline(0,0)(0,1)
\end{scope}
\end{sseqpage}

Throughout, “class” and “cycle” are synonyms.

sseqs = {〈keys〉}
change sseqs = {〈keys〉}
sseq = {〈keys〉}
change sseq = {〈keys〉}

This passes options to all features in all future spectral sequences in the current scope. Note that for
many global options you can set a default directly by saying \sseqset{key = {〈value〉}} and this is in
some cases preferable.

34

0 1

0

1

2

0 1 2

0

1

2

% Applies to both of the following sseqs:
\sseqset{ sseqs = { blue, scale = 0.5 } }%
\begin{sseqpage}
\foreach \x in {0,1}
\foreach \y in {0,1,2} {

\class(\x,\y)
}
\end{sseqpage}
\begin{sseqpage}[Adams grading, classes = fill]
\foreach \x in {0,1,2}
\foreach \y in {0,1,2} {

\class(\x,\y)
}
\d2(1,0)
\d2(2,0)
\end{sseqpage}

classes = {〈keys〉}
cycles = {〈keys〉}
change classes = {〈keys〉}
change cycles = {〈keys〉}

0 2

0

2

\begin{sseqpage}[classes = { blue, fill, minimum width = 0.5em },
scale = 0.5, x tick step = 2, y tick step = 2]

\class(0,0)
\class(2,2)
\end{sseqpage}

permanent classes = {〈keys〉}
permanent cycles = {〈keys〉}
change permanent classes = {〈keys〉}
change permanent cycles = {〈keys〉}

These options change the appearance of all permanent cycles (e.g., those classes which never support or
are hit by a differential). For instance, we can circle the permanent cycles automatically. In the following
example, note that because permanent cycles is more specific than classes, the permanent cycles =
{draw} command takes precedence over the classes = {draw = none} command and the permanent
cycle nodes are drawn.

0 1 2

0

1

Z

Z

Z

Z
\begin{sseqpage}[cohomological Serre grading,

classes = { draw = none },
permanent cycles = {draw}]

\foreach \x in {0,2} \foreach \y in {0,1} {
\class["\mathbb{Z}"](\x,\y)

}
\d2(0,1)
\end{sseqpage}

transient classes = {〈keys〉}
transient cycles = {〈keys〉}
change transient classes = {〈keys〉}
change transient cycles = {〈keys〉}

These options change the appearance of all transient cycles (e.g., those classes which eventually support
or are hit by a differential). Again, this takes precedence over the classes option.

35

0 1 2

0

1

Z

Z

Z

Z
\begin{sseqpage}[cohomological Serre grading,

classes = { draw = none },
transient cycles = red]

\foreach \x in {0,2} \foreach \y in {0,1} {
\class["\mathbb{Z}"](\x,\y)

}
\d2(0,1)
\end{sseqpage}

this page classes = {〈keys〉}
this page cycles = {〈keys〉}
change this page classes = {〈keys〉}
change this page cycles = {〈keys〉}

These options change the appearance of all cycles which support or are hit by a differential on this page.
Any class that is hit on the current page is also a transient cycle, and so this page classes takes
precedence over transient cycles.

0 1 2

0

1

2

3

0 1 2

0

1

2

3

\begin{sseqdata}[name = this page cycles example, Adams grading,
transient cycles = { red, fill }, this page cycles = { blue }]

\class(0,0)
\class(0,2) \class(1,0)
\class(1,3) \class(2,0)
\d2(1,0) \d3(2,0)
\end{sseqdata}
\printpage[name = this page cycles example, page = 2] \qquad
\printpage[name = this page cycles example, page = 3]

edges = {〈keys〉}
differentials = {〈keys〉}
struct lines = {〈keys〉}
change edges = {〈keys〉}
change differentials = {〈keys〉}
change struct lines = {〈keys〉}

The edges key applies to both differentials and structure lines. The differentials and struct lines
keys both take precedence over edges.

this page struct lines = {〈keys〉}
change this page struct lines = {〈keys〉}

This style applies to structure lines whose source or target is hit on the current page. It takes precedence
over struct lines.

tikz primitives = {〈keys〉}
change tikz primitives = {〈keys〉}

Applies to all TikZ primitives.

36

labels = {〈keys〉}
change labels = {〈keys〉}

This style applies to labels on classes, differentials, and structure lines. All the more specific label styles
take precedence over it.

class labels = {〈keys〉}
inner class labels = {〈keys〉}
outer class labels = {〈keys〉}
change class labels = {〈keys〉}
change inner class labels = {〈keys〉}
change outer class labels = {〈keys〉}

Inner class labels specifically applies to class labels that are inside the node, outer class labels specifically
applies to ones outside it:

a
b

a c

\begin{sseqpage}[no axes, classes = { inner sep = 1pt },
label distance=2pt,
outer class labels = { red },
inner class labels = { blue }]

\class["a", "b" above](0,0)
\class["a", "c" right](1,0)
\end{sseqpage}

edge labels = {〈keys〉}
differential labels = {〈keys〉}
struct line labels = {〈keys〉}
change edge labels = {〈keys〉}
change differential labels = {〈keys〉}
change struct line labels = {〈keys〉}

6.1 Style-like options

The options are not styles, but can be modified in the same set of places (namely, anywhere):

label distance = 〈dimension〉
This sets the default distance from a class to an outer label. There are also variants like above label
distance corresponding to above, below, left, right, above left, above right, below left, and
below right.

a

b

c

c

\begin{sseqpage}[label distance = 0.3em,
right label distance = 0em,
no axes,yscale = 1.25]

\class["a" above](0,0)
\class["b" above right](0,1)
\class["c" right](1,0)
\class["c" {right = 1em}](1,1)
\end{sseqpage}

run off = 〈start tip〉–〈end tip〉
run off struct lines = 〈start tip〉–〈end tip〉 (initially ...–...)
run off differentials = 〈start tip〉–〈end tip〉 (initially ...–...)

Change the default behavior of run off edges for either all edges, just structure lines, or just differentials
respectively. Local arrowhead options override this.
If an edge runs off the edge of the clipping, spectralsequences automatically add an arrowhead to
indicate that the edge continues. This option controls which arrow head is added if the start or end of
an edge runs off the page.

37

0 1 2

0

1

2

\begin{sseqpage}[x range = {0}{2}, y range = {0}{2},
draw orphan edges, run off = >-stealth]

\class(0,0)
\class(3,0) \class(0,3)
\structline(0,0)(3,0)
\structline[red](0,0)(0,3)
\structline[blue](3,0)(0,3)
\end{sseqpage}

class label handler = 〈function〉
The value of class label handler is a function that is applied to all labels before displaying them.
It should put its output into \result. This is intended to help with code reusability. Because these
handlers may crash or have annoying side-effects on some input, you may want to toggle the value
of this command on and off. To turn this off for the rest of the current spectral sequence you can
say \sseqset{class label handler = {}}. You can also use the class label handler key in a
{scope}.
The main function spectralsequences provides for use here is \SseqNormalizeMonomial{#1}. This
makes it convenient to translate expressions with polynomial labels. You can write your own handlers if
your TEX programming skills are sufficient. Let me know if there are any other functions that you want
here, and if you implement them yourself, please send me your implementation. Here is an example of
a function that evaluates an arithmetic expression:

0 1

0

1

2

21

\begin{sseqpage}[
class label handler = { \SseqParseInt\result{#1} }

]
\class["1+1"](0,0)
\class["1+2*(1+3*(4-1))"](1,1)
\end{sseqpage}

Here’s an example using \SseqNormalizeMonomial:

0 1 2 3

0

1

2

3

1

α

y

αy

y2

αy2

y3

αy3

α2y2

α3y2

y3α2

α3y3

α2

α3

yα2

α3y

\NewSseqGroup \test {m} {
\class["1#1"](0,0)
\class["\alpha#1"](0,1)
\class["y#1"](1,0)
\class["\alpha y#1"](1,1)

}
\begin{sseqpage}[

class label handler = { \SseqNormalizeMonomial{#1} },
classes = { draw = none }, class labels = { font = \small }]

\test{}
\test[red](2,0){y^2}
\test[orange](2,2){\alpha^2y^2}
\test[blue](0,2){\alpha^2}
\end{sseqpage}

Here is another example which demonstrates a useful idiom for drawing Serre spectral sequences. For
a more complete example, see example_KF3n.tex. Note the use of braces in {Sq^1\iota_2}. Without
braces, \SseqNormalizeMonomial will simplify Sq^1xSq^2x into S2q3x2, which is obviously undesirable,
so the correct way to input this is {Sq^1x}{Sq^2x}. Unfortunately, \foreach strips a pair of braces
from its arguments, so you need to put two pairs of braces.

38

0 1 2 3 4

0

1

2

3

4

1

α

x

αx

x2

ι2

αι2

xι2

αxι2

x2ι2

Sq1ι2

αSq1ι2

xSq1ι2

αxSq1ι2

x2Sq1ι2

ι22

αι22

xι22

αxι22

x2ι22

\begin{sseqpage}[
xscale = 1.4,
classes = { draw = none },
class label handler = {\SseqNormalizeMonomial{#1}}]

\foreach \x/\xlabel in
{ 0/1, 2/\iota_2, 3/{{Sq^1\iota_2}}, 4/\iota_2^2 }

\foreach \y/\ylabel in
{ 0/1, 1/\alpha, 2/x, 3/\alpha x, 4/x^2 }

{
\class["\ylabel\xlabel"] (\x,\y)

}
\end{sseqpage}

class name handler = 〈function〉
The value of class name handler is a function that is applied to all names before using them. It should
put its output into \result. The main functions intended for use here are \SseqAHSSNameHandler
and \SseqNormalizeMonomial, though you can make your own. This is applied both when you
name the class, as in \class[name=a](〈coordinate〉) and when you refer to a class by name, as in
\structline(a)(b). One advantage if you are using \SseqNormalizeMonomial is that you can ensure
that xy and yx refer to the same class:

0 1

0

1

xy

xy2
\SseqNormalizeMonomialSetVariables{xy}
\begin{sseqpage}[class name handler = \SseqNormalizeMonomial,

classes = {show name = {right,pin}}]
\class[name=xy](0,0)
\class[name=yxy](0,1)
\class(1,0)
\structline(yx)(yyx)
\end{sseqpage}

The next page is an example drawing the Atiyah Hirzebruch spectral sequence computing KO∗RP 8.

class name prefix = 〈prefix 〉
class name postfix = 〈postfix 〉

These keys add respectively a prefix or a postfix to all names of all classes in the scope. This is applied
both when you name the class, as in \class[name=a](〈coordinate〉) and when you refer to a class
by name, as in \structline(a)(b). The prefix and postfix are added to the command before the
class name handler is applied, so if you say name=〈the name〉 then the name actually given to the
class is the value of \result after saying \classnamehander{〈name prefix 〉〈the name〉〈name postfix 〉}

7 Global Options

These options can only be set at the beginning of a {sseqdata} or {sseqpage} environment. When it makes
sense, you can also set a default value using \sseqset. Generally, these options either modify the plot style
or the logic for the spectral sequence.

name = 〈sseq name〉
This option must be used with the {sseqdata} environment where it indicates the name of the spectral
sequence, which will be used with the {sseqpage} environment or \printpage command to draw the
spectral sequence. The name used in a {sseqdata} environment must be new unless the environment is
used with the update existing key in which case the {sseqdata} environment will add to the existing

39

An AHSS using class name handler = \SseqAHSSNameHandler:

AHSS for KO∗RP 8

−8 −4 0 4 8

0

1

2

3

4

5

6

−8 −4 0 4 8

0

1

2

3

4

5

6

\NewSseqCommand \KOstar {m}{
\begin{scope}[xshift = -#1, xshift=8*\b, yshift = #1]

\class[rectangle,name=b^{\b}[0]](0,0)
\class[name=b^{\b} e[0]](1,0) \structline
\class[name=b^{\b} e^2[0]](2,0) \structline
\class[rectangle,fill=none,name=b^{\b} u[0]](4,0)

\end{scope}
}
\NewSseqCommand \KOpcell {m}{

\d1(b^{\b}[#1]) \replacetarget
\d1(b^{\b} u[#1]) \replacetarget
\structline(b^{\b}[#1+1])(b^{\b} e[#1+1])
\structline[page=2,dashed](b^{\b} e[#1])(b^{\b} e^2[#1+1])
\structline[page=2,dashed](b^{\b} e^2[#1])(b^{\b} u[#1+1])

}
\NewSseqCommand \KOetacell {m}{

\DrawIfValidDifferential2(b^{\b}[#1])
\d2(b^{\b} e[#1])
\DrawIfValidDifferential3(b^{\b} e^2[#1])

}
\begin{sseqdata}[name=KO^*RP^8, Adams grading, class name handler=\SseqAHSSNameHandler,

classes=fill, x range={-8}{10},xscale=0.7, yscale=0.5, x tick step = 4]
\foreach \b in {-2,...,2}{

\foreach \n in {0,...,6}{\KOstar{\n}}
\foreach \n in {1,3,...,5}{\KOpcell{\n}}
\foreach \n in {2,3}{\KOetacell{\n}}
\structline[dashed](b^{\b}e^2[2])(b^{\b}u[4])
\structline[dashed](b^{\b}[4])(b^{\b}e[5])

}
\end{sseqdata}
\printpage[name=KO^*RP^8, title=AHSS for $KO^*\mathbb{R}P^8$]\vskip6pt
\printpage[name=KO^*RP^8,page=6]

40

spectral sequence. It is optional when used with {sseqpage} , and if included the name given must be
the name of an existing spectral sequence.

page = 〈page number〉–〈page max 〉 (initially 0)
This key is for {sseqpage} and \printpage. It specifies which page of the spectral sequence is to be
printed. On page r, all \classes that are not hit by differentials on pages less than r will be printed, as
well as all \structlines whose source and target classes are both printed on page r, and all differentials
of length exactly r. The special value page = 0 prints all classes, differentials, and structure lines.
If you use this key with a range, then all differentials in that range of lengths will be drawn. The larger
number only changes which differentials are drawn. If you use 0 for the 〈page max 〉, then all differentials
longer than 〈page number〉 will be drawn.

degree = {〈x degree〉}{〈y degree〉}
cohomological Serre grading
homological Serre grading
Adams grading

Specifies the degree of differentials. The 〈x degree〉 and 〈y degree〉 should both be mathematical expres-
sions in one variable #1 that evaluate to integers on any input. They specify the x and y displacement
of a page #1 differential. In practice, they will be linear expressions with #1 coefficient 1, -1, or 0.
The degree option must be given before placing any differentials. It can be specified at the begin-
ning of the {sseqdata} environment, at the beginning of the {sseqpage} environment if it is being
used as a standalone page, or as a default by saying \sseqset{degree = {〈x degree〉}{〈y degree〉}} or
\sseqset{Adams grading} outside of the {sseqdata} and spectralsequences environments.
You can make a named grading convention by saying \sseqset{my grading/.sseq grading = {〈x
degree〉}{〈y degree〉}}. Then later passing my grading to a spectral sequence is equivalent to saying
degree = {〈x degree〉}{〈y degree〉}. The following grading conventions exist by default:

0 1 2

0

1

% equivalent to degree = {#1}{1-#1}:
\begin{sseqpage}[cohomological Serre grading]
\class(0,1)
\class(2,0)
\d2(0,1)
\end{sseqpage}

0 1 2

0

1

% equivalent to degree = {-#1}{#1-1}:
\begin{sseqpage}[homological Serre grading]
\class(0,1)
\class(2,0)
\d2(2,0)
\end{sseqpage}

0 1

0

1

2

% equivalent to degree = {-1}{#1}:
\begin{sseqpage}[Adams grading]
\class(0,2)
\class(1,0)
\d2(1,0)
\end{sseqpage}

41

strict degree
lax degree

If the degree is strict, then LATEXwill throw an error if you try to specify a differential that doesn’t have
the proper grading. The degree is strict by default.

\begin{sseqdata}[name = laxdegree, Adams grading]
\class(0,2)
\class(1,0)
\d3(1,0)(0,2) % Error: differential does not respect grading.

% Target should be in position (0,3) but instead it is (0,2)...
\end{sseqdata}

0 1

0

1

2

\begin{sseqdata}[name = laxdegree, Adams grading, lax degree, yscale = 0.6]
\class(0,2)
\class(1,0)
\d3(1,0)(0,2) % No error because degree checking is off
\end{sseqdata}
\printpage[name = laxdegree, page = 3]

update existing

This key is only for the {sseqdata} environment. It specifies that the current {sseqdata} environment
is adding data to an existing spectral sequence. If you don’t pass this key, then giving a {sseqdata}
environment the same name as a different {sseqdata} environment will cause an error. This is intended
to help you avoid accidentally reusing the same name.

keep changes = 〈boolean〉 (default true)(initially false)
This option is only for the {sseqpage} environment, and only works when a name is provided. This
option specifies that all of the commands in the current {sseqpage} environment should be carried
forward to future pages of the same named spectral sequence. For example:

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

0 1

0

1

2

3

42

\begin{sseqdata}[name = keep changes example, Adams grading, y range = {0}{3}]
\class(0,0)
\class(1,0)
\end{sseqdata}

\begin{sseqpage}[name = keep changes example, sseq = orange]
\class(0,2)
\class(1,2)
\classoptions[orange](1,0)
\d2(1,0)
\end{sseqpage} \qquad

\printpage[name = keep changes example, page = 2] \qquad

\begin{sseqpage}[name = keep changes example, sseq = blue, keep changes]
\class(0,3)
\class(1,3)
\classoptions[blue](1,0)
\d3(1,0)
\end{sseqpage} \qquad

\printpage[name = keep changes example, page = 3]

Note that the orange classes and differential do not persist because the keep changes option is not set
in the first {sseqpage} environment, but the blue classes and differential do, since the keep changes
option is set in the second {sseqpage} environment.

no differentials
draw differentials

The option no differentials suppresses all of the differentials on the current page, whereas
draw differentials causes the page appropriate differentials to be drawn. This is useful for ex-
plaining how the computation of a spectral sequence goes, or if you want to display one of the edges of
the spectral sequence, like in example_KF3n.tex.

no struct lines
draw struct lines

The option no struct lines suppresses all of the structure lines on the current page, whereas the
option draw struct lines causes the page appropriate structure lines to be drawn.

no orphan edges
draw orphan edges

An edge is an “orphan” if both its source and target lie off the page. By default these are drawn,
but with the option no orphan edges they are not. If the option no orphan edges has been set,
draw orphan edges undoes it.

0 1 2

0

1

2

0 1 2

0

1

2

\begin{sseqdata}[
name = orphan edges example,
cohomological Serre grading,
x range = {0}{2}, y range = {0}{2}]

\class(0,3) \class(3,1)
\d3(0,3)
\class(2,1) \class(4,0)
\d2(2,1)
\end{sseqdata}
\printpage[name = orphan edges example]
\quad
\printpage[name = orphan edges example,

no orphan edges]

class pattern = 〈class pattern name〉 (initially standard)
This key specifies the arrangement of multiple classes at the same coordinate. The default value is
standard.

43

\begin{sseqdata}[name = class pattern example, no axes, ymirror]
\class(0,0)
\class(1,0) \class(1,0)
\class(0,1) \class(0,1) \class(0,1)
\class(1,1) \class(1,1) \class(1,1) \class(1,1)
\class(0,2) \class(0,2) \class(0,2) \class(0,2) \class(0,2)
\class(1,2) \class(1,2) \class(1,2) \class(1,2) \class(1,2) \class(1,2)
\end{sseqdata}

\printpage[name = class pattern example, class pattern = standard]
\printpage[name = class pattern example, change classes = blue,

class pattern = linear, class placement transform = { rotate = 45 }]

You can add new class patterns using \sseqnewclasspattern:

\sseqnewclasspattern{〈class pattern name〉}{〈offsets〉}
Creates a new class pattern. For example, the linear class pattern is created using the com-
mand:

\sseqnewclasspattern{linear}{
(0,0);
(-0.13,0)(0.13,0);
(-0.2,0)(0,0)(0.2,0);
(-0.3,0)(-0.1,0)(0.1,0)(0.3,0);
(-0.4,0)(-0.2,0)(0,0)(0.2,0)(0.4,0);
(-0.5,0)(-0.3,0)(-0.1,0)(0.1,0)(0.3,0)(0.5,0);

}

For instance the third row indicates that if there are three classes at the position (x,y) they
should be printed at (x-0.2,y), (x,y), and (x+0.2,y). You can give as many rows as you like;
spectralsequences will throw an error if there are more classes in any position than the maximum
number that your class pattern can handle – for instance, the linear class pattern can handle up
to six classes based on this definition.

class placement transform = {〈transform keys〉}
add class placement transform = {〈transform keys〉}

The option class placement transform allows the user to specify a TikZ coordinate transform to ad-
just the relative position of multiple nodes in the same (x, y) position. The class placement transform
key overrides the previous value of transformations, the add class placement transform just adds
the new transformation to the end of the list. This coordinate transform can only involve rotation and
scaling, no translation. Specifying a scaling factor helps if the nodes are too large and overlap. In some
cases a rotation makes it easier to see which class is the target of a differential.

0 1

0

1

Z

Z/2 Z/3
\begin{sseqpage}[class placement transform = { xscale = 1.5 },

class pattern = linear,
classes = { draw = none },
xscale = 2, x axis extend end = 0.7cm]

\class["\mathbb{Z}"](0,0)
\class["\mathbb{Z}/2"](1,1)
\class["\mathbb{Z}/3"](1,1)
\end{sseqpage}

0 1 2 3

0

1

2

\begin{sseqpage}[class placement transform = { rotate = 40 },
cohomological Serre grading, scale = 0.65,
classes = fill, differentials = blue]

\class(0,0)
\class(0,2)\class(0,2)
\class[red](3,0)\class[green](3,0)\class[blue](3,0)

\d3(0,2,1,2)
\d3(0,2,-1,-1)
\draw[->,red](3,0,1)--(0,0);
\end{sseqpage}

With multiple large class labels, the best option is to arrange the classes vertically:

44

7 8

0

1

2

ι3βι3

P 1ι3

ι2ι3βι3

ι2P
1ι3

(βι3)
2

P 1βι3

βP 1ι3

ι2(βι3)
2

ι2P
1βι3

ι2βP
1ι3

\begin{sseqpage}[classes = {draw = none }, xscale = 2, yscale=1.55,
class pattern = linear,
class placement transform = { scale = 1.5, rotate = 90 },
right clip padding = 20pt, top clip padding = 20pt,
x axis gap = 30pt, y axis gap = 20pt]

\class["\iota_3\beta\iota_3"](7,0)
\class["P^1\iota_3"](7,0)

\class["\iota_2\iota_3\beta\iota_3"](7,2)
\class["\iota_2P^1\iota_3"](7,2)

\class["(\beta\iota_3)^2"](8,0)
\class["P^1\beta\iota_3"](8,0)
\class["\beta P^1\iota_3"](8,0)

\class["\iota_2(\beta\iota_3)^2"](8,2)
\class["\iota_2P^1\beta\iota_3"](8,2)
\class["\iota_2\beta P^1\iota_3"](8,2)
\end{sseqpage}

math nodes = 〈boolean〉 (default true)(initially true)
This key instructs spectralsequences to put all labels in math mode automatically.

7.1 Global coordinate transformations

Of the normal TikZ coordinate transformations, only the following can be applied to a spectralsequences
chart:

scale = 〈factor〉
xscale = 〈factor〉
yscale = 〈factor〉
xmirror
ymirror

Scale the chart by 〈factor〉. Under normal circumstances, you can tell TikZ to mirror a chart by saying,
for instance, xscale = -1, but spectralsequences needs to be aware that the chart has been mirrored
in order to draw the axes correctly. Thus, if you want to mirror a spectral sequence, use the xmirror
and ymirror options as appropriate.

rotate = 〈angle〉
It probably won’t look great if you pick an angle that isn’t a multiple of 90 degrees.

7.2 Plot options and axes style

x range = {〈x min〉}{〈x max 〉}
y range = {〈y min〉}{〈y max 〉}

These options set the x range (respectively y range) to be a specific interval. By default, if no range
is specified then the range is chosen to fit all the classes. If an x range is specified but no y range,
then the y range is chosen to fit all the classes that lie inside the specified x range, and vice versa. The
values must be integers – if you want to extend the x axis a noninteger amount, try using x axis start
extend or x axis end extend.

grid = 〈grid type〉
grid color = 〈color〉
grid step = 〈positive integer〉
x grid step = 〈positive integer〉

45

y grid step = 〈positive integer〉
Makes spectralsequences draw a grid. The grid types and a significant part of the code that produces
them were stolen from the sseq package.

chess

0 1 2 3

0

1

2

3

crossword

0 1 2 3

0

1

2

3

go

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

\begin{sseqdata}[name = grid example, scale = 0.8]
\class(0,0)
\class(3,0)
\class(2,1)\class(2,1)
\class(1,2)\class(1,2)\class(1,2)
\class(0,3)
\class(3,3)
\end{sseqdata}
\hbox{
\printpage[name = grid example, grid = chess, title=chess]
\qquad
\printpage[name = grid example, grid = crossword, title=crossword]
}
\vskip20pt
\hbox{
\printpage[name = grid example, grid = go, title=go]
\qquad
\printpage[name = grid example, grid = none]
}

It is possible to make your own grid type by defining the command \sseq@grid@yourgridname to draw
a grid.
It is a known problem that acrobat reader displays grids very dark and thick. This is caused by the
enhance thin lines “feature” of Acrobat reader. You can turn it off globally by going into the acrobat
reader preferences window and unchecking the “Enhance thin lines” checkbox in the “Rendering” section.
Unfortunately, there is no way to instruct Acrobat Reader to not apply this feature to a particular
document. This has apparently been annoying graphic designers for over a decade.
The grid color option changes the color of the grid; the default value is gray. The grid step keys change
the grid step.

title = 〈text〉

46

title style = 〈keys〉
x label = 〈text〉
y label = 〈text〉
x label style = 〈keys〉
y label style = 〈keys〉
label style = 〈keys〉

This make chart labels.

An example

x axis label

y
ax

is
la
be

l

0 1 2

0

1

2

\begin{sseqpage}[title = { An example }, yscale = 0.5,
x label = { x axis label },
y label = { y axis label },
label style = { blue, font = \small },
x label style = { yshift = 5pt },
]

\class(0,0)
\class(2,2)
\end{sseqpage}

Note that if you make multiple versions of the same chart and some of the charts have labels and others
don’t, they might not align the way you want. An easy solution to this is to use \path[background]
(min x, min y) – (max x, max y); where the coordinates are below and to the left, respectively
above and to the right, of everything else drawn in any picture. This makes the bounding boxes for all
of the pictures the same size, so that they line up even if the exact collection of things drawn changes.
See the example at the end of the background key for an illustration of this.

no title
draw title
no x label
no y label
no labels
draw x label
draw y label
draw labels

Suppress or unsuppress the title, x label, y label, or both x and y labels, respectively.

no x ticks
no y ticks
no ticks
draw x ticks
draw y ticks
draw ticks

Suppress axes ticks (the numbers next to the axes). Only matters if axes are drawn. You can make
your own ticks using TikZ inside a {scope} environment with the background key. For instance,
you might want to label the axes as 0, n, 2n, . . . You can achieve this as follows: (you can also use
x tick handler).

0

1

2

0 n 2n 3n

\begin{sseqpage}[no x ticks, x range = {0}{3}]
\begin{scope}[background]

\node at (0,\ymin - 1) {0};
% \vphantom is fragile so we have to throw in an extra \protect
\node at (1,\ymin - 1) {\protect\vphantom{2}n};

\foreach \n in {2,..., \xmax}{
\node at (\n,\ymin - 1) {\n n};

}
\end{scope}
\class(0,0)
\class(3,2)
\end{sseqpage}

47

x tick step = 〈positive integer〉 (initially 1)
y tick step = 〈positive integer〉 (initially 1)
tick step = 〈positive integer〉 (initially 1)

Sets the interval between labels.

x tick offset = 〈integer〉 (initially 0)
y tick offset = 〈integer〉 (initially 0)
tick offset = 〈integer〉 (initially 0)

Sets the label offset – by default the ticks will always be the set of numbers that are 0 mod 〈tick step〉.
Change it so that the ticks are the set of numbers that are 〈tick offset〉 mod 〈tick step〉.

x major tick step = 〈nonnegative integer〉 (initially 0)
y major tick step = 〈nonnegative integer〉 (initially 0)
major tick step = 〈nonnegative integer〉
x minor tick step = 〈nonnegative integer〉 (initially 0)
y minor tick step = 〈nonnegative integer〉 (initially 0)
minor tick step = 〈nonnegative integer〉

If these are nonzero, they control the placement of tick marks on the axes. The value 0 prevents tick
marks from being drawn. Uses x tick offset as an offset.

0 5 10

0

5

10
\begin{sseqpage}[

tick step = 5,
major tick step = 5,
minor tick step = 1,
scale = 0.4,
axes type = frame

]
\class(0,0)
\class(10,10)
\end{sseqpage}

x tick style = {〈keys〉}
y tick style = {〈keys〉}
tick style = {〈keys〉}

Change the tick style:

0 1 2

0

1

\begin{sseqpage}[tick style = { blue, font = \tiny }]
\class(0,0) \class(2,1)
\end{sseqpage}

x tick handler = 〈function〉 (initially #1)
y tick handler = 〈function〉 (initially #1)
tick handler = 〈function〉 (initially #1)

The value for x tick handler should be a function that takes in the current x value and outputs the
appropriate tick. Correspondingly with y tick handler. The tick handler key sets both.

48

0 n 2n 3n 4n

0

1

2

\begin{sseqpage}[x range = {0}{4}, yscale = 1.78,
x tick handler = {

\ifnum#1 = 0\relax
0

\else
\ifnum#1 = 1\relax

% \vphantom is fragile so we \protect it
\protect\vphantom{2}n

\else
#1n

\fi
\fi

}
]
\class(0,0)
\class(4,2)
\end{sseqpage}

7.3 Layout

x axis type = 〈type〉 (initially border)
y axis type = 〈type〉 (initially border)
axes type = 〈type〉 (initially border)
no x axis
no y axis
no axes

The 〈type〉 is either border, center, frame, or none. no axes is a shorthand for axes type=none. The
border type is the default and puts the axes on the bottom and left of the picture. The center type
by default places the axes to pass through (0, 0); this can be modified using the x axis origin and
y axis origin keys. See example_KRAHSS.tex and example_KUHFPSS.tex for examples where this is
used. The frame type draws a frame around the entire chart:

0 1 2 3

0

1

2
\begin{sseqpage}[axes type=frame]
\class(0,0)
\class(3,2)
\end{sseqpage}

x axis origin = 〈x value〉 (initially 0)
y axis origin = 〈y value〉 (initially 0)

If you use axes type = center, these keys change the position of the axes. Otherwise, they are ignored.

x axis gap = 〈dimension〉 (initially 0.5cm)
y axis gap = 〈dimension〉 (initially 0.5cm)
axes gap = 〈dimension〉 (initially 0.5cm)

x tick gap = 〈dimension〉 (initially 0.5cm)
y tick gap = 〈dimension〉 (initially 0.5cm)

x axis extend start = 〈dimension〉 (initially 0.5cm)
y axis extend start = 〈dimension〉 (initially 0.5cm)
x axis extend end = 〈dimension〉 (initially 0.5cm)
y axis extend end = 〈dimension〉 (initially 0.5cm)
x axis tail = 〈dimension〉 (initially 0.9cm)
y axis tail = 〈dimension〉 (initially 0.9cm)

x axis clip padding = 〈dimension〉 (initially 0.1cm)

49

y axis clip padding = 〈dimension〉 (initially 0.1cm)

right clip padding = 〈dimension〉 (initially 0.1cm)
left clip padding = 〈dimension〉 (initially 0.1cm)
top clip padding = 〈dimension〉 (initially 0.1cm)
bottom clip padding = 〈dimension〉 (initially 0.1cm)

custom clip = 〈clip path〉
Give a custom clipping. The clipping specified must be in the form of a valid TikZ path, for instance
\clip (0,0) rectangle (10,10);. This clipping is also applied to any grid and is used to draw
ellipses on appropriate differentials or structure lines that go out of bounds and to determine whether
a differential or structure line is an “orphan”. It is not applied to any background elements, which is
important because these are often used for axes labels and such that should lie outside of the clipping
region. Weird things can happen with out of range edges if you provide an oddly shaped path.

clip = 〈boolean〉 (default true)(initially true)
If this is false the spectral sequence chart won’t be clipped. I’m not really sure why you would want
that, but there might be some use case. Setting this to be false is not fully supported, and it’s possible
that weird things will happen with some of the edges that go out of range.

rotate labels = 〈boolean〉 (default true)(initially false)
If you use rotate = 90 but also want the labels rotated (so that the whole chart is sideways) use this
key.

50

Axis type border layout

0 1 2 3 4 5

0

1

2

3

4

5

x axis
clip padding

y axis
clip padding

right clip
padding

top clip
padding

x axis
tail

y axis
tail

x axis
extend end

y axis
extend end

x tick gap

y tick gap

x axis gap

y axis gap

Axes type frame layout

0 1 2 3 4 5

0

1

2

3

4

5

x axis
clip padding

y axis
clip padding

x axis
clip padding

y axis
clip padding

x tick gap

y tick gap

x axis gap

y axis gap

y axis gap

x axis gap

51

Axes type center layout

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x tick gap

y tick gap

left clip
padding

right clip
padding

top clip
padding

bottom clip
padding

x axis
extend end

y axis
extend end

x axis
extend start

y axis
extend start

52

	Introduction
	Installation
	Memory Constraints
	A warning about fragile macros

	Package Options and Environments
	The Main Commands
	Options for the main commands
	Universal options
	Options for \class
	Options for \d and \structline
	Options for \circleclass
	Options for TikZ primitives

	Miscellaneous Commands
	Settings
	Code reuse commands
	Families
	Utilities
	Coordinate parsers and related
	The class stack

	Styles
	Style-like options

	Global Options
	Global coordinate transformations
	Plot options and axes style
	Layout

