
The songproj package∗

Tanguy Ortolo
tanguy+latex@ortolo.eu

November 7, 2022

1 Introduction
This package, together with the beamer class, is used to generate slideshows with song
lyrics. This is typically used in religious services in churches equipped with a projector,
for which this package has been written, but it can be useful for any type of singing
assembly1. It provides environments to describe a song in a natural way, and formatting
it into slides with overlays.

2 Usage
2.1 The song environment
The main feature of this package is the song, that allows the user to describe an entire
song that will be formatted into slides.

The song{⟨stanzas per slide⟩}[⟨couplet list⟩] environment is used around an entiresong
song. It takes a mandatory argument, ⟨stanzas per slide⟩, to specify whether the user
wants to show one or two stanzas2 on the slide. An optional argument, ⟨couplet list⟩ is a
comma-separated list of couplet (or verse) indexes, that allows the user to indicate that
they want to include only these couplets of a large song: without this, all couplets will
be included.

Inside of the song environment, the user will use the \longest command and the
intro, refrain, couplet3 and final environments.

Warning Inside a song environment, it is an error to write anything that is not an
intro, refrain, couplet, final environment or a \longest command. Direct text
would be typeset in a way that would disrupt the song formatting.

∗This document corresponds to songproj v1.0.1, dated 2022/11/07.
1Indeed, the song used here as an example is not really a religious one! It was chosen because it is in

the public domain and the author likes it.
2including the refrain
3We chose to use the French words refrain and couplet for several reason: the author is French, these

words are understandable in English and their English equivalents, chorus and verse, have multiple
meanings that would make them very ambiguous in both usage and implementation of this package.

1

\longest{⟨song line⟩}

Inside a song environment, the \longest{⟨song line⟩} command is used to declare the
longest line of a song, that will be used to properly center the song stanzas, as allowed
by the verse package. That line is only used to compute and record its length, and will
not be typeset.

\longest

Inside a song environment, the optional intro environment declares a number of linesintro
meant to be sung once, at the beginning of the song. In a psalm, this may be an antiphon.

Inside a song environment, the optional refrain environment declares the song refrainrefrain
(or chorus). A song may start with its refrain, or with a first couplet, followed by the
refrain. It is not useful to declare the refrain several time, as the song environment will
take care of repeating between the couplets.

Inside a song environment, the couplet environment declares each couplet (or verse)couplet
of the song.

Inside a song environment, the optional final environment declares a number of linesfinal
meant to be sung once, at the end of the song. In an hymn, that may be a doxology.

Example The following song is defined with three couplets and a refrain. Since its
begins with a couplet, it will be formatted with the first couplet, the refrain, the second
couplet, the refrain, and so on.

The song environment is given two arguments, {2}[1,2]. The first one tells it to
show two stanzas, that is, both a couplet and the refrain, on the generated slide. The
second argument tells it to include only the first two couplets in the output.

\begin{frame}
\begin{song}{2}[1,2]

\longest{Light she was, and like a fairy,}
\begin{couplet}

In a cavern, in a canyon, \\
Excavating for a mine. \\
Dwelt a miner, forty-niner, \\
And his daughter, Clementine. \\

\end{couplet}
\begin{refrain}

Oh my darling, oh my darling, \\
Oh my darling Clementine, \\
You are lost and gone forever, \\
Dreadful sorry, Clementine. \\

\end{refrain}
\begin{couplet}

Light she was, and like a fairy, \\
And her shoes were number nine, \\
Herring boxes, without topses, \\
Sandals were for Clementine. \\

\end{couplet}

2

\begin{couplet}
[…]

\end{couplet}
\end{song}

\end{frame}

2.2 The \inputsong command

\inputsong{⟨file⟩}{⟨stanzas per slide⟩}[⟨couplet list⟩]

The \inputsong command environment is used as a shortcut for typesetting a song
written in an external file. That file should contain the song content, including intro,
refrain, couplet or final as needed, but without being wrapped in a song environment.

For instance, one could write a file named clementine.tex containing the content
of the song environment shown in example page 2, and use it in a slideshow:

\frame{\inputsong{clementine.tex}{2}[1,2]}

\inputsong

2.3 The refrain, couplet, intro and final environments
These commands are also usable outside of a song environment. In that case, they simply
format a refrain or couplet, which can be useful when you need more manual control.

Outside of a song environment, this environment simply wraps its content inside arefrain
structure and a verse environment. It takes an optional ⟨verse width⟩ argument, that
is used to properly center the refrain, as allowed by the verse package.

Outside of a song environment, this environment simply wraps its content inside acouplet
verse environment. It takes an optional ⟨verse width⟩ argument, that is used to properly
center the refrain, as allowed by the verse package.

Outside of a song environment, these environments simply wrap their content insideintro
final a em and a verse environment. They takes an optional ⟨verse width⟩ argument, that is

used to properly center the refrain, as allowed by the verse package.

2.4 Usage tips
For regular offices, there are several suggestions that can ease the creation and usage of
lyric slideshows.

2.4.1 Using dedicated song files

It is suggested to write song lyrics in dedicated files, each containing a single the content
of a song environment, without the environment wrapping itself. They can then be used
with the \inputsong command.

For instance, one could write a file named clementine.tex containing the content
of the song environment shown in example page 2. It would then be used in a slideshow
such as:

3

\documentclass{beamer}
\usepackage{songproj}

\begin{document}
\begin{frame}

\inputsong{clementine.tex}{2}[1,2,3]
\end{frame}

\end{document}

2.4.2 Importing text lyrics

Song lyrics are often found in text format with basic markup:

1. In a cavern, in a canon,
Excavating for a mine.
Dwelt a miner, forty-niner,
And his daughter, Clementine.

C. Oh my darling, oh my darling,
Oh my darling Clementine
You are lost and gone forever,
Dreadful sorry Clementine.

2. Light she was, and like a fairy,
And her shoes were number nine,
Herring boxes, without topses,
Sandals were for Clementine.

[…]

To avoid the tedious task of manually removing text and adding LATEX markup, we
provide the song2tex.py helper. Please refer to its embedded help for detailed instruc-
tions about its usage:

$./song2tex.py --help
$./song2tex.py clementine.txt clementine.tex

2.4.3 Projection layout advice

During a religious service, a song lyrics projection is only a support, and should not draw
their attention away from the main feature, which is the common prayer.

I therefore suggest using a very simple Beamer theme, such as its default one with
the owl color theme, and removing the navigation symbols. I also suggest not showing
song titles (or anything else that is not actually sung by the assembly) unless there is a
good reason to do so, such as getting used to a song or set of songs you intend to reuse
often.

\documentclass{beamer}
\usecolortheme{owl}
\setbeamertemplate{navigation symbols}{}
\usepackage{songproj}

4

https://github.com/rchurchley/beamercolortheme-owl

\begin{document}
[…]

\end{document}

2.4.4 Projection advice

For projecting song lyrics, you can take advantage of using a PDF presentation software
able to show a presenter console on your laptop screen, and the current slide on the
projector. Software like as pdfpc or Pympress can also understand and adapt their
display to the concept of Beamer overlay.

3 Implementation
3.1 Dependencies
This module is written using LATEX3 programming interfaces and command definitions:

1 \RequirePackage{expl3}
2 \RequirePackage{xparse}

The implementation of the song environment and its friends is mainly based on the
verse package:

3 \RequirePackage{verse}

3.2 Internal definitions
Almost all definitions use the expl3 syntax:

4 \ExplSyntaxOn

3.2.1 Internal variables

We define a number of internal variables, that are used when reading and formatting a
song. All of these variables are meant to be set globally: since there is no notion of a song
within a song, we are certain that we will always be either outside of a song or inside a
single song.

5 \bool_new:N \g__sp_song_bool % are we in a song?
6 \bool_new:N \g__sp_song_start_bool % are we at the start of a song?
7 \bool_new:N \g__sp_refrain_first_bool % does current song start with the
8 % refrain?
9 \int_new:N \g__sp_stanzas_per_slide_int % number of stanzas to show on each

10 % slide (1 or 2)
11 \dim_new:N \g__sp_linewidth_dim % length of the longest line in current
12 % song
13 \tl_new:N \g__sp_intro_tl % current song intro
14 \tl_new:N \g__sp_refrain_tl % current song refrain
15 \seq_new:N \g__sp_couplets_seq % current song couplets
16 \tl_new:N \g__sp_final_tl % current song final
17 \seq_new:N \g__sp_couplet_indexes_seq % indexes of couplets to include

5

https://pdfpc.github.io/
https://github.com/Cimbali/pympress/

3.2.2 Internal environments

These are high-level internal environments, that are used in the implementation of user
interface environments.

__sp_refrain This environment simply formats a song refrain. It is used in the user interface refrain
environment.

18 \NewDocumentEnvironment {__sp_refrain} {}
19 % The environment opening may be followed by a [length], in fact part of its
20 % body, and will appear just after the opening of the verse environment and
21 % constitute its optional argument.
22 {
23 \begin{structureenv}
24 \begin{verse}
25 }
26 {
27 \end{verse}
28 \end{structureenv}
29 }

__sp_couplet This environment simply formats a song couplet. It is used in the user interface couplet
environment.

30 \NewDocumentEnvironment {__sp_couplet} {}
31 % The environment opening may be followed by a [length], in fact part of its
32 % body, and will appear just after the opening of the verse environment and
33 % constitute its optional argument.
34 { \begin{verse} }
35 { \end{verse} }

__sp_special This environments simply formats a song intro of final. It is used in the user interface
intro and final environments.

36 \NewDocumentEnvironment {__sp_special} {}
37 % The environment opening may be followed by a [length], in fact part of its
38 % body, and will appear just after the opening of the verse environment and
39 % constitute its optional argument.
40 {
41 \begin{em}
42 \begin{verse}
43 }
44 {
45 \end{verse}
46 \end{em}
47 }

3.2.3 Internal macros

These are macros that are used in the implementation of the song environment.

__sp_song_refrain This macro uses the __sp_refrain environment to format the current song refrain.
48 \tl_gset:Nn __sp_song_refrain
49 {
50 % Do we know the width of the longest song line?
51 \dim_compare:nNnTF \g__sp_linewidth_dim {=} {0pt}

6

52 { \begin{__sp_refrain} }
53 { \begin{__sp_refrain} [\g__sp_linewidth_dim] }
54 \tl_use:N \g__sp_refrain_tl
55 \end{__sp_refrain}
56 }

(End definition for __sp_song_refrain.)

__sp_song_couplet:n This macro uses the __sp_couplet environment to a specified couplet of the current
song. It takes a single argument:
#1 : index of the couplet to format.

57 \cs_gset:Npn __sp_song_couplet:n #1
58 {
59 % Do we know the width of the longest song line?
60 \dim_compare:nNnTF \g__sp_linewidth_dim {=} {0pt}
61 { \begin{__sp_couplet} }
62 { \begin{__sp_couplet} [\g__sp_linewidth_dim] }
63 \seq_item:Nn \g__sp_couplets_seq {#1}
64 \end{__sp_couplet}
65 }

(End definition for __sp_song_couplet:n.)

__sp_song_couplets:n This macro inserts an containing all couplets of the current song in an overprint envi-
ronment, in groups separated with \onslide commands. It takes a single argument:
#1 : number of couplets to show together on each slide.

66 \cs_gset:Npn __sp_song_couplets:n #1
67 {
68 \begin{overprint}
69 % Loop on all specified couplets
70 \int_step_inline:nn
71 { \seq_count:N \g__sp_couplet_indexes_seq }
72 {
73 % Before every #1 lines, i.e. when (##1 - 1) mod #1 == 0),
74 % insert an \onslide
75 \int_compare:nNnTF
76 { \int_mod:nn { \int_eval:n{##1 - 1} } {#1} } { = } { 0 }
77 { \onslide<+> }
78 { \vskip \stanzaskip }
79 __sp_song_couplet:n { \seq_item:Nn \g__sp_couplet_indexes_seq {##1} }
80 }
81 \end{overprint}
82 }

(End definition for __sp_song_couplets:n.)

__sp_song_intro This macro uses the __sp_special environment to format the current song intro.
83 \tl_gset:Nn __sp_song_intro
84 {
85 % Do we know the width of the longest song line?
86 \dim_compare:nNnTF \g__sp_linewidth_dim {=} {0pt}
87 { \begin{__sp_special} }
88 { \begin{__sp_special} [\g__sp_linewidth_dim] }
89 \tl_use:N \g__sp_intro_tl

7

90 \end{__sp_special}
91 }

(End definition for __sp_song_intro.)

__sp_song_final This macro uses the __sp_refrain environment to format the current song final.
92 \tl_gset:Nn __sp_song_final
93 {
94 % Do we know the width of the longest song line?
95 \dim_compare:nNnTF \g__sp_linewidth_dim {=} {0pt}
96 { \begin{__sp_special} }
97 { \begin{__sp_special} [\g__sp_linewidth_dim] }
98 \tl_use:N \g__sp_final_tl
99 \end{__sp_special}

100 }

(End definition for __sp_song_final.)

__sp_song This macro inserts the entire song, alternating refrain and couplets in an overprint
environment.
101 \tl_gset:Nn __sp_song
102 {
103 % Is there a song intro?
104 \tl_if_empty:NTF \g__sp_intro_tl
105 {}
106 {
107 \visible<1> {__sp_song_intro}
108 % The combination of overprint with verse that comes next somehow adds
109 % extra vertical space that needs to be removed.
110 \vskip -\stanzaskip
111 }
112

113 \begin{overprint}
114

115 % Does the song begin with the refrain?
116 \bool_if:NTF \g__sp_refrain_first_bool
117 {
118 % If so, print an initial refrain
119 \onslide<+>
120 __sp_song_refrain
121 }
122 {}
123

124 % Is there a refrain?
125 \tl_if_empty:NTF \g__sp_refrain_tl
126 {
127 % No refrain, loop on all specified couplets and insert them
128 \seq_map_inline:Nn
129 \g__sp_couplet_indexes_seq
130 {
131 \onslide<+>
132 __sp_song_couplet:n {#1}
133 }
134 }

8

135 {
136 % There is a refrain, loop on all specified couplets and, each time,
137 % insert both a couplet and the refrain
138 \seq_map_inline:Nn
139 \g__sp_couplet_indexes_seq
140 {
141 \onslide<+>
142 __sp_song_couplet:n {#1}
143 \onslide<+>
144 __sp_song_refrain
145 }
146 }
147 \end{overprint}
148

149 % Is there a song final?
150 \tl_if_empty:NTF \g__sp_final_tl
151 {}
152 {
153 % Add extra spacing
154 \vskip \stanzaskip
155 \visible<.> {__sp_song_final}
156 }
157 }

(End definition for __sp_song.)

3.3 User interface
These environments constitute our user interface. They allow the user to define songs,
refrains and couplets.

refrain This environment handles a refrain :

• outside of a song, it uses the __sp_refrain environment to directly format it ;

• inside a song, it stores it into \g__sp_retrain_tl, so it can be formatted by the
end of the song environment.

158 \NewDocumentEnvironment {refrain} { +b }
159 % The environment opening may be followed by a [length], in fact part of its
160 % body, and will appear just after the opening of the __sp_refrain
161 % environment and constitute its optional argument.
162 {
163 % Are we in a song?
164 \bool_if:NTF \g__sp_song_bool
165 {
166 % We are in a song, are we at its start?
167 \bool_if:NTF \g__sp_song_start_bool
168 {
169 % Indicate that we are no longer at the start of the song
170 \bool_gset_false:N\g__sp_song_start_bool
171 % and that the refrain comes first
172 \bool_gset_true:N\g__sp_refrain_first_bool
173 }
174 {}

9

175 % Anyway, store the refrain
176 \tl_gset:Nn \g__sp_refrain_tl {#1}
177 }
178 {
179 % We are not in a song, use __sp_refrain to format the refrain
180 \begin{__sp_refrain}
181 #1
182 \end{__sp_refrain}
183 }
184 }
185 {}

couplet This environment handles a couplet, in a similar way:

• outside of a song, it uses the __sp_couplet environment to directly format it ;

• inside a song, it stores it by appending it to to \g__sp_couplets_seq, so it can be
formatted by the end of the song environment.

186 \NewDocumentEnvironment {couplet} { +b }
187 % The environment opening may be followed by a [length], in fact part of its
188 % body, and will appear just after the opening of the __sp_couplet
189 % environment and constitute its optional argument.
190 {
191 % Are we in a song?
192 \bool_if:NTF \g__sp_song_bool
193 {
194 % Are we at in a song, are we at its start?
195 \bool_if:NTF \g__sp_song_start_bool
196 {
197 % Indicate that we are no longer at the start of the song
198 \bool_gset_false:N \g__sp_song_start_bool
199 % and that the refrain does not come first
200 \bool_gset_false:N \g__sp_refrain_first_bool
201 }
202 {}
203 % Anyway, store this couplet
204 \seq_gput_right:Nn \g__sp_couplets_seq { {#1} }
205 }
206 {
207 % We are not in a song, use __sp_couplet to format this couplet
208 \begin{__sp_couplet}
209 #1
210 \end{__sp_couplet}
211 }
212 }
213 {}

intro This environment handles a song intro, in a similar way:

• outside of a song, it uses the __sp_special environment to directly format it;

• inside a song, it stores it into \g__sp_intro_tl so it can be formatted by the end
of the song environment.

10

214 \NewDocumentEnvironment {intro} { +b }
215 % The environment opening may be followed by a [length], in fact part of its
216 % body, and will appear just after the opening of the __sp_special
217 % environment and constitute its optional argument.
218 {
219 % Are we in a song?
220 \bool_if:NTF \g__sp_song_bool
221 {
222 % We are in a song, store its intro
223 \tl_gset:Nn \g__sp_intro_tl {#1}
224 }
225 {
226 % We are not in a song, use __sp_special to format the intro
227 \begin{__sp_special}
228 #1
229 \end{__sp_special}
230 }
231 }
232 {}

final This environment handles a song final, in a similar way:

• outside of a song, it uses the __sp_special environment to directly format it;

• inside a song, it stores it into \g__sp_final_tl so it can be formatted by the end
of the song environment.

233 \NewDocumentEnvironment {final} { +b }
234 % The environment opening may be followed by a [length], in fact part of its
235 % body, and will appear just after the opening of the __sp_special
236 % environment and constitute its optional argument.
237 {
238 % Are we in a song?
239 \bool_if:NTF \g__sp_song_bool
240 {
241 % We are in a song, store its intro
242 \tl_gset:Nn \g__sp_final_tl {#1}
243 }
244 {
245 % We are not in a song, use __sp_special to format the intro
246 \begin{__sp_special}
247 #1
248 \end{__sp_special}
249 }
250 }
251 {}

\longest This macro measures the length of a song line and stores it, so it can be used by the song
environment to properly center refrain and couplets. It takes a single argument:
#1 : a song line to measure.
252 \NewDocumentCommand {\longest} { m } { \settowidth {\g__sp_linewidth_dim} {#1} }

(End definition for \longest. This function is documented on page 2.)

song This environment is used as a container for entire songs. On opening, it does several
things:

11

1. its stores its arguments into variables with a descriptive name;

2. it clears out any previously stored refrain, couplet, intro, final and longest song
line;

3. it sets the \g__sp_song_bool variable to indicate that we are inside a song, which
will alter the behaviour of the refrain and couplet environments so they record
their content rather than directly formatting it into the document;

4. it sets the \g__sp_song_start_bool variable to indicate that we are at the start
of the song, which will allow the next refrain or couplet to tell if the song starts
with the refrain or with a couplet;

This environment takes two arguments:
#1 : number of stanzas (counting couplets and refrain, when there is one) per slide;
#2 : list of couplets to include (defaults to all), for instance 1,3,4.
253 \NewDocumentEnvironment {song} { m o }
254 % {number of stanzas per slide (1 or 2)}
255 % [list of couplets to include (defaults to all)]
256 {
257 % Put arguments into variables with understandable names
258 \int_gset_eq:NN {\g__sp_stanzas_per_slide_int} {#1}
259 \IfNoValueTF {#2}
260 { \seq_gclear:N \g__sp_couplet_indexes_seq }
261 { \seq_gset_from_clist:Nn \g__sp_couplet_indexes_seq {#2} }
262

263 % Clear out intro, refrain, couplet, final and longest song line
264 \tl_gclear:N \g__sp_intro_tl
265 \tl_gclear:N \g__sp_refrain_tl
266 \seq_gclear:N \g__sp_couplets_seq
267 \tl_gclear:N \g__sp_final_tl
268 \dim_zero:N {\g__sp_linewidth_dim}
269

270 % Indicate that we are in a song, and at its start
271 \bool_gset_true:N \g__sp_song_bool
272 \bool_gset_true:N \g__sp_song_start_bool
273 }

And on closing:

• if no list of couplet indexes to use have been given, it generates one covering all
couplets in order;

• it uses internal functions to insert the intro, refrain, couplets and final into the
document, in the right order according to the song structure (refrain or couplet
first) and to the formatting instructions (one or two stanzas per slide).

274 {
275 % Have we been given indexes of specific couplets to use?
276 \seq_if_empty:NTF \g__sp_couplet_indexes_seq
277 {
278 % If not, generate it from the list of couplets
279 \int_step_inline:nn
280 { \seq_count:N \g__sp_couplets_seq }

12

281 { \seq_gput_right:Nn \g__sp_couplet_indexes_seq {##1} }
282 }
283 {}
284

285 % Now we actually start inserting things into the document.
286 % How many stanzas per side did the user request?
287 \int_compare:nNnTF \g__sp_stanzas_per_slide_int {>} {1}
288 {
289 % More than one stanza per slide
290 %
291 % Is there an intro?
292 \tl_if_empty:NTF \g__sp_intro_tl
293 {}
294 {
295 \visible<1> {__sp_song_intro}
296 % Adjust vertical spacing depending on whether the refrain or the
297 % couplets follow.
298 \bool_if:NTF\g__sp_refrain_first_bool
299 {
300 % Refrain comes next, add extra space
301 \vskip \parsep
302 }
303 {
304 % Couplets come next, the combination of their overprint and
305 % verse environment somehow adds extra vertical space that
306 % needs to be removed.
307 \vskip -\stanzaskip
308 }
309 }
310

311 % Is there a refrain?
312 \tl_if_empty:NTF \g__sp_refrain_tl
313 {
314 % If there is no refrain, we use __sp_song_couplets:n to write the
315 % couplets, \g__sp_stanzas_per_slide_int at a time.
316 __sp_song_couplets:n { \int_use:N \g__sp_stanzas_per_slide_int }
317 }
318 {
319 % If there is a refrain, we use __sp_song_refrain to write the
320 % refrain and __sp_song_couplets:n to write overprint with all
321 % couplets.
322

323 % Does the song begin with the refrain?
324 \bool_if:NTF\g__sp_refrain_first_bool
325 {
326 __sp_song_refrain
327 \vskip -\stanzaskip
328 __sp_song_couplets:n 1
329 }
330 {
331 __sp_song_couplets:n 1
332 \vskip \stanzaskip
333 __sp_song_refrain
334 }

13

335 }
336

337 % Is there a final?
338 \tl_if_empty:NTF \g__sp_final_tl
339 {}
340 {
341 % Adjust vertical spacing depending on whether we follow the
342 % refrain or the couplets.
343 \tl_if_empty:NTF \g__sp_refrain_tl
344 {
345 % No refrain, we follow the couplets, add extra space
346 \vskip \stanzaskip
347 }
348 {
349 % There was a refrain, did it come first?
350 \bool_if:NTF \g__sp_refrain_first_bool
351 {
352 % Refrain came first, we follow the couplets, add extra space
353 \vskip \stanzaskip
354 }
355 {
356 % Refrain came last, we follow it, add extra space
357 \vskip \parsep
358 }
359 }
360 \visible<.> {__sp_song_final}
361 }
362 }
363 {
364 % If the user requested one stanza per slide, we use __sp_song to
365 % write the entire song in a single overprint environment.
366 __sp_song
367 }
368 % Indicate that we are no longer in a song
369 \bool_gset_false:N\g__sp_song_bool
370 }

\inputsong This macro starts a song environment and \inputs the song content from an external
file.
371 \NewDocumentCommand {\inputsong} { m m o }
372 {
373 \IfNoValueTF {#3}
374 { \begin{song} {#2} }
375 { \begin{song} {#2} [#3] }
376 \input{#1}
377 \end{song}
378 }

(End definition for \inputsong. This function is documented on page 3.)

3.4 Wrapping up
Now that we have defined everything we need, we can leave the expl3 syntax and return
to normal TEX syntax:

14

379 \ExplSyntaxOff

15

	1 Introduction
	2 Usage
	2.1 The song environment
	2.2 The \inputsong command
	2.3 The refrain, couplet, intro and final environments
	2.4 Usage tips
	2.4.1 Using dedicated song files
	2.4.2 Importing text lyrics
	2.4.3 Projection layout advice
	2.4.4 Projection advice

	3 Implementation
	3.1 Dependencies
	3.2 Internal definitions
	3.2.1 Internal variables
	3.2.2 Internal environments
	3.2.3 Internal macros

	3.3 User interface
	3.4 Wrapping up

